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Mathematical and Analytical Aspects of Tracking

J. W. R. Twisk,1 H. C. G. Kemper,1 and G. J. Mellenbergh2

INTRODUCTION

In the epidemiologic literature, tracking
is used to describe the longitudinal devel-
opment of a certain variable. There is avail-
able no single definition of tracking, but the
following concepts are involved: 1) the
relation/correlation between early measure-
ments and measurements later in life or the
maintenance of a relative position within a
distribution of values in the observed pop-
ulation through time or, in other words, the
longitudinal stability of a certain variable
(1); and 2) the predictability of future val-
ues by early measurements (2).

To assess tracking, one needs a sample of
N subjects from a population of interest,
which is measured at different time points.
So one measures Y(i,j) for subject i, where
i = 1,2,. . . .,N, at time points t(j), where
j = 1,2, ,T.

First, a measurement (Y(t)) "tracks" if,
for any two time points (fj and t2) within
that time period, there is a positive rela-
tion over subjects between Y(tt) and Y(t2).
The degree of this tracking is operational-
ized in a certain tracking coefficient. Sec-
ond, tracking deals with the predictability
of an early measurement, Y(tt), for the
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value of a measurement later in life, Y(t2).
The magnitude of this prediction is opera-
tionalized in a predictive value or risk
measure, which is, of course, related to
the tracking coefficient.

The measurement Y(f) can be either or-
dinal or dichotomous and has to be mea-
sured with independent measurement er-
rors, because otherwise the magnitude of
the relation between Yfa) and Y(t2) (i.e.,
the tracking between Y(tt) and Y{t2)) can
be influenced by bias of the observers.
Furthermore, the measurement errors of
Y(f) have to be low, because unreliability
of Y(t) can conceal possible evidence of
tracking.

Tracking is mostly used in relation to risk
factors of chronic diseases (3-17). Early
detection of these risk factors can lead to
the possibility of early treatment. In this
view, it is important to get an idea about the
stability of a certain risk factor in time.
What is the relation between measurements
of risk factors early in life and values of the
same risk factors later? In other words, how
predictive are early measurements for val-
ues later in life?

A number of studies that involve tracking
deal with the longitudinal development of
such cardiovascular disease risk factors
as hypertension (3-6), hypercholesteremia
(7-9), or body fatness (10-13). However,
tracking has been described not only in
regard to chronic disease risk factors, but
also in relation to growth parameters, e.g.,
body height and body weight (10, 13), and
for such specific variables as dietary pat-
terns (14, 15), physical activity (16, 17),
and pulmonary function (18).

It is very difficult to compare the magni-
tudes of tracking indices or predictability
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166 Twisk et al.

measures, because in most studies there are
great differences in the length of the inter-
period between the related measurements
or in the ages of the subjects at which the
initial measurement is carried out. Another,
perhaps greater, problem is major differ-
ences in the methodology used to assess
tracking and in the ways statistical tools are
used to operationalize tracking.

In this review, a summary will be given
of the basic methods used to assess track-
ing. Furthermore, a comparison will be
made between the different methods by as-
sessing these methods in terms of two dif-
ferent longitudinal data sets.
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FIGURE 1. Graphical representation of the tracking
coefficient calculated as the percent of subjects who
stayed in the highest quartile of the distribution during
follow-up.

TRACKING COEFFICIENTS

Nonparametric approaches

The advantage of using a nonparametric
approach to calculate a tracking coefficient
is that there are no assumptions about the
distribution of the measurement values.

When tracking is calculated between two
measurements (T = 2), most studies have
quantified the degree of tracking by calcu-
lating Spearman's rank correlation coeffi-
cient between Kft) and Y{t2) (7, 19-22).
When the measurements Y(t^) and Y(t2) are
bivariate normally distributed, the value of
Spearman's rank correlation coefficient is
similar to the value of Pearson's correlation
coefficient.

Another way to describe tracking when
T = 2 is the following: According to the
initial measurement, the population is di-
vided into percentile groups (quartiles,
quintiles, or deciles). Then the percent of
the subjects who stayed in the same upper
or lower percentile group at one or more
follow-up measurements is calculated. If
that percent is more than the expected per-
cent when the subjects are randomly di-
vided into each percentile group (e.g., more
than 25 percent for quartiles, more than 20
percent for quintiles, more than 10 percent
for deciles), the population is said to track
for that particular variable (1, 18, 23-25)
(figure 1).

Sometimes the population is not divided
into subgroups according to percentile

ranking, but according to some predeter-
mined cut point. The percent of subjects
who stayed in the group above or under this
specified level at a follow-up measurement
is calculated (21).

The problem in calculating tracking co-
efficients based on the division into percen-
tile groups is that the magnitude of the
coefficients very much depends on the
grouping of the data.

On the basis of the division of the popu-
lation into percentile groups, two other non-
parametric tracking coefficients have been
used to describe tracking. Nishio et al. (26)
calculated a tracking coefficient when T =
2. They tried to give different weights to
movements to and from different percentile
groups and calculated the following track-
ing index (TI):

TI = (1)

where: T(h) = tracking of a hypothetical
group whose values change randomly be-
tween the percentile groups during the mea-
surement period; and T(s) = tracking of the
study group,

T(s) =
y-z)

(x + y + z)
(2)

where: x = number of subjects who re-
mained in the same percentile group; y =
number of subjects who moved to a neigh-
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boring percentile group; and z = number of
subjects who moved to a remote percentile
group.

If the population is divided into quintiles,
then TQi) takes a value of 0.24 and TI
ranges between 1.0 and 8.3.

In this approach, not only the subjects
who stayed in the same percentile group
during follow-up but also the subjects who
moved to a neighboring percentile group
positively influence the tracking coefficient
TI (figure 2).

Cohen's kappa (K) (27) can be calculated
in longitudinal studies where T ~>1, and it
is calculated as follows:

P =

K =

X

P-P

1-P
(3)

N G

E X nig(nig - 1), (4)
i i

G N

P-r^x 2 2n*
NT r = l ; = l

(5)

where: G = number of groups (4 by using
quartiles, 5 by quintiles, etc.); N = number
of subjects; and nig = number of times
individual i is in the gth percentile group.

p, a measure of how well the group tracks
as a whole, is compared with a value p,
which is expected if individuals are ran-
domly assigned to the different groups at

P75

i : • '•

X

.

z

y

<

P75

initial measurement follow-up

FIGURE 2. Graphical representation of the tracking
index TI of Nishio et al. (26).

each time point. So, for each individual, the
number of times that the individual is in
each of the particular percentile groups is
counted and compared with the value that is
expected if the individuals are randomly
assigned to the different percentile groups
at each measurement.

K ranges from 0.0 to 1.0, and if K > 0.75,
then the variable tracks well. If K < 0.40,
then the variable tracks poorly, and if K
has a value in between these two, then
there is moderate tracking for the variable
of interest (28).

The major advantage of K is that the
index is very easy to compute, but one of
the problems of K is that all movements
between two percentile groups are
weighted equally, irrespective of the length
of the movement. In order to overcome this
drawback, Cohen (29) also developed a
weighted K, in which the lengths of move-
ments are weighted unequally. However, to
our knowledge, the weighted index has
never been used in tracking analysis. Both
K and the weighted K are interpretable as
intraclass correlation coefficients (ICC)
(30).

In situations where T > 2, Kendall's co-
efficient of concordance W is calculated to
describe tracking (18). Kendall's W is not
calculated on the basis of movements be-
tween different percentile groups, but is
based on changes in individual rankings
through time:

12
W=-=— — -X

T2N(N

where: T = number of times a value is
measured; TV = number of subjects; and
/?, = sum of all rankings at all measure-
ments for individual i.

W is directly related to the average
Spearman correlation coefficient:

{WT- 1)
(7)
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where: ps = Spearman correlation coeffi-
cient averaged over T time points; W =
Kendall's W; and T = number of time
points.

W can take values between 0.0 and 1.0
and indicates the degree of association be-
tween the rankings at each of the repeated
measurements. When W is calculated for
random numbers, the coefficient is not
equal to zero, but to a positive value that
depends on the number of time points T. To
compare W with other coefficients, W has
to be rescaled so that W equals zero when
applied to random numbers.

Lauer et al. (5) used a different definition
of tracking. First, they expressed each value
of a certain variable at a particular measure-
ment as a percentile rank. For each individ-
ual, the average of the percentile ranks
throughout time was calculated and was
called level. For each individual, a regres-
sion line describing the change of the per-
centiles over time was calculated and the
slope of this line was called trend. The

goodness of fit of this line, measured as
the residual standard deviation, was called
variability (figure 3). Second, they de-
fined not only subjects who maintain a
high rank order with low variability to
"track" toward future high values, but
also subjects with lower levels, low vari-
ability but high trends. The tracking coef-
ficient that Lauer et al. (5) calculated was
the percent of subjects who belonged to
these groups. Because this tracking coeffi-
cient is based on a different definition of
tracking, it is not comparable to the other
coefficients.

Table 1 summarizes the different non-
parametric tracking coefficients used to de-
scribe tracking.

Parametric approaches

When T = 2, the most used parametric
approach to calculate a tracking coefficient
is the Pearson correlation coefficient (2,
31-34). The Pearson correlation coeffi-

level, trend & variability

percentile
100 - i

years

— trend

FIGURE 3. Graphical representation of level (average percentile), trend (slope of the least squares line), and
variability (square root of the sum of the squared residuals divided by (A/ - 2)) according to Lauer et al. (5).
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TABLE 1. Nonparametric tracking coefficients

Coefficient

Spearman's p
% at "high

risk"

Lauer's %
Cohen's K

Nishio's Tl
Quintiles
Quartiles

Kendall's W

Range*

- 1 . .
0% . .

0% . .
0 . .

1 . .
1 . ,
0 .

. 1

. 100%

. 40%

. 1

. . 8.3

. . 4.0

. . 1

Tracking
criterion!

Arbitrary
>20%

(quintiles)
>25%

(quartiles
Arbitrary
>0.75 good
>0.40

moderate

Arbitrary

Significance

Data
points^

2
2

All
All

2

All

• Range between the minimal and maximal value that the
coefficient can take.

t Criterion to decide whether or not a variable tracks.
$ Number of data points (measurements) used to calculate

the coefficient.

cient, however, is only suitable when Fi^),
Y(t2) are bivariate normally distributed.
When there are more than two longitudinal
measurements, the use of correlation coef-
ficients to describe tracking has the prob-
lem that it does not use all the available
data. When y(fj) Y(tT) are T-variate
normally distributed with equal variances
and covariances, a possible solution to this
problem is the calculation of the ICC,
which is defined as:

ICC = (8)

where: aB
2 = between subjects variance;

and aw
2 = within subjects variance.

When T = 2 and the values are bivariate
normally distributed, the ICC is equivalent
to the Pearson correlation coefficient.
When T > 2, the ICC is in fact the para-
metric form of Kendall's W. The ICC, how-
ever, is never used in relation to tracking
analysis.

Beckett et al. (35) and Guo et al. (36)
have dealt with the problem of not using
all the available data, and they have de-
veloped an alternative approach for stud-
ies where T s 2. Assuming that the lon-
gitudinal measurements are multivariate
normally distributed, they used a general
linear model, as specified by Jennrich

and Schluchter (37) and implemented in
BMDP5V (38), to describe the longitudi-
nal pattern of change:

y, = xfi + eh (9)

where: y, = vector of observed values of
individual i; X, = design matrix for indi-
vidual i; (i = vector of regression parame-
ters; and e, = vector of measurement errors.

The estimation of the regression param-
eters of this longitudinal linear model in-
cludes an estimation of the correlation ma-
trix between pairs of measurements. These
estimated correlations are interpreted as
tracking coefficients (Guo's p).

One of the problems with this approach is
that the correlations between the repeated
measurements were assumed to follow a
certain structure. In the banded structure,
the correlations between two measurements
are assumed to depend only on the time
interval (interperiod) between the two mea-
surements. In the compound symmetry
structure, all pairs of measurements, inde-
pendent of the length of the time interval,
are assumed to have the same correlation,
and in the autoregressive structure the cor-
relations between two measurements are
assumed to follow an exponential structure.
This means that the correlation between
measurements one year apart is t1, the cor-
relation between measurements 2 years
apart is t2, and so on.

Foulkes and Davis (39) have developed a
tracking coefficient (or index) y for studies
when T > 2. Their approach is based on a
statistical model in which the longitudinal
values of an individual change as a certain
function of time. This function, which can
be either polynomial, exponential, or any-
thing else, has to be common for the pop-
ulation, whereby the certain parameters are
assumed to vary from subject to subject.
For each individual, the original values are
replaced by the predicted values, based on
this function of time.

The Foulkes and Davis tracking index y,
also known as the growth separation index
(31), is used to determine the probability
that two individuals selected at random will
have curves that do not cross over the time
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period under consideration. This probabil-
ity is simply the number of curves in the
population that do not cross divided by the
number of ways in which two curves can be
randomly selected from the population:

N
m,-

(10)

where: /n, = number of times the growth
curve of the ith individual crosses at least
once with the growth curves of other
individuals over the observed time period
[Tx, T2]\ and N = number of subjects.

The index y has always to be given with
the observed time period [Tx, T2], because
the value of y highly depends on the length
of the observed time period.

The coefficient y can take values be-
tween 0.0 and 1.0. A value of 0.0 means
that every individual curve crosses every
other individual curve at least one time; a
value of 1.0 indicates that none of the
individual curves cross; and value > 0.5
indicates tracking because two individual
curves chosen at random would be more
likely to have curves that do not cross (13).

One of the advantages of the Foulkes and
Davis tracking index y is that there are no
assumptions about the form of the curves.
The assumptions made on the sample dis-
tribution, however, depend on the choice of
the form of the curve. When the individual
response patterns are simply drawn by con-
necting the successive time points without
assuming any mathematical model, this
procedure would be nonparametric.

Although there are no assumptions about
the form of the curves, the simplicity of the
curves used to describe the data is very
important. In other words, the simpler the
curve used to describe the data, the higher
will be the value of the index (40). Another
problem in interpreting y is that individuals
at the extremes of the distribution are less
likely to cross the curves of other individ-
uals than individuals who have curves near
the mean curve (28).

If measurements are made only at two
points in time, so that the curves for each
individual are straight lines, then the

Foulkes and Davis tracking index y is an
estimate of Kendall's rank correlation co-
efficient T (39, 41).

McMahan (42) has developed a tracking
coefficient (or index) T based on all the
available data. The coefficient is calculated
under the assumption that Y(t) are multi-
variate normally distributed with common
covariance matrix. The general idea behind
this index, which is also known as the
growth constancy index (C) (40), is that a
population tracks for a certain variable if,
for each individual (growth) curve, the rel-
ative deviation from the population mean
(growth) curve remains unchanged over
time. For standardized variables, the coef-
ficient is calculated as follows:

T = 1 —

T

(12)

(13)

where: ytj = observation for individual i at
time point t;T = number of times a value is
measured; and N = number of subjects.

In this way, T is the average value of the
1/2T(T - 1) Pearson correlation coeffi-
cients, where T is the number of times a
value is measured. In this sense, the para-
metric tracking coefficient of McMahan is
equivalent to the nonparametric tracking
coefficient Kendall's W, which is the aver-
age value of the 1/2T(T — 1) Spearman
correlation coefficients.

When the measurements and conse-
quently the tracking coefficient T are biased
by a considerable measurement error, the
actual data can be replaced by predicted
ones based on a function of time. If T has
the value 1.0, there is perfect tracking for
that variable. If T has the value 0.0, there is
no tracking for that variable. McMahan's T
can take negative values, which indicates a
reversal of the values between two ob-
served time points.
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In table 2, the different parametric track-
ing coefficients are summarized.

PREDICTION

Nonparametric approaches

For T = 2, Palti et al. (6) calculated a
"predictive value," which is defined as the
number of subjects who stayed in a certain
high risk group during follow-up divided
by the number of subjects in that high risk
group at the initial measurement (figure 4).

Kemper et al. (25) also calculated for
T = 2 a "relative probability." This "rela-
tive probability" is the percent of subjects
who were in the high percentile group at
the initial measurement as well as at the
follow-up measurement divided by the per-
cent of subjects who rose from one of the
lower percentile groups at the initial mea-
surement to the highest percentile group at
the follow-up measurement (figure 5).

The name of this index is a bit mislead-
ing; the "relative probability" is not really
a probability, because the value can be
greater than one.

When the group division is based on di-
chotomization, both indices are related to
kappa. The rescaled version of the "predic-
tive value" (which is in fact the same as the
percent of subjects who stayed in a certain
high risk group during follow-up) is equiv-
alent to kappa, while the relative probabil-
ity divided by the number of subjects is
equivalent to p, which is used in the calcu-
lation of kappa (equation 4).

TABLE 2. Parametric tracking coefficients

Coefficient Range* Tracking
criterionf

Data
points^

Pearson's p
Guo's p
Foulkes and

Davis's y§
McMahan's T§

- 1 . . .
- 1 . . .

0 . . .

- 1 . . .

1
1
1

1

Arbitrary
Arbitrary
>0.5

>0.5

2
All
All

All

• Range between the minimal and maximal value that the
coefficient can take.

t Criterion to decide whether or not a variable tracks.
t Number of data points (measurements) used to calculate

the coefficient.
§ Foulkes and Davis and McMahan first replace the original

values by predicted ones, based on a function in time, and
they use the predicted curves to calculate their tracking
coefficient.
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predictive value • ai/a

V
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P75

initial measurement follow-up

FIGURE 4. Graphical representation of the "predic-
tive value" as calculated by Palti et al. (6).
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probability = a/b
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FIGURE 5. Graphical representation of the "relative
probability" as calculated by Kemper et al. (25).

Parametric approaches

A stepwise linear regression analysis is
mostly used to predict future values of cer-
tain variables from early measurements.
In such an analysis, the value of the last
measurement is the dependent variable and
values of earlier measurements are the pre-
dictor variables (43). When 7 = 2 , and
there are no covariates in the statistical
model involved, the estimated regression
coefficient /3 is the same as the Pearson
correlation coefficient between Y(t^) and

A different approach was used by
Beckett et al. (35) and Guo et al. (36). As
mentioned earlier, they used a general lin-
ear model to estimate the correlation co-
efficient between two repeated measure-
ments. In addition, they calculated the
probability of a follow-up measurement
being above a certain predetermined cut
point, given the initial value. The paired
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measurements are assumed to be bivariate
normally distributed:

¥r(Y2>C\Y1=y) =

(27r)1/2exp( - 12l2)dt, (14)
/•

counts for the next largest amount of vari-
ance, and so on. Although Berkey et al. (46)
only used LPC analysis to model growth
and not to construct a new tracking mea-
sure, the percent of variance (R2) accounted
for by the first principal component can be
interpreted as one. When the measurements
are multivariate normally distributed, the
square root of this percent of variance (R)
can be interpreted like an ICC.

where: Ylt Y2 = observed values; JU,1; /A2 =
mean values; crx, a2 — standard deviations;
t = time between the related measure-
ments; C = predetermined cut point; and
p = correlation between the related
measurements.

Lauer et al. (5) also estimated the risk
(probability) of being above a certain pre-
determined cut point on the basis of the
initial value. However, they used logistic
regression analysis to calculate this proba-
bility. By means of this logistic regression
analysis for each decile at the initial mea-
surement, the probability of being above a
predetermined cut point at follow-up can be
calculated.

In many studies, the concept of tracking
is related to modeling the longitudinal de-
velopment of a certain variable Y(t) (12, 44,
45). All of these studies have to do with
growth in general and, although they are
very interesting, they do not estimate some
sort of predictive value. Therefore, they are
not further discussed in this paper.

One of the latest innovations in predict-
ing future values from early measurements
is the use of longitudinal principal compo-
nent (LPC) analysis (46). Assuming a linear
relation between the longitudinal measure-
ments, LPC analysis starts by finding the
linear combination of the original variables,
in this case the same variable measured on
different occasions, which accounts for the
maximum amount of variance. This linear
combination is called the first principal
component. The next step is to find a sec-
ond linear combination, uncorrelated with
the first principal component, which ac-

EXAMPLE

To illustrate the diversity of the tracking
indices, we calculated the different coeffi-
cients for two separate data sets. The data
used came from the Amsterdam Growth
and Health Study (47). This longitudinal
study started in 1977 with four annual mea-
surements on boys and girls with a mean
age of 13 years. The study continued with a
5th measurement at age 21 years (1985)
and the subjects returned for a 6th measure-
ment at age 27 years (1991). At each year
of measurement, the investigators assessed
anthropometric parameters (body height,
body weight, and body composition), bio-
logic parameters (lipoprotein levels, blood
pressure, and physical fitness), psycholog-
ical parameters (personality and achieve-
ment motivation), and lifestyle parameters
(nutritional habits, smoking behavior, and
daily physical activity).

For the purpose of this example, the lon-
gitudinal measurements of the anthropo-
metric variable body height and the bio-
logic variable total serum cholesterol will
be used. The reason for choosing these two
variables is the accuracy with which both
variables are measured, so measurement er-
rors can not influence the calculation of
tracking coefficients. To avoid potential
confounding effects of gender, only the fe-
male data were used. The total number of
females with a complete longitudinal data
set is 98.

Most tracking indices are not influenced
by the shape of the longitudinal curves. For
other parameters, however, the first step in
calculating the different indices of track-
ing is to assess the best way to describe
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the population longitudinal development.
Therefore, for both body height and serum
cholesterol, different linear models with
time or a higher order of time as the inde-
pendent variable are compared with each
other. According to this comparison, the
longitudinal development of serum choles-
terol was best described by a straight line
model, while the development of body
height was best described by a third-degree
linear model. In calculating Foulkes and
Davis's tracking index y and McMahan's
tracking index T, the observed values for
each individual are replaced by the pre-
dicted ones according to the above models.
In figure 6, for one subject, the observed
values of body height are plotted against
the individual predicted values, while, in
figure 7, the observed values of serum cho-
lesterol are plotted against the individual
predicted values.

TRACKING COEFFICIENTS

Some of the tracking coefficients can
only be calculated for T = 2. With the data
set of the Amsterdam Growth and Health
Study (where T = 6), these coefficients are
calculated over a 15-year period between
the first and last measurement. In table 3,

both parametric and nonparametric tracking
coefficients are shown for body height and
serum cholesterol. Besides the absolute val-
ues, the rescaled values of the different
coefficients are also presented. The coeffi-
cients are rescaled so that when they are
calculated for random numbers the value
of the coefficient equals zero. For body
height, Spearman's p is almost equivalent
to Pearson's p, while for serum cholesterol
there is some disagreement between the
two coefficients. A 6 X 6 matrix of paired
time point correlation coefficients with
Spearman's p above the diagonal and
Pearson's p below the diagonal shows the
same result. For body height (table 4), the
coefficients are almost the same, while for
serum cholesterol (table 5), there is some
minor disagreement.

It is difficult to compare both correlation
coefficients with the coefficients based on
the division into subgroups (in the example
calculated for quartiles), because the mag-
nitude of the coefficients is highly influ-
enced by the choice of the division.

Table 6 shows both the absolute and
rescaled tracking coefficients calculated
with all the available longitudinal data. For
body height, all coefficients show good to

bodyheight (cm)

13 14 15 16 27

calendar age (years)

1 observed —predicted

FIGURE 6. The observed values for body height of one subject and the predicted linear model with time to the
third degree for that subject.
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cholesterol (mmol/l)

4.5

3.5

13 14 15 16 21

calendar age (years)

27

1 observed —predicted

FIGURE 7. The observed values for serum cholesterol of one subject and the predicted linear regression line for
that subject.

TABLE 3. Absolute values and rescaled* values
of tracking coefficients calculated over a 15-year
period between two longitudinal measurements
for body height and serum cholesterol

Body height Cholesterol

Spearman's p
Pearson's p
% at "high

risk"t
Nishio's Tit

Absolute

0.66
0.66

50
2.49

Rescaled

0.66
0.66

0.33
2.49

Absolute

0.60
0.54

39
2.28

Rescaled

0.60
0.54

0.19
2.28

* Each coefficient is rescaled so that calculated for random
numbers the coefficient equals zero.

t Values of the coefficients are based on the division of the
population into quartiles.

moderate tracking, while for the serum cho-
lesterol measurements there is some dis-
agreement. Kendall's W is highly signifi-
cant (p < 0.01) and Foulkes and Davis's
index y is 0.67 (>0.5), which means that
for both indices the serum cholesterol val-
ues seem to track. Cohen's K for quartiles,
however, is low (<0.4) and applying the
decision criterion leads to the conclusion
that the serum cholesterol values do not
track. McMahan's T indicates good track-
ing, while the value for Guo's p is a bit
low. According to this coefficient, one
may conclude that serum cholesterol
tracks moderately. One of the problems

TABLE 4. Correlation matrix* of all paired
measurements of body height

Points of
measurement

Spearman

Pearson
1
2
3
4
5
6

0.94 0.85 0.77 0.67 0.66
0.95 0.97 0.92 0.85 0.84
0.84 0.96 0.98 0.94 0.94
0.76 0.91 0.99 0.98 0.97
0.67 0.85 0.95 0.99 0.99
0.66 0.84 0.94 0.98 0.99

• Above the diagonal are shown the Spearman correlation
coefficients, while below the diagonal are shown the Pearson
correlation coefficients.

with the method used by Beckett et al.
(35) and Guo et al. (36) is that this
method is not really designed to estimate
a correlation coefficient, e.g., the method
is not robust against the choice for a dif-
ferent correlation structure. To illustrate
this, the correlation coefficients assuming
different correlation structures are calcu-
lated for both serum cholesterol and body
height (table 7). The estimated correlation
coefficients are highly influenced by the
choice of a particular structure. This indi-
cates that the value of the tracking coeffi-
cient depends on the choice of a certain
correlation structure and is therefore not
useful as a tracking coefficient.
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TABLE 5. Correlation matrix* of all paired
measurements of serum cholesterol

Points of
measurement

Spearman

Pearson
1
2
3
4
5
6

0.83 0.78 0.74 0.65 0.62
0.84 0.82 0.83 0.65 0.58
0.78 0.83 0.81 0.60 0.60
0.76 0.81 0.80 0.69 0.61
0.63 0.63 0.61 0.68 0.71
0.54 0.54 0.54 0.61 0.70

* Above the diagonal are shown the Spearman correlation
coefficients, while below the diagonal are shown the Pearson
correlation coefficients.

TABLE 6. Absolute values and rescaled* values
of tracking coefficients using all the available
longitudinal data for body height and serum
cholesterol

Coefficient

Cohen's x t
Kendall's W
Guo's p
Foulkes and

Davis's y
McMahan's T

Body height Cholesterol

Absolute Rescaled Absolute Rescaled

0.59
0.90
0.62

0.72
0.89

0.59
0.88
0.62

0.72
0.89

0.37
0.75
0.45

0.67
0.83

0.37
0.70
0.45

0.67
0.83

• Each coefficient is rescaled so that, calculated for ran-
dom numbers, the coefficient equals zero.

t Values of the coefficient are based on the division of the
population into quartiles.

The value of K is based on the division of
the population into quartiles and therefore
is not comparable with the other coeffi-
cients. For all the coefficients based on
the division of the population into sub-
groups, the magnitude of the tracking co-
efficient is highly influenced by the
choice of the arbitrary cut point. In table
8, tracking coefficients are calculated
based on different subgroups (dichotomi-
zation, quartiles, quintiles, and deciles).
The results show the dramatic influence

TABLE 7. Estimated correlation coefficients
(Guo's p) for four different correlation structures
for body height and serum cholesterol

Assumed con-elation
structure

Unstructured
Banded
Compound symmetry
Autoregressive

Body height
p

0.62
0.70
0.88
0.87

Cholesterol
P

0.52
0.51
0.64
0.24

of an arbitrary decision on the magnitude
of the tracking coefficient.

One reason for the disagreement in the
magnitude of tracking coefficients is the
fact that coefficients are measured on dif-
ferent scales. To illustrate this, the average
correlation coefficients are compared with
some related measures. First, for both
Spearman's p and Pearson's p, the average
l/2N(N — 1) correlation coefficients are
calculated. In table 9, these values are com-
pared with the rescaled value of Kendall's
W, with the ICC, and with the amount of
variance explained by the first principal
component (Rlpc). As expected, Kendall's
W is for both body height and serum
cholesterol almost equal to the average
Pearson's p and to the average Spear-
man's p. Although the values are a bit
lower than the ICC and the Rlpc, all coef-
ficients are comparable.

Prediction

Nonparametric parameters. Table 10
shows the "predictive value" as calculated
by Palti et al. (6), which is nothing more
than the percent of subjects who stayed in a
certain high-risk group at the follow-up
measurement and the "relative probability"
as calculated by Kemper et al. (25). Both
coefficients are rescaled so that when ap-
plied to random numbers the coefficients
equal zero. As with the tracking coeffi-
cients, the prediction measures are highly
influenced by the choice of an arbitrary cut
point.

Parametric parameters. Assuming a bi-
variate normal distribution, Beckett et al.
(35) and Guo et al. (36) provide a method to
predict the probability of a certain high risk
value at the follow-up measurement given
the initial value. With logistic regression
analysis (48), it is also possible to calculate
the probability of being above a certain
high risk value from the initial measure-
ment. According to the initial measurement
in 1977, the subjects are divided into de-
ciles. For each decile, the probability of
obtaining a value above the 80th percentile
(P80) at the follow-up measurement in
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TABLE 8. Rescaled*
comparison between

Rescaled coefficient

% at "high risk"
Cohen's K
Nishio's Tl

nonparametric tracking coefficients for body height
analysis with different group separations

2

0.51
0.72

113.3

Body height

4

0.33
0.59
2.49

5

0.48
0.51
3.82

No.

10

0.51
0.29

-61.7

of groups

2

0.47
0.50

113

and serum cholesterol:

Cholesterol

4

0.19
0.37
2.28

5

0.14
0.24
4.17

10

0
0.12

113

' Each coefficient is rescaled so that, calculated for random numbers, the coefficient equals zero.

TABLE 9. Rescaled* tracking coefficients
(average Pearson correlation coefficient, average
Spearman correlation coefficient, Kendall's W,
intraclass correlation coefficient (ICC), and the
square root of the amount of variance accounted
for by the first principal component (ft1pc)) based
on all six longitudinal measurements for body
height and serum cholesterol

Rescaled coefficient

Average Pearson's p
Average Spearman's p
Kendall's W
ICC

'"Npc

Body height

0.88
0.89
0.88
0.96
0.95

Cholesterol

0.70
0.69
0.70
0.87
0.86

• Each coefficient is rescaled so that, calculated for ran-
dom numbers, the coefficient equals zero.

1991 is calculated. In figure 8, these prob-
abilities are shown calculated according to
the method of Beckett et al. (35) and Guo et
al. (36). In figure 9, the probabilities are
shown calculated by logistic regression
analysis.

For body height, the logistic regression
approach was not possible. Calculation of
probabilities for a stable (relative high
tracking coefficients) variable with a mod-
erate number of subjects is not possible,
due to the lack of subjects in the lower
deciles at the initial measurement and be-
cause there are no subjects who move from
the lower deciles to the two highest deciles
at the follow-up measurement.

For body height, subjects at P80 at the
measurement in 1977 had approximately a
four times higher risk of being above P80 at
the measurement in 1991 than subjects at
the 50th percentile (P50) in 1977.

For serum cholesterol, the results calcu-
lated by logistic regression are compara-
ble with the results calculated according
to the method of Beckett et al. (35) and
Guo et al. (36). In both calculations, sub-

jects at P80 at the measurement in 1977
had approximately three times higher risk
of being above P80 at the follow-up mea-
surement in 1991 than the subjects at P50
in 1977.

DISCUSSION

The choice between a parametric and a
nonparametric approach depends in the first
place on the scale in which the variable is
measured. Parametric approaches can only
be used for continuous variables, while
nonparametric approaches can also be
used for categorical variables. This choice
also depends on the distribution of the ob-
served values. The nonparametric ap-
proach makes less assumptions about the
distribution of the values. Furthermore,
the choice can be based on the relative
computational simplicity of the nonpara-
metric approaches. If the data are not nor-
mally distributed, it is possible to trans-
form the data into normalized values (1).

If the population is divided into sub-
groups according to some arbitrary cut
point (quartiles, quintiles, deciles), the
magnitude of the tracking coefficient de-
pends highly on an arbitrary decision in
dividing the population (tables 8 and 10),
which makes these approaches very trou-
blesome in assessing the tracking phenom-
enon. Furthermore, the division into sub-
groups is based on sample percentiles and
not on population percentiles. When the
sample size is small or the measurement
is unreliable, sample percentiles are very
unstable. Then, the choice of the sub-
groups itself is subject to sampling error
and can be the reason for finding low
tracking coefficients.

 at Pennsylvania State U
niversity on M

ay 11, 2016
http://epirev.oxfordjournals.org/

D
ow

nloaded from
 

http://epirev.oxfordjournals.org/


Mathematical and Analytical Aspects of Tracking 177

TABLE 10. Rescaled* nonparametnc prediction measures for body height
comparison between analysis with different group separations

Rescaled coefficient

2

Predictive value 0.51
Relative probability 3.1

No. of groups

Body height

4 5 10 2

0.33 0.48 0.51 0.47
3.33 5.79 12.4 2.4

and serum cholesterol:

Cholesterol

4

0.19
2.06

5

0.14
1.84

10

0
1

* Each coefficient is rescaled so that, calculated for random numbers, the coefficient equals zero.

0.7
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0
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10 20 30 40 50 60 70 80 90 100

percentile

— body height ""cholesterol

FIGURE 8. Probabilities of different deciles at the initial measurements in 1977 to reach values above P80 at the
follow-up measurements in 1991, calculated according to the method of Beckett et al. (35) and Guo et al. (36), for
body height and serum cholesterol.

Furthermore, by dividing the population
into subgroups, a lot of information about
the data is lost. For instance, subjects can
change within their original percentile
group without influencing the tracking co-
efficient or predictability, while a minor
shift at the borders of two percentile
groups actually will influence tracking
coefficients.

The same problem arises by comparing
Foulkes and Davis's tracking coefficient y
with Cohen's K or any other tracking coef-
ficient based on the division of the popula-
tion into subgroups. If subjects remain in
the same percentile group (not influencing
K), their curves can cross many times and
so influence the Foulkes and Davis tracking
index y. Similarly, vice versa, two ran-

domly chosen individuals can have parallel
lines but both can move from one percentile
group to another (27).

Interpretation of coefficients

The above brings us to an important issue
in discussing the different methods of de-
scribing tracking, namely the interpretation
of the tracking coefficients.

One important thing is the different
ranges in which the tracking coefficients
can appear. Most indices (Cohen's K,
Kendall's W, and Foulkes and Davis's y)
range between 0.0 and 1.0, but McMahan's
tracking index T as well as simple correla-
tion coefficients can also take negative
values.
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FIGURE 9. Probabilities of different deciles at the initial measurement in 1977 to reach values above P80 at the
follow-up measurement in 1991, calculated with logistic regression for serum cholesterol.

Another example is the tracking index TI
proposed by Nishio et al. (26). TI, calcu-
lated if the population is divided into quin-
tiles, can take values between 1.0 and 8.3.
However, if the population is divided into
quartiles, T{h) takes the value of 0.5 and the
index can range between 1.0 and 4.0. In
fact, all the coefficients should be rescaled
so that when applied to random numbers
the tracking coefficient equals zero.

Hibbert et al. (18) refer to the possibility
of testing the significance of their tracking
coefficient, Kendall's W, as an important
feature in interpreting the tracking coeffi-
cient. The importance of a significance test
for the tracking coefficient is, however,
doubtful. This is due to the fact that the
magnitude of every tracking coefficient
very much depends on the length of the
interperiod. A significant tracking coeffi-
cient calculated over an interperiod of one
year does not have to be "better" than a
nonsignificant tracking coefficient calcu-
lated over a much longer interperiod.

Michels et al. (49) demonstrated, by cal-
culating 95 percent confidence intervals,
that a significant Pearson's p does not im-
ply a high level of predictability. They de-
scribed the longitudinal development of

systolic blood pressure and calculated on
the basis of a significant correlation coeffi-
cient a 95 percent confidence interval with
a width of 44.6 mmHg, which is very large.

The same interpretation problem arises
when authors want to evaluate their track-
ing coefficient by saying that if their track-
ing coefficient is above a certain value the
population tracks for that variable. A
Foulkes and Davis tracking index of y >
0.5 indicates tracking (30) but, if the index
is calculated over a very short interperiod,
the conclusion that a population tracks does
not indicate anything.

The problem with the interpretation of
coefficients was also noticed by Rogossa
and Willett (50), who calculated both
Foulkes and Davis's tracking coefficient y
and McMahan's tracking coefficient T for
the same data. The indices not only re-
vealed different results, but they led to dif-
ferent conclusions. The McMahan index T
indicated a tracking variable, while the
Foulkes and Davis coefficient y did not.

In our example, however, both indices
reveal tracking for serum cholesterol as
well as for body height, although the abso-
lute values for McMahan's index T are
higher than the values for Foulkes and
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Davis's index y. The fact that the values for
T are higher than y is, however, not surpris-
ing. For instance, if two longitudinal curves
cross at the end or at the beginning of a
time interval, y will indicate no tracking,
while T will indicate tracking, because the
relative deviation of the population mean
will be unchanged over a considerable por-
tion of the time interval.

Statistical modeling

Which model to use to describe tracking
is a very important question. Choosing a
priori a straight line model is perhaps too
simple, because a lot of longitudinal data
are not fully described by such linear mod-
els. Of course, a simpler model is prefera-
ble to a more complex one, but only if the
simple model provides a precise description
of the data (36). If not, a more complex
model has to be used.

On the other hand, it is striking that
tracking models almost never contain con-
founding variables although they can
highly influence the magnitude of the track-
ing coefficients or the predictability of fu-
ture values by early measurements. Lauer et
al. (5) showed, for instance, a relation be-
tween the longitudinal development of
blood pressure and the longitudinal devel-
opment of such anthropometric measures as
body weight and body height. Calculation
of a tracking index based only on the lon-
gitudinal development of blood pressure
will underestimate the "real" tracking coef-
ficient of that variable. Armstrong et al.
(51) pointed out that levels of serum cho-
lesterol and blood pressure are influenced
by sexual maturation. Therefore, when in-
terested in tracking of serum cholesterol
and blood pressure, a variable indicating
sexual maturation has to be added to the
tracking model, because, otherwise, the
tracking coefficient and predictability of
early measurements for future values will
be underestimated. So, in modeling track-
ing, one has to account for certain con-
founders. Which variables act as confound-
ers depend on the variable for which
tracking is described and on the questions
to be answered by the tracking analysis.

Another problem that sometimes arises in
longitudinal studies is a change of behavior
of the subjects because of their knowledge
of results. For instance, if a high blood
pressure is measured at a certain age, there
is a good possibility that subjects will
change their behavior in relation to their
knowledge of this high blood pressure (e.g.,
they will change their dietary practices,
change their physical activity patterns, take
drugs, etc.). This selective change of behav-
ior can influence the tracking coefficients
as well as the predictability. To illustrate
this, the female subjects of the Amsterdam
Growth and Health Study (the population
used in the example) were divided into a
moderate/high risk group and a low risk
group according to their serum cholesterol
levels at the measurement in 1985 at age 21
years. The moderate/high risk group had
serum cholesterol levels above 5.2 mmol/
liter and the low risk group had levels under
5.2 mmol/liter. The moderate risk criterion
value of 5.2 mmol/liter was chosen accord-
ing to the Report of the National Choles-
terol Education Program (52).

For both groups, we analyzed the percent
change in absolute fat intake, fat intake as
percent of energy intake, cholesterol in-
take, and sum of skinfolds between the
measurements in 1985 and the measure-
ments in 1991 (at age 27 years). The dif-
ferences between the two groups are
shown in figure 10. The moderate/high
risk group decreased significantly (p <
0.05) their fat intake as a percent of en-
ergy intake and their sum of skinfolds.
Therefore, in modeling tracking, possible
confounding by changes of behavior must
be taken into consideration.

Another problem that often occurs in lon-
gitudinal studies is a test or learning effect.
This means that differences between re-
peated measurements are only caused by a
changing attitude toward the measurement
itself. These test/learning effects can influ-
ence the prediction of future values. Only if
the test/learning effects are different for
each individual can they lead to an under-
estimation of the tracking coefficient.
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FIGURE 10. Percent change between ages 21 and 27 years (1985 to 1991) in absolute fat intake, fat intake as
percent of energy intake, cholesterol intake, and sum of skinfolds for a moderate/high risk group and a low risk
group for serum cholesterol according to the measurements at age 21 years. * p < 0.05.

Within-person variability

Because tracking models do not consider
random measurement error, within-person
variability can also lead to underestimation
of the tracking coefficient.

Gillman et al. (53) used average values of
multiple measurements with a very short
time period as the initial value in calculat-
ing tracking correlations. They compared
these corrected tracking coefficients with
coefficients based on the correlation be-
tween just two measurements. The cor-
rected correlations were substantially
higher. Taking the average of multiple mea-
surements will partially account for the
within-person variability.

Rosner and Willett (54) estimated a cor-
rected correlation coefficient that could be
interpreted as if an infinite number of mea-
surements were available for each subject.
Although the precise description of this es-
timation goes beyond the scope of this re-
view, the within-person variability has to be

taken into account by interpreting the track-
ing analysis.

Risk factors for chronic diseases

One of the major issues involved in
tracking analysis is the longitudinal devel-
opment of risk factors for chronic diseases.
Before interpreting the tracking coefficient
or predictive value, one has to be aware of
the fact that the maintenance of a relatively
high value for a risk factor through time
may not be as important in the development
of a disease as a certain increase in this
value. That is probably the reason why
some authors (5, 8) calculated not only the
percent of subjects who maintained a cer-
tain rank order, but also the percent of
subjects with rising rank orders.

Another point related to this is that al-
though a subject has a high value of a
certain risk factor in relation to the other
subjects of the observed population it does
not mean that the absolute value of the risk
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factor is high. Thus, the calculation of the
predictability of an early measurement for
developing a certain absolute high risk
value, for instance, as supposed by Beckett
et al. (35) and Guo et al. (36), gives perhaps
more information than the calculation of
the predictability in a relative sense.

CONCLUSIONS

We do not intend here to provide a "per-
fect" tracking coefficient or a "perfect"
model to describe tracking. We wish
merely to draw attention to some important
points about tracking analysis.

On the one hand, as explained earlier, it
is preferable to use a tracking coefficient
that is as simple as possible. In that sense, a
parametric coefficient is less suitable than
a nonparametric coefficient, because the
latter makes no assumptions about the
distribution of values. Furthermore, if the
data are multivariate normally distributed,
the parametric coefficients are comparable
with the nonparametric coefficients.

However, on the other hand, tracking is
part of the description of the longitudinal
development of certain variables and the
possible prediction of future values by early
measurements. The latter is especially im-
portant for epidemiologic purposes, be-
cause, if some degree of tracking is ob-
served, it can lead to early detection of risk
factors related to chronic diseases and
therefore to early treatment.

Both topics, describing the longitudinal
development and quantifying the predict-
ability follow naturally from each other.
Because of this, it is recommended to use a
statistical approach that can deal with both
questions, so that the results can be related
to each other. Besides that, the approach
has to have the possibility to use all the
available longitudinal data and to control
for "a selective change of behavior" and
other confounding variables. Therefore, a
regression modeling technique, which can
be used for the calculation of a tracking
coefficient as well as a predictive value,
seems the most appropriate.

Early detection of risk factors for chronic
diseases makes it possible to develop pre-

ventive strategies. Therefore, it is worth-
while to assess the influence of certain fac-
tors on the longitudinal development of the
risk factor under consideration. Conse-
quently, the choice of a certain regression
model has to depend on the possibility to
quantify these influences.

Classic regression analysis, however, is
not suitable for longitudinal data, because
the different observations for each individ-
ual are not independent, which is the as-
sumption in classic regression analysis.
This nonindependence of observations for a
given individual can be characterized by
choosing a priori a certain correlation struc-
ture for the longitudinal data. The method
used by Beckett et al. (35) and Guo et al.
(36) deals with this problem by allowing
the longitudinal observations to be corre-
lated. The only assumption in this method
is the multivariate normality of the obser-
vations. So, this method is only suitable
for continuous variables. In epidemiology,
however, one is often interested in the de-
velopment of a certain "high risk" group
and not in the total spectrum of values. In
that situation, the population is divided into
two groups to form a dichotomous variable.
A solution for this problem is given by
Zeger and Liang (55) who developed a lon-
gitudinal data-analyzing technique (gener-
alized estimating equations (GEE)), which
is suitable for longitudinal analysis for both
discrete and continuous outcomes. One has
to be very careful in defining the "high
risk" group, because when this is based on
an arbitrary decision, the choice highly in-
fluences the magnitude of the tracking co-
efficient or predictive value. Thus, when a
dichotomization is made, it has to be based
on an actual objective "risk value" rather
than on an arbitrary decision based on the
sample distribution.

In choosing a tracking coefficient, the
following points should be kept in mind:

1. One should take as many time points
as feasible, as spread out over the time
period as possible.

2. One should use a measurement as sen-
sitive and reliable as possible, with
uncorrelated measurement errors.
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3. The coefficient has to be interpreted
easily. A coefficient whose values can
range between 0.0 for no tracking
and 1.0 for perfect tracking seems to
be the most appropriate. A coefficient
which does not equal zero when ap-
plied to random numbers or is not 1
by perfect tracking should be rescaled.

4. In most studies, only a point estimate
of a tracking coefficient is given. Con-
clusions based on a point estimate are
questionable because no information
about the reliability is taken into ac-
count. Our suggestion is to calculate a
95 percent confidence interval around
the tracking coefficient, so conclu-
sions can be made more thoroughly.

5. It is very dangerous to provide strict
rules for the interpretation of tracking
coefficients, because the value of a
coefficient is very dependent on the
period under consideration. Probably
the best strategy is to give some ad-
vice about the interpretation of the
value of the coefficient and let the
reader decide what to do with the
results.
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