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Abstract

Data reduction plays an important role in machine learning and pattern recognition with a high-dimensional data. In real-world
applications data usually exists with hybrid formats, and a unified data reducing technique for hybrid data is desirable. In this paper,
an information measure is proposed to computing discernibility power of a crisp equivalence relation or a fuzzy one, which is the
key concept in classical rough set model and fuzzy-rough set model. Based on the information measure, a general definition of signifi-
cance of nominal, numeric and fuzzy attributes is presented. We redefine the independence of hybrid attribute subset, reduct, and relative
reduct. Then two greedy reduction algorithms for unsupervised and supervised data dimensionality reduction based on the proposed
information measure are constructed. Experiments show the reducts found by the proposed algorithms get a better performance com-

pared with classical rough set approaches.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, data has become increasingly larger not
only in rows (i.e. number of instances) but also in columns
(i.e. number of features) in many applications, such as gene
selection from micro-array data and text automatic catego-
rization, where the number of features in the raw data
ranges from hundreds to tens of thousands (Guyon and
Elisseeff, 2003). High dimensionality brings great difficulty
in pattern recognition, machine learning and data mining
(Hand et al., 2001; Liu and Setiono, 1998). Data reduction
is a well-known data mining problem, which is usually con-
sidered as an enhancement preprocessing technique for
subsequent machining (Tsang et al., 2003). It will bring
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many potential benefits: reducing the measurement, storage
and transmission, reducing training and utilization times,
defying the curse of dimensionality to improve prediction
performance in terms of speed, accuracy and simplicity,
facilitating data visualization and data understanding
(Torkkola, 2003; Dash and Liu, 2003). A lot of data reduc-
tion techniques were proposed to deal with these challeng-
ing tasks. Due to the complexity of data and classification
in real-world applications, it seems not an easy task to
build a general data reduction technique, so researches
on data reduction have been conducted for last several dec-
ades and are still extracting much attention from pattern
recognition and data mining society. Data reduction can
begin with two aspects: reducing the number of samples
or reducing the number of features. The first one will be
implemented by resample techniques and the second is
done with dimensionality reduction techniques (Blum and
Langley, 1997; Liu et al., 2002). This paper will be focused
on the second problem.
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An extensive amount of researches have been conducted
over last decades to get reliable approaches for dimension-
ality reduction, which roughly falls into two types of para-
digms: feature extraction and feature subset selection (Li
and Xu, 2001). Feature extraction refers to constructing
new features with a linear or nonlinear transformation
from the original input space to a feature space, while fea-
ture subset selection is to find some informative features
from the original set and delete the others. Principal com-
ponent analysis (PCA) (Hwang and Chang, 2002; Chen
and Zhu, 2004), independent component analysis (ICA)
(Cheung and Xu, 2001; Wakako, 2002), linear discriminant
analysis (LDA) are to find a linear transformation and pro-
jection pursuit regression constructs a nonlinear mapping
from input space to feature space. A main drawback of
these methods is that the constructed features do not have
true meaning, and complex computation may be required
(Tsang et al., 2003).

In last decade, much attention has been paid to feature
subset selection. Two extensive reviews were published
(Blum and Langley, 1997; Kohavi and John, 1997) in
artificial intelligence and a special issue of machine learn-
ing research was present in 2003 (Guyon and Elisseeff,
2003). Generally speaking, there are four basic compo-
nents in all feature subset selections: an evaluation func-
tion of feature subset, a search strategy to find the best
feature subset as defined by the corresponding evaluation
function, a stopping criterion to decide when to stop and
a validation procedure to check whether the selected sub-
set is valid (Piramuthu, 2004). According to evaluation
methods the feature subset selection can classified into
two kinds: filtering and wrapper. Distance measures (Kira
and Rendell, 1992; Kwak and Choi, 2002), information
measures (Yu and Liu, 2003a,b; Duch et al., 2002), corre-
lation coefficient (Mitra et al., 2002) and consistency mea-
sures (Dash and Liu, 2003) are used for filtering methods.
Wrapper refers to using a classifier as the evaluation
function in selection. KNN, neural network, SVM all
can be employed. Isabelle Guyon and Elisseeff (2003)
pointed that selecting the most relevant features is usually
suboptimal for building a good predictor in filtering
because the performance of the trained predictor depends
on not only feature subset, but also the learner used. In
other words, a best feature subset in terms of an evalua-
tion function does not mean a best prediction perfor-
mance. An optimal feature subset selection should be
conducted by the corresponding classifier employed,
which leads to wrapper methods. However wrapper meth-
ods will take high time-complexity. It is may be infeasible
in real-world applications. Filtering as an efficient feature
selection is widely used in practice. In filtering methods,
information measures and consistency measures work
effectively when data are nominal. Compared with these
measures, distance measures and correlation coefficient
are proposed for numeric data. However, data usually
comes with a hybrid form in applications. For example,
nominal attributes: sex, color, numeric attributes: age,

temperature coexist in hospital data set. The above selec-
tion methods are suitable for a single format of features
in nature. A feature subset selection for hybrid data is
desirable.

Rough set theory has proved to be a powerful tool to
deal with uncertainty and has been applied to data reduc-
tion, rule extraction, data mining and granularity computa-
tion. Reduct is a minimal attribute subset of the original
data which is independent and has the same discernibility
power as all of the attributes in rough set framework. Obvi-
ously reduction is a feature subset selection process, where
the selected feature subset not only retains the representa-
tional power, but also has minimal redundancy. Some
rough set based reduction and feature selection algorithms
have been proposed. Consistency of data (Mi et al., 2004;
Pawlak, 1991), dependency of attributes (Wang and Miao,
1998), mutual information (Wang et al., 2002), discernibil-
ity matrix (Skowron and Rauszer, 1992) are employed to
find reducts of an information system. And these tech-
niques are applied to data reduction (Beynon, 2001; Li
et al., 2004) text classification (Moradi et al., 1998), texture
analysis (Swiniarski and Hargis, 2001). An extensive review
about rough set based feature selection was given in (Swin-
iarski and Skowron, 2003).

As we know, Pawlak’s rough set model works in case
that only nominal attributes exist in information systems.
However, data usually comes with a hybrid form. Nomi-
nal, fuzzy and numeric features coexist in real world data-
bases. Some generalizations of the model were proposed to
deal with this problem. Rough set theory and fuzzy set the-
ory were putted together and rough-fuzzy sets and fuzzy-
rough sets were defined in (Dubois and Prade, 1992). The
properties and axiomatization of fuzzy rough set theory
(Morsi and Yakout, 1998; Wu and Zhang, 2004; Wu
et al., 2004) were analyzed in detail. And the fuzzy-rough
set methods were applied to data reduction (Hu et al.,,
2005; Hu et al.,, in press) mining stock price (Wang,
2003), vocabulary for information retrieval (Srinivasan
et al., 2001) and fuzzy decision rules (Shen and Chouchou-
las, 2002).

Just as reduction plays an important role in classical
rough set theory, a reduction algorithm for fuzzy informa-
tion systems is desirable. In traditional processing, discret-
ization is performed on numeric data as a preprocessing
for machine learning (Chmielewski and Grzymala-Busse,
1996). Qiang Shen et al. pointed that this processing may
lead to some information loss from the original data. A
fuzzy-rough attribute reduction, called fuzzy-rough
QUICKREDUCT algorithm, was given in (Jensen and
Shen, 2004; Shen and Jensen, 2004) based on fuzzy depen-
dency function. Fuzzy dependency function has the power
to measure the discernibility power of nominal attributes
and fuzzy attributes.

In this paper, we will introduce an information measure
for fuzzy equivalence relations. Then we will redefine the
dependency of a hybrid attribute set and give unsupervised
and supervised reduction algorithms for hybrid data based
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on the measure. The rest of the paper is organized as fol-
lows: some preliminary knowledge about rough set and
fuzzy-rough set theory is present in Section 2. A novel
information measure and its properties will be presented
in Section 3. Section 4 gives a new definition of dependency
of attribute set and reduction algorithms for hybrid data.
An extensive experimental analysis is described in Section
5. Section 6 concludes the paper.

2. Some primary definitions on fuzzy-rough set model

Pawlak’s rough set model can only deal with data con-
taining nominal values. As we know the real-world applica-
tions usually contain real-valued or fuzzy attributes. A
fuzzy equivalence relation would be generated by a real-
valued attribute or a fuzzy attribute, instead of crisp equiv-
alence relation. The fuzzy-rough set model is fitted for the
case where both the relation and the object subset to be
approximated are fuzzy.

Given a non-empty finite set X,R is a binary relation
defined on X, denoted by a relation matrix M(R):

rn riz o Fi

1 r» on
M(R) =

n1 Yn2 Vun

where r; € [0,1] is the relation value of x; and x;.
R is a fuzzy equivalence relation if R satisfies

(1) Reflectivity: R(x,x) =1 Vx € X;
(2) Symmetry: R(x,y) = R(y,x), Vx,y € X;
(3) Transitivity: R(x,Z) > min, {R(x,y),R(y,2)}.

Given an arbitrary set X, R is a fuzzy equivalence rela-
tion defined on X. Vx,y € X, some operations on relation
matrices are defined as

(1) R =R, = Rl(xay) =R2(x,y) Vx,y € X,

(2) R=R| URy, <= R(x,y) = max{R(x,y),R(x,»)};
(3) R=R; NRy <= R(x,y) = min{R; (x,y),Ra(x,») };
(4) R] - R2 <~ Rl(x,y) < Rz(x,y).

A crisp equivalence relation will generate a crisp parti-
tion of the universe, whereas a fuzzy equivalence relation
induces a fuzzy partition.

Definition 1. U is the universe and R is a fuzzy binary
relation over U. The fuzzy partition of the universe U,
generated by a fuzzy equivalence relation R, is defined as

U/R = {[xilp}izs (1)

where [x;], =2 42 + - + {2 is the fuzzy equivalence class
generated by x; and R.

Here U/R means the partition of U induced by relation
R. Due to the fuzzy equivalence relation, U/R is a fuzzy

partition and then [x;]z is a fuzzy set. This is a main
difference of fuzzy-rough sets with Pawlak’s rough sets.

Theorem 1. Given arbitrary set X, R is a fuzzy equivalence
relation defined on X. The fuzzy quotient set of X by relation
R is denoted by X. Vx,y € X, we have

(1) R(x,y) =0 <= X[, N[V = ¢;
(2) Xz =Dlg = R(x,y) = 1.

Definition 2. Given a fuzzy probability approximation
space (U, R), X is a fuzzy subset of U. The lower approxi-
mation and upper approximation, denoted by RX and RX,
are defined as

pre(x) = Mpux () v (1 = R(x,)) :y € U}, xeU
prx(x) = V{uy (V) AR(x,y) sy € U}, xeU
2)
The membership of an object x € U, belonging to the
fuzzy positive region is defined as

Hpos,(d) = XSUUI?d fpx (X). (3)
c

Definition 3. Given a fuzzy information system (U, 4), B
and d are two subset of attribute set A4, the dependency
degree of d to B is defined as

78(d) = Zﬂposg(d) (x). (4)

xelU

Definition 4. Given a fuzzy information system
(U,A,V.f), BCA, a€B, if UB=U/B-a), we say
knowledge a is redundant or superfluous in B. otherwise,
we say knowledge a is indispensable. If any a belonging
to B is indispensable, we say B is independent. If attribute
subset B C A is independent and U/B = U/A, we say B is
a reduct of A.

Definition 5. Given a fuzzy information system
(U,A,V,f)y, A=CUd. B is a subset of C. Va€ B, a is
redundant in B relative to d if yp_,(d) = yp(d), otherwise
a is indispensable. B is independent if Va € B is indispens-
able, otherwise B is dependent. B is a subset of C. B is a
reduct of C if B satisfies:

(1) y8(d) =ydd);
(2) Va € B:yg_,(d) <yp(d).

The fuzzy-rough set model is the generalization of
classical rough set model and rough-fuzzy set model. When
the relations between objects are crisp equivalence relations
and the object subset to be approximated is a fuzzy set then
the model will degrade to rough-fuzzy set model. Further-
more, if object subset to be approximated is crisp, the
model is the classical one.
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3. Information measure for fuzzy-rough set model

In this section we will propose a new entropy to measure
the discernibility power of a fuzzy equivalence relation.

Given a finite set U, A is a fuzzy or real-valued attribute
set, which generates a fuzzy equivalence relation R on U.
The fuzzy relation matrix is M(R).

The fuzzy equivalence class generated by x; and R is

Definition 6. The cardinality [x,]z is defined as
el =D 7y (5)
=1

Definition 7. Information quantity of the fuzzy attribute
set or the fuzzy equivalence relation is defined as

R)= 13 log, (6)

where 4, = =&

If the relation R is a crisp equivalence relation, the pro-
posed information measure is identical to Shannon’s one.
The following definitions of joint entropy and conditional
entropy have the same property. In the follows, we will
denote two information measures indiscriminatingly.

The formula of information measure forms a map:
H:R— R", where R is a equivalence relation matrix,
R" is the non-negative real-number set. This map builds
a foundation on that we can compare the discernibility
power, partition power or approximating power of multi-
ple fuzzy equivalence relations. Entropy value increases
monotonously with the discernibility power or the knowl-
edge’s fineness. So the finer partition is, the greater entropy
is, and the more significant attribute set is.

Definition 8. Given a fuzzy information system
(U,A,V,f), A is the fuzzy or numeric attribute set. B, E
are two subsets of A4. [x;]p and [x;]g are fuzzy equivalence
classes containing x; generated by B and E, respectively.
The joint entropy of B and E is defined as

———Zl Il O bl (7)

Definition 9. Given a fuzzy information system
(U,A,V.f), A is the attribute set. B and E are two subsets
of A. [x;]g and [x;]g are fuzzy equivalence classes containing
x; generated by B and E, respectively. The conditional
entropy of E conditioned to B is defined as

H(BE) = H(RzR3)

H(E|B) = ——Zlog x, |'] 5! (8

~~—

Theorem 2. H(E|B) = H(BE) — H(B).

Theorem 3. Given a fuzzy information system (U, A, V. f), A
is the fuzzy attribute set. B and E are two subsets of A. [ x;] g
and [ x;) g are fuzzy equivalence classes containing x; gener-
ated by B and E, respectively. The fuzzy equivalence rela-
tions induced by B and E are denoted by R and S,
respectively. Then we have:

(1) VBC A:H(B) = 0

(2) H(BE) > max{H(B),H(E)};

(3) BC Eor RgC Rp:H(BE,P)= H(B);
(4) BCEor RgC Rp:H(E|B)=0

The first item of Theorem 3 shows the information
introduced by any attribute subset is non-negative, the sec-
ond shows the discernibilty power of the union of two attri-
bute subset will be no less than that of any single subset,
which means introducing a new attribute or attribute sub-
set at least will not decrease the discernibility power. The
last two items show attribute subset won’t introduce infor-
mation relative B if E is contained by B. The properties of
the information measure have a same observation of clas-
sification as the Boolean logic methodology, which is a
class of paradigm of classifier, such as ID3, CART, C4.5
and rough set theory.

Theorem 4. Given a fuzzy information system (U, A, V.f),
BCA, a€B, HB)=HB—-a) if a is redundant,
H(B)> H(B — a) if B is independent. B is a reduct if B
satisfies:

(1) H(B) = H(A);
(2) Va € B: H(B) > H(B — a).

Theorem 5. Given a fuzzy information system (U, A, V.f),
A= CUd. Bisasubset of C. Va € B, H(d|B — a) = H(d|B)
if a is redundant in B relative to d, H(d|B — a) > H(d|B) if B
is independent. B is a reduct of C relative to d if B satisfies:

1) H(d|B) = H(d|C);
(2) Va € B: H(d|B — a) > H(d|B).

Theorems 4 and 5 give the definitions of dependency,
reduct and relative reduct in terms of information theory,
in fact two classes of definitions are equivalent. The proof
was given in (Hu and Yu, 2004, in press).

Example 1. Given a set X = {x,x5,x3}. R;, Ry, R3 are
fuzzy equivalence relation matrices on X, induced by
attributes a;, a, and as, as follows:

1 09 O
R=1]09 1 0],

0 0 1
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1 0 0
RR=10 1 08],
0 08 1
(1 0 0 ]
Ry=10 1 09
0 09 1
We have [y =5 +%+ 2, [[xi]g | = 1.9
[1 0 0]
Re=RiNR= |0 1 0],
0 0 1]
(1 0 0]
Rs=R NR3;=1[0 1 0].
0 0 1)

Let us compute the following entropy H(R;), H(R»).
H(Ry) =0.9676, H(R,)=1.0196.
The joint entropy of relations R; and R, is
H(R\Ry) = H(R, N R,) = 1.5850.
Then the conditional entropies H(R;|R,) and H(R,|R;)
are
H(R|R,) = H(R\R,) — H(R>)
= 1.5850 — 1.0196
= 0.5654,
H(R>|R)) = H(R\R>) — H(R))
= 1.5850 — 0.9676
=0.6174.

Given an equivalence relation Ry induced by a decision
attribute:

1 0
Ri= |0 1
0 0

—_ O O

we find
H(R4|R1Ry) = H(R4|R1R3) = H(R4|R1R2R5) = 0,

which shows the joint relation of R; and R, has the same
partition as the relation Ry, and so does the joint relation
of Ry and Rs3. So {aj,a»} and {ay,a3} are two relative
reducts.

4. Reduction algorithms for unsupervised and
supervised hybrid data

Reduct is an important concept in rough set theory and
data reduction is a main application of rough set theory in
pattern recognition and data mining. As it has been proven
that finding the minimal reduct of an information system is
a NP hard problem. Some heuristic algorithms have been
invented based on significance measures of attributes. These
algorithms get a suboptimal result but relatively low time-

consuming (Guyon and Elisseeff, 2003). Shannon’s entropy
was used as a significance measure in some classical
machine learning algorithm, such as the famous ID3 algo-
rithm series, and proven to be a good measure. In the above
section, we propose a novel information measure for fuzzy
indiscernibility or equivalence relation and show that the
entropy can be degraded to Shannon’s one when the rela-
tion measured is a crisp equivalence one. It shows that the
proposed measure can be used as a measure of discernibility
power of a crisp equivalence relation and a fuzzy one. So
unified reduction algorithms for hybrid data are feasible.

Data dimensionality reduction will be divided into three
steps: relation computation, reduction and reduct valida-
tion. Relation computation is to generate relation matrices
using a relation function with attributes. Then reduction
algorithms are performed on the matrices and find some
reduct of the original data. Finally employing a validation
function, which may be a classifier or a discriminability
criterion, we test the reduct and find a best one. The pro-
cedure is shown as follows. No matter cases {x;};_, are
described by nominal attributes or numeric features or
fuzzy variables (Fig. 1), the relations between the cases
can all be denoted by a relation matrix: M(R) = (7;),xn-

If A is a nominal attribute set,

{13 f(xiaa):f(xj7a) Va € A
rij = .
! 0, otherwise

If attribute a is a numeric attribute, the value the rela-
tion can mapped by a symmetric function

rip = f (ki = %),
where function f should satisfy

(1) f10) =1, floo) = 0 and fe) € [0,1];

(2) V{/:Vj[ and V[,'Zl.

According to (2), relation R will satisfies reflexivity and
symmetry. So a similarity relation matrix will be produced
by the functions.

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

0 . - - - 0

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

0 n " 0

Fig. 1. Some similarity relation functions for numeric data.
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As to fuzzy attributes, there are a great many candidate
similarity measures (Li and Cheng, 2002). For example

(1) Hamming similarity measure:

m

S) = (= g () — 1 ()]

k=1
(2) Max—Min similarity measure:

m | £ max(iu, (). 14, (x7))

Employing a max-min closure operation, we can get a
fuzzy equivalence relation (Lee, 2001).

As has pointed in Section 2, the proposed entropy can
be used as measure of the discernibility power of a relation
or an attribute. The greater the entropy value is, the stron-
ger the discernibility is and the more significant the attri-
bute is. According to the properties of proposed entropy,
adding a novel condition attribute into the information sys-
tem, the entropy value will increase monotonously, which
reflexes that adding information will lead to enhancement
of the discernibility power. The increment of information
by an attribute reflexes the increment of discernibility of
the system. So the significance of an attribute can be
defined as follows.

Definition 10. Given a fuzzy information system
(U,A,V.f), BC A, a € B, the significance of attribute a in
attribute set B is defined as

SIG(a,B) = H(B) — H(B — a) (9)

The above definition works in unsupervised feature
selection. SIG(a, B), called Significance of attribute a in
B, measures the increment of discernibility power intro-
duced by attribute a.

Definition 11. Given a fuzzy information system
(U,A,V,f), A= CUd, where C is the condition attribute
set and d is the decision attribute. BC C Va € B, the
significance of attribute « in attribute set B relative to d
is defined as

SIG(a,B,d) = H(d|B — a) — H(d|B) (10)

This definition computes the increment of discernibility
power relative to the decision introducing by attribute a.
So it may be used as a supervised measure for feature
selection.

Based on the above measures, two greedy algorithms for
computing reduct and relative reduct can be constructed,
respectively.

Algorithm 1. Algorithm for calculating reduct
Input: Information system IS (U, 4, V. f).
Output: One reduct of IS

Step 1: Va € A: compute the equivalence relation;

Step 2: ¢ — red,

Step 3: For each ¢; € A — red
Compute H; = H(a;,red)
End
Step 4: Choose attribute which satisfies:

H(a|red) = max(SIG(a;,red))

Step 5: If H(al|red) > 0, then red U a — red goto step 3
Else return red
End

Algorithm 2. Algorithm for calculating relative reduct
Input: Information system IS (U, A= CUd, V, f).
Output: One relative reduct D_red of IS

Step 1: Va € A4: compute the equivalence;

Step 2: ¢ — D_red,

Step 3: For each a; € C— D_red

Compute H; = SIG(a;, D_red, d)
End
Step 4: Choose attribute which satisfies:

SIG(a,red,d) = max(H;)

Step 5: If SIG(a,red,d) > 0, then D_red U a — D_red goto
step 3
Else return, D_red
End

Jensen and Shen (2004) proposed that a problem may
arise when this approach is compared to the crisp attribute
reduction. In classical rough set attribute reduction, a
reduct is defined as a subset of attributes which has the
same information quantity as the full attribute set, which
means that the value H(B)(H(d|B)) should be identical to
H(A)(H(d|A)). However, in the fuzzy-rough approaches,
it is not necessarily the case. We can specify the degree
threshold 4. So that the algorithms will stop if the condi-
tion SIG(a,red) < M(SIG(a,red,d) < 2) is satisfied.

5. Experiments and analysis

A series of experiments have been conducted to test the
proposed significance measure of attributes and feature
selection based on UCI data. In this section, we will show
some experimental results and analysis. All experiments
have been performed on data set shown in Table 1. We find
the attributes of data BC and BCW are nominal, and
others are hybrid.

5.1. Experiment 1: Ranking based feature selection vs.
the proposed dimensionality reduction

In feature subset selection, many algorithms include
ranking as a principal or auxiliary selection mechanism
because of its simplicity, scalability and good empirical suc-
cess. Ranking methods employ an evaluation function,
such as inter-class distance, correlation criteria, mutual



420

Table 1
Summary of the experiment data sets
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Data set Size Class number Attribute number

Abbreviation Original name Total Numeric Nominal
WDBC Breast-cancer-wisconsin 2 569 2 31 30 1
WPBC Breast-cancer-wisconsin 3 198 2 33 32 1
Cre Credit Approval 690 2 16 6 10
Cle Cleve Database 303 5 14 5 9
Der Dermatology 366 6 34 33 1
Eco Protein localization 336 8 8 7 1
Gls Glass identification 214 6 9 8 1
Heart Heart disease 270 2 14 6 8
Ton Tonosphere 351 2 35 34 1
Son Sonar mines 1389 3 1 60 1
Win Wine recognition 178 3 14 13 1

information and accuracy of a classifier to sort the candi-
date features. Some top features are selected. The main
drawback of ranking is it can not detect the redundancy
or correlation among condition set. So although they are
the greatest discernible feature individually, their combina-
tion may have weak discernible power. Only under certain
independence or orthogonality, ranking may be optimal
with respect to a given classifier (Guyon and Elisseeff,
2003).

In the follows, an experiment is shown based on data
wine. The order of significance of attribute set is
{7,13,12,10,1,11,6,2,8,4,9,5,3}. With reduction Algo-
rithm 2, attribute subset {7,1,11,6,3,13} are selected one
by one as a reduct, called subset 1.

In order to compare two feature subset selection meth-
ods, top six attributes {7,13,12,10,1,11} are selected in
ranking, called subset 2. Fig. 2 shows the distribution of
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data in two-dimension feature space. Fig. 2(a) is the distri-
bution with attribute {7,1}, {1,11}, {11,6}, {6,3}, {3,13},
respectively. And Fig. 2(b) is the distribution with attribute
{7,13}, {13,12}, {12,10}, {10,1}, {1,11}. From the two-
dimension feature space, we find that the attributes by
ranking have even better discernibility power than the attri-
butes selected by the fuzzy-rough reduction algorithm.
Here we choose support vector machine (SVM) as a valida-
tion function for feature subsets. 2/3 samples are randomly
selected as training set, and the others are test set. The
accuracy with attribute subset 1 is 94.87%, while the accu-
racy with attribute subset 2 is 93.33%.

Why the attributes with better discriminability in two-
dimensional space get an even worse classification perfor-
mance? As we have pointed, selecting the most relevant
features is usually suboptimal for building a classifier
if the features are redundant or dependent. Generally
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Fig. 2. Distribution of wine samples with attributes: (a) {7,1,11,6,3,13}, accuracy: 94.87%; (b) {7,13,12,10, 1,11}, accuracy: 93.33%.
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speaking, ranking method only computes the dependency
between condition attributes and decision attribute, while
neglect the dependency among condition attributes.

Let us analyze the correlation between the selected
condition attributes. Correlation coefficients are showed
in Tables 2 and 3.

Wang et al. (2003) introduced correlation entropy to
measure the correlation of a variable set. The entropy is
defined as

s i

Hp = ; NIOgN N’

where /; is ith eigenvalue of correlation coefficient matrix.
The greater the entropy value is, the weaker the correlation
of attribute set is. If all attributes are linear correlation, the
correlation entropy is 0, and if all the correlation coefficient
are zero, then the entropy is 1. Wang called the dependency
of attributes overlap information. We employ the measure
to compute the correlation degree of the selected attributes.
The correlation entropy of subset 1 is 0.8110, while entropy
of subset 2 is 0.7364, which shows the correlation degree of
subset 1 is lower than that of subset 2.

5.2. Experiment 2: Comparison of reduction methods

In order to test the performance of the proposed reduc-
tion algorithm, some contrastive experiments are con-
ducted based on UCI data set. We compare the classical
rough set reduction with the proposed one and employ
SVM and CART classifier as the validation function. The
experiment data is shown in Tables 4 and 5.

As we know, the classical rough set theory just works
in nominal domain. So discretization is performed on
numeric data before reduction. The numeric attributes
are discretized into three intervals by equal-width, equal-

frequency and fuzzy c-means clustering techniques. As to
fuzzy-rough reduction algorithm, the relation matrices
are computed with a triangle function.

We can find that the average accuracies with the pro-
posed algorithms are higher than those with classical rough
set based reduction. In the same time we can find the pro-
posed algorithms keep more attributes in the reducts,
which show there are some useful attributes in the reduced
subsets. In the classical rough set based reduction the dis-
cretization is usually performed before reduction and learn-
ing with some crisp cuts. The selection of cuts is crucial to
the performance of the sequent learning. The cuts should
reflex the structure of the data and patterns. Generally
speaking, the boundary of the patterns is fuzzy and indis-
tinguishable, a crisp cut point can capture the actual
semantic in the data. Therefore, discretization enhances
the discernibility power of the original training data. As
to fuzzy data or numeric features, fuzzy equivalence rela-
tions are capable of modeling the uncertainty in the data
sets. So the learned models with the proposed technique
may get good performances. Especially to the data with
few attributes, such as data wine, the classical methods only
keep 4 attributes, whereas the proposed method retains 6
attributes. As WDBC and WPDC the proposed technique
withholds much more features in the final reducts. Accord-
ingly, good performances are observed. The results of the
numeric experiments maybe suggest the data are over
reduced with the classical techniques.

It’s certain that we do not believe the more the features
are, the higher the accuracies we will get. Bhatt and Gopal
(2005) showed the fuzzy-rough set reduction algorithm was
not convergent on many real datasets due to the poorly
designed termination criteria. In fact, the convergence
depends on not only the termination criteria, but also
the computation of the fuzzy sets and fuzzy relations.

Table 2
Correlation coefficient matrix of attribute set {7, 1, 11, 6, 3, 4} with correlation entropy 0.8110
Al A2 A3 A4 A5 A6

Al 1.0000 0.2368 0.5435 0.8646 0.1151 -0.3514
A2 0.2368 1.0000 —0.0717 0.2891 0.2115 —0.3102
A3 0.5435 -0.0717 1.0000 0.4337 —0.0747 —0.2740
A4 0.8646 0.2891 0.4337 1.0000 0.1290 —0.3211
AS 0.1151 0.2115 —0.0747 0.1290 1.0000 0.4434
A6 —0.3514 —0.3102 —0.2740 —0.3211 0.4434 1.0000

Table 3
Correlation coefficient matrix of attributes {7, 13, 12, 10, 1, 11} with correlation entropy 0.7364
Al A2 A3 A4 A5 A6

Al 1.0000 0.4942 0.7872 —0.1724 0.2368 0.5435
A2 0.4942 1.0000 0.3128 0.3161 0.6437 0.2362
A3 0.7872 0.3128 1.0000 —0.4288 0.0723 0.5655
A4 —0.1724 0.3161 —0.4288 1.0000 0.5464 —0.5218
AS 0.2368 0.6437 0.0723 0.5464 1.0000 -0.0717
A6 0.5435 0.2362 0.5655 —0.5218 -0.0717 1.0000
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Comparisons of fuzzy-rough technique vs. discritization with linear SVM classifiers

Data Original data Reduct (equi-width) Reduct (equi-fre.) Reduct (FCM) Reduct (fuzzy-rough)
n Accuracy (%) n Accuracy (%) n Accuracy (%) n Accuracy (%) n Accuracy (%)

WDBC 31 93.16 8 94.21 12 93.68 6 95.26 17 95.26

WPBC 33 74.24 8 71.21 6 75.76 6 68.18 17 81.82

Cre 16 82.17 11 81.74 9 83.04 11 81.74 12 81.74

Cle 14 59.41 10 57.43 8 60.4 9 59.41 12 56.44%

Der 34 90.91 12 93.39 11 99.17 11 99.17 11 99.17

Eco 8 70.18 7 70.18 7 70.18 7 70.18 7 70.18

Heart 14 83.33 9 83.33 8 82.22 8 84.44 9 83.33

Ion 35 92.31 7 85.47 7 85.47 8 87.18 12 88.03

Son 61 78.57 6 71.43 6 52.86 8 74.29 9 74.29

Win 14 96.67 4 91.67 4 91.67 4 91.67 6 94.87

Average 82.10 80.01 79.45 81.15% 82.52

Table 5

Comparisons of fuzzy-rough technique vs. discritization with decision tree

Data Original data Reduct (equi-width) Reduct (equi-fre.) Reduct (FCM) Reduct (fuzzy-rough)
n Accuracy (%) n Accuracy (%) n Accuracy (%) n Accuracy (%) n Accuracy (%)

WDBC 31 91.05 8 90.00 12 94.74 6 91.58 17 96.32

WPBC 33 59.09 8 59.09 6 60.61 6 57.58 17 62.12

Cre 16 82.17 11 81.30 9 80.43 11 80.87 12 81.30

Cle 14 58.42 10 49.50 8 52.48 9 56.44 12 58.42

Der 34 95.04 12 97.52 11 98.35 11 98.35 11 97.52

Eco 8 80.70 7 80.70 7 80.70 7 80.70 7 80.70

Heart 14 74.44 9 73.33 8 75.56 8 74.44 9 75.56

Ton 35 94.02 7 92.31 7 92.31 8 90.60 12 89.74

Son 61 61.43 6 68.57 6 58.57 8 75.71 9 74.29

Win 14 91.67 4 86.67 4 88.33 4 86.67 6 90.00

Average 78.80 77.90 78.21 79.29 80.60

Sometimes the number of the attributes finally used in
training or learning is determined in advance. In some
cases, the users have some prior knowledge about the struc-
ture of the data; they are able to select an appropriate sim-
ilarity function, whereas the experiments shown above were
conducted without any prior knowledge. The convergence
and good accuracies are observed in the results.

6. Conclusion

Rough set theory has proven to be a powerful tool for
feature subset selection and rule extraction. The classical
rough set model just works in nominal domain. In this
paper, we propose a novel information measure, which
can measure the discernibility power of a crisp equivalence
relation and fuzzy one. And it is proven that when relation
matrix is a crisp equivalence one, the proposed entropy will
be degraded to Shannon’s entropy. Based on the proposed
entropy, some basic definitions in fuzzy-rough set model
are presented. Two reduction algorithms for unsupervised
and supervised dimensionality reduction are given. Exper-
iments show the algorithms get the same results as that
of the classical rough set approaches when the attributes
of data are all nominal. However, the performance of the

proposed reduction is better than the classical methods
with respect to hybrid data.
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