
Design of a Class Library for Association Relationships
Kasper Østerbye

IT University of Copenhagen

kasper@itu.dk

ABSTRACT
Association is an important relationship that is supported in both
UML and entity relationship database modeling tools. However,
there is no language or library support in current object-oriented
languages for implementing an association relationship. Instead, a
complex implementation using references or collections of refer-
ences must be handcrafted and laboriously maintained each time
an association relationship is needed. In this paper, we develop an
approach to supporting the association relationship through the
design of a reusable class library that hides most of the complexity
and guarantees that the consistency of the relationship is main-
tained automatically. Our current library implementation in C#
draws on generic types with runtime type instantiation, runtime
reflection on type parameters, annotations on classes, and runtime
code generation. This set of language features seems to be neces-
sary to provide effective support for association relationships.

1 INTRODUCTION
The association relationship is an important modeling concept that
is found both in entity-relationship modeling and in UML model-
ing. However, there is no language or library support in current
object-oriented languages for implementing an association rela-
tionship. Instead, a complex implementation using references or
collections of references must be handcrafted and laboriously
maintained each time an association relationship is needed. This
can be compared to translating while-loops into goto-statements by
hand. It is error prone, blurs the intended design, lowers the ab-
straction level, and complicates maintenance.
As well, an important success factor for object-oriented program-
ming is to be able to move from design to implementation within
the same paradigm. The design notations of classes, specialization,
fields, and objects all have a direct linguistic counterpart in object
oriented programming languages. The direct support of design
concepts in the programming languages minimizes the semantic
gap and assists in keeping the implementation in accordance with
the original design.
In this paper, we develop an approach to supporting the association
relationship through the design of a reusable class library Noiai
(short for “no object is an island” inspired by [Beck & Cunning-
ham, 1989] page 2). Noiai hides most of the complexity and guar-
antees that the consistency of the relationship is maintained auto-
matically. Our current library implementation in C# draw on
generic types with runtime type instantiation, runtime reflection on

type parameters, annotations on classes, and runtime code genera-
tion. The lack of this combination of features prior to the .Net
platform might in part explain that no association library has sur-
faced before. At least, the implementation strategy of Noiai cannot
be used in languages lacking this set of features.

2 BACKGROUND
The semantic gap in the transition from design to implementation
of association relationships has been noted by several researchers.
Some have designed language extensions to incorporate associa-
tions, the most recent of these being [Bierman & Wren, 2005], but
the idea of direct language support can be traced to Rumbaugh’s
work on DSM [Rumbaugh, 1987][Rumbaugh, 1988][Shah et al.
1989]. Some work has taken place in the area of object-oriented
databases as well, notably [Albano et al. 1991]. In [March & Rho,
2000] the original ideas of Rumbaugh are translated into a Small-
talk implementation. Our own work [Østerbye, 1999] also embeds
associations as a language construct in Smalltalk.
Associations seem closely related to collections, but the major
collection libraries like Smalltalk [Goldberg & Robson, 1989],
STL [STL, 1994], Java [JavaSDK 5.0], or C5 [Kokholm & Sest-
oft, 2006] have no support for associations. However, an associa-
tion library for the Aspect/J language is presented by [Pearce &
Noble, 2006].
Another approach to handle the implementation of associations is a
pattern-based approach. A small pattern language for association is
given in [Noble 1995], and [Génova et al. 2003] has a rather thor-
ough discussion of how to implement associations in Java. A
closer discussion of related work will be presented in Section 5
after our own work has been introduced.

Terminology
In the literature at large, there is no consensus of the terminology.
‘Relationship’ and ‘Association’ seems to be used interchangeably.
In the rest of this paper, relation will be used to denote a mathe-
matical term, whereas association will denote a library or linguistic
construct to support the UML notion of an association relationship.
As it is useful to distinguish between type level and instance level,
association will be reserved for the type level, and linkage for the
instance level, e.g., an association Employment can contain the
linkage (John,Dell). An association is specified using a name of the
association, e.g., Ownership. It associates two participants, e.g.,
Person and Company. For convenience, we refer to the first par-
ticipant as From, and the second as To. The two participants play
roles in the association, e.g., owner and company in the Ownership
association.

3 DESIGN OF THE NOIAI ASSOCIATION
LIBRARY

The presentation of Noiai is done in two stages; first, the design
and use of Noiai is presented, followed by an in-depth discussion
of implementation issues.
To illustrate the Noiai framework, examples will be drawn from
the simple model in Figure 1, illustrating associations declared

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

LCSD’07 October 21, 2007, Montréal, Canada
Copyright © 2007 ACM ISBN 978-1-60558-088-3. . . $5.00

67

978-1-60558-086-9

between class Person and class Company. The model represents a
number of choices primarily intended to illustrate Noiai.
The ownership association specifies that a person can only own
one company, that all companies are owned by exactly one person.
The managing association specifies that all a subordinate have one
boss, who might have several subordinates. The association Con-
sultancy is a specialization of the association Employment. The
employment association declares that a person can have at most
one employer, while the employer can have multiple employees.
The employment association declares a salary as an association
field, and consultancy adds an hours field. Linkages of type con-
sultancy will therefore have both a salary and an hours field.

The design of Noiai has been guided by the following main crite-
ria:

1. Domain capture. It should be possible to use association names
(e.g., Employment) and role names (e.g., Employer) rather than
generic names.

2. Concise declaration and navigation. There should be as little
boilerplate code as possible.

3. Early warning. Inconsistent declaration and usage is best caught
at compile time, secondly at load-time, and thirdly at run-time.

4. Supporting the design space. The library should enable the
library user to make choices of data structure, cardinality, asso-
ciation attributes etc.

The fourth criterion assumes knowledge of the design space. In
brief, there are three main axes to be aware of in the design of
binary associations:

a) Storage. There are two major ways to store the linkages
of an association, as a global data-structure, or distrib-
uted in the linked objects.

b) Declaration. Again, there are two major ways to declare
an association. Either as a top-level declaration akin to
classes, or as roles in the participating classes.

c) Manipulation. Again, there are two major ways to ma-
nipulate an association. Either, by method calls on a top-
level object, or as method calls on participating roles.

A contribution of [Østerbye, 1999] is to show that these three axes
are independent. Noiai has been designed to aim for this goal,
though it is not completely possible without language support.

3.1 Declaration of associations
In Noiai, associations are declared as classes. Basing associations
on classes rather than objects was chosen because associations
appear on the same meta-level as classes in UML and ER dia-
grams. Figure 2 in section 3.8 gives an overview figure of the
entire library.
The Employment association from Person to Company is declared
as:

[Cardinality(From=Cardinality.Unique)]
class Employment : BaseAssociation<Person, Company, Employment,
 Contract>{}

A BaseAssociation can be used as a root in an association hierarchy.
The two first type parameters indicate the participants in the asso-
ciation. To differentiate the participants, the terminology is that the
association Employment is from Person to Company. The seemingly
redundant third parameter ensures that each association (E.g.,
Ownership, Employment, and Consultancy) from Person to Company each
will get a unique instantiation of BaseAssociation. This will be further
elaborated in section 4.1. The fourth parameter specifies which
class to use for association fields, i.e., to store the salary and hours
fields. Ideally, such fields should be declared as part of the Em-
ployment class. Unfortunately, this brings us in conflict with our
implementation strategy where each declared association must
have its own instantiation of a generic class (see sections 4.1 and
4.2), and we run into problems with variance of generic parame-
ters. Alas, a separate class is used to store association fields.
Cardinality is specified using C# attributes (C# attributes are writ-
ten in [] before the declaration of the class). If no cardinality con-
straints are defined, the association is assumed many-to-many.
Unique signifies the role to be unique (that is, each Person is uniquely
determining a Company). Because no To-constraint is specified, the
Employment association becomes Many-One.
Sub-associations are declared using SubAssociation as the base class.
The fourth parameter states the super association.

class Consultancy : SubAssociation<Person, Company, Consultancy,
 Employment, ConsultancyContract>{}

The attribute class ConsultancyContract must be a subclass of the
corresponding attribute class in the super association.
From a subtype perspective, the cardinality-constraints of a sub-
association must be invariant (i.e., neither covariant nor contra
variant) because associations can be both inserted into and enu-
merated. However, our library takes a slightly broader stance.
The Consultancy association is many-many, as no cardinality-
constraints are declared. Had the From-constraint in Employment
been UniqueSub, uniqueness would have propagated down into sub-
associations. Unique specifies that “A person has only one em-
ployer, but nothing is known about cardinalities of sub-
associations”. It is explicit ignorance. It is possible to extend the
uniqueness to sub-associations as well (specifying
Cardinality.UniqueSub). In the example model, Consultancy is a sub-
association of Employment, but it is decided that while a person can
only be employed at one company, it is possible to do consultancy
for several companies.
Most associations do not carry attributes. However, Employment and
Consultancy do, and the last type parameter tells which class to use
for storing attributes of the employment. In C# it is possible to
declare two generic classes with the same name if they differ in the
number of the generic arguments. Hence, it is possible to provide a
declaration syntax in which the attribute class seems optional.

3.2 Behavior of associations
The basic operations on associations are to add, lookup, and re-
move. When an association is declared, a singleton object repre-
senting the list of linkages is inherited from the instantiated super
class. This singleton (named Assoc) is used to access the behavior
of the association. The following code does add, lookup, and re-
move using the associations declared above. Assume John and Jane
are declared as Person, and Dell and HP are declared as Company:

Employment.Assoc.Add(John,Dell); // John is employed at Dell
Consultancy.Assoc.Add(Jane,Dell); // Jane consults for Dell
Employment.Assoc.GetFromSet(Dell); // returns an IEnumerable<Person> of
 // John and Jane.

Figure 1

68

Consultancy.Assoc.GetFromSet(Dell); // returns an IEnumerable<Person> of
 //Jane.
Consultancy.Assoc.Add(John,HP); // John consults for Dell
Employment.Assoc.GetToSet(John); // returns an IEnumerable<Company>
 // of Dell and HP.
Consultancy.Assoc.Remove(Jane,Dell); // Jane no longer consults for Dell

It has not been possible to find a way to (conveniently) introduce
role names into the association declaration. Hence querying is done
using generic names like GetFromSet rather than Employees, and
GetToSet rather than Employers. However, some headway can be
made in C++ using pointers to members. We will briefly take that
up in the conclusion.
The GetFromSet and GetToSet methods return an IEnumerable rather
than a collection to enable lazy enumeration over associations. In
addition, IEnumerable is the foundation of the proposed language
integrated query facilities of C# 3.0 [Linq, 2007]. Thus, one can
write queries such as:

from p in Employment.Assoc.GetFromSet(Dell)
where Managing.Assoc.GetFromSet(p).Count() > 10
select p.Name

This query selects the names of all employees (including consult-
ants) of Dell that hava more than 10 subordinates.
The action Consultancy.Assoc.Remove(Jane, Dell) removes the Consultancy
association from Jane to Dell. Two removal methods are provided.
Remove removes the linkage from an association (and thereby also
in all super associations), and RemoveSub removes the linkage in the
association and in all sub-associations.
Consider the following statement:

Employment.Assoc.Add(John, HP); // sets John’s employer to be HP,
 // removes prior employment

The semantics of the Add operation is significant. It ensures cardi-
nality consistency by first removing the association from John to
Dell, and then inserting the association from John to HP. As Em-
ployment is a many-one association, the choice is to ensure consis-
tency, as done in Noiai, or to throw an exception if John is cur-
rently employed. Integrating the test, removal and addition into a
single operation, giving fewer internal method calls, fewer state
tests, and less dereferencing. However, testing and explicit re-
moval is supported by Noiai.
Associations can be equipped with attributes. Assume Employment is
declared with a Contract class with a Salary field, and Consultancy uses
a subclass ConsultancyContract with a LastDay field. Add returns a new
Contract object.

Employment.Assoc.Add(John,Dell).Salary = finaloffer;

To retrieve the attributes for a given employment, an indexer (C#
construct) is provided:

Employment.Assoc[John,Dell].First().Salary += 300;

The indexer returns an IEnumerable<Contract> (as there might be
several linkages between the two). Notice that indexing (Jane, Dell)
in Employment will return an enumerable of Contracts, of which some
might be ConsultancyContracts, while indexing in Consultancy will
return an enumerable of ConsultancyContracts.

3.3 Role-based specification and navigation
Sometimes it is convenient to access associations through role
names rather than working on the singleton of the association
class. This section shows how Noiai enables definition of roles in
the participating classes as a supplement to the singleton based
access. However, the actual storage of the linkages is still done in
the singleton object; section 3.4 explains how Noiai supports stor-
ing the linkages in the roles themselves.
Noiai allow roles employer and employees in Person and Company
to be declared as:

class Person{
 Employment.FromEntityRef Employer;
 public Person(){ Employer = new Employment.FromEntityRef(this); }
}
class Company{
 Employment.ToEntitySet Employees;
 public Company(){ Employees = new Employment.ToEntitySet(this); }
}

The role Employer is declared of type Employment.FromEntityRef. The
explicit mentioning of Employment serves to bind the two roles
to the same association. BaseAssociation provides four nested
classes: FromEntitySet, FromEntityRef, ToEntitySet and ToEntityRef. These
classes are intended for declaring roles as illustrated above.
FromEntitySet and FromEntityRef declares a class that can be used
within the type in the “From” position (first type parameter of the
association), and similarly for the To-classes. As an association
can link two objects of the same type (e.g., Managing), one cannot
determine automatically which role a field plays, and it is neces-
sary to specify this directly, here done by having From and To be
part of the class name.
Declaring roles enables association behavior to be accessed as:

John.Employer.Set(Dell); // Method “Set” for EntityRef
Dell.Employees.Add(Jane); // Method “Add” for EntitySet
foreach (Person p in Dell.Employees) // ToEntitySet roles implements
 // IEnumerable<Person>
 // yields both John and Jane.

EntitySet implements the IEnumerable interface directly. Hence,
the C# 3.0 query example

from p in Employment.Assoc.GetFromSet(Dell)
where Managing.Assoc.GetFromSet(p).Count() > 10
select p.Name

can be rewritten using the role based syntax:
from p in Dell.Employees
where p.SubOrdinates.Count() > 10
select p.Name

Including role-names significantly enhances readability.

3.4 Role-based storage
As shown in the previous section, it can be convenient to allow
roles to be declared in the participating classes, as it gives nice
navigation syntax. Sometimes it is also preferable to let the storage
of the linkages be handed over to the participating classes as it
alleviates some of the performance penalties of a central storage,
e.g., weak dictionaries, locking, and hashing. Noiai allow the
application programmer to chose to let the state of an association
be stored in the roles rather than in the singleton of the association
declaration. This is declared as:

[Cardinality(From=Cardinality.Unique)]
class Managing : RoleAssociation<Person, Person, Managing >{}

RoleAssociation declares the same nested classes (FromEntitySet,
FromEntityRef, ToEntitySet, and ToEntityRef) with the same signature as
in BaseAssociation. However, the participating classes (Person) must
declare roles – as the roles contain the actual storage of the state of
the association.

class Person{
 Employment.FromEntityRef Employer =
 new Employment.FromEntitySet(this);
 Managing.FromEntityRef Boss = new Managing.FromEntityRef(this);
 Managing.ToEntitySet Subordinates = new Managing.ToEntitySet(this);
}

Roles are declared the same way as for BaseAssociation roles, and
they implement the same behavior. Changing from one representa-
tion to the other is as simple as changing the base class of
Employment.

69

It is possible to access the role-stored associations through associa-
tion-based syntax. Managing is declared a subclass of RoleAssociation,
but it is still possible to add new bindings as Managing.Assoc.Add(John,
Jim). This will update the roles in John and Jim.

3.5 Compositions
One of the appealing aspects of relations is that one can define
operators to obtain new relations. Noiai has three such operators:
Composition, Inverse, and Closure. Such derived associations are
read-only in Noiai, and they are not top-level declarations, but
rather the result of expressions.
Based on the Ownership and Employment associations it is possible to
obtain a combined association representing the relation between
the owner of a company and all the employees of the company.
Ownership and Manages can be combined into a Governs association:

IAssociation<Person,Person> Governs
 = Ownership.Assoc.CombineWith(Employment.Assoc.Inverse());

IAssociation is a read-only interface for associations, exposing the
GetFromSet and GetToSet projection methods discussed earlier. This
can then be used as in Governs.GetToSet(Bill) which returns an
IEnumerator<Person> of all the employees in the company owned by
Bill. Notice, it is necessary to get the inverse of the Employment, as
Employment is declared from Person to Company. The inverse is from
Company to Person, which is necessary to combine with Ownership.
Noaia implements these operators:

• ComposeWith, discussed above.
• Inverse, discussed above
• Closure. Construct the transitive (non-reflexive) closure of an

association. The association must associate classes of the same
type.

All three kinds of associations (Base, Sub, and Role) can be com-
bined, that is, if Employment was defined as a RoleAssociation rather
than a BaseAssociation, the above combination and inverse operations
are still valid, and have the same semantics. As the example shows,
the result of an association operation can be used as argument in
further operations (an Inverse is used as argument for a ComposeWith).

3.6 Subscribing to change
The association relationship is particularly useful when implement-
ing support for domain models. For example, they are likely to be
useful when implementing a model in the MVC design pattern, or
when implementing the role of subject in the observer design
pattern. In both cases, being able to sub-
scribe to changes is important. To accom-
modate this, all associations (including
those obtained through composition) expose
two .Net events. The event Added will
notify when a linkage is added to an asso-
ciation. The event Removed will notify
when a linkage is removed from an associa-
tion. Both events are based on the following
delegate type:

 public delegate void
AssociationAction<FROM,TO>(FROM from, TO
to);

For example, the following will print when-
ever a new Employment takes place:

Employment.Assoc.Added +=
 delegate(Person p, Company c)
 { Console.Writeline(p.Name +
 “ is now employed at “ + c.Name); }

Composed associations cannot be modified

directly, but their underlying associations will ultimately be a
declared association, which can be modified. Changes to the un-
derlying associations are propagated to the composed associations.
Adding a single new linkage to an association might result in a
large number of linkages being added in the closure (though the
closure does not actually store all these linkages).

3.7 Error checking
There are a number of rules to be followed in the Noiai framework.
For example, the from-type of a RoleAssociation is expected to de-
clare exactly one role-field of type FromEntitySet or FromEntityRef.
Similarly, the to-type must declare one field of type ToEntitySet or
ToEntityRef. It has not been possible to get the type system of C# to
perform such checks at compile time. Noiai checks such con-
straints at class-load time, and issues a load-time error if the role-
fields are not declared correctly. The following aspects are
checked:

• RoleAssociations. Roles must be declared in each of the two
participating classes. In case a class plays both roles, two roles
must be declared in that class.

• BaseAssociations. At most one role can be declared in each
participating class. In case a class plays both roles, two roles
can be declared.

• SubAssociations. The from-class, to-class, and attribute class
must be subclasses or same as the corresponding classes in the
super association.

• SubAssociations. If the cardinality of any super-association is
specified as UniqueSub, all sub-associations must be UniqueSub as
well.

• No associations can be made between associations. The associ-
ated classes cannot themselves be associations.

Associations between associations imply that a linkage object
exists to partake in associations. Noiai has been designed not to
expose linkages in order to enable a wider range of implementation
strategies, and associations therefore cannot be associated them-
selves.
Checking these aspects at load-time causes some performance
penalty of cause. However, a library designer cannot normally
control the compilation of a library. In C++ some control can be
gained at compile time through template meta programming. To a
Java or C# programmer load-time checks allow some of the consis-
tency checks to be moved from actual run-time to load-time. In
addition, writing the load-time checks gives a pretty good idea of

Figure 2

70

which aspects should be done at compile time – if one later decides
to do a language extension.

3.8 Summary
The storage of an association is done either in the association
singleton (BaseAssociation and SubAssociation) or in the roles
(RoleAssociation). Both provide the same mechanisms for naviga-
tion and manipulation, and they are declared almost the same way.
Figure 2 shows the main classes of Noiai. IAssociation is an interface
declaring read-only aspects of associations. The two events Added
and Removed are marked with a small mail symbol (subscription).
It is not possible to provide implementation of methods in inter-
faces. However, through the extension method construct in C# 3.0,
it is possible to attach implementation of methods to interfaces.
The interface IAssociation provides composition operators to all
associations. The three compositions ComposeWith, Inverse, and
Closure are marked with a circled plus to indicate extension method.
RoleAssociation and BaseAssociation both implement the
IModifiableAssociation interface. Association is an un-typed super-class
used internally in Noiai to gain polymorphic behavior across dif-
ferent instantiations of BaseAssociation.
In addition, both RoleAssociation and BaseAssociation contain the same
four nested classes FromEntityRef, FromEntitySet, ToEntityRef, and
ToEntitySet. These are used for declaring roles in the participating
classes. We have not seen an interface concept that states that a
class should provide nested classes. In Noiai this is a merely a
convention.

4 NOIAI IMPLEMENTATION
As stated earlier, run-time supported generics, load-time reflection,
and easy load-time code generation all play a crucial role in the
internals of Noiai. In addition, C# provides special support for
writing lazy iterators. This enables a succinct implementation of
many operations. This section will examine the details of the Noiai
implementation to make clear where and how these language
features were utilized.

4.1 Creating a singleton
All declarations of associations in Noiai are done by declaring a
class that is a subclass of a selected Association kind (e.g., Base, Sub
or Role). These association classes all take at least three types as
parameters, of which the third is the class being declared, e.g:

[Cardinality(From = Cardinality.Unique, To = Cardinality.Unique)]
class Ownership : BaseAssociation<Person, Company, Ownership >{}
[Cardinality(From = Cardinality.Unique)]
class Employment : BaseAssociation<Person, Company, Employment,
Contract>{}

Each association is implemented as a singleton. The type of that
singleton is supposed to be the domain type rather than
BaseAssociation. In C# each instantiation of a generic class gets its
own set of static fields. Passing the Employment class itself to the
super class, as done above, allows a suitably typed singleton to be
created for each association declared from Person to Company i.e.,
the singleton of Employment is different from that of Ownership. The
construction of the singleton in BaseAssociation is done as follows:

class BaseAssociation<FROM,TO,THIS>
 where THIS : BaseAssociation<FROM,TO,THIS>, new()
 where FROM : class where TO : class
{
 private static THIS _Assoc; // Field for storing the singleton
 public static THIS Assoc{ get{ return _Assoc;} } // C# property with getter
 static BaseAssociation(){
 _Assoc = new THIS(); // Eager construction at load-time

 }
}

The “static BaseAssociation” is a static constructor executed at the
load-time of the class. The where-clause specifies that the generic
parameter THIS must be a subclass of the present instantiation of
BaseAssociation, and must have a parameter-less constructor. The
run-time support for the generic parameter allows instantiation of
the generic parameter THIS (e.g., Employment). The implementation
of the singleton is eager – the singleton is created at load-time.
Note in a language like Java, where generic types are erased, “new
THIS” is not allowed. Factory objects would have to be defined by
the application programmer. However, that would lead to boiler-
plate code in the declaration of the association.

4.2 Establishing the association hierarchy
Specialization of associations is implemented by each association
singleton having a collection of its own linkages, and a list of its
sub-associations. To enumerate all GetFromSet or GetToSet for a
given association, first all linkages of the association itself are
enumerated, and then those of the sub-associations.
Noiai establishes the run-time structures to support the association
hierarchy at load-time. A global data structure is used for this. The
hierarchy is represented as a Dictionary<Type, List<Association>>. It maps
e.g., Employment to its list of sub-associations e.g., Consultancy.
This internal representation is illustrated in Figure 3. Association
Employment has two sub-associations Consultancy and Voluntary (a new
association for this example). Each association has a list of link-
ages E and a list of its sub-associations S. Each list of linkages E
contains the association linkages of that association. The large oval
illustrates all linkages in Employment, while the smaller embedded
ovals represent the linkages belonging to the sub-associations
Consultancy and Voluntary. To avoid further cluttering of the figure not
every x has an arrow pointing to it. In the implementation of
GetFromSet and GetToSet the entire extent of Employment needs to be
enumerated. When enumerating Employment, the E-list from the
association Employment itself is enumerated, followed by an enu-
meration of E-lists in all sub-associations, here E in Consultancy and
Voluntary. Each association keeps an explicit list S of its sub-
associations.

The S-list structure is established at load-time. When an associa-
tion class is loaded, it inserts its S-list to the dictionary. This is
done in the constructor of the singleton discussed in the previous
section:

 public BaseAssociation() : base(){
 Association.Hierarchy[typeof(THIS)] = this.SubAssociations;
 // SubAssociations is the S-list
 }

Figure 3

71

When Employment is loaded, a singleton Employment is created (see
previous section). This singleton registers its S-list in the Hierarchy
dictionary with the typeof(Employment) as key.
In class SubAssociation, the constructor of the singleton adds the sub-
association singleton to the super-association singletons’ S-list:

public class SubAssociation<FROM,TO, THIS, SUPER> :
 BaseAssociation<FROM,TO, THIS >
 {
 public SubAssociation():base(){
 Association.Hierarchy[typeof(SUPER)].Add(this);
 }
 }

When Consultancy (or Voluntary) is loaded, the Consultancy singleton is
created. The constructor of the Consultancy singleton adds itself to
the list of sub-associations of its super-association Employment.
typeof(SUPER) is typeof(Employment). Hierarchy[typeof(Employment)] is the list
of sub-associations of Employment, to which the Consultancy singleton
is added. The run-time availability of the generic types (here THIS
and SUPER), allows this entire structure to be built at load-time.

4.3 Declaration checking
Another usage of static constructors in the Noiai framework is
load-time consistency checks. RoleAssociation requires the From-
participant and To-participant to declare role-fields. The static
constructor of RoleAssociation has access to the F, T, and THIS types
given as parameter to the class. The reflected type object of F (e.g.,
Person) can be obtained using the run-time availability of generics
through typeof(F). By examining all fields of Person using reflection,
it is possible to ensure that there is exactly one field of the appro-
priate type. It is even possible to put together an understandable
error message stating what is wrong if it is not the case.
If two associations are declared with Person as from-type e.g.,
Employment and Manages, the static constructor for Employment will
look for fields of type Employment.FromEntitySet (or -Ref), while the
static constructor for Management will look for fields of the type
Management.FromEntitySet (or -Ref). In addition, it can be foreseen that
a common error will be confuse To and From. Noiai can look for
fields declared as Employment.ToEntitySet (or –Ref) in Person; in case any
is found an error is issued.

4.4 Nested classes
Classes nested inside generic classes are implicitly parameterized
by the same parameters as their enclosing classes, and are instanti-
ated together with their enclosing classes. This allows Noiai to
avoid role types to be explicitly parameterized. Thus, in class
Person it is not necessary to state the employer role is of type
Company, this is implicitly given by the type Employment.FromEntityRef.

class Person{
 Employment.FromEntityRef Employer;
 public Person(){
 Employer = new Employment.FromEntityRef(this);
 }
 …
}

The FromEntityRef is known to refer to Company in the context of
Employment. Unlike inner classes in Java, nested classes in C# do not
have access to their enclosing object instance, but they do share the
type parameters of the enclosing class.

4.5 Run-time code generation
The implementation of the role-based associations is somewhat
elaborate inside the abstraction, and is illustrated in Figure 4. A
statement like John.employer.Set(HP) must first disconnect John from
his employment at Dell. The Set operation is called on the topmost
EntityRef object. First, it can be noticed that the EntityRef object needs
a reference to John to be able to remove John from Dell’s list of
employees. This is possible through the field myEntity. This field is
initialized by passing “this” as argument to the constructor (see
example code in section 4.4). The company (Dell) from which
John is to be removed is found in the other field in EntityRef. The list
to remove John from is the manies list in the EntitySet stored in the
employees field of Dell. After having removed John from this list, it
is time to add John to the employees EntitySet in HP.
The problem is that there is no generic way to get to the right
EntitySet or EntityRef of an object participating in an association. The
field name is given by the domain programmer, and is needed in
Noiai to keep the data structure consistent. Fortunately, load-time
reflection establishes which field represents the right role (load-
time reflection has already ensured that each of Person and Company
has exactly one role-field of the appropriate type). However, ac-
cessing fields by means of reflection is expensive with respect to
performance.
To eliminate the performance penalty of reflection, a delegate (C#
for lambda expression) is created at load-time. Two delegates are
created for each association, one that can map a from-type object
to its corresponding EntityRef or EntitySet, and one that handles the to-
type. Expression trees of C# 3.0 standardize the construction of
abstract syntax trees for delegates, and make it convenient to com-
pile abstract syntax into CIL byte code at run-time. The actual code
to do this is five lines long.

4.6 Composed associations
C# 3.0 has a mechanism called extension methods. It allows a non-
virtual method to be implemented outside a class, and it permits
implementing methods on interfaces. All three kinds of associa-
tions (Base, Sub, and Role) implement the IAssociation interface. Ex-
tension methods enable the implementation each of the three com-
positions ComposeWith, Inverse, and Closure to be declared and implemented
on the IAssociation interface. The definition for Closure is:

public static IAssociation<F,F> Closure<F>(this IAssociation<F,F> assoc)
where F: class {
 return new AssociationClosure<F> (assoc);
}

The keyword this in the signature indicates that the method Closure
will be available on any IAssociation with the same type in the from

Figure 4

Dell:Company

employees: EntitySet

Dell:Company

employees: EntitySet

:EntitySet

:EntityRef

John:Person

employer: EntityRef

myEntity:Company

manies : List<Person>

myEntity : Person

other: Company

:EntityRef

Jim:Person

employer: EntityRef

myEntity : Person

other: Company

72

and to positions. The actual work is done in an auxiliary class
named AssociationClosure:

internal class AssociationClosure<F> : IAssociation<F,F> where F: class {
 private IAssociation<F,F> original;
 public AssociationClosure(IAssociation<F,F> original){
 this.original = original;
 }
 public IEnumerable<F> GetToSet(F from){
 foreach(var t in original.GetToSet(from)){
 yield return t;
 foreach(var tt in this.GetToSet(t))
 yield return tt;
 }
 }
 public IEnumerable<F> GetFromSet(F to){
 // similar
 }
 …
 }

The class implements the IAssociation interface. The yield return con-
struct of C# is quite important to keep the implementation of these
two methods concise. The construct is especially designed to return
a lazy implementation of an IEnumerable, and is essentially a simpli-
fied co-routine construct. When yield return is encountered, the
method returns the result of the return expression. When asked for
the next element, the method resumes immediately after the yield
return, and runs until it next encounters a yield return. The GetToSet
method above returns all the GetToSet of the original association,
and then calls itself recursively to return the closure of the original
association (assuming the association to be non-cyclic). The yield
return construct has been very helpful in the construction of Noiai at
many locations. Explicitly hand coding the corresponding con-
struct without the yield return construct would be hard and error
prone. Especially lazy enumerations over recursive structures are
cumbersome to translate into plain C#.

4.7 Garbage collection
The association-based storage could potentially keep objects alive
if nothing was done to address this issue. Internally, the linkage
objects are not stored in a list, but in two weak dictionaries to
allow fast lookup in the GetFromSet and GetToSet methods. Notice,
both objects of a linkage should be dead before the linkage itself
should die. Weak dictionaries build on top of weak references,
which allow us to check if the referenced object is dead. It is thus
possible to check this situation explicitly, and remove the linkage
from the dictionary when both objects are dead. Thus, the infra-
structure allows the right testing to be done. The problem is then
when to examine the linkages for dead references. Noiai checks at
all operations if a garbage collection has taken place. If so, at every
10th garbage collection, Noiai will traverse its structures and re-
lease dead objects (a weak dictionary need a policy for releasing its
internal key-value pairs).
The role-based storage strategy does not have any issues relating to
garbage collection as the linkages are stored and garbage collected
together with the objects. Weak references are necessary if one
wants to use association-based storage. Weak references as imple-
mented in .Net platform are sufficient to do the job, and we expect
the same construct on other platforms will do the job as well.

5 RELATED WORK
Linguistic support for associations has been proposed a number of
times, but it has never made it into any mainstream object-oriented
programming language. The first comprehensive work on language
support was done by Rumbaugh and colleagues in late 1980’s

[Rumbaugh, 1987], [Rumbaugh, 1988], [Shah et al. 1989] describ-
ing a language named DSM. DSM supports not only binary but
general N-ary relations with cardinality constraints for each ele-
ment in the relation. It is a bit unclear to what extent cardinality
constraints were implemented, but the syntax examples show a
wide range of possibilities. In [Rumbaugh, 1988] propagation of
operations along associations was discussed. The propagations
patterns described in [Lieberherr, 1996] are to some extent an
elaboration of this idea, though it is much further developed. In
[Rumbaugh, 1987] a special case of tertiary relationships called
Qualified Associations was introduced. These are not followed up
in later work. The DMS language was implemented on top of C.
The semantic model of DMS was later implemented in Smalltalk,
first described in [March & Rho, 1996] (later published as [March
& Rho, 2000]). The malleability of Smalltalk enabled an imple-
mentation without any change to syntax of the language.
The ODMG standard [Cattell et al. 2000] has a role-based syntax
for specifying associations. The simplicity of defining an associa-
tion only in the roles seems at first very attractive. However, it has
a number of drawbacks. There is no easy way to define attributes
on the association. It does not allow for sub-associations. Associa-
tions are not first class objects, which means they cannot be passed
as parameters, and operations such as compositions cannot be
defined.
An excellent elucidation of the virtues of keeping an explicit repre-
sentation of associations in the implementation is given in [Noble
and Grundy, 1995]. The paper advocates the idea of representing
associations as explicit objects at the implementation, and argues
that this leads to code which is less cluttered, easier to maintain,
and that explicit associations encapsulate behavior in a manner
which actually reduces coupling among objects. The paper does
not discuss the design of a general association library, but the
rationale and insights presented in the paper are compatible with
our motivations.
An association can very well be considered a cross-cutting con-
cern, and it is hence natural to use an aspect oriented approach. In
[Pearce & Noble, 2006] this is investigated in detail, and an As-
pect/J implementation of their library RAL is described. To our
knowledge, RAL is the only other comprehensive association
library. Like Noiai, RAL can capture all three cardinality types
(one-one, one-many/many-one, many-many); Noiai further
strengthens this to support cardinality constraints for sub-
associations differentiating between Unique and UniqueSub. Their
specification style is akin to our association specification, that is, a
single specification rather than one distributed in the roles. RAL,
like Noiai, is able to provide role based as well as association
based navigation. In RAL however, it is not possible to define
domain specific role names like employer or employee. This is possi-
ble using Noiai’s role specification. As with Noiai, the RAL library
provides implementations that are based on either a central storage,
or storage in the roles. Their notion of relationship polymorphism
is the same as the one provided by Noiai through the IAssociation or
IModifyableAssociation interfaces.
A crucial commonality is the singleton object behind their aspects
and Noiai’s association classes. In RAL, it is shown how this can
be utilized to create methods that take an association as parameter.
We use the same strategy for implementing the compositions of
associations; composition is not discussed in their paper. In addi-
tion, Noiai supports events for addition and removal.
While the lack of explicit role names in RAL might seem a minor
point, it does make it cumbersome if two classes are associated
through different associations, e.g., Employment (Person to Company)
and Owner (Person to Company). In RAL this is addressed by provid-
ing at set of generic relationship names, e.g., Relationship1, Rela-

73

tionship2, … etc. In our case, the issue does not arise. The trick of
using the association class itself as the third parameter, and the
run-time supported generic instantiation in C# ensure that each
instantiation gets a unique singleton. Role names can be used to
differentiate the two associations as well.
There is no generally accepted understanding of association spe-
cialization, e.g., the UML 2.0 standard is at best fuzzy on the issue.
[Bierman & Wren, 2005] present a semantic model that allows
association specialization. Their model is centered on two invari-
ants:
“Invariant 1. Consider a relationship r2 that extends r1. For every
instance of relationship r2 between objects o1 and o2, there is an
instance of r1, also between o1 and o2, to which it delegates re-
quests for r1’s fields.
Invariant 2. For every relationship r and pair of objects o1 and o2,
there is at most one instance of r between o1 and o2.”
This represents their view of association specialization, but not the
one taken in Noiai. Invariant 2 implies that a person can be em-
ployed only once in the same company. At our university, some
students are hired under several different contracts, and have as
such multiple employments with our university, each carrying
different salaries. Our example of Employment and Consultancy has led
us to the conclusion that one should not expect to get the same
salary independently of being permanently hired or hired through
consultancy, though we do expect a salary to be involved in both
cases. This is contrary to their invariant 1.
Choosing between the two approaches is better done by the library
user than the library designer. However, Noiai does not currently
support the semantics proposed by [Bierman & Wren, 2005]
(though we see no major obstacle in implementing an association
class which implements invariants 1 and 2, and implements the
necessary methods of IModifyableAssociation). Indeed, we see a library
approach as a more flexible way to provide semantics to associa-
tions; it is easier to provide a new kind of association to a library
than to change a language.
In [Balzer et al. 2007] the notion of relationships are also presented
in the form a language proposal. In addition to the constructs pro-
posed by [Bierman & Wren, 2005], they focus a construct they call
member interposition, and specification of invariants. Member
interpositions are interesting and very useful. However, we believe
that the solution lies not in the limited form proposed in their
paper, but in the more general notion of roles, which we proposed
in [Kristensen & Østerbye, 1996]. In Noiai, member interposition
can be simulated by making association specific subclasses of the
endpoint classes. E.g.,

public class Employment : RoleAssociation<Person, Company, Employment> {
 public class EmployeeRole : FromEntityRef {
 public string UnionName = "Fist";
 public EmployeeRole(Person p) : base(p) { }
 }
 }
 public class Person
 {
 public Employment.EmployeeRole Employer;
 public Person(){
 Employer = new Employment.EmployeeRole(this);
 }
}

As part of the declaration of the Employment association, we specify
that we want to store the name of the union in which the person is
employed. Unfortunately, this strategy only works in connection
with the explicitly stored roles, as the endpoints are there instanti-
ated by the application, an issue also identified by Balzer et al.
Further, making specialized endpoints makes the consistency
checks harder, as we now must check for the existence of

FromEntitySet or subclass thereof. Nevertheless, Balzer et al. has
identified an important issue in member introspection.

6 CONCLUSION
It should have been nice to compare Noiai to a set of existing
object oriented association libraries, but except for RAL, none
seem to exist, neither in the scientific literature, nor as part of the
distribution in the major languages, nor in the public domain.
Perhaps the implementation details discussed in section 4 give
some indication as to why. To realize Noiai, several key aspects of
C# and the .Net run-time were utilized.
First, generic types must exist at run-time. The Noiai implementa-
tion crucially depends on them not being erased as in Java. Several
implementation details utilize the fact that one can convert a type
parameter into the corresponding Type object. Type objects serve
as key in tables, and as root for reflection. Second, nested classes
of generic types must be instantiated together with their enclosing
type. Third, run-time code generation is used to avoid a perform-
ance penalty. Fourth, to get compositions to work for all three
kinds of associations, it was very useful to utilize the C# 3.0 notion
of extension methods.
The design of the Noiai library contributes in two areas. As men-
tioned above, it is the first published example of an object-oriented
library that has extensive support for associations. Second, the
implementation strategy of doing library specific checking at load-
time, using reflection based on generic type parameters, is useful in
other situations as well.
Incorrect usage of a library should be noted as soon as possible,
and at the abstraction level of the library. Compile-time checking
requires the consistency checks of the library to be embedded into
the type system of the language, or to change the compiler. In our
experience, the type system cannot capture all incorrect usage and
reports errors at too low a level of abstraction. Load-time analysis
can report errors at the abstraction level of the library, and captures
a broader range of errors than normal type systems. In addition,
load-time code is written in the same programming language as the
library itself, a language assumed well known to the library devel-
oper. Load-time analysis has the obvious drawback that it gives the
program slower startup time. However, in the final product the
load-time checks can often be disabled. Note that load-time checks
are easily tested, as errors are concentrated in the beginning of the
code. Hence, the library user can be sure that once the program
starts to execute, no more inconsistencies will arise. After the
program passes these tests, the checks can be turned of.
Preliminary experiments show that a similar library can be built for
Scala [Scala, 06], as Scala has most of the necessary language
constructs found in C#. Scala has no simple model for run-time
code generation, but it is possible to achieve a reasonable usage
syntax with lambda expressions only. Our preliminary experiments
with C++ are less clear. There is no load-time execution time, but
the role-based storage does not require that. The template instantia-
tion semantics for C++ also allow the data structures discussed in
section 4.2 to be established. The C++ “pointer-to-member” con-
struct is useful for specifying the inverse roles as template parame-
ters, placing the declarations of the roles in the association declara-
tion, removing the need for load-time code generation. It is less
clear if the template meta programming techniques can be used to
check all the constraints discussed in section 3.7, and if it will be
possible to produce legible error messages at the level of associa-
tions. In addition, C++ is a single-pass language, and associations
are notoriously interdependent. This leads to massive amounts for
forward declarations, both internally in the libraries, and more
importantly in the applications of the libraries.

74

Some libraries change the style of programming. It is too early to
say if that is the case with Noiai. While associations are different
from doubly linked lists, role-stored one-one associations make the
implementation next to trivial. Two roles predecessor and successor in
a class Linkage : RoleAssociation<Node,Node,Linkage> association give the
basic structure, and provides strong support for consistency. The
error prone removal operation for linked lists can be coded as:

public void Remove(Node n){
 Linkage.Assoc.Add(n.predecessor.Get(), n.successor.Get());
}

The consistency preserving Add will remove the links to the present
node n and splice the two ends together.

Acknowledgements
Thanks, to all who have given feedback and encouragement, both
on the work and on the preliminary versions of this paper, in par-
ticular Sibylle Schupp and Liam Peyton.

7 REFERENCES:
[Albano et al. 1991] Antonio Albano, Giorgio Ghelli, and Renzo

Orsini. A relationship mechanism for a strongly typed object-
oriented database programming language. In Proceedings of
the Seventeenth International Conference on Very Large
Data Bases (Barcelona, Catalonia, Spain, 3rd--6th September
1991)

[Balzer et al. 2007] Stephanie Balzer, Thomas R. Gross, and
Patrick Eugster: A Relational Model of Object
Collaborations and its Use in Reasoning about
Relationships. In ECOOP 2007, pp. 323-346. Springer, 2007.

[Beck & Cunningham, 1989] Kent Beck and Ward Cunningham. A
Laboratory For Teaching Object-Oriented Thinking. In
proceedings of OOPSLA, 1989

[Bierman & Wren, 2005] Gavin Bierman and Alisdair Wren. First-
Class Relationships in an Object-Oriented Language.
Proceedings of ECOOP 2005 - Object-Oriented
Programming: 19th European Conference, Glasgow, UK,
July 25-29, 2005.

[Cattell et al. 2000] R. G. G. Cattell, Douglas K. Barry, Mark
Berler, Jeff Eastman, David Jordan, Craig Russell, Olaf
Schadow, Torsten Stanienda, and Fernando Velez. The
Object Database Standard: ODMG 3.0. Morgan Kaufmann
Publishers Inc,US, ISBN: 1558606475.

[Génova et al. 2003] Gonzalo Génova, Carlos Ruiz del Castillo
and Juan Llorens. Mapping UML Associations into Java
Code. Journal of Object Technology, Vol. 2, No. 5,
September-October 2003. http://www.jot.fm.

[Goldberg & Robson, 1989] Adele Goldberg and David Robson.
Smalltalk-80, the Language. Addison-Wesley Publishing
Company, 1989.

[JavaSDK 5.0] JavaTM 2 Platform Standard Edition 5.0 API
Specification.
http://java.sun.com/j2se/1.5.0/docs/api/, Accessed December
2006. [Kokholm & Sestoft, 2006] Niels Kokholm and Peter
Sestoft. The C5 Generic Collection Library for C# and CLI.
Technical report of IT University of Copenhagen, TR-2006-
76. http://www.itu.dk/research/c5/Release1.0/ITU-TR-2006-
76.pdf.

[Kristensen & Østerbye, 1996] Bent Bruun Kristensen and Kasper
Østerbye. Roles: Conceptual Foundation and Practical
Usage in Analysis, Design and Programming. Theory and
Practice of Object Systems (TAPOS), Vol. 2, No 3 1996
Pages 143-160

[Lieberherr, 1996] Karl J. Lieberherr. Adaptive Object-Oriented
Software: The Demeter Method with Propagation Patterns.
PWS Publishing Company, Boston, 1996.

[Linq, 2007] The Linq project. http://msdn.microsoft.com/data/
ref/linq/.

[March & Rho, 1996] S. T. March and S. Rho. A Semantic Object-
Oriented Data Access System.
http://www.misrc.umn.edu/wpaper/wp96-05.htm. (accessed
at June 12th 2006).

[March & Rho, 2000] S. T. March and S. Rho. A Semantic Object-
Oriented Data Access System. Information Systems, vol. 25,
No 1, pp 23-41, 2000.

[Noble and Grundy, 1995] James Noble and John Grundy. Explicit
relationships in object-oriented development. In proceedings
of TOOLS 18, Melbourne, 1995.

[Noble 1995] James Noble. Basic relationship patterns. In
EuroPLOP Proceedings, 1997.

[Pearce & Noble, 2006] David J. Pearce and James Noble.
Relationship Aspects. In Proceedings of the ACM conference
on Aspect-Oriented Software Development (AOSD'06),
pages 75-86, March 2006.

[Rumbaugh, 1987] J. Rumbaugh. Relations as Semantic Constructs
in an Object Oriented Language, Proceedings of
OOPSLA’87. Pages 466-481.

[Rumbaugh, 1988] J. Rumbaugh. Controlling Propagation of
Operations using Attributes on Relations. Proceedings of
OOPSLA’88. Pages 285-296.

[Scala, 06] Scala programming language. http://scala.epfl.ch/.
[Shah et al. 1989] A. V. Shah, J. Rumbaugh, J. H. Hamel, and R.

A. Borsari. DSM: An Object-Relationship Modelling
Language. Proceedings of OOPSLA’89. Pages 191-202.

[STL, 1994] Standard Template Library Programmer's Guide.
http://www.sgi.com/tech/stl/index.html. Accessed December
2006.

[Østerbye, 1999] Kasper Østerbye. Associations as a Language
Construct. In Proceedings of TOOLS 29, Ed. Richard Michel
et. al., Nancy, June 7-10 1999. Pages 224-235.

75

