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Abstract

Classification systems play an important role in business decision-making tasks by classifying the available information

based on some criteria. The objective of this research is to assess the relative performance of some well-known classification

methods. We consider classification techniques that are based on statistical and AI techniques. We use synthetic data to perform

a controlled experiment in which the data characteristics are systematically altered to introduce imperfections such as

nonlinearity, multicollinearity, unequal covariance, etc. Our experiments suggest that data characteristics considerably impact

the classification performance of the methods. The results of the study can aid in the design of classification systems in which

several classification methods can be employed to increase the reliability and consistency of the classification.

D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Classification of information is an important com-

ponent of business decision-making tasks. Many

decision-making tasks are instances of classification

problem or can be easily formulated into a classifica-

tion problem, e.g., prediction and forecasting tasks,

diagnosis tasks, and pattern recognition. Classification

tasks have assumed even more significance with the

advent of the Internet. Internet as a communication

and transaction channel provides a means to imple-

ment many new enabling technologies such as col-

laborative filtering and recommender systems [26]

that enable one-to-one marketing and mass custom-

ization. Recommender systems are intended to assist

customers by making suggestions to consumers online

about available products and information. Recommen-

der systems base their decisions by analyzing past

behavior patterns of the individual customer as well as

the behavior of other customers. Additionally, cus-

tomer relationship management (CRM) systems are

intended to aid decision makers in building and

implementing marketing and promotion strategies. A

primary objective of these systems in decision-making

tasks is to classify the available information based on

some criteria.

A variety of statistical methods and heuristics from

AI literature have been used in the classification tasks.

Many of these methods have also been applied to other

decision-making scenarios such as business failure

prediction [32], portfolio management [16], and debt

risk assessment [33]. More recently, the problem of

0167-9236/02/$ - see front matter D 2002 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0167-9236(02)00110-0

* Tel.: +1-562-985-8944; fax: +1-562-985-4080.

E-mail address: mkiang@csulb.edu (M.Y. Kiang).

www.elsevier.com/locate/dsw

Decision Support Systems 35 (2003) 441–454



performing sensitivity analysis in classification sys-

tems using inverse classification methods have also

been studied [17]. However, few studies have per-

formed systematic tests to measure the comparative

performance of the algorithms used in classification

tasks [4]. It is clear from past studies that there is wide

variance in the performance of classification algo-

rithms under different scenarios [12,18,32].

As classification systems become an integral part

of organizational decision support systems, adaptabil-

ity to variations in data characteristics and dynamics

of business scenarios becomes increasingly important.

It is therefore imperative to move towards adaptive

classification systems that selectively employ appro-

priate classification method(s) by first analyzing the

available data. For such adaptive behavior, decision

support systems should support different classification

methods and apply the most appropriate method(s)

that suits the data characteristics of the problem at

hand. However, in order to build adaptive classifica-

tion systems, one must first understand the perform-

ance characteristics of the classification methods in a

systematic manner.

One main drawback of previous research on classi-

fication algorithm is that they mainly rely on uncon-

trolled data characteristics (biases) in their samples.

The objective of this study is to understand the

strengths and limitations of different classification

methods and the effects of data characteristics on their

performance in a controlled setting. We utilize a syn-

thetic data set with carefully controlled biases for this

purpose. In this research, the main focus is on the

investigation of two AI techniques—neural networks

and a decision tree method (C4.5), and three statistical

methods—linear discriminant analysis (LDA), logistic

regression analysis, and kth-nearest-neighbor (kNN)

models. While the origins of these approaches are

distinct and the underlying algorithms differ substan-

tially, the fundamental process is the same; they are all

inductive methods. The intention here is to investigate

how the different classification methods perform when

certain assumptions about the data characteristics are

violated. The findings from this study will enable a

better understanding of the classification methods. The

findings should also help lay the foundations for the

design of adaptive classification systems.

The rest of the paper is organized as follows: A

brief review of relevant classification methods is

presented in Section 2. The five classification methods

(neural networks, C4.5, discriminant analysis, logistic

regression, and kNN) studied in this paper are dis-

cussed in Section 3. Section 4 discusses the model

assumptions related to the eight data characteristics.

The experimental design and simulation results are

presented in Section 5. Section 6 concludes the paper

and suggests directions for future research.

2. Review of classification literature

Given that each classification method has its

strengths and limitations and that real world problems

do not always satisfy the assumptions of a particular

method, one approach is to apply all appropriate

methods and select the one that provides the best

solution. This approach works well if, for a given

problem situation, there is always one method (i.e.,

method A) that dominates all the other methods. That

is, the misclassified example set of method A is

subsumed by the misclassified example sets of all

other approaches (see Fig. 1a). It is commonly

observed that the misclassification set of the methods

intersect each other (see Fig. 1b). Thus, most cases

that are misclassified by one method can be correctly

predicted by other approaches [32]. A recent study on

the comparative analysis of ID3 and neural networks

conducted by Dietterich, Hild, and Bakiri [12] also

has similar observations. It can be seen in Fig. 1b that

the misclassified examples in region 1 of method A

can be correctly predicted by both methods B and C,

and regions 2 and 3 can be correctly predicted by

methods B and C, respectively. Therefore, one aim of

this research is to understand the factors that affect the

Fig. 1. (a) The misclassified example set of method A is subsumed

by other approaches. (b) The misclassified example sets intersect

each other.
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performance of each method in order to assist in the

development of a systematic approach to properly

combine multiple classifiers to reduce the overall

misclassification rate to region 4 of Fig. 1b.

Recent studies in comparing the performance of

different classification techniques have been based

mainly on experimental approaches [1,12,35]. Empir-

ical comparisons among different algorithms suggest

that no single method is best for all learning tasks

[30,31]. In other words, each method is best for some,

but not all tasks.

Several approaches have been proposed to utilize

multiple learning algorithms. Generally speaking,

there are two distinct schools of thought: the first is

to combine the output from different learning meth-

ods; the other is to integrate several learning algo-

rithms to form a hybrid classifier [3,38]. A hybrid

classifier, the model class selection (MCS) system

proposed by Brodley [7], performs recursive auto-

matic bias selection based on a set of heuristic rules.

Brodley suggested that different attributes may have

distinct data characteristics and can be best explained

by different models. Therefore, the key step in learn-

ing is to partition the data into meaningful subspaces

and to choose the best model for each subspace. The

MCS system contains three types of models: linear

discriminant functions, decision trees, and instance-

based classifiers. The result of the learning is a tree

structured hybrid classifier.

An alternative approach is to combine the outputs

of different classification methods. Wolpert [36] intro-

duced stacked generalization, a way to combine the

outputs from multiple generalizers trained with multi-

ple partitionings of the original learning set. However,

there are no systematic rules that can be used to

generate an accurate combination. Breiman [5] fol-

lowed Wolpert’s idea of combining predicators instead

of selecting the single best method, and proposed

stacked regressions method. Stacked regression is a

method for forming a linear combination of different

predicators to give improved prediction accuracy. In

general, improvement occurs when stacking together

more dissimilar predictors. Bagging predictors, pro-

posed by Breiman [6], is a method for generating

multiple versions of a predictor, then obtaining an

aggregated predictor by either taking the average over

the versions (for numerical output) or using a plurality

vote (for classification tasks). Breiman demonstrated

that the stability of a procedure has great impact on

the improvement achieved through bagging. Breiman

[6] studied the instability of different predictors and

concluded that neural networks, classification trees,

and subset selection in linear regression were unsta-

ble, while the kth-nearest-neighbor method was stable.

There are a few studies in machine learning that

attempted to look into the relationships of sample

biases and the classification accuracy. For example,

the study conducted by Shavlik, Mooney, and Towell

[31] empirically analyzed the effects of three factors

on the performance of two AI methods, neural net-

works and ID3. The three factors considered are (1)

the size of training data, (2) imperfect training exam-

ples, and (3) the encoding of the desired outputs.

Rendell and Cho [25] examined the effects of six data

characteristics on the performance of two classifica-

tion methods, ID3 and PLS1 (probabilistic learning

system). The factors considered in their study include

(1) size of the training set, (2) number of attributes, (3)

scales of attributes, (4) error or noise, (5) class

distribution, and (6) sampling distribution. The

present research is different from theirs in that we

approach the problem from the understanding of the

underlying algorithm of each method so as to build a

foundation that will facilitate the model integration

using any of the above hybrid systems. In addition, a

more comprehensive list of data characteristics that

are pertinent to all five methods is analyzed.

A case study by Utgoff [34] suggested a hybrid

algorithm called perceptron trees that combines deci-

sion trees with linear threshold units. The study

focused on examining the representation biases of

the two algorithms on various aspects and proposed

a way to combine the two formalisms. The rational is

that the two algorithms complement each other in

certain ways, and by properly integrating them into

one method, one can draw on the particular strengths

of each individual algorithm. In this study, Utgoff’s

work is extended to include more algorithms. More-

over, the relationships between the sample bias and

the representational (algorithm) bias are examined.

Building of hybrid classifiers is beyond the scope of

this research and a specific approach for integrating

multiple systems is not proposed. The findings from

this research can be used to suggest ways to integrate

multiple algorithms into one that will have all the

strengths of the algorithms without the weaknesses.
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3. Classification methods

In this section, the five classification methods used

in this paper are discussed. The review provides us the

basis for forming hypotheses regarding the possible

link between data characteristics and method perform-

ances. Although many new enhancements have been

developed for AI methods aimed at solving specific

types of problems, in this research, only the basic

models are implemented to maintain the genuine

characteristics of the original algorithms. Both AI

and statistical methods can be fine-tuned for a partic-

ular problem situation. However, the more calibrated

the model is, the more difficult it is for it to be

generalized for new problem situations. Table 1 sum-

marizes the important findings from the following

review. Only factors that are pertinent to this study

are presented.

3.1. Neural networks

In this research, a feedforward network with back

propagation [27], the most widely used learning

algorithm, is implemented. A feedforward network

model with no hidden layers works very much like a

standard logistic regression model. One major

criticism of neural networks is the difficulty in the

selection of parameters needed to build a model. In

the present study, the same network architecture is

used throughout to minimize the need for an extensive

trial-and-error process. In classification problems, the

most popular network architecture used is the multi-

layer feedforward network (perceptron) [9]. Specifi-

cally, a network of three layers and two nodes in the

hidden layer is implemented for investigation in this

paper. An input preprocessor that normalizes the input

values to the mean and standard deviation (S.D.) is

applied, and a dot product function is used to aggre-

gate input values. Learning rate is set at 0.01; momen-

tum and weight decay are 0.0001. A sigmoid function

is used as the output function to normalize the output

to a value between zero and one that can then be

interpreted as the probability of a class outcome. The

employment of a sigmoid function can also attenuate

the effect of outliner values and improve the overall

performance of the network. A neural network needs

the same training data to be fed over several iterations

till it converges. In this study, it is observed that the

network requires between 1000 and 2000 iterations to

converge. Therefore, we set the number of iterations

for training at 2000 in our experiments.

3.2. Decision tree (C4.5)

C4.5 [24] is an improved version of ID3, an

inductive learning method developed by Quinlan

[21–23]. C4.5 accepts both symbolic and numeric

values as input, and generates a classification tree as

output. It employs a splitting procedure which recur-

sively partitions a set of examples into disjointed

subsets. The division of the instance space is orthog-

onal to the axis of one variable and parallel to all other

axes. Therefore, the resulting regions are all hyper-

rectangles. In other words, C4.5 will not perform well

with problems that require diagonal partitioning. C4.5

also will not work well when the density of points in

some regions is low or when the classification task is

essentially probabilistic [24]. Moreover, the more

Table 1

Summary of the five inductive methods

Method Output format Premises

Neural nets (back

propagation) [28]

Network with

weight

connections

. Input/output

(activation) functions

are continuous and

differentiable
. Adequate size of

training sample

C4.5 (ID3)

[21,23,24]

Decision tree . All regions are

hyperrectangles
. Density of regions
. Need more training

data for fragmented

regions

LDA [15] Math function . Normality
. Identical covariance

matrices
. Known prior

probabilities and

misclassification costs
. Low correlation
. Linearity
. No multimodal

distribution

Logistic [10] Math function . Low correlation
. No multimodal

distribution

kNN [37] Class distribution . Density of coverage
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fragmented regions there are, the more data are

needed to generate good results.

Brodley and Utgoff [8] proposed a multivariate

decision tree method that does not limit the selection

of a single variable at each splitting point. Therefore,

diagonal partitioning is possible. However, in this

research, the C4.5 (ID3) method is used due to the

popularity of the algorithm. The output is a classifi-

cation tree where the leaves contain class assignments

determined by majority rule.

3.3. Multivariate discriminant analysis (MDA)

MDA methods accept a random sample of obser-

vations defined by a set of variables and generate a

discriminant function that classifies observations into

two or more groups by minimizing the expected

misclassification cost. MDA assumes that all variables

are normally distributed. In the case of the linear

classifier, it also requires identical covariance matri-

ces. In this research, Fisher’s [15] discriminant anal-

ysis (DA) procedure, a widely used DA function, is

implemented. The procedure constructs a discriminant

function by maximizing the ratio of between groups’

and within groups’ variances. This method yields a

linear function that divides the variable space into two

partitions. For each example, the discriminant score, a

value between 1 and � 1, indicates the predicted

group. The posterior probability of membership in

the predicted group, given the discriminant score, can

be obtained using Bayes’ theorem.

Due to problems with quadratic DA functions

reported in previous research [2], only linear discrim-

inant analysis is investigated. Whether the function is

linear or quadratic, a fundamental condition that must

be satisfied is that the two groups are discrete and

identifiable. Situations deviating from this condition

can be found where observations of each group form

disjoint regions in the variable space (see Fig. 2).

Depending on the number of disjoint regions in each

group, the discriminant functions may incur a high

error rate for both the training and holdout sample.

3.4. Logistic models

An alternative to the linear DA model is logistic

regression, a method that has fewer assumptions than

linear discriminant models (i.e., no multivariate nor-

mality and equal dispersion assumptions) [10]. A

logistic function having the following form is used:

Y ¼ 1

1þ e y
, y ¼ aþ

Xn

i¼1

biXi,

where Xi represents the set of individual variables, bi
is the coefficient of the ith variable, and Y is the

probability of a favorable outcome. The outcome Y is

a Bernoulli random variable. Earlier research sup-

ported the claim that when normality and identical

covariance matrices assumptions hold, discriminant

analysis estimators are preferred over those generated

by logistic regression. However, in most applications,

there is usually at least one variable that is qualitative

(ruling out multivariate normality assumption), hence,

the logistic regression model is preferred [13,20].

3.5. kth-Nearest neighbor (kNN)

The nonparametric (or distribution-free) method,

kNN [37], is used for classifying observations into

groups based on a set of quantitative variables. It

relaxes the normality assumption and does not require

a functional form as required in DA and logistic

regression. The distance, d(x,y), between any two

observations x and y is usually defined by the Maha-

lanobis distance between x and y. Using the nearest

neighbor decision rule, an observation is assigned to

the group to which a majority of its kth-nearest

neighbors belong. The sample distribution approxi-

mation is accomplished by dividing the variable space

into an arbitrary number of decision regions, with the

maximum bounded by the total number of observa-

tions. A recent study [35] shows that when applied to

learning, kNN is a fairly robust and effective classifier

Fig. 2. Fragmented regions.
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compared with the nearest hyperrectangle algorithm,

an inductive method based on the nested generalized

exemplar (NGE) theory [30].

4. Model assumptions

One focus of this research is to examine the data

characteristics that may affect the performance of

different inductive methods. The data characteristics

were selected based on the identified strengths and

weaknesses of each method. A list of the data char-

acteristics to be investigated is summarized in Table 2.

The following provides detailed description for each

data characteristic.

4.1. The multivariate normal distribution of inde-

pendent variables

A potential problem with linear discriminant anal-

ysis (LDA) is the appropriateness of the normality

assumption. ‘‘In practice, deviations from the normal-

ity assumption, at least in economics and finance,

appear more likely to be the rule than the exception’’

[14]. A study by Deakin [11] suggests that financial

ratios are not normally distributed, rather, they are

positively skewed. Violations of the normality

assumptions may lead to a biased and overly opti-

mistic prediction of the performance of rules in the

population, and thus limit the usefulness of the model.

The Kolmogorov–Smirnov test statistics are applied

to each of the independent variables in the data sets to

test for the normality.

4.2. The linearity between dependent and independent

variables

The performance of a linear model depends a great

deal on the multivariate relationship between inde-

pendent and dependent variables. The F-test is often

used to test this joint relationship.

4.3. Multicollinearity

A high degree of correlation among independent

variables (multicollinearity) will have adverse effects

on the parameter estimates of LDA and logistic

procedures. A simple procedure for testing collinear-

ity is the use of the correlation matrix, while a more

reliable method, variance inflation factor [19], will

assist in the identification of correlated variables.

Salchenberger, Cinar, and Lash [29] reported that

the neural network model performs well when multi-

collinearity is present and a nonlinear relationship

exists between the input and the output variables.

4.4. The covariance equality of two classes

The LDA method requires the presence of homo-

scedascity. A test for this equality of variances can be

conducted through the Cochran’s test [19].

4.5. The multimodal distribution of the sample

The power of the analysis of LDA and logistic

models is affected when the sample is multimodal.

Graphical checks for modes can be conducted through

histograms, box plots, and other similar plots.

4.6. Dynamic versus static nature of the problem

Most of the methods examined assume that the

population distribution will not change with time.

Thus, the models based on historical data are not

time-dependent and may be violated at times. Time

series analysis is one approach to this type of problem.

A time series model tries to account for as much as

possible of the regular movement (wavelike functions,

trend, etc.) in the time series, leaving out only the

random error. The method can be applied when there

is a time series variable in the problem to be modeled.

However, a more complex dynamic system could

Table 2

Summary of the five inductive methods with respect to the eight

data characteristics

Method Hypotheses

Neural nets Both static and dynamic scenarios.

Affected by sample size.

C4.5 (ID3) Static scenario. Affected by multimodal

distribution and sample size.

DA Static scenario. Affected by normality

and linearity violations, low correlation,

multimodal, and identical covariances.

Logistic Static scenario. Affected by low correlation

and multimodal distributions.

kNN Static scenario. Affected by sample size.
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affect the distributional characteristics of the model

over time. Neural network models have been found to

handle both types of problems well. The neural net-

work method is unique, in that it allows adaptive

model adjustment. It responds swiftly to changes in

the real world. This dynamic feature of the model can

be tested through cross-validation. A portion of the

data sample is withheld to test the behavior of the

model for the portion of the sample used.

4.7. Sample proportion

Earlier research in bankruptcy prediction using DA

models show that when the sample proportion differs

from the true population, the prediction accuracy

becomes very poor. Therefore, an option was added

to the DA model to allow model builders to specify the

population proportion when it is different from the

sample proportion. In business applications, due to

factors such as the availability of positive and negative

examples (e.g., bankruptcy cases), and the cost and

time involved to collect the data, an equal proportion

of positive and negative examples are used for model

building (training). Therefore, sample proportion bias

is a common problem in real world applications. The

prediction accuracy of logit models is not affected by

biased sample proportion due to its nonparametric

nature and it is not necessary to handle such situations

differently. However, the effects of biased sample

proportion on C4.5 (ID3) and neural networks are still

unknown, and there is no mechanism implemented in

either algorithm to adjust for the bias. One way to

tackle this problem is to selectively duplicate the

training examples so as to arrive at the same proportion

as the population. For example, if the sample has an

equal proportion while the population proportion has a

20/80 distribution for positive and negative examples,

the number of negative examples in the training set can

be duplicated to make them the same proportion as the

population. In this study, the equal sample proportion

is used to train the models. If significant deterioration

in prediction accuracy is noticed for a certain method,

the adjusted training sample will then be used.

4.8. Sample size

Previous research in machine learning suggests that

the size of training sample not only affects the speed

of training, but also has an impact on the performance

of different classifiers. In other words, the reliability

of the estimates may depend on the sample size used

[7,25,31]. For some methods, large sample size is

required in order to achieve its maximum prediction

accuracy whereas others may need a relatively small

data set. Similar to the problem of biased sample

proportion, the size of a training set is usually con-

strained by resources and availability of the data and

could impose an artificial constraint on the selection

of the best fit model. Table 2 summarizes our hypoth-

eses regarding the classification methods based on a

review of the classification literature. These results

will be tested and validated in this paper using

synthetic (simulated data). The details of the simula-

tion study are presented in the next section.

5. Experimental design and simulation results

Each of the first seven data characteristics has two

states, present and absent. Extreme cases are used to

contrast the impact of biases on model performance.

Two independent variables (X1 and X2) and one

dependent variable (Y) are generated for each case,

as this is the minimum number of variables needed to

simulate those factors. In addition, data sets that

satisfy all eight characteristics (normality, little or no

correlation, linearity, identical covariance matrices,

static and no multimodal distribution, equal distribu-

tion, and a fair sample size) are generated as the basis

for comparison. The functional form of the base case

is given by the following equation:

Y ¼ AXX1 þ A2X2 þ e

where X1
fN(l1,V1), X2

fN(l2,V2), and efN(0,1).

A1, A2, V1, V2, l1, and l2 are constants. The mean

values and standard deviations for x1 and x2 are

chosen so that the two groups are easily differentiable.

The mean value of Y is used as the cutoff point for the

two groups in order to derive an equal number of

positive and negative examples in the population. The

bias is inserted in the data set by systematically

altering the state of data characteristic from absent

to present one at a time. The performance difference

for each method before and after the change is used to

test the hypotheses (as stated in Table 2). Multiple t
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statistics are used to measure the significance of the

performance difference in the test data. If any dis-

crepancies are revealed, the values in Table 2 will be

adjusted to reflect the new findings.

To test the effect of each data characteristic, a

population of 50,000 cases is generated each time.

An equal number of cases (25,000 each) are generated

for Y= 0 and Y= 1 groups. To form the training and

test data sets, 50 cases are randomly drawn from the

Y= 0 group and another 50 cases from the Y= 1 group

for a total of 100 examples in each data set. The

process is repeated 100 times to form 100 training and

test data sets, respectively, in order to average out the

possible bias in any single sample run. The results

presented below are the average performances of the

100 runs, both for training and test.

The following data characteristics describe the

biases inserted at each step during the test.

(1) Nonnormal distribution: A data set with expo-

nential distribution is generated to compare with nor-

mally distributed sample. The random variable that

measures the time between two occurrences that have

a Poisson distribution is an exponential random

variable. The density function for exponential distri-

bution is f(x) = ke� kx for xz 0, k > 0. The mean of

the exponential distribution is l = 1/k and the variance

is also 1/k. The same functional form as the base case

is used with parameter k = l1, l2 for x1, x2, respec-

tively.

(2) Nonlinearity: A quadratic function is used in

this test:

Y ¼ AXX
2
1 þ A2X

2
2 þ e,

where X1
fN(l1,V1), X2

fN(l2,V2), and efN(0,1).

Again, A1, A2, V1, V2, l1, and l2 are constants and

were chosen to make two distinct groups.

(3) High correlation: To generate data sets with

high correlation between X1 and X2, make X2 =X1 + eV
in the base class function where eVfN(0,1).

(4) Unequal covariance: Data sets with different

covariance matrix for the two groups Y= 0 and Y= 1

were generated. The base case functional form is used

to generate examples for the Y= 1 group, and the high

correlation function for Y= 0 group.

(5) Multimodal distribution: The same functional

form as the base case is used. However, group Y= 0 is

distributed in two disjoint regions separated by points

from group Y= 1. Fig. 3 depicts an example of the

sample distribution by groups.

(6) Dynamic environment: Again, the same func-

tional form as the base cases is used. Instead of using

a constant A1 as the coefficient of X1, it is assumed

that the coefficient of X1 changes over time. A sine

function is used as part of the coefficient value and the

sine function changes its value from 0 to 1 to 0 to � 1,

then back to 0. Each time, a complete cycle is used to

generate 200 examples and then chronologically

divided into two sets. The first 100 examples are used

for training and the rest are used as test sample.

(7) Unequal sample proportion: The sample cases

are randomly drawn from the same population used in

the base case. Equal sample proportion is used for

training while the true population has a 10/90 distri-

bution and is reflected in the test cases.

(8) Sample size: Sample sizes of 30, 50, 100, 300,

and 1000 are randomly selected from the multimodal

distribution data set each time for both training and

test.

For each data set generated, necessary tests were

performed (i.e., plotting, normality test, etc.) to verify

the existence of bias in the data. Performance is

assessed with respect to the ability of the methods

to accurately predict the appropriate class for the test

(holdout) sample.

Each experiment includes 200 sample runs (100

training runs and 100 test runs), and the results

presented are the average of the 100 runs. Therefore,

there are a total of 200 (sample runs/cell)� 5 (mod-

els)� 8 (data characteristics) = 8000 runs. To test the

effect of sample size on model performance, 20 train-

Fig. 3. Multimodal distribution.
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ings and 20 test runs were performed for each sample

size. Therefore, to test five different sample sizes, a

total of 100 trainings and 100 test runs are executed.

The results of the training and test data are shown in

Tables 3 and 4, respectively. Fig. 4 plots the misclas-

sification rates of the test results for the first seven data

characteristics and groups them by method. Fig. 5

shows the classification performance versus the sam-

ple size. Due to the complexity of the problem in this

study, the possible interaction among factors and the

varying degree of biases in each data characteristic is

not tested. In order to test all the possible interactions

among biases, the experiment design necessary to test

these hypotheses will be greater than 28 factorial.

5.1. Analysis of the results

For each method, t-test is used to test the signifi-

cance of the performance difference between the base

case and each biased sample (see Table 4). The results

show that for all methods except C4.5 (ID3), the bias

factors have either a nonsignificant or an adverse

effect on the performance of a method. For the

decision tree method (C4.5), only the multimodal

Table 3

Misclassification rate of the training data

Method Base Normality

assumption

Linearity

assumption

Static/

dynamic

Low

correlation

Multimodal Sample

proportion

Identical

covariance

Neural nets 1.09 0.96 3.00 6.44 3.68 6.96 1.12 4.69

C4.5 (ID3) 1.35 1.18 2.04 2.90 2.18 2.8 1.51 2.43

DA 2.53 7.92 8.64 6.75 4.60 12.32 2.60 7.13

Logistic 0.84 0.84 3.12 6.42 3.96 11.95 0.90 5.13

kNN 2.68 2.46 3.71 5.90 3.80 4.80 2.77 4.43

Method Sample

size (30)

Sample

size (50)

Sample

size (100)

Sample

size (300)

Sample

size (1000)

Neural nets 5.50 5.80 6.75 5.65 6.83

C4.5 (ID3) 5.43 3.30 3.15 1.49 1.13

DA 12.50 10.20 11.90 9.53 11.01

Logistic 11.67 9.60 11.55 9.43 10.94

kNN 10.67 6.00 4.50 2.68 1.98

Table 4

Misclassification rate of the test data

Method Base Normality

assumption

Linearity

assumption

Static/

dynamic

Low

correlation

Multimodal Sample

proportion

Identical

covariance

Neural nets 2.22 2.05 4.31 * 16.41 * 4.98 * 7.88 * 2.27 6.59 *

C4.5 (ID3) 9.17 7.09* * 7.90* * 20.16 * 7.67* * 12.58 * 7.77* * 9.05

DA 3.52 8.53 * 9.24 * 18.44 * 5.52 * 12.99 * 3.72 8.26 *

Logistic 2.25 2.02 4.30 * 18.11 * 5.13 * 12.48 * 2.35 6.39 *

kNN 5.26 4.64 5.72 19.18 * 5.89 8.52 * 5.01 6.74 *

Method Sample

size (30)

Sample

size (50)

Sample

size (100)

Sample

size (300)

Sample

size (1000)

Neural nets 8.95 7.80 8.55 7.07 6.85

C4.5 (ID3) 18.50 15.80 14.7 7.49 4.64

DA 13.67 13.00 13.05 10.57 11.06

Logistic 13.83 12.90 12.75 10.48 10.92

kNN 13.00 10.80 9.75 5.62 3.36

* Tests of significance, p< 0.05, significantly higher than base.

** Tests of significance, p< 0.05, significantly lower than base.
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and dynamic factors have an adverse impact on its

performance. However, the method performed poorly

in the base case. The reason for the poor performance

is as follows. In the simulated data sets, there are only

two independent variables. A typical distribution as

shown in Fig. 6a requires diagonal partitioning. Since

C4.5 does not allow diagonal partition, it will mimic it

by performing a series of orthogonal partitioning

along the diagonal line (see Fig. 6b). As discussed

by Brodley and Utgoff [8], this will result in a large

tree and poor generalization to the new instances even

after substantial pruning of the tree. The argument can

be further supported by the superior performance of

C4.5 in all the training cases (see Table 3). When

looking at the effect of sample size to the performance

of a method, the performance of C4.5 seems to

suggest that the problem can be alleviated when a

large sample size is available. Interestingly, some of

the added bias factors have significantly improved the

performance of C4.5. Although the added biases have

increased the complexity of the problem, they also

have improved the generalizability of the resulting

trees. This can be seen from the narrowed gaps

between the performance of training and test data sets

in those cases.

For each data characteristic, the mean differences

among different methods were also compared. Table 5

shows the best performing methods based on multiple

t statistics.

In some cases, the performances of all methods are

much worse than their performance in the base case.

This is mainly due to the increased complexity in the

problem situation. Therefore, more attention should

be paid to the relative performance change among the

methods. The following discussion summarizes the

observations from the results derived in this study.

Fig. 4. Effect of data characteristics on performance (grouped by method).

Fig. 5. The classification performance versus the sample size. Fig. 6. (a) Base case test data set #1. (b) C4.5 partitioning.
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5.2. Analysis by method

(1) Generally speaking, neural networks and the

logistic model are superior to the other methods.

Between the two methods, neural networks signifi-

cantly outperformed the logistic model in the multi-

modal and dynamic cases.

(2) The poor performance of C4.5 was due to the

limitation discussed earlier. Therefore, we only look at

the relative performance change of C4.5 across differ-

ent bias factors. Based on Table 4, only dynamic and

multimodal factors have an adverse impact on the

method. However, the impacts are rather minor com-

pared to the impacts of those factors to the other

methods. Moreover, for the multimodal case, when

the sample size increases, the performance of C4.5

improves substantially.

(3) The logistic model is superior to DA in all

cases, especially when the normality, linearity, and

identical covariance assumptions do not hold.

(4) kNN performs well in the multimodal case,

especially when the sample size is large.

(5) kNN significantly outperformed DA when the

normality, linearity, and identical covariance assump-

tions are not in place. kNN is also superior to DA in

the multimodal case. However, DA did better in the

base and unequal sample proportion cases. As men-

tioned earlier, the examples in the unequal sample

proportion case were randomly drawn from the base

case population. An unequal sample proportion in the

data did not cause the inferior performance of kNN.

Moreover, the performance of kNN may improve

when the sample size is increased.

5.3. Analysis by data characteristics

(6) Only the normality assumption has an impact

on DA, which concurs with our hypothesis in Table 2.

(7) The results show that the linearity assumption

has a moderate effect on the performance of neural

nets and the logistic model, which seems to differ with

our hypothesis. For neural nets, the cause of the

discrepancy is probably due to using fixed network

architecture throughout all experiments. The network

architecture selected may not be the most suitable

architecture for all problem situations. If the network

is fine-tuned for each case, the performance should

improve.

Table 5

Best performing methods under different data characteristics

Data characteristic Best performing methods

Base case Logistic regression, neural net

Nonnormality Logistic regression, neural net

Nonlinearity Logistic regression, neural net

Dynamic scenario Neural net

High correlation Logistic regression, neural net

Multimodal distribution kNN, neural net

Unequal sample proportion Logistic regression, neural net

Unequal covariance kNN, logistic regression, neural net

Sample size Smaller sample: neural net

Larger sample: kNN

Table 6

Revised version of Table 2

Method Hypotheses Experiment results

Neural nets Both static and dynamic scenarios.

Affected by sample size.

Identical network architecture is affected in dynamic scenario.

Nonlinearity, high correlation, unequal covariance, and multimodal

distribution affect performance. The method remains superior to other

methods in relative performance.

C4.5 (ID3) Static scenario. Affected by multimodal

distribution and sample size.

Static scenario. Generally, inferior to other methods. Affected by

multimodal distribution. Increase in sample size improves performance.

DA Static scenario. Affected by normality and

linearity violations, high correlation,

multimodal, and unequal covariances.

Static scenario. Unaffected only by unequal sample proportion.

Logistic Static scenario. Affected by high correlation,

and multimodal distributions.

Static scenario. Affected by nonlinearity, multimodal distribution,

unequal covariance, and high correlation. Second best performing

method overall.

kNN Static scenario. Affected by sample size. Static scenario. Affected by multimodal distribution, sample size,

and unequal covariance.
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(8) The results suggest that nonnormality, non-

linearity, and unequal sample proportions do not

change the relative performance of the other methods.

(9) For the dynamic case (see Table 5a and d), it is

clear that the neural networks model is the only

method that has not changed its relative grouping

and significantly outperformed all the other methods.

(10) The low correlation bias has a moderate effect

on all methods except kNN.

(11) In the multimodal case, the relative perform-

ance of C4.5 (ID3) and kNN have improved from

their base case while DA and logistic models per-

formed relatively worse. Also, as shown in Fig. 5, the

performance ranking of the methods changes drasti-

cally at higher sample sizes.

(12) Sample size has significant effect on kNN and

C4.5 methods, and then on neural networks (see Fig.

5). It has less impact on DA and logistic models, and

in our test case, the improvement stabilized after the

300-sample size for those two models.

Now the entries in Table 2 can be adjusted accord-

ing to the findings. The revised version of Table 2 is

shown in Table 6.

6. Conclusion and future research

The controlled experiments conducted with simu-

lated data show that the classification algorithms are

sensitive to changes in data characteristics. The mis-

classification rates due to biases can be substantially

high in the presence of even a single bias. In general,

more than one method seems to be appropriate can-

didates based on the type of bias in the data. Neural

net and logistic regression methods provide the best

relative performance under most scenarios. Another

important concern brought forth by our results is the

impact of dynamic variations in data on classification

performance. The results indicate that all the classi-

fication methods studied here are adversely affected

when the underlying phenomenon is nonstatic. Since

most business phenomena exhibit dynamic behavior,

care should be exercised in calibrating classification

systems to such scenarios.

The study has shown that there is no single method

that clearly outperforms all methods in all problem

situations. Therefore, one recommendation from this

study is to build classification systems that employ a

number of different classification algorithms. The

systems should be designed to select the right method

or to properly combine different methods to form a

hybrid classifier in response to the presence of differ-

ent biases in data. The results of this study can be

applied to the design of classification systems. Based

on the results, one can design classification systems

that can employ a group of methods for a given

problem situation based on data characteristics. Sys-

tematic approaches can be developed to find consen-

sus of results among various classifiers through a

proper combination of them. This will enhance the

consistency and adaptability of classification systems.

As packaged software solutions for classification

tasks becomes more commonplace, adaptability in

classification systems necessarily assumes a greater

role. This requires us to study performance character-

istics of classification methods in greater detail. Fur-

ther research is needed for a better understanding of the

performance characteristics of classification methods.

While different data characteristics may affect per-

formance of the classification methods to different

degrees, the level of bias in individual data character-

istics may also impact performance to different

degrees. More elaborate experiments are required to

examine the possible interactions among factors, and

the effect of varying levels of biases on the outcome.

Table 2 needs to be expanded substantially in order to

include the possible interactions among all factors.

For each data characteristic, several versions of biases

should be used to test the models. For example, to

examine the normality assumption, we have used

samples with exponential distribution in the prelimi-

nary test. Other types of distributions and factors

should be generated and tested to gain a full under-

standing of the possible impact of each factor.

Similarly, to analyze the impact of multimodal dis-

tribution, different forms of multimodal distribution

should be simulated. After a better understanding of

the strengths and limitations of each method is

obtained, the possibility of integrating two or more

algorithms together to solve a problem should be

investigated. The objective is to utilize the strength

of one method to complement the weakness of

another. For example, Dietterich et al. [12] proposed

combining ID3 and neural networks by using ID3 as a

preprocessor to identify the important features from a

given sample. The preprocessor helps reduce the
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training time substantially and improves the overall

performance of the network. Future research effort

should focus on investigating the possibility of com-

bining statistical methods with the AI algorithms.

Different methods of combining these methods should

be explored.
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