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Abstract

Two-dimensional delayed continuous time dynamical system modeling a predator–prey food chain, and based on a modified
version of Holling type-II scheme is investigated. By constructing a Liapunov function, we obtain a sufficient condition for global
stability of the positive equilibrium. We also present some related qualitative results for this system.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The dynamic relationship between predators and their prey has long been and will continue to be one of dominant
themes in both ecology and mathematical ecology due to its universal existence and importance. A major trend in
theoretical work on prey–predator dynamics has been to derive more realistic models, trying to keep to maximum the
unavoidable increase in complexity of their mathematics. In this optic, recently [2], see also [1,5,6] has proposed a first
study of two-dimensional system of autonomous differential equation modeling a predator prey system. This model
incorporates a modified version of Leslie–Gower functional response as well as that of the Holling-type II.

They consider the following model⎧⎪⎪⎨
⎪⎪⎩

ẋ =
(

a1 − bx − c1y

x + k1

)
x,

ẏ =
(

a2 − c2y

x + k2

)
y

(1)

with the initial conditions x(0) > 0 and y(0) > 0.
This two species food chain model describes a prey population x which serves as food for a predator y.
The model parameters a1, a2, b, c1, c2, k1 and k2 are assuming only positive values. These parameters are defined

as follows: a1 is the growth rate of prey x, b measures the strength of competition among individuals of species x, c1
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is the maximum value of the per capita reduction rate of x due to y, k1 (respectively, k2) measures the extent to which
environment provides protection to prey x (respectively, to the predator y), a2 describes the growth rate of y, and c2
has a similar meaning to c1.

It was first motivated more by the mathematics analysis interest than by its realism as a model of any particular
natural dynamical system. However, there may be situations in which the interaction between species is modelized
by systems with such a functional response. It may, for example, be considered as a representation of an insect
pest–spider food chain. Furthermore, it is a first step towards a predator–prey model (of Holling–Tanner type) with
inverse trophic relation and time delay, that is where the prey eaten by the mature predator can consume the immature
predators.

Let us mention that the first equation of system (1) is standard. By contrast, the second equation is absolutely not
standard. This intactness model contains a modified Leslie–Gower term, the second term on the right-hand side in the
second equation of (1). The last depicts the loss in the predator population.

The Leslie–Gower formulation is based on the assumption that reduction in a predator population has a reciprocal
relationship with per capita availability of its preferred food. Indeed, Leslie introduced a predator prey model where
the carrying capacity of the predator environment is proportional to the number of prey. He stresses the fact that there
are upper limits to the rates of increase of both prey x and predator y, which are not recognized in the Lotka–Volterra
model. In case of continuous time, the considerations lead to the following:

dy

dt
= a2y

(
1 − y

�x

)
,

in which the growth of the predator population is of logistic form, i.e.

dy

dt
= a2y

(
1 − y

C

)
.

Here, “C” measures the carry capacity set by the environmental resources and is proportional to prey abundance, C=�x,
where � is the conversion factor of prey into predators. The term y/�x of this equation is called the Leslie–Gower
term. It measures the loss in the predator population due to the rarity (per capita y/x) of its favorite food. In the case
of severe scarcity, y can switch over to other population, but its growth will be limited by the fact that its most favorite
food, the prey x, is not available in abundance. The situation can be taken care of by adding a positive constant to the
denominator, hence the equation above becomes,

dy

dt
= a2y

(
1 − y

�x + d

)

and thus,

dy

dt
= y

⎛
⎜⎝a2 − a2

�
.

y

x + d

�

⎞
⎟⎠

that is the second equation of system (1).
In this paper, we introduce time delays in model (1), which is a more realistic approach to the understanding of

predator–prey dynamics. Time delay plays an important role in many biological dynamical systems, being particularly
relevant in ecology, where time delays have been recognized to contribute critically to the stable or unstable outcome
of prey densities due to predation. Therefore, it is interesting and important to study the following delayed modified
Leslie–Gower and Holling-Type-II schemes:⎧⎪⎪⎨

⎪⎪⎩
ẋ(t) =

(
a1 − bx(t) − c1y(t)

x(t) + k1

)
x(t),

ẏ(t) =
(

a2 − c2y(t − r)

x(t − r) + k2

)
y(t)

(2)

for all t > 0. Here, we incorporate a single discrete delay r > 0 in the negative feedback of the predator’s density.
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Let us denote by R2+ the nonnegative quadrant and by int(R2+) the positive quadrant. For � ∈ [−r, 0], we use the
following conventional notation:

xt (�) = x(� + t).

Then the initial conditions for this system take the form{
x0(�) = �1(�),

y0(�) = �2(�)
(3)

for all � ∈ [−r, 0], where (�1, �2) ∈ C([−r, 0], R2+), x(0) = �1(0) > 0 and y(0) = �2(0) > 0.
It is well known that the question of global stability of the positive steady state in a predator–prey system, with a single

discrete delay in the predator equation without instantaneous negative feedback, remains a challenge, see [3,5,7]. Our
main purpose is to present some results about the global stability analysis on a system with delay containing modified
Leslie–Gower and Holling-Type-II terms.

This paper is organized as follows. In the next section, we present some preliminary results on the boundedness
of solutions for system (2)–(3). Next, we study some equilibria properties for this system and give a permanence
result. In Section 5, the analysis of the global stability is made for a boundary equilibrium and sufficient conditions
are provided for the positive equilibrium of both instantaneous system (1) and system with delay (2)–(3) to be globally
asymptotically stable. Finally, a discussion which includes local stability results for system (2)–(3) is given.

2. Preliminaries

In this section, we present some preliminary results on the boundedness of solutions for system (2)–(3). We consider
(x, y) a noncontinuable solution, see [4], of system (2)–(3), defined on [−r, A[, where A ∈]0, +∞].

Lemma 1. The positive quadrant int(R2+) is invariant for system (2).

Proof. We have to show that for all t ∈ [0, A[, x(t) > 0 and y(t) > 0. Suppose that is not true. Then, there exists
0 < T < A such that for all t ∈ [0, T [, x(t) > 0 and y(t) > 0, and either x(T ) = 0 or y(T ) = 0. For all t ∈ [0, T [, we
have

x(t) = x(0) exp

(∫ t

0
a1 − bx(s) − c1y(s)

x(s) + k1
ds

)
(4)

and

y(t) = y(0) exp

(∫ t

0
a2 − c2y(s − r)

x(s − r) + k2
ds

)
. (5)

As (x, y) is defined and continuous on [−r, T ], there is a M �0 such that for all t ∈ [−r, T [,

x(t) = x(0) exp

(∫ t

0
a1 − bx(s) − c1y(s)

x(s) + k1
ds

)
�x(0) exp(−T M)

and

y(t) = y(0) exp

(∫ t

0
a2 − c2y(s − r)

x(s − r) + k2
ds

)
�y(0) exp(−T M).

Taking the limit, as t → T , we obtain

x(T )�x(0) exp(−T M) > 0

and

y(T )�y(0) exp(−T M) > 0,

which contradicts the fact that either x(T ) = 0 or y(T ) = 0. So, for all t ∈ [0, A[, x(t) > 0 and y(t) > 0. �
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Lemma 2. For system (2)–(3), A = +∞ and

lim sup
t→+∞

x(t)�K (6)

and

lim sup
t→+∞

y(t)�L (7)

where K = a1/b and L = a2/c2(K + k2)e
a2r .

Proof. From the first equation of system (2)–(3), we have for all t ∈ [0, A[,
ẋ(t) < x(t)(a1 − bx(t)).

A standard comparison argument shows that for all t ∈ [0, A[, x(t)� x̃(t) where x̃ is the solution of the following
ordinary differential equation{ ˙̃x(t) = x̃(t)(a1 − bx̃(t)),

x̃(0) = x(0) > 0.

As limt→+∞ x̃(t) = a1/b, then x̃ and thus x is bounded on [0, A[. Moreover, from Eq. (5), we can define y on all
interval [kr, (k + 1)r], with k ∈ N, and it is easy to see that y is bounded on [0, A[ if A < + ∞. Then A = +∞, see
[4, Theorem 2.4].

Now, as for all t �0, x(t)� x̃(t), then

lim sup
t→+∞

x(t)� lim sup
t→+∞

x̃(t) = K .

From the predator equation, we have

ẏ(t) < a2y(t),

hence, for t > r ,

y(t)�y(t − r)ea2r ,

which is equivalent, for t > r , to

y(t − r)�y(t)e−a2r . (8)

Moreover, for any � > 1, there exists positive T�, such that for t > T�, x(t) < �K . According to (8), we have, for
t > T� + r ,

ẏ(t) < y(t)

(
a2 − c2e

−a2r

�K + k2
y(t)

)
,

which implies by the same arguments use for x that,

lim sup
t→+∞

y(t)�L�,

where L� = a2/c2(�K + k2)e
a2r . Conclusion of this lemma holds by letting � → 1. �

3. Equilibria

In this section we study some equilibria properties of system (2)–(3). These steady states are determined analytically
by setting ẋ = ẏ = 0. They are independent of the delay r . It is easy to verify that this system has three trivial boundary
equilibria, E0 = (0, 0), E1 = (a1/b, 0) and E2(0, a2k2/c2).
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Proposition 3. System (2)–(3) has a unique interior equilibrium E∗ = (x∗, y∗) (i.e. x∗ > 0 and y∗ > 0) if the following
condition holds

a2k2

c2
<

a1k1

c1
. (9)

Proof. From system (2)–(3), such a point satisfies

(a1 − bx∗)(x∗ + k1) = c1y
∗ (10)

and

y∗ = a2(x
∗ + k2)

c2
. (11)

If (9) holds, this system has two solutions (x∗+, y∗+) and (x∗−, y∗−) given by⎧⎪⎪⎨
⎪⎪⎩

x∗± = 1

2c2b
(−(c1a2 − a1c2 + c2bk1) ± �1/2),

y∗± = a2(x
∗± + k2)

c2
,

where � = (c1a2 − a1c2 + c2bk1)
2 − 4c2b(c1a2k2 − c2a1k1) > 0. Moreover, it is easy to see that, x∗+ > 0 and

x∗− < 0. �

Linear analysis of system (2)–(3) shows that point E0 is unstable (it repels in both x and y directions) and point E1
is also unstable (it attracts in the x-direction but repels in the y-direction).

For r > 0, the characteristic equation of the linearized system at E2 takes the form

P2(�) + Q2(�)e−�r = 0,

where

P2(�) = �2 − A�,

Q2(�) = a2(� − A),

and

A = a1 − c1a2k2

c2k1
.

Let us define

F2(y) = |P2(iy)|2 − |Q2(iy)|2.

It is easy to verify that the equation F2(y)=0 has one positive root. Therefore, if E2 is unstable for r =0, it will remain
so for all r > 0, and if it is stable for r = 0, there is a positive constant r2, such that for r > r2, E2 becomes unstable.

It is easy to verify that for r = 0, E2 is asymptotically stable if a2k2/c2 > a1k1/c1, stable (but not asymptotically) if
a2k2/c2 = a1k1/c1 and unstable if a2k2/c2 < a1k1/c1.

4. Permanence results

Definition 4. System (2)–(3) is said to be permanent, see [4], if there exist �, �, 0 < � < �, independent of the initial
condition, such that for all solutions of this system,

min

{
lim inf
t→+∞ x(t), lim inf

t→+∞ y(t)

}
��
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and

max

{
lim sup
t→+∞

x(t), lim sup
t→+∞

y(t)

}
��.

Theorem 5. System (2)–(3) is permanent if

L <
a1k1

c1
. (12)

Proof. By Lemma (2), there is a � = max{K, L} > 0 independent of the initial condition such that

max

{
lim sup
t→+∞

x(t), lim sup
t→+∞

y(t)

}
��.

We only need to show that there is a � > 0, independent of the initial data, such that

min

{
lim inf
t→+∞ x(t), lim inf

t→+∞ y(t)

}
��.

It is easy to see that, for system (2)–(3), for any � > 1 and for t large enough, we have y(t) < �L. Thus, we obtain

ẋ > x

(
a1 − bx − c1�L

k1

)
.

By standard comparison arguments, it follows that

lim inf
t→+∞ x(t)� 1

b

(
a1 − c1�L

k1

)

and letting � → 1, we obtain

lim inf
t→+∞ x(t)� 1

b

(
a1 − c1L

k1

)
. (13)

Let us denote by N1 = 1/b(a1 − c1L/k1). If (12) is satisfied, N1 > 0. From (13) and Lemma 2 and for any � > 1, there
exists a positive constant, T�, such that for t > T�, x(t) > N1/� and y(t) < �L. Then, for t > T� + r , we have

ẏ(t) > y(t)

(
a2 − �c2

N1 + �k2
y(t − r)

)
. (14)

On the one hand, for t > T� + r , these inequalities lead to

ẏ(t) > − �2c2L

N1 + �k2
y(t),

which involves, for t > T� + r ,

y(t − r) < y(t) exp

(
�2c2L

N1 + �k2
r

)
. (15)

On the other hand, from (14) and (15), we have for t > T� + r ,

ẏ(t) > y(t)

(
a2 − �c2

N1 + �k2
exp

(
�2c2L

N1 + �k2
r

)
y(t)

)

which yields

lim inf
t→+∞ y(t)� a2(N1 + �k2)

�c2
exp

(
− �2c2L

N1 + �k2
r

)
= y�.
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Letting � → 1, we get

lim inf
t→+∞ y(t)� a2(N1 + k2)

c2
exp

(
− c2L

N1 + k2
r

)
= y1.

Let be � = min{N1, y1} > 0. Then we have shown that system (2)–(3) is permanent. �

5. Global stability analysis

5.1. Stability of E2

Theorem 6. If(
a1 − c1y1

(k1 + K)

)
< 0,

then E2 is globally asymptotically stable for system (2)–(3).

Proof. As lim inf t→+∞ y(t)�y1 and lim sup
t→+∞

x(t)�K , from the prey’s equation we obtain: ∀��1, ∃T� > 0, ∀t > T�,

ẋ(t) < x(t)

(
a1 − bx − c1y1

(k1 + �K)�

)
.

As (
a1 − c1y1

(k1 + K)

)
< 0,

there exists � > 1 such that(
a1 − c1y1

(k1 + �K)�

)
< 0.

Then, by standard comparison arguments, it follows that lim supt→+∞ x(t)�0 and thus, limt→+∞ x(t) = 0.
The �-limit set 	 of every solution with positive initial conditions is then contained in {(0, y), y�0}. Now from

(7), we obviously obtain
	 ⊂ {(0, y), 0�y�L}.
As E0 /∈ 	, (E0 is unstable is repels in both x and y directions) and as 	 is nonempty closed and invariant set,

therefore 	 = {E2}. �

5.2. Stability of E∗ without delay

First, we give some sufficient conditions which insure that the steady state in the instantaneous system, i.e. without
time delay, is globally asymptotically stable.

Theorem 7. The interior equilibrium E∗ is globally asymptotically stable if

a1 + c1 < b(k1 + x∗), (16)

a1a2 < bk2(c2 − a2). (17)

Proof. The proof is based on constructing a suitable Lyapunov function. We define

V (x, y) = (x − x∗) − x∗ ln
( x

x∗
)

+ �

(
(y − y∗) − y∗ ln

(
y

y∗

))
,

where � = k2c1/k1a2.
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This function is defined and continuous on int(R2+). It is obvious that the function V is zero at the equilibrium E∗
and is positive for all other values of x and y, and thus, E∗ is the global minimum of V . The time derivative of V along
a solution of system (2)–(3) is given by

dV

dt
= (x − x∗)

(
a1 − bx − c1y

x + k1

)
+ �(y − y∗)

(
a2 − c2y

x + k2

)
.

Centering dV/dt on the positive equilibrium, we get

dV

dt
=
(

−b + a1 − bx∗

x + k1

)
(x − x∗)2 − c2�

x + k2
(y − y∗)2

+
(

a2�

x + k2
− c1

x + k1

)
(x − x∗)(y − y∗)

=
(

−b + a1 − bx∗

x + k1

)
(x − x∗)2 − c2�

x + k2
(y − y∗)2 (18)

+
(

a2�

x + k2
+ c1

x + k1

)
(x − x∗)2 + (y − y∗)2

2
.

�
(

−b + a1 − bx∗

k1
+ c1

k1

)
(x − x∗)2

+
(

− c2�

x + k2
+ c1

k1

)
(y − y∗)2

�
(

−b + a1 − bx∗

k1
+ c1

k1

)
(x − x∗)2

+ c1

k1(x + k2)

(
x + k2 − c2k2

a2

)
(y − y∗)2. (19)

From (16), we obtain(
−b + a1 − bx∗

k1
+ c1

k1

)
< 0.

From (6) and (17), there exists � > 1 and T > 0, such that(
�K + k2 − c2k2

a2

)
< 0,

and for t > T ,

dV

dt
�
(

−b + a1 − bx∗

k1
+ c1

k1

)
(x − x∗)2

+ c1

k1(x + k2)

(
�K + k2 − c2k2

a2

)
(y − y∗)2.

Thus, dV/dt is negative definite provided that (16) and (17) holds true. Finally, E∗ is globally asymptotically
stable. �

If in particular, we suppose that environment provides the same protection to both prey and predator (i.e. k1 = k2)

then Theorem 7 can be simplified as follows.

Corollary 8. The interior equilibrium E∗ is globally asymptotically stable if

k1 = k2 (20)

and

a1 < b(k1 + x∗). (21)
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Proof. From (18), we have

dV

dt
=
(

−b + a1 − bx∗

x + k1

)
(x − x∗)2 − c2�

x + k2
(y − y∗)2

+
(

c1(k2 − k1)x

k1(x + k2)(x + k1)

)
(x − x∗)(y − y∗)

�
(

−b + a1 − bx∗

k1

)
(x − x∗)2 − c2�

x + k2
(y − y∗)2

+
(

c1(k2 − k1)x

k1(x + k2)(x + k1)

)
(x − x∗)(y − y∗),

which is negative definite provided that (20) and (21) holds true and thus E∗ is globally asymptotically stable. �

5.3. Stability of E∗ with delay

In this subsection we shall give a result on the global asymptotic stability of the positive equilibrium for the delayed
system.

Theorem 9. Assume that parameters of system (2)–(3) satisfy

a1k1

c1
> max

{
a1

2c2
,

3

2

a2k2

c2

}
. (22)

Then, for b large enough, there exists r0 > 0 such that, for r ∈ [0, r0], the interior equilibrium E∗ is globally asymp-
totically stable in R2+.

Proof. First of all, we rewrite Eqs. (2) to center it on its positive equilibrium. By using the following change of variables,

X(t) = ln

(
x(t)

x∗

)

and

Y (t) = ln

(
y(t)

y∗

)
,

the system becomes⎧⎪⎨
⎪⎩

Ẋ(t) = x∗
(

−b + a1 − bx∗

x(t) + k1

)
(eX(t) − 1) − c1y

∗

x(t) + k1
(eY (t) − 1),

Ẏ (t) = − c2y
∗

x(t − r) + k2
(eY (t−r) − 1) + a2x

∗

x(t − r) + k2
(eX(t−r) − 1).

(23)

According to the global existence of solutions established in Lemma 2, we can assume that the initial data exists on
[−2r, 0] (this can be done by changing initial time).

Now, let � > 1 be fixed and let us define the following Liapunov functional V : C([−2r; 0], R2) → R,

V (
1, 
2) =
∫ 
1(0)

0
(eu − 1) du +

∫ 
2(0)

0
(eu − 1) du + a2x

∗

2k2

∫ 0

−r

(e
1(u) − 1)2 du

+ c2y
∗

2k2

∫ 0

−r

∫ 0

v

e
2(s)

(
c2y

∗

k2
(e
2(s−r) − 1)2 + a2x

∗

k2
(e
1(s−r) − 1)2

)
ds dv

+ c2

2k2
r�L

∫ 0

−r

(
c2y

∗

k2
(e
2(s) − 1)2 + a2x

∗

k2
(e
1(s) − 1)2

)
ds.

Let us define the continuous and nondecreasing function u : R+ → R+ by

u(x) = ex − x − 1.
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We have u(0) = 0, u(x) > 0 for x > 0 and

u(|
(0)|)�u(
1(0)) + u(
2(0))�V (
1, 
2),

where 
 = (
1, 
2) and | · | denotes the infinity norm in R2.
Let v : R+ → R+ be define by

v(x) = 2u(x) + (ex − 1)2
(

a2x
∗r

2k2
+
(

c2y
∗

k2
+ a2x

∗

k2

)(
c2y

∗r2

4k2
ex + c2

2k2
r2�L

))
.

It is clear that v is a continuous and nondecreasing function and satisfies v(0) = 0, v(x) > 0 and

V (
1, 
2)�v(‖
‖),
where ‖ · ‖ denotes the infinity norm in C([−2r; 0], R2). Now, let (X, Y ) be a solution of (23) and let us compute
V̇(23), the time derivative of V along the solutions of (23).

First, we start with the function

V1(
1, 
2) =
∫ 
1(0)

0
(eu − 1) du +

∫ 
2(0)

0
(eu − 1) du + a2x

∗

2k2

∫ 0

−r

(e
1(u) − 1)2 du.

We have

V1(Xt , Yt ) =
∫ X(t)

0
(eu − 1) du +

∫ Y (t)

0
(eu − 1) du + a2x

∗

2k2

∫ t

t−r

(eX(u) − 1)2 du.

Then,

V̇1|(23)
= (eX(t) − 1)Ẋ(t) + (eY (t) − 1)Ẏ (t) + a2x

∗

2k2
((eX(t) − 1)2 − (eX(t−r) − 1)2).

System (23) gives us

V̇1|(23)
= x∗

(
−b + a1 − bx∗

x(t) + k1

)
(eX(t) − 1)2 − c1y

∗

x(t) + k1
(eY (t) − 1)(eX(t) − 1)

− c2y
∗

x(t − r) + k2
(eY (t) − 1)(eY (t−r) − 1)

+ a2x
∗

x(t − r) + k2
(eY (t) − 1)(eX(t−r) − 1)

+ a2x
∗

2k2
((eX(t) − 1)2 − (eX(t−r) − 1)2).

By using several times the obvious inequalities of type

− c1y
∗

x(t) + k1
(eY (t) − 1)(eX(t) − 1)� c1y

∗

x(t) + k1

(
(eY (t) − 1)2

2
+ (eX(t) − 1)2

2

)

� c1y
∗

2k1
((eY (t) − 1)2 + (eX(t) − 1)2),

we get

V̇1|(23)
�
(

x∗
(

−b + a1 − bx∗

k1
+ a2

2k2

)
+ c1y

∗

2k1

)
(eX(t) − 1)2

+
(

c1y
∗

2k1
+ a2x

∗

2k2

)
(eY (t) − 1)2

− c2y
∗

x(t − r) + k2
(eY (t) − 1)(eY (t−r) − 1).
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As,

eY(t−r) = eY(t) −
∫ t

t−r

eY (s)Ẏ (s) ds,

we obtain

V̇1|(23)
�
(

x∗
(

−b + a1 − bx∗

k1
+ a2

2k2

)
+ c1y

∗

2k1

)
(eX(t) − 1)2

+
(

c1y
∗

2k1
+ a2x

∗

2k2
− c2y

∗

x(t − r) + k2

)
(eY (t) − 1)2

+ c2y
∗

x(t − r) + k2
(eY (t) − 1)

∫ t

t−r

eY (s)Ẏ (s) ds. (24)

From (23), we have

(eY (t) − 1)

∫ t

t−r

eY (s)Ẏ (s) ds

=
∫ t

t−r

eY (s) −c2y
∗

x(s − r) + k2
(eY (t) − 1)(eY (s−r) − 1) ds

+
∫ t

t−r

eY (s) a2x
∗

x(s − r) + k2
(eY (t) − 1)(eX(s−r) − 1) ds

�
(

c2y
∗

2k2
+ a2x

∗

2k2

)∫ t

t−r

eY (s) ds.(eY (t) − 1)2

+ c2y
∗

2k2

∫ t

t−r

eY (s)(eY (s−r) − 1)2 ds + a2x
∗

2k2

∫ t

t−r

eY (s)(eX(s−r) − 1)2 ds

and as y∗eY(s) ��L for s large enough, we obtain, for t large enough,

(eY (t) − 1)

∫ t

t−r

eY (s)Ẏ (s) ds��Lr

(
c2

2k2
+ a2x

∗

2k2y∗

)
(eY (t) − 1)2

+
∫ t

t−r

eY (s)

(
c2y

∗

2k2
(eY (s−r) − 1)2 + a2x

∗

2k2
(eX(s−r) − 1)2

)
ds

and as x(s − r)��L for s large enough, (24) becomes, for t large enough,

V̇1|(23)
�
(

x∗
(

−b + a1 − bx∗

k1
+ a2

2k2

)
+ c1y

∗

2k1

)
(eX(t) − 1)2

+
(

c1y
∗

2k1
+ a2x

∗

2k2
− c2y

∗

x(t − r) + k2
+ c2�Lr

k2

(
c2y

∗

2k2
+ a2x

∗

2k2

))
(eY (t) − 1)2

+ c2y
∗

k2

∫ t

t−r

eY (s)

(
c2y

∗

2k2
(eY (s−r) − 1)2 + a2x

∗

2k2
(eX(s−r) − 1)2

)
ds. (25)

The next step consists in computation of the time derivative along the solution of (23), of the term

V2(
1, 
2) = c2y
∗

2k2

∫ 0

−r

∫ 0

v

e
2(s)

(
c2y

∗

k2
(e
2(s−r) − 1)2 + a2x

∗

k2
(e
1(s−r) − 1)2

)
ds dv

+ c2

2k2
r�L

∫ 0

−r

(
c2y

∗

k2
(e
2(s) − 1)2 + a2x

∗

k2
(e
1(s) − 1)2

)
ds.
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We have

V2(Xt , Yt ) = c2y
∗

2k2

∫ t

t−r

∫ t

v

eY (s)

(
c2y

∗

k2
(eY (s−r) − 1)2 + a2x

∗

k2
(eX(s−r) − 1)2

)
ds dv

+ c2

2k2
r�L

∫ t

t−r

(
c2y

∗

k2
(eY (s) − 1)2 + a2x

∗

k2
(eX(s) − 1)2

)
ds.

Then,

V̇2|(23) = c2y
∗

2k2
eY(t)

(
c2y

∗

k2
(eY (t−r) − 1)2 + a2x

∗

k2
(eX(t−r) − 1)2

)
r

− c2y
∗

2k2

∫ t

t−r

eY (s)

(
c2y

∗

k2
(eY (s−r) − 1)2 + a2x

∗

k2
(eX(s−r) − 1)2

)
ds

+ c2

2k2
r�L

(
c2y

∗

k2
(eY (t) − 1)2 + a2x

∗

k2
(eX(t) − 1)2

)

− c2

2k2
r�L

(
c2y

∗

k2
(eY (t−r) − 1)2 + a2x

∗

k2
(eX(t−r) − 1)2

)

= c2r

2k2

(
c2y

∗

k2
(eY (t−r) − 1)2 + a2x

∗

k2
(eX(t−r) − 1)2

)
(y∗eY(t) − �L)

− c2y
∗

2k2

∫ t

t−r

eY (s)

(
c2y

∗

k2
(eY (s−r) − 1)2 + a2x

∗

k2
(eX(s−r) − 1)2

)
ds

+ c2

2k2
r�L

(
c2y

∗

k2
(eY (t) − 1)2 + a2x

∗

k2
(eX(t) − 1)2

)
.

For t large enough, we have y∗eY(t) − �L < 0 and thus,

V̇2|(23) � − c2y
∗

2k2

∫ t

t−r

eY (s)

(
c2y

∗

k2
(eY (s−r) − 1)2 + a2x

∗

k2
(eX(s−r) − 1)2

)
ds

+ c2

2k2
r�L

(
c2y

∗

k2
(eY (t) − 1)2 + a2x

∗

k2
(eX(t) − 1)2

)
.

This inequality and (25) lead to, for t large enough,

V̇ |(23) �
(

x∗
(

−b + a1 − bx∗

k1
+ a2

2k2

)
+ c1y

∗

2k1

)
(eX(t) − 1)2

+
(

c1y
∗

2k1
+ a2x

∗

2k2
− c2y

∗

x(t − r) + k2
+ c2�Lr

k2

(
c2y

∗

2k2
+ a2x

∗

2k2

))
(eY (t) − 1)2

+ c2

2k2
r�L

(
c2y

∗

k2
(eY (t) − 1)2 + a2x

∗

k2
(eX(t) − 1)2

)

�
(

−bx∗(k1 + x∗)
k1

+ a1x
∗

k1
+ a2x

∗

2k2
+ c1y

∗

2k1
+ c2a2x

∗r�L

2k2
2

)
(eX(t) − 1)2

+
(

c1y
∗

2k1
+ a2x

∗

2k2
− c2y

∗

x(t − r) + k2
+ c2�Lr

k2

(
c2y

∗

k2
+ a2x

∗

2k2

))
(eY (t) − 1)2.

Now, if

−bx∗(k1 + x∗)
k1

+ a1x
∗

k1
+ a2x

∗

2k2
+ c1y

∗

2k1
< 0 (26)

and

c1y
∗

2k1
+ a2x

∗

2k2
− c2y

∗

x(t − r) + k2
< 0 (27)
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then, for r small enough, we can conclude that V̇ |(23) is negative definite. Hence V satisfies all the assumptions of
Corollary 5.2 in [4] and the theorem follows.

We now study when inequalities (26) and (27) hold.
From (10), we have −bx∗(k1 + x∗) = c1(y

∗ − a1(k1 + x∗)/c1) and using (11), (26) becomes

3

2

c1

k1

a2(x
∗ + k2)

c2
− a1 + a2x

∗

2k2
< 0

which is rewritten as

x∗
(

a2k1

c1k2
+ 3a2

c2

)
< 2

a1k1

c1
− 3

a2k2

c2
. (28)

As x∗ � a1
b

, then the following inequality

a1

(
a2k1

c1k2
+ 3a2

c2

)
< b

(
2
a1k1

c1
− 3

a2k2

c2

)
(29)

implies (28). Now, if the following inequality holds

c1y
∗

2k1
+ a2x

∗

2k2
− c2y

∗
a1

b
+ k2

< 0, (30)

then, for t large enough, (27) holds too. Using (11), (30) is reformulated as

c1y
∗

2k1
+ c2y

∗ − a2k2

2k2
<

c2y
∗

a1

b
+ k2

c1

2k1
+ c2

2k2
<

c2
a1

b
+ k2

+ a2

2y∗

c1

2k1
+ c2

2k2
<

c2
a1

b
+ k2

+ c2

2(x∗ + k2)

c1

k1
< c2

⎛
⎜⎝ 2

a1

b
+ k2

+ 1

x∗ + k2
− 1

k2

⎞
⎟⎠ .

As x∗ �a1/b, then the last inequality is satisfied if

c1

k1
< c2

⎛
⎜⎝ 3

a1

b
+ k2

− 1

k2

⎞
⎟⎠ (31)

that is if

a1c1k2

k1
+ a1c2 < b

k2

k1
(2c2k1 − c1). (32)

In conclusion, if

a1k1

c1
> max

{
a1

2c2
,

3

2

a2k2

c2

}

and for b large enough, there exists a unique interior equilibrium and for r small enough it is globally asymptotically
stable. �
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6. Discussion

It is interesting to discuss the effect of time delay r on the stability of the positive equilibrium of system (2)–(3). We
assume that positive equilibrium E∗ exists for this system.

Linearizing system (2)–(3) at E∗, we obtain

Ẋ(t) = A11X(t) + A12Y (t),

Ẏ (t) = A21X(t − r) + A22Y (t − r),
(33)

where

A11 = −bx∗ + c1x
∗y∗

(x∗ + k1)
2 ,

A12 = − c1x
∗

x∗ + k1
,

A21 = c2(y
∗)2

(x∗ + k2)
2 = a2

2

c2

and

A22 = − c2y
∗

x∗ + k2
= −a2.

The characteristic equation for (33) takes the form

P(�) + Q(�)e−�r = 0 (34)

in which

P(�) = �2 − A11�

and

Q(�) = −A22� + (A11A22 − A12A21).

When r = 0, we observe that the jacobian matrix of the linearized system is

J =
(

A11 A12
A21 A22

)
.

One can verify that the positive equilibrium E∗ is stable for r = 0 provided that

a1 < bk1. (35)

Indeed, when (35) holds, then it is easy to verify that

T r(J ) = A11 + A22 < 0

and

Det(J ) = A11A22 − A12A21 > 0.

By denoting

F(y) = |P(iy)|2 − |Q(iy)|2,

we have

F(y) = y4 + (A2
11 − A2

22)y
2 − (A11A22 − A12A21)

2.

If (35) holds, then � = 0 is not a solution of (34). It is also easy to verify that if (35) holds, then equation F(y) = 0
has at least one positive root. By applying standard theorem on the zeros of transcendental equation, see [4, Theorem
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4.1], we see that there is a positive constant r0 (which can be evaluated explicitly), such that for r > r0, E∗ becomes
unstable. Then, the global stability of E∗ involves restrictions on length of time delay r . Therefore, it is obvious that
time delay has a destabilized effect on the positive equilibrium of system (2)–(3).
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