
RANDOM SAMPLING IN GRAPH OPTIMIZATIONPROBLEMS
a dissertationsubmitted to the department of computer scienceand the committee on graduate studiesof stanford universityin partial fulfillment of the requirementsfor the degree ofdoctor of philosophy

ByDavid R. KargerFebruary 1995

c Copyright 1995 by David R. KargerAll Rights Reserved
ii

I certify that I have read this dissertation and that in myopinion it is fully adequate, in scope and in quality, as adissertation for the degree of Doctor of Philosophy.Rajeev Motwani(Principal Adviser)I certify that I have read this dissertation and that in myopinion it is fully adequate, in scope and in quality, as adissertation for the degree of Doctor of Philosophy.Serge PlotkinI certify that I have read this dissertation and that in myopinion it is fully adequate, in scope and in quality, as adissertation for the degree of Doctor of Philosophy.Andrew GoldbergApproved for the University Committee on Graduate Studies:iii

AbstractThe representative random sample is a central concept of statistics. It is often possible togather a great deal of information about a large population by examining a small samplerandomly drawn from it. This approach has obvious advantages in reducing the investiga-tor's work, both in gathering and in analyzing the data.We apply the concept of a representative sample to combinatorial optimization. Ourgeneral technique is to generate small random representative subproblems and solve themin lieu of the original ones, producing approximately correct answers which may then bere�ned to correct ones at little additional cost. Our focus is optimization problems onundirected graphs. Highlights of our results include:� The �rst (randomized) linear time minimum spanning tree algorithm;� A (randomized) minimum cut algorithm with running time roughly O(n2) as comparedto previous roughly O(n3) time bounds, as well as the �rst algorithm for �nding allapproximately minimal cuts and multiway cuts;� An e�cient parallelization of the minimum cut algorithm, providing the �rst parallel(RNC) algorithm for minimum cuts;� The �rst proof that minimum cuts can be found deterministically in parallel (NC);� Reliability theorems tightly bounding the connectivities and bandwidths in networkswith random edge failures, and a fully polynomial-time approximation scheme for esti-mating all-terminal reliability|the probability a particular graph remains connectedunder edge failures;� A linear time algorithm for approximating minimum cuts to within (1+�) and a linearprocessor parallel algorithm for 2-approximation, and fast algorithms for approximat-ing s-t minimum cuts and maximum ows;iv

� For theNP-complete problem of designing minimum cost networks satisfying speci�edconnectivity requirements (a generalization of minimum spanning trees), signi�cantlyimproved polynomial-time approximation bounds (from O(logn) to 1+o(1) for manysuch problems);� For coloring 3-colorable graphs, improvements in the approximation bounds fromO(n3=8) to O(n1=4), and even better bounds for sparse graphs;� An analysis of random sampling in Matroids.

v

AcknowledgementsMany people helped me to bring this thesis to fruition. First among them is Rajeev Mot-wani. As my advisor, he made himself frequently available day and night to help me throughresearch snags, clarify my ideas and explanations, and provide advice on the larger ques-tions of academic life. My other reading committee members, Serge Plotkin and AndrewGoldberg, have had the roles of informal advisors, giving me far more time and assistancethan a non-advisee had a right to expect. I'd like especially to thank Serge for the timespent as a sounding board on some of the �rst ideas on random sampling for cuts and min-imum spanning trees which grew into this thesis. Earlier, Harry Lewis and Umesh Vaziraniwere the people who, in my sophomore year, showed me what an exciting �eld theoreticalcomputer science could be.I must also thank my coauthors, Douglas Cutting, Perry Fizzano, Philip Klein, DaphneKoller, Rajeev Motwani, Noam Nisan, Michal Parnas, Jan Pedersen, Steven Phillips, G.D. S. Ramkumar, Cli�ord Stein, Robert Tarjan, Eric Torng, John Tukey, and Joel Wein.Each has taught me a great deal about research and about writing about research. I mustespecially thank Daphne Koller, who by giving generously of her time and comments hasdone more than anyone else to inuence my writing (so it's her fault) and show me how tostrive for a good presentation. She and Steven Phillips also made sure I got o� to a faststart by helping me write my �rst paper in my �rst year at Stanford. Thanks also to thosewho have commented on drafts of various parts of this work, including David Applegate,Don Coppersmith, Tom Cormen, Hal Gabow, Michel Goemans, Robert Kennedy, PhilipKlein, Micael Lomonosov, Laszlo Lov�asz, Je�rey Oldham, Jan Pedersen, Satish Rao, JohnTukey, David Williamson, and David Zuckerman.Others in the community gave helpful advice on questions ranging from tiny details ofequation manipulation to big questions of my place in the academic community. Thanksto Zvi Galil, David Johnson, Richard Karp, Don Knuth, Tom Leighton, Charles Leiserson,vi

John Mitchell, David Shmoys, �Eva Tardos, Robert Tarjan, and Je�rey Ullman.Thanks to my group at Xerox PARC, Doug Cutting, Jan Pedersen, and John Tukey,for giving me an eye for the (relatively) practical side of computer science, as well as awindow on the exciting questions of information retrieval. Although none of our joint workappears in this thesis, my experience with them reminds me that an important end goal ofalgorithms is for them to be useful.I wouldn't have enjoyed my stay at Stanford half as much had it not been for thestudents who made it such a fun place: Edith, who convinced me that the best way tospend conferences is climbing mountains; Donald, for keeping the o�ce well stocked withfood and books; Je�, for rebooting my machine often; Daphne, who was willing to spendhours on one of my conjectures for the reward of being able to tell me I was wrong; Michael,without whom the thesis never would have made it to the �ling o�ce, Robert, who alwaysknew the right citation, Kathleen, for her lending library, Michael, Sanjeev, Steven, Eric,Ram, Alan: : :.Most of all, I must thank my family. My parents, for establishing my love of books andlearning; my siblings, for their subjection to my experiments in teaching. My wife and son,for putting up with my mental disappearances as I chased down a stray thought and myphysical disappearances as I panicked over a paper deadline or traveled to a conference, andfor the constant love and support that took me through many times of doubt and worry.They laid the foundation on which this thesis rests.
vii

ContentsAbstract ivAcknowledgements vi1 Introduction 11.1 Overview of Results : 21.1.1 Random Selection : 21.1.2 Random Sampling : 31.1.3 Randomized Rounding : 51.2 Presentation Overview : 61.3 Preliminary De�nitions : 81.3.1 Randomized Algorithms and Recurrences : : : : : : : : : : : : : : : 81.3.2 Sequential Algorithms : 101.3.3 Parallel Algorithms : 11I Basics 132 Minimum Spanning Trees 152.1 Introduction : 152.1.1 Past Work : 152.1.2 Our Contribution : 162.1.3 Preliminaries : 162.2 A Sampling Lemma : 182.3 The Sequential Algorithm : 192.4 Analysis of the Algorithm : 20viii

2.5 Conclusions : 233 Minimum Cuts 253.1 Introduction : 253.1.1 Problem De�nition : 253.1.2 Applications : 263.1.3 Past and Present Work : 273.2 Augmentation Based Algorithms : 283.2.1 Flow based approaches : 293.2.2 Gabow's Round Robin Algorithm : 303.2.3 Parallel algorithms : 313.3 Sparse Connectivity Certi�cates : 323.3.1 De�nition : 333.3.2 Construction : 343.4 Nagamochi and Ibaraki's Contraction Algorithm : : : : : : : : : : : : : : : 353.5 Matula's (2 + �)-Approximation Algorithm : : : : : : : : : : : : : : : : : : 373.6 New Results : 394 Randomized Contraction Algorithms 414.1 Introduction : 414.1.1 Overview of Results : 414.1.2 Overview of Presentation : 424.2 The Contraction Algorithm : 444.2.1 Unweighted Graphs : 444.2.2 Weighted Graphs : 464.3 Implementing the Contraction Algorithm : : : : : : : : : : : : : : : : : : : 464.3.1 Choosing an Edge : 474.3.2 Contracting an Edge : 484.4 The Recursive Contraction Algorithm : 494.5 A Parallel Implementation : 544.5.1 Using A Permutation of the Edges : : : : : : : : : : : : : : : : : : : 554.5.2 Generating Permutations using Exponential Variates : : : : : : : : : 564.5.3 Parallelizing the Contraction Algorithm : : : : : : : : : : : : : : : : 584.5.4 Comparison to Directed Graphs : 58ix

4.6 A Better Implementation : 594.6.1 Iterated Sampling : 594.6.2 An O(n2)-Approximation : 624.6.3 Sequential Implementation : 634.6.4 Parallel Implementation : 654.7 Approximately Minimum Cuts : 654.7.1 Counting Small Cuts : 654.7.2 Finding Small Cuts : 684.8 Conclusion : 695 Deterministic Contraction Algorithms 715.1 Introduction : 715.1.1 Derandomizing the Contraction Algorithm : : : : : : : : : : : : : : : 725.1.2 Overview of Results : 725.2 Sparse Certi�cates in Parallel : 745.2.1 Parallelizing Matula's Algorithm : 775.3 Reducing to Approximation : 785.4 The Safe Sets Problem : 795.4.1 Unweighted Minimum Cuts and Approximations : : : : : : : : : : : 805.4.2 Extension to Weighted Graphs : 815.5 Solving the Safe Sets Problem : 825.5.1 Constructing Universal Families : 835.6 Conclusion : 886 Random Sampling from Graphs 896.1 Introduction : 896.1.1 Cuts and Flows : 906.1.2 Network Design : 916.2 A Sampling Model and Theorems : 926.2.1 Graph Skeletons : 926.2.2 p-Skeletons : 946.2.3 Weighted Graphs : 946.3 Approximating Minimum Cuts : 966.3.1 Estimating p : 96x

6.3.2 Sequential Algorithms : 976.3.3 Parallel Algorithms : 986.3.4 Dynamic Algorithms : 996.4 Las Vegas Algorithms : 1006.5 A Faster Exact Algorithm : 1026.6 The Network Design Problem : 1036.6.1 Problem De�nition : 1046.6.2 Past and Present Work : 1046.6.3 Randomized Rounding for Network Design : : : : : : : : : : : : : : 1056.7 Conclusion : 1077 Randomized Rounding for Graph Coloring 1097.1 Introduction : 1097.1.1 The Problem : 1097.1.2 Prior Work : 1107.1.3 Our Contribution : 1107.2 A Vector Relaxation of Coloring : 1127.3 Solving the Vector Coloring Problem : 1127.4 Relating the Original and Relaxed Solutions : : : : : : : : : : : : : : : : : : 1147.5 Semicolorings : 1157.6 Rounding via Hyperplane Partitioning : 1167.7 Rounding via Vector Projections : 1187.7.1 Probability Distributions in <n : 1207.7.2 Analyzing the Vector Projection Algorithm : : : : : : : : : : : : : : 1247.8 Approximation for k-Colorable Graphs : 1277.9 Duality Theory : 1287.10 The Gap between Vector Colorings and Chromatic Numbers : : : : : : : : : 1307.11 Conclusions : 1338 Conclusion 135II Extensions 1379 Extensions of the Contraction Algorithm 139xi

9.1 Multiway Cuts : 1409.2 Derandomization Extensions : 1429.2.1 Multiway Cuts : 1429.2.2 Approximate Cuts : 1439.3 Cut Data Structures : 1449.3.1 The Cactus Representation : 1459.3.2 The Chain Representation : 1469.4 Parallel (1 + �)-Approximation : 1489.4.1 Modifying the Contraction Algorithm : : : : : : : : : : : : : : : : : 1499.4.2 Modifying the Recursive Algorithm : : : : : : : : : : : : : : : : : : : 1509.4.3 Tracking the Degree : 1529.5 Optimizing Space : 1539.6 Optimizing Parallel Complexity : 1549.7 Conclusion : 15510 More Cut-Sampling Algorithms 15610.1 Applications to Network Reliability : 15610.1.1 A Reliability Theorem : 15910.1.2 An Approximation Algorithm : 16010.2 s-t Minimum Cuts and Maximum Flows : 16210.2.1 Approximate Minimum Cuts : 16210.2.2 Approximate Maximum Flows : 16310.2.3 Exact Maximum Flows : 16310.2.4 Las Vegas Algorithms : 16710.3 Global Minimum Cuts : 16710.3.1 Analysis of the Exact Algorithm : 16710.3.2 Approximation Algorithms : 16910.4 Weighted Graphs : 17010.5 An Evolutionary Graph Model for Dynamic Algorithms : : : : : : : : : : : 17110.5.1 Motivation : 17210.5.2 Evolutionary Connectivity : 17310.5.3 Weighted Graphs : 17410.5.4 Dynamic Approximation : 174xii

10.6 Evolutionary k-Connectivity : 17610.6.1 Dynamic Maintenance : 17710.6.2 Weighted Graphs : 17810.7 Other Cut Problems : 17810.7.1 Parallel Flow Algorithms : 17810.7.2 Balanced and Quotient Cuts : 17910.7.3 Orienting a Graph : 17910.7.4 Integral Multicommodity Flows : 18010.8 Conclusions : 18111 Random Sampling in Matroids 18211.1 Introduction : 18211.1.1 Matroids and the Greedy Algorithm : : : : : : : : : : : : : : : : : : 18211.1.2 Matroid Optimization : 18311.1.3 Matroid Basis Packing : 18411.1.4 Related work : 18411.2 Sampling for Optimization : 18511.2.1 A Sampling Theorem : 18511.2.2 Optimizing by Verifying : 18611.2.3 Application: Scheduling with Deadlines : : : : : : : : : : : : : : : : 18711.3 Sampling for Packing : 18811.3.1 Packing Theorems : 18911.3.2 Packing Algorithms : 19011.4 Proofs : 19211.4.1 Finding a Basis : 19211.4.2 Counting Bases : 19311.5 Conclusion : 19712 Network Design without Repeated Edges 19912.1 Oversampling for Covering Problems : 19912.2 Network Design : 20112.3 Fixed Charge Networks : 20312.4 General Distributions : 204xiii

13 EREW Minimum Spanning Tree Algorithms 20613.1 Reducing Work : 20713.2 Reducing Work and Time : 20813.3 Fast Algorithms for Dense Graphs : 20913.3.1 Construction : 20913.3.2 Veri�cation : 210A Probability Distributions and Sampling Theorems 212A.1 Probability Distributions : 212A.2 The Cherno� Bound : 213A.3 Nonuniform Random Selection : 213A.4 Generating Exponential Variates : 216Bibliography 219

xiv

Chapter 1IntroductionThe representative random sample is a central concept of statistics. It is often possible togather a great deal of information about a large population by examining a small samplerandomly drawn from it. This approach has obvious advantages in reducing the investiga-tor's work, both in gathering and in analyzing the data.We apply the concept of a representative sample to combinatorial optimization prob-lems on graphs. The graph is one of the most common structures in computer science,modeling among other things roads, communication and transportation networks, electri-cal circuits, relationships between individuals, corporate hierarchies, hypertext collections,tournaments, resource allocations, project plans, database and program dependencies, andparallel architectures.Given an optimization problem, it may be possible to generate a small representativesubproblem by random sampling (perhaps the most natural sample from a graph is a randomsubset of its edges). Intuitively, such a subproblem should form a microcosm of the largerproblem. Our goal is to examine the subproblem and use it to glean information about theoriginal problem. Since the subproblem is small, we can spend proportionally more timeexamining it than we would spend examining the original problem. In one approach weuse frequently, an optimal solution to the subproblem may be a nearly optimal solution tothe problem as a whole. In some situations, such an approximation might be su�cient. Inother situations, it may be easy to re�ne this good solution into a truly optimal solution.1

2 CHAPTER 1. INTRODUCTION1.1 Overview of ResultsWe show how these ideas can be used in several ways on problems of varying degrees ofdi�culty. For the \easy to solve" minimum spanning tree problem, where a long line ofresearch has resulted in ever closer to linear-time algorithms, random sampling gives the�nal small increment to a truly linear time algorithm. In harder problems it improvesrunning times by a more signi�cant factor. For example, we improve the time neededto �nd minimum cuts from roughly O(mn) (O(n3) on dense graphs) to roughly O(n2),and give the �rst parallel algorithm for the problem. Finally, addressing some very hardNP-complete problems such as network design and graph coloring, where �nding an exactsolution is thought to be hopeless, we use random sampling to give better approximationalgorithms than were previously known. Our focus is optimization problems on undirectedgraphs.1.1.1 Random SelectionPerhaps the simplest random sample is a single individual. We investigate the use of randomselection. The intuition behind this idea is that a single randomly selected individualis probably a \typical" representative of the entire population. This is the idea behindQuicksort [91], where the assumption is that the randomly selected pivot will be neitherextremely large nor extremely small, and will therefore serve to separate the remainingelements into two roughly equal sized groups.We apply this idea in a new algorithm for �nding minimum cuts in undirected graphs.A cut is a partition of the graph vertices into two groups; the value of the cut is the number(or total weight) of edges with one endpoint in each group. The minimum cut problem is toidentify a cut of minimum value. This problem is of great importance in analyzing networkreliability, and also plays a central role in solving traveling salesman problems, compilingon parallel machines, and identifying topics in hypertext collections.The idea behind our Recursive Contraction Algorithm is quite simple: a random edgeis unlikely to cross the minimum cut, so its endpoints are probably on the same side. Ifwe merge two vertices on the same side of the minimum cut, then we shall not a�ect theminimum cut but will reduce the number of graph vertices by one. Therefore, we can �ndthe minimum cut by repeatedly selecting a random edge and merging its endpoints until onlytwo vertices remain and the minimum cut becomes obvious. This leads to an algorithm that

1.1. OVERVIEW OF RESULTS 3is strongly polynomial and runs in ~O(n2) time on an n-vertex, m-edge graph|a signi�cantimprovement on the previous ~O(mn) bounds. With high probability the algorithm �nds allminimum cuts. The parallel version of our algorithm runs in polylogarithmic time usingn2 processors on a PRAM (Parallel Random Access Machine). It thus provides the �rstproof that the minimum cut problem with arbitrary edge weights can be solved in RNC. Aderandomization of this algorithm provides the �rst proof that the minimum cut problemcan be solved in NC. Our algorithm can be modi�ed to �nd all approximately minimumcuts and analyze the reliability of a network. Parts of this work are joint with Cli�ordStein [110].1.1.2 Random SamplingA more general use of random sampling is to generate small representative subproblems.Floyd and Rivest [58] use this approach in a fast and elegant algorithm for �nding themedian of an ordered set. They select a small random sample of elements from the set andshow how inspecting this sample gives a very accurate estimate of the value of the median.It is then easy to �nd the actual median by examining only those elements close to theestimate. This very simple to implement algorithm uses fewer comparisons than any otherknown median-�nding algorithm.The Floyd-Rivest algorithm typi�es three components needed in a random-samplingalgorithm. The �rst is a de�nition of a randomly sampled subproblem. The second is anapproximation theorem that proves that a solution to the subproblem is an approximatesolution to the original problem. These two components by themselves will typically yieldan obvious approximation algorithm with a speed-accuracy tradeo�. The third componentis a re�nement algorithm that takes the approximate solution and turns it into an actualsolution. Combining these three components can yield an algorithm whose running timewill be determined by that of the re�nement algorithm; intuitively, re�nement should beeasier than computing a solution from scratch.In an application of this approach, we present the �rst (randomized) linear-time algo-rithm for �nding minimum spanning trees in the comparison-based model of computation.The fundamental insight is that if we construct a subgraph of a graph by taking a randomsample of the graph's edges, then the minimum spanning tree in the subgraph is a \nearly"minimum spanning tree of the entire graph. More precisely, very few graph edges can beused to improve the sample's minimum spanning tree. By examining these few edges, we

4 CHAPTER 1. INTRODUCTIONcan re�ne our approximation into the actual minimum spanning tree at little additionalcost. This result reects joint work with Philip Klein and Robert E. Tarjan [106]. Ourresults actually apply to the more general problem of matroid optimization, and show thatthe problem of constructing an optimum matroid basis is essentially equivalent to that ofverifying the optimality of a candidate basis.We also apply sampling to the minimum cut problem and several other problems involv-ing cuts in graphs, including maximum ows. The maximum ow problem is perhaps themost widely studied of all graph optimization problems, having hundreds of applications.Given vertices s and t and capacitated edges, the goal is to ship the maximum quantity ofmaterial from s to t without exceeding the capacities of the edges. The value of a graph'smaximum ow is completely determined by the values of certain cuts in the graph.We prove a cut sampling theorem that says that when we choose half a graph's edgesat random we approximately halve the value of every cut. In particular, we halve thegraph's connectivity and the value of all s-t minimum cuts and maximum ows. Thistheorem gives a random-sampling scheme for approximating minimum cuts and maximumows: compute the minimum cut and maximum ow in a random sample of the graph edges.Since the sample has fewer edges, the computation is faster. At the same time, our samplingtheorems show that this approach gives accurate estimates of the correct values. Amongthe direct applications of this idea are a linear time algorithm for approximating (to withinany constant factor exceeding 1) the minimum cut of a weighted undirected graph and alinear time algorithm for approximating maximum ows in graphs with su�ciently largeconnectivities. Previously, the best approximation a linear or near-linear time algorithmcould achieve was a factor of 2.If we want to get exact solutions rather than approximations, we still can use our samplesas starting points to which we can apply inexpensive re�nement algorithms. If we randomlypartition the edges of a graph into two groups, then each looks like a random sample of theedges. Thus, for example, if we �nd maximum ows in each half and combine them, we geta nearly maximum ow in the original graph. We can then use augmentation algorithms tore�ne this nearly maximum ow to a maximum one. This gives fast new randomized divide-and-conquer algorithms for connectivity and maximum ows. We also discuss applicationsto other cut-related problems such as graph orientation and balanced cuts.Our techniques actually give a paradigm that can be applied to any packing problemwhere the goal, given a collection of feasible subsets of a universe, is to �nd a maximum

1.1. OVERVIEW OF RESULTS 5collection of disjoint feasible subsets. For example, in the maximum ow problem, we areattempting to send units of ow from s to t. Each such unit of ow travels along a path froms to t, so the feasible edge-sets are the s-t paths. We apply the sampling paradigm to theproblem of packing disjoint bases in a matroid, and get faster algorithms for approximatingand exactly �nding optimum basis packings.1.1.3 Randomized RoundingYet another variation on random sampling is that of randomized rounding. This approach isused to �nd approximate solutions to NP-hard integer programs. These problems typicallyask for an assignment of values 0 or 1 to variables xi such that linear constraints of theform P aixi = c are satis�ed. If we relax the integer program, allowing each xi to take anyrational value between 0 and 1, we get a linear program that can be solved in polynomialtime, giving values pi such that P aipi = c. Raghavan and Thompson [168] observed thatwe could treat the resulting values pi as probabilities. If we randomly set xi = 1 withprobability pi and 0 otherwise, then the expected value of Paixi is P aipi = c. Raghavanand Thompson presented techniques for ensuring that the randomly chosen values do infact yield a sum near the expectation, thus giving approximately correct solutions to theinteger program. We can see randomized rounding as a way of sampling randomly from alarge space of answers, rather than subproblems as before. Linear programming relaxationis used to construct an answer-space in which most of the answers are good ones.We use our graph sampling theorems to apply randomized rounding to network designproblems. Such a problem is speci�ed by an input graph G with each edge assigned acost. The goal is to output a subgraph of G satisfying certain connectivity requirementsat minimum cost (measured as the sum of the costs of edges used). These requirementsare described by specifying a minimum number of edges that must cross each cut of G.This formulation easily captures many classic problems including perfect matching, mini-mum cost ow, Steiner tree, and minimum T-join. An important practical application forcommunication companies is deciding the cheapest way to add bandwidth to their commu-nication networks. By applying randomized rounding, we get signi�cantly better resultsthan were previously known for a large class of network design problems, improving theapproximation bounds from O(logn) to 1 + o(1) in a large class of problems.We also apply randomized rounding to the classic graph coloring problem. Linear pro-gramming does not provide a useful fractional solution, and so we must use more powerful

6 CHAPTER 1. INTRODUCTIONsemide�nite programming as our starting point. We give a new approximation algorithmwith a signi�cantly better approximation guarantee than the previously best known one.Along the way, we discover new properties of the Lov�asz #-function, an object that hasreceived a great deal of attention because of its connections to graph coloring, cliques, andindependent sets. This work is joint with Rajeev Motwani and Madhu Sudan [108].1.2 Presentation OverviewThis work is divided into two main parts. Part I develops all our basic techniques andapplies them to several well known problems. In order to avoid cluttering this expositionwith excessive detail, we have reserved some of the more di�cult or esoteric applications ofthese techniques to Part II, which can be seen as something of an extended appendix.In Chapter 2, we present our sampling-based minimum spanning tree algorithm. Thekey tool is a lemma bounding the number of edges that \improve" the minimum spanningtree of a random sample of the graph edges. We give a sequential algorithm that runs inlinear time with all but an exponentially small probability. This chapter reects joint workwith Philip Klein and Robert Tarjan [106].In Chapter 3, we begin our discussion of the minimum cut problem by de�ning it,presenting previous work on which we shall be relying, and contrasting previous work withour new results. In Chapter 4, we present the Recursive Contraction Algorithm (joint workwith Cli�ord Stein [110]), giving ~O(n2)-work sequential and parallel implementations thatsigni�cantly improve on previously known bounds for �nding minimum cuts. Our algorithmalso gives an important new bound on the number of small cuts a graph may contain; thishas important applications in network reliability analysis.In Chapter 5, we investigate deterministic solutions to the minimum cut problem. Usingsome of the classic techniques of derandomization, we develop the �rst NC algorithm forthe minimum cut problem. Our NC algorithm relies on the previously discussed work oncut counting and a new deterministic parallel algorithm for sparse connectivity certi�cates.This chapter reects joint work with Rajeev Motwani [107].In Chapter 6, we develop a general analysis of graph cuts under random sampling, andapply it to cut, ow and network design problems. Given a graph G, we construct a p-skeleton G(p) by selecting each edge of G independently with probability p. We use thecut counting theorem proved in Chapter 4 to show that all the cuts in G(p) have roughly p

1.2. PRESENTATION OVERVIEW 7times as many edges as they did in G. In the most obvious application of this approach, wegive random-sampling based sequential, parallel, and dynamic algorithm for approximatingminimum cuts by computing minimum cuts in skeletons. Since the skeletons have fewedges, these computations are fast. This gives among other results a linear-time (1 + �)-approximation algorithm for minimum cuts. We extend this approach to get a fast exactalgorithm for minimum cuts. We also consider randomized rounding. After discussing somegeneral techniques for set-cover problems (positive linear programs whose constraints are alllower bounds), we apply them to network design problems. Our graph sampling theoremsprovide the necessary tools for showing that randomized rounding works well in this case.In Chapter 7, we take randomized rounding beyond the classic realm of linear program-ming and into the newer world of semide�nite programming. Randomized rounding in thisframework gives the currently best known algorithm for graph coloring. We show that any3-colorable graph can be colored in polynomial time with ~O(n1=4) colors, improving on theprevious best bound of ~O(n3=8). We also give presently best results for k-colorable graphs.This chapter reects joint work with Rajeev Motwani and Madhu Sudan [108].The chapters in Part II present extensions to the techniques described in Part I. InChapter 9, we describe several extensions of the Contraction Algorithm to �nding approx-imately minimum cuts and minimum multiway cuts, as well as to constructing the cactusrepresentation of minimum cuts in a graph.In Chapter 10, we give extensions to our cut random sampling algorithms, We use sam-pling in analyzing the reliability (probability of remaining connected) of a network whoseedges fail randomly. Computing reliability is a]P-complete problem, but we give a polyno-mial time algorithm for approximating it arbitrarily closely. We develop random-samplingbased approximation algorithms and randomized divide-and-conquer based algorithms forexactly �nding s-t minimum cuts, and maximum ows faster than could be done previ-ously. We examine other problems including parallel ow algorithms, balanced cuts, andgraph orientation. We also give an evolutionary model of graph sampling that is useful indeveloping dynamic algorithms for approximating minimum cuts.In Chapter 11, we put our results on graph sampling into a larger framework by exam-ining sampling from matroids. We generalize our minimum spanning tree algorithm to theproblem of matroid optimization, and extend our cut-sampling and maximum ow resultsto the problem of matroid basis packing.In Chapter 13, we return to our starting point, minimum spanning trees, and show how

8 CHAPTER 1. INTRODUCTIONthe sampling approach can be used in a minimum spanning tree algorithm for the EREWPRAM that runs in O(logn) time using m= logn processors on dense graphs, thus matchingthe time and work lower bounds for the model.A dependency chart of the various chapters is given in Figure 1.1; a gravitational de-pendency denotes a presentational dependency.1.3 Preliminary De�nitionsThroughout this work, we focus on undirected graphs, because directed graphs have so farnot answered to the sampling techniques we apply here. The variables n and m will alwaysdenote the number of vertices and edges respectively of a graph under consideration. Eachedge may have a weight associated with it. Typically, graphs have only one edge connectingeach pair of endpoints. We use multigraph to refer to graphs with more than one edgeconnecting the same endpoints, and refer to edges with the same endpoints as multiple orparallel. If we want to emphasize that an edge is from a multigraph, we call it a multiedge.A graph has m � �n2�; but a multigraph has no such constraint.The notation ~O(f) denotes O(f polylog n).1.3.1 Randomized Algorithms and RecurrencesOur work deals with randomized algorithms. Our typical model is that the algorithm hasa source of \random bits"|variables that are mutually independent and take on values 0or 1 with probability 1/2 each. Extracting one random bit from the source is assumed totake constant time. If our algorithms use more complex operations, such as ipping biasedcoins or generating samples from more complex distributions, we take into account the timeneeded to simulate these operations in our unbiased-bit model. Some of these issues arediscussed in the appendix. Event probabilities are taken over the sample space of randombit strings produced by the random bit generator. An event occurs with high probability(w.h.p.) if on problems of size n it occurs with probability greater than (1� 1nk) for someconstant k > 1, and with low probability if its complement occurs with high probability. Ifa problem has more than one measure of size, we use the phrase with high probability in tto emphasize that the probability is a function of parameter t.There are two kinds of randomized algorithms. An algorithm that has a �xed (determin-istic) running time but has a low probability of giving an incorrect answer is called Monte

1.3. PRELIMINARY DEFINITIONS 9
Derandomization

and Sparse

Certificates

Trees

Spanning

Minimum

Sampling in Matroids

1 Introduction

Extensions

Graph

Coloring

Cut Sampling

6

4
Contraction Algorithm

3
Minimum Cuts

5

2

7

9

11

Approximation

Cut and Flow

12

Network

Design

10
More

Cut Sampling

Figure 1.1: Chapter Dependencies

10 CHAPTER 1. INTRODUCTIONCarlo (MC). If the running time of the algorithm is a random variable but the correct an-swer is given with certainty, then the algorithm is said to be Las Vegas (LV). Any algorithmwith a high probability of giving the right answer and a high probability of running in timef(n) can be made Monte Carlo by having it terminate with an arbitrary wrong answer if itexceeds the time bound f(n). Las Vegas algorithms can be made Monte Carlo by the samemethod. However, there is no universal method for making a Monte Carlo algorithm intoa Las Vegas one, and indeed some of the algorithms we present are Monte Carlo with noLas Vegas version apparent. When we state theorems about an algorithm's running time,the su�xes (MC) and (LV) will denote that the algorithm is Monte Carlo or Las Vegasrespectively.The notion of \high probability" becomes somewhat slippery when we are consideringrecursive randomized algorithms. Deterministic recursive algorithms are typically describedby recurrences T (n) = f(n; T (g(n))) that have been well studied and solved. When weconsider randomized algorithms, the time to process a problem and the sizes of subproblemscan be random variables. For example, the recurrence T (m) = m + T (m=2) + T (m=4) iseasily seen to show T (m) = m. However, we shall encounter in our minimum spanningtree analysis a recurrence T (m) = T (a) + T (b), where a � m=2 with high probability andb � m=4 with high probability. When n is large, we might equate the high probabilityclaim with certainty. However, the recurrence indicates that large problems beget smallones, and in a small problem, a low probability result is no longer as unlikely as we wouldwish. Karp [111] has developed several tools for dealing with such probabilistic recurrencesin the same cookbook fashion as deterministic ones, but ironically none of the recurrenceswe encounter in our work can be tightly bounded by his methods. Instead, we shall oftenbe forced to undertake a global analysis, unraveling the entire recursion tree, in order toestablish good bounds.1.3.2 Sequential AlgorithmsTo analyze algorithms, we need a model of the underlying machine on which they will beexecuted. Turing machines are believed to be able to simulate all reasonable computationalengines. However, when it comes to analyzing running times, they do not satisfactorilyreect certain aspects of real machines|in particular, their ability to randomly access(bring into a register) any word in memory in unit time. The RAM (random access machine)model has been developed to reect these concerns. A RAM contains a memory divided

1.3. PRELIMINARY DEFINITIONS 11into cells, each of which contains an arbitrary integer. The RAM's processing unit containsa �xed set of registers. In one time step, the RAM's processing unit can read the valueat one memory location into a register, where the memory location is identi�ed either as aconstant or by the value of some other register (indirect addressing). Alternatively, it canwrite one register's value to a memory location speci�ed by another register, or performa basic operation|comparing, adding, subtracting, multiplying or dividing two registers;reading input or printing output, setting a register to a constant; comparing two registers;and branching on the result of a comparison. Careful discussion of the formal model canbe found in [184].In many cases, the input to an algorithm divides naturally into two parts; the \struc-ture" and the \numbers." The structural portion presents no obstacles to running timedescriptions: our goal is to �nd algorithms with running times bounded by a polynomial inthe size of the structure. The numbers are more problematic. Some algorithms have run-ning times polynomial in the values of the input numbers while others are polynomial in thesize (number of bits of representation) of the input numbers, an exponential di�erence. Thesecond de�nition would appear to satisfy the strict Turing machine model of polynomialtime, but is still not entirely satisfactory when we consider practical issues such as oatingpoint precision (which allows us to succinctly express numbers whose binary representationhas exponential length) and less practical issues of \elegance." A better model is that ofstrongly polynomial algorithms. A discussion of the precise meaning and value of strongpolynomiality can be found in [98] (see also [176, Section 15.2]). Roughly speaking, an al-gorithm is strongly polynomial if, in addition to being polynomial in the standard model ofcomputation, the number of operations it performs can be bounded by a polynomial inde-pendent of the size of the input numbers. The only way the algorithm is allowed to accessinput numbers is through the elementary arithmetic operations of addition, subtraction,multiplication, division, and comparison, each assumed to take unit time.1.3.3 Parallel AlgorithmsWe also consider parallel algorithms. We use the PRAM model, which generalizes the RAMmodel to allow many processors to operate synchronously and access a single shared memory.This model is discussed in depth in +[114]. In each time step of a PRAM computation, eachof the processors can perform one operation and access a single cell in the shared memory.While this is not the place to argue for or against the realism of this model, we observe

12 CHAPTER 1. INTRODUCTIONthat the PRAM provides a good domain for initially specifying a parallel algorithm, andthat many of our algorithms are su�ciently simple that they should port reasonably wellto actual machines. NC is the class of problems that, for inputs of size n, can be solveddeterministically in polylog n time using nO(1) processors. RNC extends NC by assumingthat each processor is equipped with a source of random bits; the distinction between MonteCarlo and Las Vegas algorithms discussed earlier applies here as well. In addition to thenumber of processors used, we shall consider the total work, given as the product of numberof processors used by time spent. Measuring the total work gives a sense of how e�cientlya sequential algorithm has been parallelized: the ultimate goal is for the total work of theparallel algorithm to equal that of the sequential one.Given that multiple processors are accessing a shared memory simultaneous, it is con-ceivable that many processors may try to read or write the same memory location. Thiscan be a problem in practice. We therefore distinguish several models of PRAM. In theconcurrent read model, many processors are allowed to read from the same memory locationsimultaneously. In the exclusive read (ER) model, this is forbidden. Similarly, the exclusivewrite (EW) model forbids more than one processor from writing to a given memory loca-tion. If instead concurrent write (CW) is allowed, some rule must be established for theoutcome when multiple values are written to the same cell. For concreteness, we select thearbitrary rule: an adversary chooses which of the written values are actually stored in thememory cell. A PRAM model is speci�ed by giving both a reading and a writing rule; e.g.a CREW allows concurrent reads but forbids concurrent writes.Randomization has played an extremely important role in parallel algorithms, since oneof the biggest problems in designing e�cient algorithms seems to be symmetry breaking:trying to spread the processors or the data around so that processors do not duplicate eachothers' e�orts. Randomization has served very well in this capacity, and indeed may beindispensable. In the sequential computation model nearly all problems known to haverandomized polynomial-time solutions are also known to have deterministic ones. But inthe parallel world, some of the most central algorithmic problems, such as �nding depth �rstsearch trees, maximum matchings, and maximum ows, are known to be solvable in RNCbut are not known to be solvable in NC. Thus, the problem of derandomization|removingthe use of randomness from an algorithm|is still widely studied in parallel algorithm design.

Part IBasics

13

Chapter 2Minimum Spanning Trees2.1 IntroductionWe begin our discussion with the problem of �nding a minimum spanning tree in a connectedgraph with real-valued edge weights.1 Given a graph, each of whose edges has been assigneda weight, we wish to �nd a spanning tree of minimum total weight measured as the sumof the weights of the included edges. We investigate the intuition that a random sample ofthe edges of a graph should contain a spanning tree which is \pretty good." This intuitionleads to the �rst linear time algorithm for the problem.2.1.1 Past WorkThe minimum spanning tree problem has a long and rich history; the �rst fully-realizedalgorithm was devised by Bor�uvka in the 1920's [21]. An informative survey paper byGraham and Hell [83] describes the history of the problem up to 1985. In the last twodecades faster and faster algorithms were found, the fastest being an algorithm of Gabow,Galil, and Spencer [69] (see also [70]), with a running time of O(m log �(m;n)) on a graphof n vertices and m edges. Here �(m;n) = minfi j log(i) n � m=ng.This and earlier algorithms used as a computational model the sequential random-accessmachine with the restriction that the only operations allowed on the edge weights are binarycomparisons. Fredman and Willard [62] considered a more powerful model that allows bitmanipulation of the binary representations of the edge weights. In this model they were1This chapter is based on joint work with Philip Klein and Robert Tarjan and includes material from [101,103, 124, 106]. 15

16 CHAPTER 2. MINIMUM SPANNING TREESable to devise a linear-time algorithm. Still, the question of whether a linear-time algorithmexists for the restricted random-access model remained open.A problem related to �nding minimum spanning trees is that of verifying that a givenspanning tree is minimum. Tarjan [180] gave a veri�cation algorithm running inO(m�(m;n))time, where � is a functional inverse of Ackerman's function. Later, Koml�os [131] showedthat a minimum spanning tree can be veri�ed in O(m) binary comparisons of edge weights,but with nonlinear overhead to decide which comparisons to make. Dixon, Rauch andTarjan [45] combined these algorithms with a table lookup technique to obtain an O(m)-time veri�cation algorithm. King [120] recently obtained a simpler O(m)-time veri�cationalgorithm that combines ideas of Bor�uvka, Koml�os, and Dixon, Rauch, and Tarjan.We also consider parallel algorithms for the minimum spanning tree problem in theEREW model of computation. Previously the best known algorithm for this model [31] hada running time of O(logn log log n) as compared to a lower bound of
(logn), and a workbound of O(m logn log log n) as compared to a lower bound of
(m).2.1.2 Our ContributionWe describe a randomized algorithm for �nding a minimum spanning tree. It runs in O(m)time with high probability in the restricted random-access model.The fundamental random-sampling intuition of our algorithm is that a random sampleof the graph edges will contain a \pretty good" minimum spanning tree|one that fewedges of the original graph can improve. Using a veri�cation algorithm, we can identifythis small set of improving edges, which turns out to contain all the minimum spanningtree edges. This turns our original minimum spanning tree problem into two smaller ones:one of �nding the minimum spanning tree of a small sample, and another of �nding theminimum spanning tree of the edges improving the sample. Our algorithm solves these twosubproblems recursively.Section 2.2 presents the random-sampling result that is the key to our algorithm. Sec-tion 2.3 presents our algorithm, and Section 2.4 contains its analysis. A parallel implementa-tion of the algorithm is discussed in Chapter 13. This section ends with some preliminaries.2.1.3 PreliminariesOur algorithm actually solves the slightly more general problem of �nding a minimumspanning forest in a possibly disconnected graph. We assume that the input graph has no

2.1. INTRODUCTION 17isolated vertices (vertices without incident edges).If edge weights are not distinct, we can make them distinct by numbering the edgesdistinctly and breaking weight-ties according to the numbers. We therefore assume forsimplicity that all edge weights are distinct. This assumption ensures that the minimumspanning tree is unique. The following properties are also well-known and correspondrespectively to the red rule and the blue rule in [181].Cycle property: For any cycle C in a graph, the heaviest edge in C does not appear inthe minimum spanning forest.Cut property: For any proper nonempty subset X of the vertices, the lightest edge withexactly one endpoint in X belongs to the minimum spanning forest.Unlike most algorithms for �nding a minimum spanning forest, our algorithm makes useof each property in a fundamental way.We will be using two classical minimum spanning forest algorithms. Kruskal's algo-rithm [133] constructs a forest F one edge at a time. It examines the graph's edges inorder of increasing weight. To examine an edge e, it checks whether the endpoints of e areconnected by a path of (smaller weight) edges already in F . If so, it discards e, since thecycle property proves that e is not in the minimum spanning forest. Otherwise, it adds eto F . Since the algorithm never discards a minimum spanning forest edge, it follows thatat termination F is the minimum spanning forest. The algorithm can be implemented torun in O(m logm) time using basic data structures [41].A less familiar algorithm is that of Bor�uvka. Bor�uvka's algorithm is just a repetition ofBor�uvka Steps which we now describe:Bor�uvka Step. For each vertex, select the minimum-weight edge incident to the vertex.Contract all the selected edges, replacing by a single vertex each connected componentde�ned by the selected edges and deleting all resulting isolated vertices, loops (edges bothof whose endpoints are the same), and all but the lowest-weight edge among each set ofmultiple edges.The cut property shows that each selected edge is in the minimum spanning tree of thegraph. The cycle property shows that each deleted edge (from a group of multiple edges) isnot a minimum spanning tree edge. A Bor�uvka Step can be implemented to run in O(m)time with elementary data structures [181]. One such step reduces the number of vertices

18 CHAPTER 2. MINIMUM SPANNING TREESby at least a factor of two because each connected component induced by the selected edgescontains at least two vertices. Thus, O(logn) Bor�uvka steps su�ce to eliminate all the edgesand terminate, for a total running time of O(m logn). Although the number of vertices ishalved each time, Bor�uvka's algorithm cannot guarantee a better running time because thenumber of edges is not guaranteed to decrease signi�cantly. Our random-sampling approachsolves this problem.2.2 A Sampling LemmaOur algorithm relies on a random-sampling step to discard edges that cannot be in theminimum spanning tree. The e�ectiveness of this step is shown by a lemma that we presentbelow (this lemma was �rst proved by Klein and Tarjan in [124], improving on a weakerversion proved in [101]). We need some terminology. Let G be a graph with weighted edges.We denote by w(x; y) the weight of edge (x; y). If F is a forest in G, we denote by F (x; y)the path (if any) connecting x and y in F , and by wF (x; y) the maximum weight of anedge on F (x; y), with the convention that wF (x; y) =1 if x and y are not connected in F .We say an edge (x; y) is F -heavy if w(x; y) > wF (x; y), and F -light otherwise. Note thatthe edges of F are all F -light. For any forest F , no F -heavy edge can be in the minimumspanning forest of G. This is a consequence of the cycle property. Given a forest F in G,the F -light edges of G can be computed in time linear in the number of edges of G, usingan adaptation of the veri�cation algorithm of Dixon, Rauch, and Tarjan (page 1188 in [45]describes the changes needed in the algorithm) or of that of King.Lemma 2.2.1 Let H be a subgraph obtained from G by including each edge independentlywith probability p, and let F be the minimum spanning forest of H. The expected numberof F -light edges is at most n=p where n is the number of vertices of G.Proof: We describe a way to construct the sample graph H and its minimum spanningforest F simultaneously. The computation is a variant of Kruskal's minimum spanning treealgorithm which was described in the introduction. Begin with H and F empty. Process theedges in increasing order by weight. To process an edge e, �rst test whether both endpointsof e are in the same connected component of the current F . If so, e is F -heavy for thecurrent F , because every edge currently in F is lighter than e. Next, ip a coin that hasprobability p of coming up heads. Include the edge e in H if and only if the coin comes upheads. Finally, if e is in H and is F -light, add e to the forest F .

2.3. THE SEQUENTIAL ALGORITHM 19The forest F produced by this computation is the forest that would be produced byKruskal's algorithm applied to the edges in H , and is therefore exactly the minimum span-ning forest of H . An edge e that is F -heavy when it is processed remains F -heavy untilthe end of the computation, since F never loses edges. Similarly, an edge e that is F -lightwhen processed remains F -light, since only edges heavier than e are added to F after e isprocessed. Our goal is to show that the number of F -light edges is probably small.When processing an edge e, we know whether e is F -heavy before ipping a coin fore. Suppose for purposes of exposition that we ip a penny for e if e is F -heavy and anickel if it is not. The penny-ips are irrelevant to our analysis; the corresponding edgesare F -heavy regardless of whether or not they are included in H . We therefore consideronly the nickel-ips and the corresponding edges. For each such edge, if the nickel comesup heads, the edge is placed in F . The size of F is at most n � 1. Thus at most n � 1nickel-tosses have come up heads by the end of the computation.Now imagine that we continue ipping nickels until n heads have occurred, and let Ybe the total number of nickels ipped. Then Y is an upper bound on the number of F -lightedges. The distribution of Y is exactly the negative binomial distribution with parametersn and p (see Appendix A.1). The expectation of a random variable that has a negativebinomial distribution is n=p. It follows that the expected number of F -light edges is atmost n=p.Remark: The above proof actually shows that the number of F -light edges is stochasticallydominated by a variable with a negative binomial distribution.Remark: Lemma 2.2.1 generalizes to matroids. See Chapter 11.2.3 The Sequential AlgorithmThe minimum spanning forest algorithm intermeshes the Bor�uvka Steps de�ned in theintroduction with random-sampling steps. Each Bor�uvka step reduces the number of verticesby at least a factor of two; each random-sampling step discards enough edges to reduce thedensity (ratio of edges to vertices) to a �xed constant with high probability.The algorithm is recursive. It generates two subproblems, but with high probability thecombined size of these subproblems is at most 3=4 of the size of the original problem. Thisfact is the basis for the probabilistic linear bound on the running time of the algorithm.Now we describe the minimum spanning forest algorithm. If the graph is empty, return

20 CHAPTER 2. MINIMUM SPANNING TREESan empty forest. Otherwise, proceed as follows.Step 1. Apply two successive Bor�uvka steps to the graph, thereby reducing the number ofvertices by at least a factor of four.Step 2. In the contracted graph, choose a subgraph H by selecting each edge indepen-dently with probability 1/2. Apply the algorithm recursively to H , producing the minimumspanning forest F of H . Find all the F -heavy edges (both those in H and those not in H)and delete them.Step 3. Apply the algorithm recursively to the remaining graph to compute a spanningforest F 0. Return those edges contracted in Step 1 together with the edges of F 0.We prove the correctness of the algorithm by induction. By the cut property, every edgecontracted during Step 1 is in the minimum spanning forest. Hence the remaining edges ofthe minimum spanning forest of the original graph form the minimum spanning forest of thecontracted graph. By the cycle property, the edges deleted in Step 2 do not belong to theminimum spanning forest of the contracted graph. Thus when Step 3 (by induction) �ndsthe minimum spanning forest of the non-deleted edges, it is in fact �nding the remainingedges of the minimum spanning tree of the original graph.Remark. Our algorithm can be viewed as an instance of the generalized greedy algorithmpresented in [181], from which its correctness follows immediately.2.4 Analysis of the AlgorithmWe begin our analysis by making some observations about the worst-case behavior of thealgorithm. Then we show that the expected running time of the algorithm is linear, byapplying Lemma 2.2.1 and the linearity of expectations. Finally, we show that the algorithmruns in linear time with all but exponentially small probability, by developing a globalversion of the analysis in the proof of Lemma 2.2.1 and using a Cherno� bound (Section A.2).Suppose the algorithm is initially applied to a graph with n vertices and m edges.Since the graph contains no isolated vertices, m � n=2. Each invocation of the algorithmgenerates at most two recursive subproblems. Consider the entire binary tree of recursivesubproblems. The root is the initial problem. For a particular problem, we call the �rstrecursive subproblem, occurring in Step 2, the left child of the parent problem, and thesecond recursive subproblem, occurring in Step 3, the right child . At depth d, the tree of

2.4. ANALYSIS OF THE ALGORITHM 21subproblems has at most 2d nodes, each a problem on a graph of at most n=4d vertices. Thusthe depth of the tree is at most log4 n, and there are at mostP1d=0 2dn=4d =P1d=0 n=2d = 2nvertices total in the original problem and all subproblems.Consider a particular subproblem. The total time spent in Steps 1{3, excluding the timespent on recursive subproblems, is linear in the number of edges: Step 1 is just two Bor�uvkaSteps, which take linear time using straightforward graph-algorithmic techniques, and Step2 takes linear time using the modi�ed Dixon-Rauch-Tarjan or King veri�cation algorithms,as noted in the introduction. The total running time is thus bounded by a constant factortimes the total number of edges in the original problem and in all recursive subproblems.Our objective is to estimate this total number of edges.Theorem 2.4.1 The worst-case running time of the minimum spanning forest algorithmis O(minfn2; m logng), the same as the bound for Bor�uvka's algorithm.Proof: We estimate the worst-case total number of edges in two di�erent ways. First, sincethere are no multiple edges in any subproblem, a subproblem at depth d contains at most(n=4d)2=2 edges. Summing over all subproblems gives an O(n2) bound on the total numberof edges. Second, consider the left and right children of some parent problem. Suppose theparent problem is on a graph of v vertices. Every edge in the parent problem ends up inexactly one of the children (the left if it is selected in Step 2, the right if it is not), with theexception of the edges in the minimum spanning forest F of the sample graph H , whichend up in both subproblems, and the edges that are removed (contracted) in Step 1, whichend up in no subproblem. If v0 is the number of vertices in the graph after Step 1, thenF contains v0 � 1 � v=4 edges. Since at least v=2 edges are removed in Step 1, the totalnumber of edges in the left and right subproblems is at most the number of edges in theparent problem.It follows that the total number of edges in all subproblems at any single recursive depthd is at most m. Since the number of di�erent depths is O(logn), the total number of edgesin all recursive subproblems is O(m logn).Theorem 2.4.2 The expected running time of the minimum spanning forest algorithm isO(m).Proof: Our analysis relies on a partition of the recursion tree into left paths. Each suchpath consists of either the root or a right child and all nodes reachable from this node

22 CHAPTER 2. MINIMUM SPANNING TREESthrough a path of left children. Consider a parent problem on a graph of X edges, and letY be the number of edges in its left child (X and Y are random variables). Since each edgein the parent problem is either removed in Step 1 or has a chance of 12 of being selected inStep 2, E[Y jX = k] � k=2. It follows by linearity of expectation that E[Y] � Pk Pr[X =k]k=2 = E[X]=2. That is, the expected number of edges in a left subproblem is at mosthalf the expected number of edges in its parent. It follows that, if the expected number ofedges in a problem is k, then the sum of the expected numbers of edges in every subproblemalong the left path descending from the problem is at most P1i=0 k=2i = 2k.Thus the expected total number of edges is bounded by twice the sum of m and the ex-pected total number of edges in all right subproblems. By Lemma 2.2.1, the expected num-ber of edges in a right subproblem is at most twice the number of vertices in the subproblem.Since the total number of vertices in all right subproblems is at mostP1d=1 2d�1 n=4d = n=2,the expected number of edges in the original problem and all subproblems is at most2m+ n.Theorem 2.4.3 The minimum spanning forest algorithm runs in O(m) time with proba-bility 1� e�
(m).Proof: We obtain the high-probability result by applying a global version of the analysis inthe proof of Lemma 2.2.1. We �rst bound the total number of edges in all right subproblems.These are exactly the edges that are found to be F -light in Step 2 of the parent problems.Referring back to the proof of Lemma 2.2.1, let us consider the nickel-tosses correspondingto these edges. Each nickel that comes up heads corresponds to an edge in the minimumspanning forest in a right subproblem. The total number of edges in all such spanningforests in all right subproblems is at most the number of vertices in all such subproblems,which in turn is at most n=2 as shown in the proof of Theorem 2.4.2. Thus n=2 is anupper bound on the total number of heads in nickel-ips in all the right subproblems. Ifwe continue ipping nickels until we get exactly n=2 heads, then we get an upper boundon the number of edges in right subproblems. This upper bound has the negative binomialdistribution with parameters n=2 and 1=2 (see Appendix A.1). There are more than 3mF -light edges only if fewer than n=2 heads occur in a sequence of 3m nickel-tosses. By theCherno� bound (section A.2), this probability is e�
(m) since m � n=2.We now consider the edges in left subproblems. The edges in a left subproblem areobtained from the parent problem by sampling; i.e., a coin is tossed for each edge in the

2.5. CONCLUSIONS 23parent problem not deleted in Step 1, and the edge is copied to the subproblem if the coincomes up heads and is not copied if the coin comes up tails. To put it another way, an edgein the root or in a right subproblem gives rise to a sequence of copies in left subproblems,each copy resulting from a coin-ip coming up heads. The sequence ends if a coin-ip comesup tails. The number of occurrences of tails is at most the number of sequences, which inturn is at most the number m0 of edges in the root problem and in all right subproblems.The total number of edges in all these sequences is equal to the total number of heads,which in turn is at most the total number of coin-tosses. Hence the probability that thisnumber of edges exceeds 3m0 is the probability that at most m0 tails occur in a sequence ofmore than 3m0 coin-tosses. Since m0 � m, this probability is e�
(m) by a Cherno� bound.Combining this with the previous high-probability bound of O(m) on m0, we �nd thatthe total number of edges in the original problem and in all subproblems is O(m) withprobability 1� e�
(m).2.5 ConclusionsWe have shown that random sampling is an e�ective tool for \sparsifying" minimum span-ning tree problems, reducing the number of edges involved. It thus combines well withBoruvka's algorithm, which works well on sparse graphs. We shall see later in Chapter 6that random sampling is also an e�ective tool for minimum cut problems, allowing sparsegraph algorithms to be applied to dense graphs.Open ProblemsAmong remaining open problems, we note especially the following:1. Is there a deterministic linear-time minimum spanning tree algorithm in the restrictedrandom-access model?2. Can randomization or some other technique be used to simplify the linear-time veri-�cation algorithm?The algorithm we have described works in a RAM model of computation that allows bitmanipulation of pointer addresses (though not of edge weights). These bit manipulationsare used in the linear time veri�cation algorithm, in particular in its computation of least

24 CHAPTER 2. MINIMUM SPANNING TREEScommon ancestors. Previous minimum spanning tree algorithms have typically operated inthe more restrictive pointer machine model of computation [181], where pointers may onlybe stored and dereferenced. The best presently known veri�cation algorithm in the pointermachine model is limited by the need for least common ancestor queries to a running time ofO(m�(m;n)), where � is the inverse Ackerman function. Using this veri�cation algorithm inour reduction gives us the best known running time for minimum spanning tree algorithmsin the pointer machine model, namely m�(m;n). The problem of a linear time algorithmin this model remains open.NotesThe linear time algorithm is a modi�cation of one proposed by Karger [101, 103]. Whilethat algorithm in retrospect did in fact run in linear time, the weaker version of the sam-pling lemma used there proved only an O(m + n logn) time bound. Thus, credit for the�rst announcement of a linear-time algorithm must go to Klein and Tarjan [124], who gavethe necessary tight sampling lemma and used it to simplify the algorithm. Our results werecombined and an improved high-probability complexity analysis was developed collabora-tively for publication in a joint journal paper [106].Cole, Klein, and Tarjan [37] have parallelized the minimum spanning tree algorithmto run in O(2log� n logn) time and perform linear work on a CRCW PRAM. In contrast,in Chapter 13, we give an EREW algorithm for minimum spanning trees which runs inO(logn) time using m= logn processors on dense graphs and is therefore optimum for densegraphs. The question of whether an optimum EREW algorithm can be found for sparsegraphs remains open.

Chapter 3Minimum Cuts3.1 IntroductionWe now turn from the random sampling model, in which a random subgroup was used toanalyze the whole population, to Quicksort's random selection model, in which we assumethat a randomly selected individual is \typical." We investigate the minimum cut problem.We de�ne it, discuss several applications, and then describe past work on the problem.After providing this context, we describe our new contributions. All three types of random-ization discussed in the introduction, random selection, random sampling, and randomizedrounding, are usefully applied to minimum cut problems.3.1.1 Problem De�nitionGiven a graph with n vertices and m (possibly weighted) edges, we wish to partition thevertices into two non-empty sets so as to minimize the number (or total weight) of edgescrossing between them. More formally, a cut (A;A) of a graph G is a partition of thevertices of G into two nonempty sets A and B. An edge (v; w) crosses cut (A;A) if one ofv and w is in A and the other in A. The value of a cut is the number of edges that crossthe cut or, in a weighted graph, the sum of the weights of the edges that cross the cut. Theminimum cut problem is to �nd a cut of minimum value.Throughout this discussion, the graph is assumed to be connected, since otherwise theproblem is trivial. We also require that all edge weights be non-negative, because otherwisethe problem isNP-complete by a trivial transformation from the maximum-cut problem [74,page 210]. We distinguish the minimum cut problem from the s-t minimum cut problem in25

26 CHAPTER 3. MINIMUM CUTSwhich we require that two speci�ed vertices s and t be on opposite sides of the cut; in theminimum cut problem there is no such restriction.Particularly on unweighted graphs, solving the minimum cut problem is sometimesreferred to as �nding the connectivity of a graph, that is, determining the minimum numberof edges (or minimum total edge weight) that must be removed to disconnect the graph.3.1.2 ApplicationsThe minimum cut problem has many applications, some of which are surveyed by Picardand Queyranne [163]. We discuss others here.The problem of determining the connectivity of a network arises frequently in issues ofnetwork design and network reliability [36]: in a network with random edge failures, thenetwork is most likely to be partitioned at the minimum cuts. For example, consider anundirected graph in which each edge fails with some probability p, and suppose we wish todetermine the probability that the graph becomes disconnected. Let fk denote the numberof edge sets of size k whose removal disconnects the graph. Then the graph disconnectionprobability is Pk fkpk(1 � p)m�k. If p is very small, then the value can be accuratelyapproximated by considering fk only for small values of k. It therefore becomes importantto to enumerate all minimum cuts and, if possible, all nearly minimum cuts [170]. We willgive applications of our results to network reliability questions in Section 10.1.In information retrieval, minimum cuts have been used to identify clusters of topicallyrelated documents in hypertext systems [22]. If the links in a hypertext collection aretreated as edges in a graph, then small cuts correspond to groups of documents that havefew links between them and are thus likely to be unrelated.Minimum cut problems arise in the design of compilers for parallel languages [26]. Con-sider a parallel program that we are trying to execute on a distributed memory machine. Inthe alignment distribution graph for this program, vertices correspond to program operationsand edges corresponds to ows of data between program operations. When the programoperations are distributed among the processors, the edges connecting nodes on di�erentprocessors are \cut." These cut edge are \bad" because they indicate a need for interproces-sor communication. It turns out that �nding an optimum layout of the program operationsrequires repeated solution of minimum cut problems in the alignment distribution graph.Minimum cut problems also play an important role in large-scale combinatorial opti-mization. Currently the best methods for �nding exact solutions to large traveling salesman

3.1. INTRODUCTION 27problems are based on the technique of cutting planes. The set of feasible traveling sales-man tours in a given graph induces a convex polytope in a high-dimensional vector space.Cutting plane algorithms �nd the optimum tour by repeatedly generating linear inequalitiesthat cut o� undesirable parts of the polytope until only the optimum tour remains. Theinequalities that have been most useful are subtour elimination constraints, �rst introducedby Dantzig, Fulkerson and Johnson [43]. The problem of identifying a subtour eliminationconstraint can be rephrased as the problem of �nding a minimum cut in a graph with real-valued edge weights. Thus, cutting plane algorithms for the traveling salesman problemmust solve a large number of minimum cut problems (see [135] for a survey of the area).Padberg and Rinaldi [161] recently reported that the solution of minimum cut problems wasthe computational bottleneck in their state-of-the-art cutting-plane based algorithm. Theyalso reported that minimum cut problems are the bottleneck in many other cutting-planebased algorithms for combinatorial problems whose solutions induce connected graphs. Ap-plegate [10] made similar observations and also noted that an algorithm to �nd all nearlyminimum cuts might be even more useful. In particular, these nearly minimum cuts can beused to �nd comb inequalities|another important type of cutting planes.3.1.3 Past and Present WorkSeveral di�erent approaches to �nding minimum cuts have been investigated; we describethem in the next few sections. Besides putting our work in context, this discussion describestools that are needed in our minimum cut algorithms.Previously best results, together with our new bounds, are summarized in Figure 3.1,where c denotes the value of the minimum cut.Until recently, the most e�cient algorithms were augmenting algorithms that used max-imum ow computations. We discuss these algorithms in Section 3.2. As the fastest knownalgorithms for maximum ow take
(mn) time, the best minimum cut algorithms inheritedthis bound. Gabow showed how augmenting spanning trees rather than ows could �ndminimum cuts in ~O(cm) time|an improvement for graphs with small minimum cuts c.Parallel algorithms for the problem have also been investigated, but until now processorbounds have been quite large for unweighted graphs, and no good algorithms for weightedgraphs were known.Recently, new and slightly faster approaches to computing minimum cuts without maxi-mum ows appeared. Nagamochi and Ibaraki developed an algorithm for computing sparse

28 CHAPTER 3. MINIMUM CUTSminimum cut bounds unweighted weightedundirected directed undirected directedsequential previous c2n log nc cm log n2m mn+ n2 log n mn log n2mtime [67] [154] [89]this work c3=2n logn n2 log3 nprocessors previous n4:37 Unknown P-completeused [115, 73] [79]in RNC this work n2 n2sequential previous (2 + �) in O(m)approximation [148]time this work (1 + �) in O(m)Figure 3.1: Bounds For the Minimum Cut Problemcerti�cates (described in Section 3.3) that can be used to speed up the augmenting algo-rithms. A side e�ect of their construction is the identi�cation of an edge guaranteed not tobe in the minimum cut; this leads to a contraction-based algorithm for minimum cuts thatis simpler than the augmenting algorithms but has the same ~O(mn) time bound; we discussthis algorithm in Section 3.4. Matula observed that sparse certi�cates could also be used to�nd a (2 + �)-approximation to the minimum cut in linear time; we discuss this algorithmin Section 3.5.After describing these previous results, we contrast our contributions with them inSection 3.6.3.2 Augmentation Based AlgorithmsThe oldest minimum cut algorithms work by augmenting a dual structure that, when it ismaximized, reveals the minimum cut. Note that the undirected minimum cut problem onwhich we focus is a special case of the directed minimum cut problem. In a directed graph,the value of cut (S; T) is the number or weight of edges with head in S and tail in T . Analgorithm to solve the directed cut problem can solve the undirected one as well: given an

3.2. AUGMENTATION BASED ALGORITHMS 29undirected graph, replace each edge connecting v and w with two edges, one directed fromv to w and the other from w to v. The value of the directed minimum cut in the new graphequals the value of the undirected minimum cut in the original graph.3.2.1 Flow based approachesThe �rst algorithm for �nding minimum cuts used the duality between s-t minimum cutsand s-t maximum ows [50, 59]. A good discussion of these algorithms can be found in [3].Since an s-t maximum ow saturates every s-t minimum cut, it is straightforward to �nd ans-t minimum cut given an s-t maximum ow|for example, the set of all vertices reachablefrom the source s in the residual graph of a maximum ow forms one side of such an s-tminimum cut. An s-t maximum ow algorithm can thus be used to �nd an s-t minimumcut, and minimizing over all �n2� possible choices of s and t yields a minimum cut. In 1961,Gomory and Hu [82] introduced the concept of a ow equivalent tree and observed that theminimum cut could be found by solving only n�1 maximum ow problems. In their classicbook Flows in Networks [60], Ford and Fulkerson comment on the method of Gomory andHu: Their procedure involved the successive solution of precisely n� 1 maximal owproblems. Moreover, many of these problems involve smaller networks than theoriginal one. Thus one could hardly ask for anything better.This attitude was prevalent in the following 25 years of work on the minimum cut problem.The focus in minimum cut algorithms was on developing better maximum ow algorithmsand better methods of performing series of maximum ow computations.Maximum ow algorithms have become progressively faster over the years. Currently,the fastest algorithms are based on the push-relabel method of Goldberg and Tarjan [78].Their early implementation of this method runs in O(mn log(n2=m)) time. Many sub-sequent algorithms have reduced the running time. Currently, the fastest deterministicalgorithms, independently developed by King, Rao and Tarjan [121] and by Phillips andWestbrook [162]) run in O(nm(log mn log n n)) time. Randomization has not helped signif-icantly. The fastest randomized maximum ow algorithm, developed by Cheriyan andHagerup [28] runs in O(mn+n2 log2 n) time. There appears to be some sort of O(mn) bar-rier below which maximum ow algorithms cannot go. Finding a minimum cut by directlyapplying any of these algorithms in the Gomory-Hu approach requires
(mn2) time.

30 CHAPTER 3. MINIMUM CUTSThere have also been successful e�orts to speed up the series of maximum ow compu-tations that arise in computing a minimum cut. The basic technique is to pass informationamong the various ow computations so that computing all n maximum ows togethertakes less time than computing each one separately. Applying this idea, Podderyugin [164],Karzanov and Timofeev [116], and Matula [147] independently discovered several algorithmsthat determine edge connectivity in unweighted graphs in O(mn) time. Hao and Orlin [89]obtained similar types of results for weighted graphs. They showed that the series of n� 1related maximum ow computations needed to �nd a minimum cut can all be performed inroughly the same amount of time that it takes to perform one maximum ow computation,provided the maximum ow algorithm used is a non-scaling push-relabel algorithm. Theyused the fastest such algorithm, that of Goldberg and Tarjan, to �nd a minimum cut inO(mn log(n2=m)) time.3.2.2 Gabow's Round Robin AlgorithmQuite recently, Gabow [67] developed a more direct augmenting-algorithm approach to theminimum cut problem. It is based on a matroid characterization of the minimum cutproblem and is analogous to the augmenting paths algorithm for maximum ows. Wereconsider the maximum ow problem. The duality theorem of [59] says that the value ofthe s-t minimum cut is equal to maximum number of edge-disjoint directed s-t paths thatcan be \packed" in the graph. Gabow's minimum cut algorithm is based on an analogousobservation that the minimum cut corresponds to a packing of disjoint directed trees.Gabow's algorithm is designed for directed graphs and is based on earlier work of Ed-monds [47]. Given a directed graph and a particular vertex s, a minimum s-cut is a cut(S; S) such that s 2 S and the number of directed edges crossing from S to S is minimized.Since the minimum cut in a graph is a minimum s-cut either in G or in G with all edgesreversed, �nding a global minimum cut in reduces to �nding a minimum s-cut. We de�nea spanning tree in the standard fashion, ignoring edge directions. We de�ne a completek-intersection at s as a set of k edge-disjoint spanning trees that induce an indegree ofexactly k on every vertex but s.Gabow's algorithm is based upon the following characterization of minimum cuts:The minimum s-cut of a graph is equal to the maximum number c such that acomplete c-intersection at s exists.

3.2. AUGMENTATION BASED ALGORITHMS 31This characterization corresponds closely to that for maximum ows. Gabow notes thatthe edges of a complete k-intersection can be redistributed into k spanning trees rooted atand directed away from s. Thus, just as the minimum s-t cut is equal to the maximumnumber of disjoint paths directed from s to t, the minimum s-cut is equal to the maximumnumber of disjoint spanning trees directed away from s.Gabow's minimum cut algorithm uses a subroutine called the Round Robin Algorithm(Round-Robin). This subroutine takes as input a graph G with a complete k-intersection.In O(m log(n2=m)) time, it either returns a complete (k + 1)-intersection or proves thatthe minimum cut is k by returning a cut of value k. Round-Robin can therefore be seenas a cousin of the standard augmenting path algorithm for maximum ows: instead ofaugmenting by a path, it augments by a spanning tree. We can think of this as attemptingto send ow simultaneously from s to every vertex in order to �nd the vertex with thesmallest possible max-ow from s.Gabow's algorithm for �nding a minimum cut is to repeatedly call Round-Robin untilit fails. The number of calls needed is just the value c of the minimum cut; thus the totalrunning time of his algorithm is O(cm log(n2=m)). Gabow's algorithm can be applied toundirected graphs if we replace each undirected edge fu; vg with two directed edges (u; v)and (v; u).Gabow's algorithm is fastest on graphs with small minimum cuts, and is thus a goodcandidate for a random sampling approach. We apply this idea in Section 6.3 to developlinear time approximation algorithms and an ~O(mpc)-time exact algorithm for undirectedgraphs.3.2.3 Parallel algorithmsParallel algorithms for the minimum cut problem have also been explored, though with muchless satisfactory results. For undirected and unweighted graphs, Khuller and Schieber [118]gave an algorithm that uses cn2 processors to �nd a minimum cut of value c in ~O(c) time;this algorithm is therefore in NC when c is polylogarithmic in n.For directed unweighted graphs, the RNC matching algorithms of Karp, Upfal, andWigderson [115] or Mulmuley, Vazirani, and Vazirani [152] can be combined with a reductionof s-t maximum ow problems to matching [115] to yield RNC algorithms for s-t minimumcuts. We can �nd a minimum cut by performing 2n of these s-t cut computations in parallel(�x a vertex s, and �nd minimum s-v and v-s cuts for each other vertex v). Unfortunately,

32 CHAPTER 3. MINIMUM CUTSthe processor bounds are quite large|the best bound, using Galil and Pan's [73] adaptationof [115], is n4:37.These unweighted directed graph algorithms can be extended to work for weightedgraphs by treating an edge of weight w as a set of w parallel edges. If W is the sum ofall the edge weights then the number of processors needed is proportional to W ; hence theproblem is not in RNC unless the edge weights are given in unary. If we combine thesealgorithms with the scaling techniques of Edmonds and Karp [49], as suggested in [115],the processor count is mn4:37 and the running times are proportional to logW . Hence, thealgorithms are not in RNC unless W = npolylog n.The lack of an RNC algorithm is not surprising. Goldschlager, Shaw, and Staples [79]showed that the s-t minimum cut problem on weighted directed graphs is P-complete. Insection 4.5.4 we note a simple reduction to their result that proves that the weighted directedminimum cut problem is also P-complete. Therefore, a (randomized) parallel algorithm forthe directed minimum cut problem would imply that P � NC (RNC), which is believed tobe unlikely.An interesting open question is whether Gabow's Round Robin algorithm can be paral-lelized e�ciently using maximal matching techniques as for maximum ows; doing so wouldgive a more e�ective algorithm than the ones based on maximum ows that must considerall source-sink pairs simultaneously.3.3 Sparse Connectivity Certi�catesThe augmentation-based algorithms we have just discussed typically examine all the edgesin a graph in order to perform one augmentation. It is therefore convenient that we canoften preprocess the graph to reduce the number of edges we have to examine.The tool we use is sparse certi�cates. Certi�cates apply to any monotone increasingproperty of graphs|one that holds for graph G if it holds for some proper subgraph ofG. Given such a property, a sparse certi�cate for G is a sparse subgraph that has theproperty, proving that G has it as well. The advantage is that since the certi�cate is sparse,the property can be veri�ed more quickly. For example, Eppstein et al [51] give sparse-certi�cate techniques that improve the running times of dynamic algorithms for numerousgraph problems such as connectivity, bipartitioning, and minimum spanning trees.Minimum cut algorithms can e�ectively use a particular sparse connectivity certi�cate.

3.3. SPARSE CONNECTIVITY CERTIFICATES 33Using this certi�cate, it is often possible to discard many edges from a graph before com-puting minimum cuts. Discarding edges makes many algorithms (such as Gabow's) runfaster. Nagamochi and Ibaraki [155] give a linear-time algorithm called scan-�rst search forconstructing such a certi�cate. A side e�ect of their algorithm is the identi�cation of oneedge that is not in the minimum cut; this motivates the development of contraction-basedalgorithms as an alternative to augmentation-based algorithms. Matula [148] noticed thatthe certi�cate could be used as the centerpiece of a linear time sequential algorithm for�nding a (2 + �)-approximation to the minimum cut in a graph.3.3.1 De�nitionDe�nition 3.3.1 A sparse k-connectivity certi�cate for an n-vertex graph G is a subgraphH of G such that1. H contains at most kn edges, and2. H contains all edges crossing cuts of value k or less.This de�nition extends to weighted graphs if we equate an edge of weight w with a setof w unweighted edges with the same endpoints|the bound in size becomes a bound on thetotal weight of remaining edges. It follows from the de�nition that if a cut has value v � kin G, then it has the same value v in H . On the other hand, any cut of value greater thank in G has value at least k in H . Therefore, if we are looking for cuts of value less than k inG, we might as well look for them in H , since they are the same. The advantage is that Hmay have many fewer edges than G. Nagamochi and Ibaraki made this approach feasibleby presenting an algorithm that constructs a sparse k-connectivity certi�cate in O(m) timeon unweighted graphs, independent of k. On weighted graphs, the running time of theiralgorithm increases to O(m+ n logn).Consider, for example, Gabow's minimum cut algorithm from the previous section. Itruns in O(cm log(m=n))-time on an n-vertexm-edge graph with minimum cut c. If we knewc, we could use the Nagamochi-Ibaraki algorithm to construct a sparse (c+ 1)-connectivitycerti�cate. This certi�cate would have the same minimum cuts of value c as the originalgraph, but only (c+1)n edges. Thus Gabow's algorithm would run in O((nc)c log((nc)=n))time on the certi�fcate. The overall time for Gabow's algorithm therefore improves toO(m + c2n log(n=c)). If c is not known, we start by guessing c = 1 and then repeatedlydoubling our guess; the running time remains ~O(m+(1+22+42+ : : :+c2)n) = ~O(m+c2n).

34 CHAPTER 3. MINIMUM CUTSThe only sparse k-connectivity certi�cate known at present is a maximal k-jungle, whichwe now de�ne.De�nition 3.3.2 A k-jungle is a set of k disjoint forests in G.De�nition 3.3.3 A maximal k-jungle is a k-jungle such that no other edge in G can beadded to any one of the jungle's forests without creating a cycle in that forest.Lemma 3.3.4 ([154]) A maximal k-jungle contains all the edges in any cut of k or feweredges.Proof: Consider a maximal k-jungle J , and suppose it contains fewer than k edges of somecut. Some forest in J must have no edge from this cut. Any cut edge not in J could beadded to this forest without creating a cycle, so all cut edges must already be in J .It follows that a maximal k-jungle is a sparse k-connectivity certi�cate, because eachforest in the jungle contains at most n� 1 edges.3.3.2 ConstructionThe simplest algorithm for constructing a maximal k-jungle is a greedy one: �nd and deletea spanning forest from G k times. Nagamochi and Ibaraki give an implementation of thisgreedy construction called Scan-First-Search. It takes a single pass through the edgesand labels them according to which iteration of the greedy algorithm would delete them.This labeling allows them to construct the k-jungle in linear time (or O(m+ n logn) timeon weighted graphs) by identifying the set of edges with labels at most k.Scan-First-Search constructs certi�cates with an important additional property. In agraph with minimum cut c, at least one edge will not be in the �rst c forests of the jungle.This edge cannot be in the minimum cut, because by de�nition all edges in a cut of valuec are contained in the �rst c forests. This means that the edge given the largest label byScan-First-Search will not be in the minimum cut. We will see in the next section thatthis information can be used e�ectively to �nd minimum cuts.We can also consider parallel sparse certi�cate algorithms. These play in importantrole in several other parts of our work. Cheriyan, Kao, and Thurimella [29] give a parallelsparse certi�cate algorithm that runs in O(k logn) time using m+ kn processors. It is thusin NC when k = O(polylogn). In Section 5.2, we give a better parallel sparse certi�cate

3.4. NAGAMOCHI AND IBARAKI'S CONTRACTION ALGORITHM 35

Figure 3.2: Contractionalgorithm that runs in O(polylogn) time using kn processors, and is therefore in NC whenk is polynomial.3.4 Nagamochi and Ibaraki's Contraction AlgorithmAs we just mentioned, Scan-First-Search has a side e�ect of identifying an edge that isnot in the minimum cut. Nagamochi and Ibaraki [154, 155] use this fact in developing aminimum cut algorithm based on the idea of contraction. If an edge is not in the minimumcut, then its endpoints must be on the same side of the minimum cut. Therefore, if wemerge the two endpoints into a single vertex, we will get a graph with one less vertex butwith the same minimum cut as the original graph. An example of an edge contraction isgiven in Figure 3.2.To contract two vertices v1 and v2 we replace them by a vertex v, and let the set of edgesincident on v be the union of the sets of edges incident on v1 and v2. We do not merge edgesfrom v1 and v2 that have the same other endpoint; instead, we create multiple instances ofthose edges. However, we remove self loops formed by edges originally connecting v1 to v2.

36 CHAPTER 3. MINIMUM CUTSFormally, we delete all edges (v1; v2), and replace each edge (v1; w) or (v2; w) with an edge(v; w). The rest of the graph remains unchanged. We will use G=(v1; v2) to denote graphG with edge (v1; v2) contracted (by contracting an edge, we will mean contracting the twoendpoints of the edge). Extending this de�nition, for an edge set F we will let G=F denotethe graph produced by contracting all edges in F (the order of contractions is irrelevant upto isomorphism).Remark: Note the di�erence between the contraction rule used here and that used in theminimum spanning tree algorithm. There, all edges but the minimum weight edge in agroup of parallel edges were deleted; here, all edges in a parallel group remain.Contraction is used as the fundamental operation in Nagamochi and Ibaraki's algorithmNI-Contract shown in Figure 3.3.Procedure NI-Contract(G)repeat until G has 2 vertices�nd an edge (v; w) not in the minimum cut using Scan-first-searchlet G G=(v; w)return G Figure 3.3: A Generic Contraction-Based AlgorithmWhen NI-Contract terminates, each original vertex has been contracted into one of thetwo remaining \metavertices." These metavertices de�nes a cut of the original graph: eachside corresponds to the vertices contained in one of the metavertices. More formally, at anypoint in the algorithm, we can de�ne s(a) to be the set of original vertices contracted to acurrent metavertex a. Initially s(v) = v for each v 2 V , and whenever we contract (v; w)to create vertex x we set s(x) = s(v) [s(w). We say a cut (A;B) in the contracted graphcorresponds to a cut (A0; B0) in G, where A0 = [a2As(a) and B0 = [b2Bs(b). Note that acut and its corresponding cut will have the same value. When the Contraction Algorithmterminates, yielding a graph with two metavertices a and b, we have a corresponding cut(A;B) in the original graph, where A = s(a) and B = s(b).Lemma 3.4.1 A cut (A;B) is output by NI-Contract if and only if no edge crossing (A;B)is contracted by the algorithm.

3.5. MATULA'S (2 + �)-APPROXIMATION ALGORITHM 37Proof: The only if direction is obvious. For the other direction, consider two vertices onopposite sides of the cut (A;B). If they end up in the same metavertex, then there must bea path between them consisting of edges that were contracted. However, any path betweenthem crosses (A;B), so an edge crossing cut (A;B) would have had to be contracted. Thiscontradicts our hypothesis.Corollary 3.4.2 NI-Contract outputs a minimum cut.Proof: By assumption, no edge in the minimum cut is ever contracted.Now note that NI-Contract performs exactly n � 2 iterations, since the number ofvertices is reduced by one each time. Therefore, the running time of NI-Contract is n � 2times the time needed to �nd a non-minimum-cut edge. Nagamochi and Ibaraki's sparse-certi�cate algorithm identi�es a non-minimum-cut edge in linear time and therefore yieldsan implementation of NI-Contract that runs in O(mn) time on unweighted graphs (andO(mn + n2 logn) time on weighted graphs). This implementation improves on maximumow based algorithms in terms of both running-time bound and practicality.3.5 Matula's (2 + �)-Approximation AlgorithmMatula's (2 + �)-approximation algorithm [148] also uses sparse certi�cates as its main in-gredient. It modi�es the approach of Nagamochi and Ibaraki's contraction-based algorithm,using the fact that if many non-minimum-cut edges are found and contracted simultane-ously, only a few iterations will be needed. See Procedure Approx-min-cut in Figure 3.4.We describe the algorithm as one that approximates the cut value; it is easily modi�edto �nd a cut with the returned value. The basic idea is to �nd a sparse certi�cate thatcontains all minimum cut edges and then contract all edges not in the certi�cate. Thealgorithm works quickly because so long as we do not have a good approximation to theminimum cut at hand, we can guarantee that many edges are contracted each time.Lemma 3.5.1 Given a graph with minimum cut c, the approximation algorithm returns avalue between c and (2 + �)c.Proof: Clearly the value is at least c because it corresponds to some cut the algorithmencounters. For the upper bound, we use induction on the size of G. We consider two cases.

38 CHAPTER 3. MINIMUM CUTSProcedure Approx-Min-Cut(G)1. Let � be the minimum degree of G.2. Let k = �=(2 + �).3. Find a sparse k-connectivity certi�cate for G.4. Construct G0 from G by contracting all non-certi�cate edges.5. Return min(�; Approx-Min-Cut(G0)).Figure 3.4: Matula's Approximation AlgorithmIf � < (2 + �)c, then since we return a value of at most �, the algorithm is correct. On theother hand, if � � (2 + �)c, then k � c. It follows that the sparse certi�cate we constructcontains all the minimum cut edges. Thus no edge in the minimum cut is contracted whileforming G0, so G0 has minimum cut c. By the inductive hypothesis, the recursive call returnsa value between c and (2 + �)c.Lemma 3.5.2 In an unweighted graph, the number of levels of recursion in the approxi-mation algorithm is O(logm).Proof: If G has minimum degree �, it must have at least �n=2 edges. On the other hand,the graph G0 that we construct contains at most k(n�1) = �(n�1)=(2+�) edges. It followsthat each recursive step reduces the number of edges in the graph by a constant factor; thusat a recursion depth of O(logm) the problem can be solved trivially.Remark: The extra � factor above 2 is needed to ensure a signi�cant reduction in thenumber of edges at each stage and thus keep the recursion depth small. The depth ofrecursion is in fact �(��1 logm) and the total work done O(m=�).Corollary 3.5.3 For unweighted graphs, a (2 + �)-approximation to the minimum cut canbe found in O(m=�) time.Proof: All the steps of Matula's approximation algorithm take O(m) time, except for�nding a sparse certi�cate which takes O(m) time using Scan-First-Search.

3.6. NEW RESULTS 39Remark: Matula's Algorithm can be modi�ed to run on weighted graphs if we use theO(m + n logn)-time weighted-graph version of Scan-First-Search. We need to use alinear-time preprocessing step (described in Section ??) to ensure that the number ofiterations of scanning is O(logn). The resulting algorithm runs in O(m(logn)=�) time.We can also consider using the parallel sparse certi�cate algorithm of [29]. This algo-rithm uses m processors and �nds a sparse k-connectivity certi�cate in ~O(k) time.Corollary 3.5.4 In a graph with minimum cut c, a (2+ �)-approximation to the minimumcut can be found in ~O(c=�) time.3.6 New ResultsIn the next few chapters, we will present new algorithms for solving the minimum cut prob-lem. Here, we outline the various results we present and compare them to previous bestbounds. Consider a graph withm edges, n vertices, and minimum cut c. Many of our resultscan be seen as circling around the following (quite possibly achievable) goal: develop deter-ministic linear-time sequential and linear-processor parallel algorithms for �nding minimumcuts.In Chapter 4, we develop a powerful new application of the contraction ideas of Sec-tion 3.4. Our randomized Recursive Contraction Algorithm is strongly polynomial (see Sec-tion 1.3) and runs in O(n2 log3 n) time|a signi�cant improvement on the previous ~O(mn)bounds. It is also parallelizable to run in RNC using n2 processors. This gives the �rstproof that the minimum cut can be found in RNC. The algorithm can be used to enu-merate all approximately minimum cuts in a graph (those with a value any constant factortimes the minimum cut's) in polynomial time and in RNC, and to prove that there arefew such cuts. These results have important applications in the study of network reliabil-ity [170, 36]. For example, we use small-cut enumeration to give the �rst fully polynomialtime approximation scheme for the all-terminal network reliability problem|the problemof determining the likelihood that a graph becomes disconnected if each of its edges failswith a certain probability.In Chapter 5, we apply derandomization techniques and our cut enumeration theoremsto develop a deterministic parallel algorithm for minimum cuts, yielding the �rst proof thatthe minimum cut problem can be solved in NC. To do so, we present a new determin-istic parallel algorithm for �nding sparse connectivity certi�cates. This lets us parallelize

40 CHAPTER 3. MINIMUM CUTSMatula's sequential algorithm for �nding a (2 + �)-approximation to the minimum cut inunweighted graphs. We then show that the minimum cut problem can be reduced in NC tothe unweighted minimum cut approximation problem just solved. Sparse certi�cates alsoplay an important role in many of the algorithms that follow.In Chapter 6, we use our results on enumeration of small cuts to prove a cut samplingtheorem that shows that cuts take predictable values under random sampling. We showhow this fact leads to a linear time algorithm for estimating the minimum cut to within(1+ �), thus improving on Matula's approximation algorithm. We also use it to extend ourlinear processor 2-approximation algorithm to weighted graphs, and to give fast algorithmsfor maintaining the minimum cut dynamically. In contrast to the Contraction Algorithmwhich is Monte Carlo, these algorithms can be made Las Vegas. Using a randomizeddivide-and-conquer scheme for unweighted graphs, we accelerate Gabow's algorithm to runin ~O(mpc) time. In Chapter 10, we extend this approach, developing randomized divideand conquer algorithms for s-t minimum cut and maximum ow problems. We also giveapplications to other cut-related problems such as minimum s-t cuts and maximum ows.In Chapter 9, we discuss extensions to our Contraction Algorithm. The RecursiveContraction Algorithm can be used to compute (and enumerate) all minimum multiwaycuts. The Contraction Algorithm provides a signi�cantly faster solution than was previouslyknown, and also gives the �rst RNC algorithm for the problem. A variant of the algorithmcan be used to construct the cactus representation of minimum cuts in a graph. In twocomplexity theoretic results, we show that the minimum cut can be found in polynomialtime using only O(n) space, and in O(logn) time on an EREW PRAM, matching the lowerbound.

Chapter 4Randomized ContractionAlgorithms4.1 Introduction4.1.1 Overview of ResultsIn this chapter, we present the Recursive Contraction Algorithm.1 It is a random-selectionbased algorithm, relying in the fact that a \typical" graph edge is not in the minimumcut. It is therefore analogous to quicksort. While quicksort could use a linear time median�nding algorithm to pick a pivot with guaranteed good performance, it instead assumesthat a randomly chosen pivot would work well. Similarly, rather than using Nagamochiand Ibaraki's slow algorithm for identifying an edge not in the minimum cut, we pick oneat random and assume it is not in the minimum cut. This approach leads to a stronglypolynomial algorithm that runs in O(n2 log3 n) time|a signi�cant improvement on theprevious ~O(mn) bounds.With high probability, our algorithm �nds the minimum cut|in fact, it �nds all min-imum cuts. This suggests that the minimum cut problem may be fundamentally easierto solve than the maximum ow problem. The parallel version of our algorithm runs inpolylogarithmic time using n2 processors on a PRAM. It thus provides the �rst proof thatthe minimum cut problem with arbitrary edge weights can be solved in RNC. It is also ane�cient RNC algorithm for the minimum cut problem in that the total work it performs is1Parts of this chapter appeared in [102] and (joint with Cli�ord Stein) [110].41

42 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMSwithin a polylogarithmic factor of that performed by the best sequential algorithm (namely,the one presented here). In a contrasting result, we show that the directed minimum cutproblem is P-complete and thus appears unlikely to have an RNC solution.Our algorithm is extremely simple and, unlike the best ow-based approaches, doesnot rely on any complicated data structures such as dynamic trees [177]. The most timeconsuming steps of the sequential version are simple computations on arrays, while themost time consuming steps in the parallel version are sorting and computing connectedcomponents. All of these computations can be performed practically and e�ciently. Wehave implemented the algorithm and determined that it works well in practice.A drawback of our algorithm is that it is Monte Carlo. Monte Carlo Algorithms givethe right answer with high probability but not with certainty. For many problems, such aaw can be recti�ed because it is possible to verify a \certi�cate" of the correctness of theoutput and rerun the algorithm if the output is wrong. This modi�cation turns Monte CarloAlgorithms into Las Vegas algorithms that are guaranteed to produce the right answer buthave a small probability of taking a long time to do so. Unfortunately, all presently knownminimum cut certi�cates (such as maximum ows, or the complete intersections of Gabow'salgorithm) take just as long to construct when the minimum cut is known as when it isunknown. Thus we can provide no speedup if a guarantee of the minimum cut value isdesired.Matching the importance of the Contraction Algorithm is a corollary that follows fromits abstract implementation. This corollary bounds the number of approximately minimumcuts in a graph, and is the linchpin of all the sampling theorems and algorithms that followin Chapters 5, 6, 10, and 10. It also has important implications in analyzing networkreliability.4.1.2 Overview of PresentationWe start with an abstract formulation of the Contraction Algorithm in Section 4.2. Thisextremely simple algorithm has an
(1=n2) probability of outputting a minimum cut. It isbased on the observation that the edges of a graph's minimum cut form a very small fractionof the graph's edges, so that a randomly selected edge is unlikely to be in the minimumcut. Therefore, if we choose an edge at random and contract its endpoints into a singlevertex, the probability is high that the minimum cut will be una�ected. We therefore �ndthe minimum cut by repeatedly choosing and contracting random edges until the minimum

4.1. INTRODUCTION 43cut is apparent.Moving from the abstract formulation to a more concrete algorithm divides naturallyinto two stages. In the �rst stage, we show how to e�ciently implement the repeatedselection and contraction of edges that forms a single trial of the Contraction Algorithm.Section 4.3 uses a simple adjacency matrix scheme to implement the algorithm in O(n2)time.The second stage deals with the need for multiple trials of the Contraction Algorithm.Given the
(1=n2) success probability of the Contraction Algorithm, repeating it O(n2 logn)times gives a high probability of �nding the minimum cut in some trial. However, thisapproach yields undesirably high sequential time and parallel processor bounds of ~O(n4).Thus in Section 4.4 we show how the O(n2 log n) necessary trials can share their work sothat the total work performed by any one trial is ~O(1). This amortization gives our ~O(n2)sequential time bounds.We next give parallel implementations of the Contraction Algorithm. To achieve par-allelism, we \batch together" numerous selections and contractions, so that only a fewcontraction phases are necessary. We present a simple but slightly ine�cient (by logarith-mic factors) parallel implementation in Section 4.5. This implementation su�ces to showthat minimum cuts of undirected graphs can be found in RNC. In contrast, in Section 4.5.4we show that the corresponding directed graph problem is P-complete.In section 4.6, we give an asymptotically better (and more practical) implementationof the Contraction Algorithm that runs in linear time sequentially and is more e�cient inparallel than our previous implementation. This gives us improved sequential time boundson certain classes of graphs as well as a more e�cient parallel algorithm.In Section 4.7, we return to the abstract description of the Contraction Algorithm anduse it to bound the number of approximately minimum cuts in a graph. We then showhow the algorithm can be modi�ed to �nd all the approximately minimum cuts. As anapplication, in Section 10.1, we give the �rst fully polynomial time approximation schemefor the all-terminal network reliability problem of determining the probability that a networkremains connected if its edges su�er random failures.

44 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMS4.2 The Contraction AlgorithmIn this section we present an abstract version of the Contraction Algorithm. This version ofthe algorithm is particularly intuitive and easy to analyze. In later sections, we will describehow to implement it e�ciently.4.2.1 Unweighted GraphsFor now, we restrict our attention to unweighted multigraphs (i.e., graphs that may havemultiple edges between one pair of vertices). The Contraction Algorithm is a variant ofNagamochi and Ibaraki's contraction-based algorithm (presented in Section 3.4). Assumeinitially that we are given a multigraph G(V;E) with n vertices and m edges. The Con-traction Algorithm is based on the idea that since the minimum cut is small, a randomlychosen edge is unlikely to be in the minimum cut. The Contraction Algorithm, which isdescribed in Figure 4.1, repeatedly chooses an edge at random and contracts it.Procedure Contract(G)repeat until G has 2 verticeschoose an edge (v; w) uniformly at random from Glet G G=(v; w)return G Figure 4.1: The Contraction AlgorithmTheorem 4.2.1 A particular minimum cut in G is returned by the Contraction Algorithmwith probability at least �n2��1 =
(n�2).Proof: Fix attention on some speci�c minimum cut (A;B) with c crossing edges. We willuse the term minimum cut edge to refer only to edges crossing (A;B). From Lemma 3.4.1,we know that if we never select a minimum cut edge during the Contraction Algorithm,then the two vertices we end up with must de�ne the minimum cut.Observe that after each contraction, the minimum cut value in the new graph must stillbe at least c. This is because every cut in the contracted graph corresponds to a cut of the

4.2. THE CONTRACTION ALGORITHM 45same value in the original graph, and thus has value at least c. Furthermore, if we contractan edge (v; w) that does not cross (A;B), then the cut (A;B) corresponds to a cut of valuec in G=(v; w); this corresponding cut is a minimum cut (of value c) in the contracted graph.Each time we contract an edge, we reduce the number of vertices in the graph by one.Consider the stage in which the graph has r vertices. Since the contracted graph has aminimum cut of at least c, it must have minimum degree c, and thus at least rc=2 edges.However, only c of these edges are in the minimum cut. Thus, a randomly chosen edge isin the minimum cut with probability at most 2=r. The probability that we never contracta minimum cut edge through all n� 2 contractions is thus at least�1� 2n��1� 2n � 1� � � ��1� 23� = �n� 2n ��n� 3n� 1� � � ��24��13�= n2!�1=
(n�2):Remark: This bound is tight. In a cycle on n vertices, there are �n2� minimum cuts, one foreach pair of edges in the graph. Each of these minimum cuts is produced by the ContractionAlgorithm with equal probability, namely �n2��1.Remark: An alternative interpretation of the Contraction Algorithm is that we are ran-domly ranking the edges and then constructing a minimum spanning tree of the graphbased on these ranks (using Kruskal's minimum spanning tree algorithm [133]). If we re-move the heaviest edge in the minimum spanning tree, the two components that result havean
(n�2) chance of de�ning a particular minimum cut. This intuition forms the basis ofthe implementation of Section 4.6, as well as for certain dynamic approximation algorithmsin Section 10.5.The Contraction Algorithm can be halted when k vertices remain. We refer to this ascontraction to k vertices. The following result is an easy extension of Theorem 4.2.1:Corollary 4.2.2 A particular minimum cut (A;B) survives contraction to k vertices withprobability at least �k2�=�n2� =
((k=n)2).

46 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMS4.2.2 Weighted GraphsExtending the Contraction Algorithm to weighted graphs is simple. For a given weightedgraph G, we consider a corresponding unweighted multigraph G0 on the same set of vertices.An edge of weight w in G is mapped to a collection of w parallel unweighted edges in G0.The minimum cuts in G and G0 are the same, so it su�ces to run the Contraction Algorithmon G0. We choose a pair of vertices to contract in G0 by selecting an edge of G0 uniformlyat random. Therefore, the probability that we contract u and v is proportional to thenumber of edges connecting u and v in G0, which is just the weight of the edge (u; v) inG. This interpretation leads to the weighted version of the Contraction Algorithm given inFigure 4.2.Procedure Contract(G)repeat until G has 2 verticeschoose an edge (v; w) with probability proportional to the weight of (v; w)let G G=(v; w)return G Figure 4.2: The Weighted Contraction AlgorithmThe analysis of this algorithm follows immediately from the unweighted case.Corollary 4.2.3 The Weighted Contraction Algorithm outputs a particular minimum cutof G with probability
(1=n2).4.3 Implementing the Contraction AlgorithmWe now turn to implementing the algorithm described abstractly in the previous section.First, we give a version that runs in O(n2) time and space. Later, we shall present a versionthat runs in O(m) time and space with high probability and is also parallelizable. This�rst method, though, is easier to analyze, and its running time does not turn out to be thedominant factor in our analysis of the time to �nd minimum cuts.To implement the Contraction Algorithm we use an n � n weighted adjacency matrixW . The entry W (u; v) contains the weight of edge (u; v), which can equivalently be viewed

4.3. IMPLEMENTING THE CONTRACTION ALGORITHM 47as the number of multigraph edges connecting u and v. If there is no edge connecting uand v then W (u; v) = 0. We also maintain the total (weighted) degree D(u) of each vertexu, thus D(u) =PvW (u; v).We now show how to implement two steps: randomly selecting an edge and performinga contraction.4.3.1 Choosing an EdgeA fundamental operation that we need to implement is the selection of an edge with prob-ability proportional to its weight. A natural method is the following. First, from edgese1; : : : ; em with weights w1; : : : ; wm; construct cumulative weights Wk = Pki=1 wi. Thenchoose an integer r uniformly at random from 0; : : : ;Wm and use binary search to identifythe edge ei such that Wi�1 � r < Wi. This can easily be done in O(logW) time. Whilethis bound is not a strongly polynomial bound since it depends on the edge weights beingsmall, we will temporarily ignore this issue. For the time being, we assume that we have ablack-box subroutine called Random-Select. The input to Random-Select is a cumulativeweight array of length m. Random-Select runs in O(logm) time and returns an integerbetween 1 and m, with the probability that i is returned being proportional to wi. In prac-tice the lack of strong polynomiality is irrelevant since implementors typically pretend thattheir system-provided random number generator can be made to return numbers in an arbi-trarily large range by scaling. We provide theoretical justi�cation for using Random-Selectby giving a strongly polynomial implementation of it in the appendix (Section A.3).We now use Random-Select to �nd an edge to contract. Our goal is to choose anedge (u; v) with probability proportional to W (u; v). To do so, choose a �rst endpoint uwith probability proportional to D(u), and then once u is �xed choose a second endpointv with probability proportional to W (u; v). Each of these two choices requires O(n) timeto construct a cumulative weight array and one O(logn)-time call to Random-Select, for atotal time bound of O(n).The following lemma, similar to one used by Klein, Plotkin, Stein and Tardos [122],proves the correctness of this procedure.Lemma 4.3.1 If an edge is chosen as described above, then Pr[(u; v) is chosen] is propor-tional to W (u; v):

48 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMSProof: Let � =PvD(v). ThenPr[choose(u; v)] = Pr[choose u] � Pr[choose (u; v) j chose u]+ Pr[choose v] � Pr[choose (u; v) j chose v]= D(u)� � W (u; v)D(u) + D(v)� � W (u; v)D(v)= 2W (u; v)�/ W (u; v):4.3.2 Contracting an EdgeHaving shown how to choose an edge, we now show how to implement a contraction. GivenW and D, which represent a graph G, we explain how to update W and D to reect thecontraction of a particular edge (u; v). Call the new graphG0 and compute its representationvia the algorithm of Figure 4.3.2. Intuitively, this algorithm moves all edges incident on vto u. The algorithm replaces row u with the sum of row u and row v, and replaces column uProcedure to contract edge (u; v)Let D(u) D(u) +D(v)� 2W (u; v)Let D(v) 0Let W (u; v) W (v; u) 0For each vertex w except u and vLet W (u; w) W (u; w) +W (v; w)Let W (w; u) W (w; u) +W (w; v)Let W (v; w) W (w; v) 0Figure 4.3: Contracting an Edgewith the sum of column u and column v. It then clears row v and column v. W and D nowrepresent G0, since any edge that was incident to u or v is now incident to u and any two

4.4. THE RECURSIVE CONTRACTION ALGORITHM 49edges of the form (u; w) and (v; w) for some w have had their weights added. Furthermore,the only vertices whose total weighted degrees have changed are u and v, and D(u) andD(v) are updated accordingly. Clearly, this procedure can be implemented in O(n) time.Summarizing this and the previous section, we have shown that in O(n) time we can choosean edge and contract it. This yields the following result:Corollary 4.3.2 The Contraction Algorithm can be implemented to run in O(n2) time.Observe that if the Contraction Algorithm has run to completion, leaving just twovertices u and v, then we can determine the weight of the implied cut by inspecting W (u; v).We can in fact implement the Contraction Algorithm using only O(m) space. We doso by maintaining an adjacency list representation. All the edges incident to vertex v arein a linked list. In addition, we have pointers between the two copies of the same edge(v; w) (in the adjacency list of vertex v) and (w; v) (in the adjacency list for w). Whenv and w are merged, we traverse the adjacency list of v, and for each edge (v; u) �nd thecorresponding edge (u; v) and rename it to (u; w). Note that as a result of this renamingthe adjacency lists will not be sorted. To handle this problem, whenever we choose to mergetwo vertices, we can merge their adjacency lists by using a bucket sort into n buckets basedon the edges' other endpoints; the time for this merge thus remains O(n) and the total timefor the algorithm remains O(n2). In the worst case m = �(n2), but for sparse graphs usingthis approach will save space.4.4 The Recursive Contraction AlgorithmThe Contraction Algorithm can be used by itself as an algorithm for �nding minimum cuts.Since each trial has an
(n�2) probability of success, performing O(n2 logn) trials will givea high probability of �nding a minimum cut. However, the resulting sequential runningtime of (n4 logn) is excessive. We therefore wrap the Contraction Algorithm within theRecursive Contraction Algorithm. The idea of this new algorithm is to share the bulk ofthe work among the O(n2 log n) Contraction Algorithm trials so as to reduce the total workdone.We begin with some intuition as to how to speed up the Contraction Algorithm. Con-sider the contractions performed in one trial of the Contraction Algorithm. The �rst con-traction has a reasonably low probability of contracting an edge in the minimum cut, namely

50 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMS2=n. On the other hand, the last contraction has a much higher probability of contractingan edge in the minimum cut, namely 2=3. This observation suggests that the ContractionAlgorithm works well initially, but has poorer performance later on. We might improveour chances of success if, after partially contracting the graph, we switched to a (possiblyslower) algorithm with a better chance of success on what remains.One possibility is to use one of the deterministic minimum cut algorithms, such asNI-Contract, and this approach indeed yields some improvement. However, a better ob-servation is that an algorithm that is more likely to succeed than the Contraction Algorithmis two trials of the Contraction Algorithm.Therefore, we now use the Contraction Algorithm as a subroutine Contract(G; k), thataccepts a weighted graph G and a parameter k and, in O(n2) time, returns a contraction ofG to k vertices. With probability at least �k2�=�n2� (Corollary 4.2.2), a particular minimumcut of the original graph will be preserved in the contracted graph. In other words, novertices on opposite sides of this minimum cut will have been merged, so there will be aminimum cut in the contracted graph corresponding to the particular minimum cut of theoriginal graph.Consider the Recursive Contraction Algorithm described in Figure 4.4. We performtwo independent trials. In each, we �rst partially contract the graph, but not so muchthat the likelihood of the cut surviving is too small. By contracting the graph until ithas n=p2 vertices, we ensure a roughly 50% probability of not contracting a minimum cutedge, so we expect that on the average one of the two attempts will avoid contracting aminimum cut edge. We then recursively apply the algorithm to each of the two partiallycontracted graphs. As described, the algorithms returns only a cut value; it can easily bemodi�ed to return a cut of the given value. Alternatively, we might want to output everycut encountered, hoping to enumerate all the minimum cuts.We now analyze the running time of this algorithm.Lemma 4.4.1 Algorithm Recursive-Contract runs in O(n2 logn) time and uses O(n2)or O(m log(n2=m)) space (depending on the implementation Contract).Proof: One level of recursion consists of two independent trials of contraction of G ton=p2 vertices followed by a recursive call. Performing a contraction to n=p2 vertices canbe implemented by Algorithm Contract from Section 4.3 in O(n2) time. We thus have the

4.4. THE RECURSIVE CONTRACTION ALGORITHM 51Procedure Recursive-Contract(G;n)input A graph G of size n.if G has 2 vertices a and bthen return the weight of the corresponding cut in Gelse repeat twiceG0 Contract(G; n=p2)Recursive-Contract(G0; n=p2).return the smaller of the two resulting values.Figure 4.4: The Recursive Contraction Algorithmfollowing recurrence for the running time:T (n) = 2�n2 + T � np2�� : (4.1)This recurrence is solved by T (n) = O(n2 logn);and the depth of the recursion is 2 log2 n.Note that we have to store one graph at each level of the recursion, where the graph at thekth level has nk = n=p2k vertices. If we use the original adjacency matrix implementationof the Contraction Algorithm, then the space required is O(Pk n2=2k) = O(n2). To improvethe space bound, we can use the linear-space variant of procedure Contract. Since at eachlevel the graph has no more than min(m;n2k) edges and can be stored using O(min(m;n2k))space, the total storage needed is PkO(min(m;n2k)) = O(m log(n2=m)).Remark: This analysis shows why the running time of the Contraction Algorithm is notthe bottleneck in the Recursive Contraction Algorithm. We shall later present a linear time(in the number of edges) implementation of the Contraction Algorithm. However, since therecurrence we formulate must apply to the contracted graphs as well, there is no a prioribound on the number of edges in the graphs we encounter as subproblems. Therefore r2 isthe only bound we can put on the number of edges, and thus on the time needed to performa contraction to r=p2 vertices, in the the r-vertex graphs we encounter in the recursion.

52 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMSFurthermore, the existence of n2 leaves in the recursion tree gives a lower bound of n2 onthe running time of Recursive-Contract, regardless of the speed of Contract. This iswhy the linear-time implementation of Contract that we shall give in Section 4.5 providesno speedup in general.We now analyze the probability that the algorithm �nds the particular minimum cutwe are looking for. We will say that the Recursive Contraction Algorithm �nds a certainminimum cut if that minimum cut corresponds to one of the leaves in the computation treeof the Recursive Contraction Algorithm. Note that if the algorithm �nds any minimum cutthen it will certainly output some minimum cut.Lemma 4.4.2 The Recursive Contraction Algorithm �nds a particular minimum cut withprobability
(1= logn).Proof: Suppose that a particular minimum cut has survived up to some particular node inthe recursion tree. It will survive to a leaf below that node if two criteria are met: it mustsurvive one of the graph contractions at this node, and it must be found by the recursive callfollowing that contraction. Each of the two branches thus has a success probability equalto the product of the probability that the cut survives the contraction and the probabilitythat the recursive call �nds the cut. The probability that the cut survives the contractionis, by Corollary 4.2.2, at least(n=p2)(n=p2� 1)n(n� 1) = 12 �O(1=n):This yields a recurrence P (n) for a lower bound on the probability of success on a graph ofsize n: P (n) = 1� �1� 12P � np2��2 � O(1=n): (4.2)Assume for now that the O(1=n) is factor is negligible. We solve this recurrence througha change of variables. Letting pk = P (p2k), the recurrence above can be rewritten andsimpli�ed as pk+1 = pk � 14p2k:Let zk = 4=pk� 1, so pk = 4=(zk+1). Substituting this in the above recurrence and solvingfor zk+1 yields zk+1 = zk + 1 + 1=zk:

4.4. THE RECURSIVE CONTRACTION ALGORITHM 53It follows by induction that k < zk < k +Hk�1 + 3;where Hk is the kth harmonic number [126]. Thus zk = k+O(log k) and pk = 4=(zk+ 1) =4=(k+ O(log k) + 1) = �(1=k). It follows thatP (n) = p2 log2 n = �(1= logn):In other words, one trial of the Recursive Contraction Algorithm �nds any particular min-imum cut with probability
(1= logn).To handle the O(1=n) term that we ignored, we can make a small change to procedureRecursive-Contract and contract from n vertices to 1 + n=p2 instead of n=p2 beforerecursing. This makes the probability that a minimum cut survives exceed 1=2, but alsokeeps a depth of recursion of O(logn), so the analysis of P (n) becomes completely correctwithout changing the running time analysis.Remark: Those familiar with branching processes might see that we are evaluating theprobability that the extinction of contracted graphs containing the minimum cut does notoccur before depth 2 logn.Theorem 4.4.3 All minimum cuts in an arbitrarily weighted undirected graph with n ver-tices and m edges can be found in O(n2 log3 n) time and O(m log(n2=m)) space (MonteCarlo).Proof: It is known ([44] and [140], see also Theorem 4.7.6) that there are at most �n2� min-imum cuts in a graph. Repeating Recursive-Contract O(log2 n) times gives an O(1=n4)chance of missing any particular minimum cut. Thus our chance of missing any one of theat most �n2� minimum cuts is negligible.It is noteworthy that unlike the best algorithms for maximum ow, Recursive-Contractuses no non-trivial data structures. The algorithm has proven to be practical and easy tocode.We can view the running of the Recursive Contraction Algorithm as a binary computa-tion tree, where each vertex represents a graph with some of its edges contracted and eachedge represents a contraction by a factor of p2. A leaf in the tree is a contracted graphwith 2 metavertices and de�nes a cut, potentially a minimum cut. The depth of this treeis 2 log2 n, and it thus has n2 leaves. This shows that the improvement over the direct use

54 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMSof n2 trials of the Contraction Algorithm comes not from generating a narrower tree (thosetrials also de�ne a \tree" of depth 1 with n2 leaves), but from being able to amortize thecost of the contractions used to produce a particular leaf.If it su�ces to output only one minimum cut, then we can keep track of the smallest cutencountered as the algorithm is run and output it afterwards in O(n) time by unravelingthe sequence of contractions that led to it. If we want to output all the minimum cuts,then the output might in fact become the dominant factor in the running time: there couldbe n2 such cuts, each requiring O(n) time to output as a list of vertices on each side ofthe cut. This problem is made even worse by the fact that some minimum cuts may beproduced many times by the algorithm. Applegate [10] observed that there is a simplehashing technique that can be used to avoid outputting a cut more than once. At thebeginning, assign to each vertex a random O(logn)-bit key. Whenever two vertices aremerged by contractions, combine their keys with an exclusive-or. At a computation leafin which there are only two vertices, the two keys of those vertices form an identi�er forthe particular cut that has been found. With high probability, no two distinct cuts we �ndwill have the same identi�ers. Thus by checking whether an identi�er has already beenencountered we can avoid outputting any cut that has already been output.An alternative approach to outputting all minimum cuts is to output a concise repre-sentation of them; this issue is taken up in Section 9.3.4.5 A Parallel ImplementationWe now show how the Recursive Contraction Algorithm can be implemented in parallel(RNC). To do so, we give an m processor RNC implementation of the Contract byeliminating the apparently sequential nature of the selection and contraction of edges oneat a time. Parallelizing Recursive-Contract is then easy.As a �rst step, we will show how a series of selections and contractions needed for theContraction Algorithm can be implemented in ~O(m) time. The previous O(n2) time boundarose from a need to update the graph after each contraction. We circumvent this problemby grouping series of contractions together and performing them all simultaneously. Asbefore, we focus initially on unweighted multigraphs. We start by giving our algorithms assequential ones, and then show how they can be parallelized.

4.5. A PARALLEL IMPLEMENTATION 554.5.1 Using A Permutation of the EdgesWe reformulate the Contraction Algorithm as follows. Instead of choosing edges one at atime, we begin by generating a uniform random permutation L of the edges. Imagine con-tracting edges in the order in which they appear in the permutation, until only two verticesremain. This algorithm is clearly equivalent to the abstract formulation of the ContractionAlgorithm. We can immediately deduce that with probability
(n�2), a random permuta-tion will yield a contraction to two vertices that determine a particular minimum cut.Given a random permutation L of the edges, contracting the edges in the order speci�edby the permutation until two vertices remain corresponds to identifying a pre�x L0 of Lsuch that contracting the edges in L0 yields a graph with exactly two vertices. Equivalently,we are looking for a pre�x L0 of edges such that the graph H = (V; L0) has exactly twoconnected components. Binary search over L can identify this pre�x, because any pre�xthat is too short will yield more than two connected components, and any pre�x that istoo long will yield only one. The correct pre�x can therefore be determined using O(logm)connected component computations, each requiring O(m+n) time. The total running timeof this algorithm (given the permutation) is therefore O(m logm).We can improve the running time by reusing information between the di�erent connectedcomponent computations. Given the initial permutation L, we �rst use O(m+ n) time toidentify the connected components induced by the �rstm=2 edges. If exactly two connectedcomponents are induced, we are done. If only one connected component is induced, thenwe can discard the last m=2 edges because the desired pre�x ends before the middle edge,and recurse on the �rst half of L. If more than two connected components are induced,then we can contract the �rst m=2 edges all at once in O(m) time by �nding the connectedcomponents they induce and relabeling the last m=2 edges according to the connectedcomponents, producing a new, m=2 edge graph on which we can continue the search. Eitherway, in O(m+ n) time, we have reduced the number of edges to m=2. Since the graph isassumed to be connected, we know that n � m asm decreases. Therefore, if we let T (m) bethe time to execute this procedure on a graph with m edges, then T (m) � T (m=2)+O(m),which has solution T (m) = O(m).In Figure 4.5 we formally de�ne this Compact subroutine. We describe Compact with aparameter k describing the goal number of vertices. Our running time analysis assumes thatk is two. Running times clearly do not increase when k is larger. Recall the notation G=Fthat denotes the result of contracting graph G by edge set F . We extend this de�nition to as

56 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMSProcedure Compact(G;L; k) input: A graph G and list of edges L and a parameter kif G has k vertices or L = ;thenreturn Gelse Let L1 and L2 be the �rst and second halves of LFind the connected components in graph H = (V; L1)if H has fewer than k componentsthenreturn Compact(G;L1; k)else return Compact(G=L1; L2=L1; k).Figure 4.5: Procedure Compactfollows. If E is a set of edges in G, then E=F denotes a corresponding set of edges in G=F :an edge ([; v)][w]2 E is transformed in E=F to an edge connecting the vertices containingv and w in G=F . Constructing E=F requires merging edges with identical endpoints. Sinceeach endpoint is an integer between 1 and n, we can use a linear-time sorting algorithm,such as bucket sort, to merge edges, and thus Compact runs in O(m) time.4.5.2 Generating Permutations using Exponential VariatesThe only remaining issue is how to generate the permutation of edges that is used as the listL in Compact. To show how the permutation generation can be accomplished in RNC, wegive in this section an approach to the problem that is easy to explain but gives somewhatworse than optimum bounds in both theory and practice. In Section 4.6, we describe amore e�cient (and practical) but harder to analyze approach.For unweighted graphs, a simple method is to assign each edge a score chosen uniformlyat random from the unit interval, and then to sort the edges according to score. To extendthis approach to weighted graphs, we use the equivalence between an edge of weight w ina weighted graph and a set of w parallel edges in the natural corresponding unweighted

4.5. A PARALLEL IMPLEMENTATION 57multigraph. We use the term multiedge to mean an edge of the multigraph correspondingto the weighted graph, and simulate the process of generating a random permutation of themultiedges. The entire multiedge permutation is not necessary in the computation, since assoon as a multiedge is contracted, all the other multiedges with the same endpoints vanish.In fact, all that matters is the earliest place in the permutation that a multiedge withparticular endpoints appears. This information su�ces to tell us in which order verticesof the graph are merged: we merge u and v before x and y precisely when the �rst (u; v)multiedge in the permutation precedes the �rst (x; y) multiedge in the permutation. Thusour goal is to generate an edge permutation whose distribution reects the order of �rstappearance of endpoints in a uniform permutation of the corresponding multigraph edges.As in the unweighted case, we can consider giving each multiedge a score chosen uni-formly at random from a large ordered set and then sorting according to score. In thiscase, the �rst appearance in the permutation of a multiedge with w copies is determinedby the minimum of w randomly chosen scores. We can therefore generate an appropriatelydistributed permutation of the weighted edges if we give an edge of weight w the minimumof w randomly chosen scores and sort accordingly.Consider multiplying each edge weight by some value �, so that an edge of weight wcorresponds to �w multiedges. This scales the value of the minimum cut without changingits structure. Suppose we give each multiedge a score chosen uniformly at random from thecontinuous interval [0; �]. The probability distribution for the minimum score X among �wedges is then Pr[X > t] = (1� t=�)�w:If we now let � become arbitrarily large, the distribution converges to one in which an edgeof weight w receives a score chosen from the exponential distributionPr[X > t] = e�wt:Thus if we can generate an exponential random variable in O(1) time, then we cangenerate a permutation in O(m) time. As in the unweighted case, we do not actually haveto sort based on the scores: once scores are assigned we can use median �nding to split theedge list as needed by Compact in O(m) time. If all we have is coin ips, it is possible touse them to sample from an approximately exponential distribution in logarithmic time andintroduce a negligible probability of error in the computation. As we shall be describing abetter method later, we refer the reader to the appendix (Section A.4) for details.

58 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMS4.5.3 Parallelizing the Contraction AlgorithmParallelizing the previous algorithm is simple. To generate the permutation, given a list ofedges, we simply assign one processor to each edge and have it generate the (approximately)exponentially distributed score for that edge in polylogarithmic time. We then use a parallelsorting algorithm on the resulting scores. Given the permutation, it is easy to run Compact inparallel. RNC algorithms for connected components exist that use m= logn processors andrun in O(logn) time on a CRCW PRAM [175] or even on the EREW PRAM [88]. ProcedureCompact, which terminates after O(logn) iterations, is thus easily seen to be parallelizableto run in O(log2 n) time using m processors. As a result, we have the following:Theorem 4.5.1 Contract can be implemented to run in RNC using m processors on anm edge graph.Using the linear-processor RNC implementation of Contract, we can give the �rstRNCalgorithm for the minimum cut problem.Theorem 4.5.2 The minimum cut problem can be solved in RNC using n2 processors andO(n2 log3 n) space.Proof: Consider the computation tree generated by Recursive-Contract. The sequen-tial algorithm examines this computation tree using a depth-�rst traversal of the tree nodes.To solve the problem in parallel, we instead use a breadth-�rst traversal. The subroutineContract has already been parallelized. We can therefore evaluate our computation tree ina breadth-�rst fashion, taking only polylogarithmic time to advance one level.The space required is now the space needed to store the entire tree. The sequentialrunning time recurrence T (n) also provides a recursive upper bound on the space needed tostore the tree. Thus the space required is O(n2 log3 n) (on the assumption that we performall O(log2 n) trials of Recursive-Contract in parallel).4.5.4 Comparison to Directed GraphsThe previous results indicate a distinction between minimum cut problems on directed andundirected graphs. In a directed graph, the s-t minimum cut problem is the problem of�nding a partition of the vertices into two sets S and T , with s 2 S and t 2 T , such that theweight of edges going from S to T is minimized. Note that the weights of edges going from

4.6. A BETTER IMPLEMENTATION 59T to S is not counted in the value of the cut. The s-t minimum cut problem on directedgraphs was shown to be P-complete [79]. A similar result holds for the global minimum cutproblem:Lemma 4.5.3 The global minimum cut problem is P-complete for directed graphs.Proof: Given an algorithm the �nds global minimum cuts, we �nd a minimum s-t cut asfollows. We add, for each vertex v, directed edges of in�nite weight from t to v and fromv to s. The global minimum cut in this modi�ed graph must now have s 2 S and t 2 T ,for otherwise some of the edges of in�nite weight would cross in the cut. Hence the globalminimum cut must be a minimum s-t cut of the original graph.The minimum cut problem is therefore in the family of problems, such as reachability,that presently have dramatically di�erent di�culties on directed and undirected graphs [100,159]. Indeed, in Section 9.6 we show that the minimum cut can be found in O(logn) time,even on an EREW PRAM.4.6 A Better Implementation4.6.1 Iterated SamplingWe now discuss a harder to analyze (but easier to implement) version of the ContractionAlgorithm based on permutations. It has several advantages, both theoretical and practical,over the exponential variates approach. First, it does not need to approximate logarithms.Although we have argued that such a computation can be done in O(logn) time in theory,in practice we would like to avoid any use of complicated oating point operations. Second,the sequential implementation runs in linear time rather than O(m polylogm) time. As wehave discussed, this new implementation will not produce any improvement in the worst-case running time of the Recursive Contraction Algorithm on arbitrary graphs, since suchgraphs might have n2 edges. However, it does give a slightly improved time bounds for�nding minimum cuts in certain classes of sparse graphs. Yet another advantage is thatit uses O(m) space without using the pointers and linked lists needed in the O(m)-spaceadjacency list version of the sequential implementation in Section 4.3. Finally, the parallelversion of this algorithm performs less work (by several polylogarithmic factors) than theexponential variates implementation.

60 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMSAs in the exponential variates algorithm of Section 4.5.2, we generate a permutationby treating each weighted edge as a collection of parallel unweighted edges. Rather thangenerating scores, we repeatedly simulate the uniform selection of a multigraph edge bychoosing from the graph edges with probabilities proportional to the edge weights; theorder of selection then determines the order of �rst appearance of multigraph edges (thisapproach is directly analogous to our analysis of the Contraction Algorithm for weightedgraphs in Section 4.2.2.Suppose we construct an array ofm cumulative edge weights as we did in the sequentialalgorithm. We can use the procedure Random-Select (Appendix A.3) to select one edgeat random in O(logm) amortized time and then contract it. Since it takes O(m) timeto recompute the cumulative distribution, it is undesirable to do so each time we wish tosample an edge. An alternative approach is to keep sampling from the original cumulativedistribution and to ignore edges if we sample them more than once. Unfortunately, to makeit likely that all edges have been sampled once, we may need a number of samples equal tothe sum of the edge weights. For example, if one edge contains almost all the weight in thegraph, we will continually select this edge. We solve this problem by combining the twoapproaches and recomputing the cumulative distribution only occasionally. For the timebeing, we shall assume that the total weight of edges in the graph is polynomial in n.Procedure Iterated-Sampling(G;k)input A graph GLet s = n1+�, for some constant 0 < � < 1.repeatCompute cumulative edge weights in GLet M be a list of s edge selections using Random-Select on the cumulative edgeweightsG Compact(G;M; k)until G has k verticesFigure 4.6: Iterated-Sampling Implementation

4.6. A BETTER IMPLEMENTATION 61An implementation of the Contraction Algorithm called Iterated-Sampling is pre-sented in Figure 4.6. Take � to be any constant (say 1/2). We choose s = n1+� edgesfrom the same cumulative distribution, contract all theses edges at once, recompute thecumulative distribution and repeat.We now analyze the running time of Iterated-Sampling. We must be somewhat carefulwith this analysis because we call Iterated-Sampling on very small problems that arisein the recursive computation of Recursive-Contract. Therefore, events that are \lowprobability" may actually happen with some frequency in the context of the original callto Recursive-Contract. We will therefore have to amortize these \low probability" eventsover the entire recursion. To do so, we use the following lemmas:Lemma 4.6.1 The worst case running time of Iterated-Sampling is O(n3).Proof: Each iteration requires O(m+ s logn) = O(n2) time. The �rst edge chosen in eachiteration will identify a pair of vertices to be contracted; thus the number of iterations is atmost n.Lemma 4.6.2 Call an iteration of Iterated-Sampling successful if it �nishes contractingthe graph or if it reduces the total weight in the graph by a factor of 2n=s = O(n��) for thenext iteration. Then the probability that an iteration is not successful is e�
(n).Proof: We assume that the weight reduction condition does not hold, and show that theiteration must then be likely to satisfy the other success condition. Consider contractingthe edges as they are chosen. At any time, call an edge good if its endpoints have not yetbeen merged by contractions. Since Iterated-Sampling is not aware of the contractions,it may choose non-good edges. The total weight of edges in the next iteration is simplythe total weight of good edges at the end of this iteration. Suppose that at the start of theiteration the total (all good) weight is W . By assumption, at the end the total good weightexceeds 2nW=s. Since the total good weight can only decrease as contractions occur, weknow that the total good weight at any time during this iteration exceeds 2nW=s.It follows that each time an edge is selected, the probability that it will be a good edgeexceeds 2n=s. Given that we perform s selections, the expected number of good selectionsexceeds 2n. Then by the Cherno� bound (Appendix A.2), the probability that fewer thann good edges are selected is exponentially small in n.

62 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMSThe number of contractions performed in an iteration is simply the number of good edgesselected. Thus, by performing more than n good selections, the iteration will necessarily�nish contracting the graph.Corollary 4.6.3 On an n-vertex graph, the expected running time of Iterated-Samplingis O(m+ n1+�).Proof: Recall our assumption that W = nO(1). Thus, in the language of Lemma 4.6.2,after a constant number k of successful iterations Iterated-Sampling will terminate. Theprevious lemma proves that for some constant n, the probability of a successful iteration isp � 1=2. Therefore, the number of iterations needed to terminate has a negative binomialdistribution B�(k; p), with expectation k=p � 2k, a constant (see Appendix A.1 for details).Since each iteration takes O(m+ n1+�) time, the result follows.The above result su�ces to prove all the expected running time bound in the followingsections; for a high probability time bound we need the following two corollaries:Corollary 4.6.4 On an n-vertex graph, the number of iterations before completion ofIterated-Sampling is at most t with probability 1� e�
(nt).Proof: As was just argued, we terminate after a constant number of successful iterations.Thus the only way for it to take more than t iterations is for there to be roughly t failures,each with probability e�
(n) according to Lemma 4.6.2.Corollary 4.6.5 On an n vertex graph, the running time of Iterated-Sampling is O(t(m+n1+�)) with probability 1� e�
(nt).Note that we set s = n1+� to make the analysis easiest for our purposes. A more naturalsetting is s = m= logm since this balances the time spent sampling and the time spentrecomputing cumulative edge weights. Setting s = m= logm yields the same time bounds,but the analysis is more complicated.4.6.2 An O(n2)-ApproximationWe now show how to remove the assumption that W is polynomial in n, while maintainingthe same running times. The obstacle we must overcome is that the analysis of the number

4.6. A BETTER IMPLEMENTATION 63of iterations of Iterated-Sampling deals with the time to reduce W to zero. If W isarbitrarily large, this reduction can take arbitrarily many iterations.To solve the problem, we use a very rough approximation to the minimum cut to ensurethat Corollary 4.6.3 applies even when the edge weights are large. Let w be the largestedge weight such that the set of edges of weight greater than or equal to w connects allof G. This is just the minimum weight of an edge in a maximum spanning tree of G,and can thus be identi�ed in O(m logn) time using any standard minimum spanning treealgorithm [41]. Even better, it can be identi�ed in O(m) time by the Compact subroutine ifwe use the inverses of the actual edge weights as edge scores to determine the order of edgecontraction. It follows that any cut of the graph must cut an edge of weight at least w, sothe minimum cut has weight at least w. It also follows from the de�nition of w that thereis a cut that does not cut any edge of weight exceeding w. This means that the graph has acut of weight at most mw and hence the minimum cut has weight at mostmw � n2w. Thisguarantees that no edge of weight exceeding n2w can possibly be in the minimum cut. Wecan therefore contract all such edges, without eliminating any minimum cut in the graph.Afterwards the total weight of edges in the graph is at most n4w. Since we merge someedges, we may create new edges of weight exceeding n2w; these could be contracted as wellbut it is easier to leave them.Consider running Iterated-Sampling on this reduced graph. Lemma 4.6.2 holds un-changed. Since the total weight is no longer polynomial, Corollary 4.6.3 no longer holdsas a bound on the time to reduce the graph graph weight to 0. However, it does hold asbounds on the number of iterations needed to reduce the total remaining weight by a factorof n4, so that it is less than w. Since the minimum cut exceeds w, the compacted graphat this point can have no cuts, since any such cut would involve only uncontracted edgesand would thus have weight less than w. In other words, the graph edges that have beensampled up to this point must su�ce to contract the graph to a single vertex. This provesthat Corollary 4.6.4 and 4.6.5 also hold in the case of arbitrary weights.4.6.3 Sequential ImplementationUsing the new, O(m+n1+�)-time algorithm allows us to speed up Recursive-Contract ongraphs with excluded dense minors.2 Assume that we have a graph such that all r-vertex2A minor of G is a graph that can be derived from G by deleting edges and vertices and contractingedges.

64 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMSminors have O(r2��) edges for some some positive constant �. Then we can be sure thatat all times during the execution of the Recursive Contraction Algorithm the contractedgraphs of r vertices will never have more than r2�� edges. We use the O(m + n1+�) timebound of Corollary 4.6.3 to get an improved running time for Recursive-Contract.Theorem 4.6.6 Let G have the property that all r-vertex minors have O(r2��) edges forsome some positive constant �. Then with high probability the Recursive Contraction algo-rithm �nds a minimum cut of G in O(n2 log2 n) time.Proof: We need to bound the time spent in all calls to Iterated-Sampling over all the var-ious calls made to Contract in the computation tree of Recursive-Contract. An expectedtime analysis is quite easy. By Corollary 4.6.3, the expected time of Iterated-Sampling ona problem with m edges is O(m+n1+�). By the assumption about graph minors, this meansthat the expected running time of Contract on an r-vertex subproblem will be O(r2��).This gives us an improved recurrence for the running time:T (n) = 2(n2�� + T (n=p2)):This recurrence solve to T (n) = O(n2).To improve the analysis to a high probability result we must perform a global analysisof the recurrence as we did for the minimum spanning tree algorithm. Consider two cases.At depths less than logn in the computation tree, where the smallest graph has at leastpn vertices, Corollary 4.6.5 says that the expected time bound for Iterated-Sampling isin fact a high probability time bound, so the recurrence holds with high probability at eachnode high in the computation tree. Below depth logn, some of the problems are extremelysmall. However, Corollary 4.6.4 proves that each such problem has a running time that isgeometrically distributed around its expectation. Since there are so many problems at eachlevel (more than n), the Cherno� bound can be applied to prove that the total time perlevel is proportional to its expected value with high probability. Thus at lower depths therecurrence holds in an amortized sense with high probability.Planar graphs fall into the class just discussed, as all r-vertex minors have O(r) edges.Observe that regardless of the structure of the graph minors, any attempt to reduce therunning time below n2 is frustrated by the need to generate n2 computation leaves in orderto ensure a high probability of �nding the minimum cut.

4.7. APPROXIMATELY MINIMUM CUTS 654.6.4 Parallel ImplementationThe iterated sampling procedure as also easy to parallelize. To perform one iteration ofIterated-Sampling in parallel, we use m= logn + n1+� processors to �rst construct thecumulative edge weights and then perform n1+� random selections. We call the selectionby processor 1 the \�rst" selection, that by processor 2 the \second" selection, imposinga selection order even though all the selections take place simultaneously. We use theseselections in the parallel implementation of the procedure Compact. Corollary 4.6.5 provesthat until the problem sizes in the Recursive-Contract computation tree are smaller than
(logn), each application of Iterated-Sampling runs in O(log2 n) time with high proba-bility. At levels below logn, we can use the worst case time bound for Iterated-Samplingto show that the running time remains polylogarithmic.4.7 Approximately Minimum CutsIn this section, we consider cuts that are small but not minimum. Independent of its im-plementation, the Contraction Algorithm can be used to bound the number of such cuts.Given this bound, we can show that a modi�cation of the implementation can be used toactually enumerate all of them with high probability. Although this is an interesting algo-rithmic result, more important is a simple corollary bounding the umber of small cuts. Thiscorollary is the linchpin of all of the cut-sampling algorithms discussed in Chapters 6, 10,and 10, as well as of our derandomization in Chapter 5.We say that a cut survives a series of contractions if no edge from that cut is contracted,so that it corresponds to a cut in the contracted graph.4.7.1 Counting Small CutsTo begin with, we have the following:Corollary 4.7.1 The number of minimum cuts in a graph is at most �n2�.Proof: In analyzing the contraction algorithm, we showed that the probability a minimumcut survives contraction to 2 vertices is at least �n2��1. Since only one cut survives thesecontractions, the survivals of the di�erent minimum cuts are disjoint events. Therefore, theprobability that some minimum cut survives is equal to the sum of the probabilities that

66 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMSeach survives. But this probability is at most one. Thus, if there are k minimum cuts, wehave k�n2��1 � 1.Remark: This theorem was proved by other means in [44] and [140]. A cycle on n verticesproves the analysis tight, since each of the �n2� pairs of edges in the cycle determines aminimum cut.We now extend this analysis to approximately minimal cuts. No such analysis waspreviously known.De�nition 4.7.2 An �-minimal cut is a cut of value within a multiplicative factor of � ofthe minimum.Lemma 4.7.3 For � a half-integer, the probability that a particular �-minimal cut survivescontraction to 2� vertices exceeds � n2���1.Proof: We consider the unweighted case; the extension to the weighted case goes as before.The goal is to again apply Lemma 3.4.1. Let � be a half-integer, and c the minimum cut,and consider some cut of weight at most �c. Suppose we run the Contraction Algorithm.If with r vertices remaining we choose a random edge, then since the number of edges is atleast cr=2, we take an edge from a cut of weight �c with probability at most 2�=r. If werepeatedly select and contract edges until r = 2�, then the probability that the cut survivesis (1� 2�n)(1� 2�(n � 1)) � � �(1� 2�(2�+ 1)) = n2�!�1Remark: A cycle on n vertices again shows that this result is tight, since each set of 2�edges forms an �-minimal cut.Corollary 4.7.4 For � a half-integer, the number of �-minimal cuts is at most 22��1� n2�� �n2�.Proof: We generalize Corollary 4.7.1. Suppose we randomly contract a graph to 2� vertices.The previous lemma lower bounds the survival probability of an �-minimal cut, but wecannot yet apply the proof of Corollary 4.7.1 because with more than one cut still remainingthe survival events are not disjoint. However, suppose we now take a random partition of

4.7. APPROXIMATELY MINIMUM CUTS 67the 2� remaining vertices. This partition gives us a corresponding unique cut in the originalgraph. There are only 22��1 partitions of the 2� vertices (consider assigning a 0 or 1 toeach vertex; doing this all possible ways counts each partition twice). Thus, we pick aparticular partition with probability 21�2�. Combined with the previous lemma, this showsthat we select a particular unique �-minimal cut with probability exceeding 21�2�� n2���1.Now continue as in Corollary 4.7.1.Th n2� bound is more convenient in future discussions; it follows from the facts that22��1 � (2�)!.We can also extend our results to the case where 2� is not an integer. To explain ourresults, we must introduce generalized binomial coe�cients in which the upper and lowerterms need not be integers. These are discussed in [126, Sections 1.2.5{6] (cf. Exercise1.2.6.45). There, the Gamma function is introduced to extend factorials to real numberssuch that �! = �(� � 1)! for all real � > 0. Many standard binomial identities extend togeneralized binomial coe�cients, including the facts that � n2�� � n2�=�! and 22��1 � �!.Corollary 4.7.5 For arbitrary real values of �, the probability that a particular k-minimalcut survives contraction to d2�e vertices is
(n�2�).Proof: let r = d2�e. Suppose we contract the graph until there are only r vertices re-maining, and then pick one of the 2r cuts of the resulting graph uniformly at random. Theprobability that a particular �-minimal cut survives the contraction to r vertices is(1� 2�n)(1� 2�(n� 1)) � � �(1� 2�r + 1) = (n � 2�)!(r � 2�)! (n� r)!n!= � r2��� n2�� :From [126, Exercise 1.2.6.45], we know that � n2�� = �(n2�=r!). Since � r2�� is a constantindependent of n, the overall probability is �(n�2�=r!).Remark: For the tightness of this claim, consider a cycle with all edges of unit weightexcept for two of weight (1 + �).Arguing as for the half integer case, we deduce what we shall refer to as the Cut CountingTheorem:Theorem 4.7.6 In any graph and all �, the number of �-minimal cuts is at most n2�.

68 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMSRemark: Vazirani and Yannakakis [185] give algorithms for enumerating cuts by rank,�nding all cuts of kth-smallest weight by rank in O(n3k) time, while we derive bounds basedon the value of a cut relative to the others. They also give a bound of O(n3k�1) on thenumber of cuts with the kth smallest weight. Note that this bound is incomparable withours.4.7.2 Finding Small CutsThe Contraction Algorithm can be used to �nd cuts that are not minimum but are relativelysmall. The problem of �nding all nearly minimum cuts has been shown to have importantrami�cations in the study of network reliability, since such enumeration allow one to dras-tically improve estimates of the reliability of a network. This was shown in [170], where anO(nk+2mk) bound was given for the number of cuts of value c+k in a graph with minimumcut c, and an algorithm with running time O(nk+2mk) was given for �nding them.Theorem 4.7.7 For constant � > 1, all cuts with weight within a multiplicative factor �of the minimum cut can be found in O(n2� log2 n) time or in RNC with n2� processors(Monte Carlo).Proof: Recall our analysis in Section 4.7 lower-bounding the probability that a minimumcut survives contraction to 2� vertices by n�2�. This analysis extends in the obvious wayto contraction to k vertices. Change the reduction factor from p2 to 2�p2 in the RecursiveContraction Algorithm. Stop when the number of vertices remaining is 2d�e, and check allremaining cuts. The recurrence for the probability of success is unchanged. The runningtime recurrence becomes T (n) = n2 + 2T (n=21=2�)and solves to T (n) = O(n2�). The recurrence for the probability of success is unchanged, soas before we need to repeat that algorithm O(log2 n) times. The probability that any one cutis missed is then polynomially small, and thus, since (by the Cut Counting Theorem 4.7.6)there are only polynomially many approximately minimal cuts, we will �nd all of them withhigh probability.This theorem gives another way to make the Recursive Contraction Algorithm stronglypolynomial. Using the factor of n2 approximation to the minimum cut from Section 4.6.2,we can scale and round the edge weights in such a way that all edges become polynomial

4.8. CONCLUSION 69sized integers. At the same time, we arrange that no cut changes in value by more thana small amount; it follows that the minimum cut in the original graph must be a nearlyminimum cut in the new graph. Thus an algorithm that �nds all approximate minimumcuts will �nd the original minimum cut. It is arranged that the relative change in any cutvalue is 1=n, so that the running time is changed only by a constant factor. This methodis necessary in the derandomization of Chapter 5.4.8 ConclusionWe have given e�cient and simple algorithms for the minimum cut problem, yet severalinteresting open questions remain. One desirable result would be to �nd a deterministicversion of the algorithm with matching sequential time and parallel processor bounds. InSection 5 we use the Contraction Algorithm to prove that the minimum cut can be found inNC; however, the resulting processor bounds are prohibitively large for practical purposes.An important �rst step towards derandomization would be a so-called Las Vegas algo-rithm for the problem. The Recursive Contraction Algorithm has a very high probabilityof �nding a minimum cut, but there is no fast way to prove that it has done so, as the onlyknown certi�cate for a minimum cut is a maximum ow, which takes too long to compute.The Contraction Algorithm is thus Monte Carlo. A Las Vegas Algorithm for unweightedgraphs that is faster than the Recursive Contraction Algorithm when c = O(n2=3) is givenin section 10.3, but the problem remains open for weighted graphs.Another obvious goal is to �nd a faster algorithm. There are several probably unneces-sary logarithmic factors in the running time of the Recursive Contraction Algorithm. Recallthat we are simulating an algorithm with an
(n�2) success probability. This would suggestas a goal an implementation that required only constant time per trial for a total time ofO(n2 logn). However, it seems unlikely that the techniques presented here will yield ano(n2) algorithm, as our algorithm �nds not just one minimum cut, but all of them. Sincethere can be
(n2) minimum cuts in a graph, any algorithm that �nds a minimum cutin o(n2) time will either have to somehow break the symmetry of the problem and avoid�nding all the minimum cuts, or will have to produce a concise representation (for instancethe cactus representation) of all of them. The ideal, of course, would be an algorithm thatdid this in linear (O(m)) time.Since we are now able to �nd a minimum cut faster than a maximum ow, it is natural

70 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMSto ask whether it is any easier to compute a maximum ow given a minimum cut. Ra-machandran [169] has shown that knowing an s-t minimum cut is not helpful in �nding ans-t maximum ow. However, the question of whether knowing any or all minimum cutsmay help to �nd an s-t maximum ow remains open.Another obvious question is whether any of these results can be extended to directedgraphs. It seems unlikely that the Contraction Algorithm, with its inherent parallelism,could be applied to the P-complete directed minimum cut problem. However, the questionof whether it is easier to �nd a minimum cut than a maximum ow in directed graphsremains open.The minimum cut algorithm of Gomory and Hu [82] not only found the minimum cut,but found a ow equivalent tree that succinctly represented the values of the �n2� minimumcuts. No algorithm is known that computes a ow equivalent tree or the slightly strongerGomory-Hu tree in time that is less than the time for n maximum ows. An intriguing openquestion is whether the methods presented here can be extended to produce a Gomory-Hutree.NotesThe original Contraction Algorithm with an ~O(mn2) running time and processor bound,as well as the connections to multiway and approximately minimum cuts and analyses ofnetwork reliability discussed in the following chapter, originally appeared in [102]. TheRecursive Contraction Algorithm with faster running times and processor bounds was de-veloped with Cli�ord Stein and originally appeared in [110]. Lomonosov [139] independentlydeveloped some of the basic intuitions leading to the Contraction Algorithm, using them toinvestigate questions of network reliability.

Chapter 5Deterministic ContractionAlgorithms5.1 IntroductionSome of the central open problems in the area of parallel algorithms are those of devisingNC algorithms for s-t minimum cuts and maximum ows, maximum matchings, and depth-�rst search trees. There are RNC algorithms for all these problems [115, 152, 1]. Now thatwe have shown that the minimum cut problem is in RNC, the natural question is whetherthere is an NC algorithm for it. We answer this question in the a�rmative by presentingthe �rst NC algorithm for the min-cut problem in weighted undirected graphs. Our resultsextend to the problem of enumerating all approximately minimal cuts.1The approach we take is typical of derandomization techniques that treat random bitsas a resource. We develop a randomized algorithm, and then show that it can be made towork even if there are very few random bits available for it examine. If we can reduce thenumber of bits the algorithm needs to examine to O(logn) without a�ecting its probabilityof correctness, then we know that it runs correctly on at least some of these small randominputs. Therefore, by trying all nO(1) possible O(logn)-bit random inputs, we are guaranteedto run correctly at least once and �nd the correct answer.Unlike our RNC algorithm, this NC algorithm is clearly impractical; it serves to demon-strate the existence of an algorithm rather than to indicate what the \right" such algorithmis. 1This chapter is based on joint work with Rajeev Motwani. An abstract appeared in [107].71

72 CHAPTER 5. DETERMINISTIC CONTRACTION ALGORITHMSAn important step in our derandomization is the development of a new deterministicparallel sparse certi�cate algorithm. Besides its role in the derandomization, this algorithmplays a role in the minimum cut approximation algorithms of Section 9.4 and Chapter 6.5.1.1 Derandomizing the Contraction AlgorithmRecall the contraction algorithm of Chapter 4. It operated by repeatedly selecting a singleedge at random and contracting it. Luby, Naor and Naor [145] observed that in the Contrac-tion Algorithm it is not necessary to choose edges randomly one at a time. Instead, giventhat the minimum cut size is c, they randomly mark each edge with probability 1=c, andcontract all the marked edges. With constant probability, no minimum cut edge is markedbut the number of graph vertices is reduced by a constant factor. Thus after O(logn)phases of contraction the graph is reduced to two vertices that de�ne a cut. Since the num-ber of phases is O(logn) and there is a constant probability of missing the minimum cutin each phase, there is an n�O(1) probability that no minimum cut edge is ever contractedso that the cut determined at the end is the minimum cut (Lemma 3.4.1). Observing thatpairwise-independent marking can be used to achieve the desired behavior, they show thatO(logn) random bits su�ce to run a phase. Thus, O(log2 n) bits su�ce to run this modi�edContraction Algorithm through its O(logn) phases.Unfortunately, this algorithm cannot be fully derandomized. It is indeed possible to tryall (polynomially many) random seeds for a phase and be sure that one of the outcomesis good (i.e., contracts edges incident on a constant fraction of the vertices but not theminimum cut edges); however, there is no way to determine which outcome is good. In thenext phase it is thus necessary to try all possible random seeds on each of the polynomiallymany outcomes of the �rst phase, squaring the number of outcomes after two phases. In all,
(nlogn) combinations of seeds must be tried to ensure that we �nd the desired sequence ofgood outcomes leading to a minimum cut.5.1.2 Overview of ResultsOur main result is an NC algorithm for the minimum cut and minimum multi-cut problems.Our algorithm is not a derandomization of the Contraction Algorithm but is instead a newcontraction-based algorithm. Throughout, we take G to be a multigraph with n vertices,m edges and minimum cut value c. Most of the chapter discusses unweighted graphs; inSection 5.4.2 we handle weighted graphs with a reduction to the unweighted graph problem.

5.1. INTRODUCTION 73Our algorithm depends upon three major building blocks. The �rst building block is adeterministic parallelization of Matula's algorithm that we give in Section 5.2.1. Recall thatMatula's algorithm relied on a sparse certi�cate algorithm. We give a sparse k-connectivitycerti�cate algorithm that runs in logO(1)m time using km processors. It is thus in NCwhenever k = O(m). In particular, we get an NC algorithm using m2=n processors to �nda (2 + �) approximation to the minimum cut in an unweighted graph.Our next building block (Section 5.3) uses our cut counting theorem (Theorem 4.7.6)which says that there are only polynomially many cuts whose size is within a constant factorof the minimum cut. If we �nd a collection of edges that contains one edge from every suchcut except for the minimum cut, then contracting this set of edges yields a graph with nosmall cut except for the minimum cut. We can then apply the NC approximation algorithmof Section 5.2.1. Since the minimum cut will be the only contracted-graph cut within theapproximation bounds, it will be found by the approximation algorithm. One can view thisapproach as a variant on the Isolating Lemma approach used to solve the perfect matchingproblem [152]. As was the case there, the problem is relatively easy to solve if the solutionis unique, so the goal is to destroy all but one solution to the problem and then to easily�nd the unique solution. Randomization yields a simple solution to this problem: contracteach edge independently with probability �(log n=c). Because the number of small cuts ispolynomially bounded, there is a su�cient probability that no edge from the minimum cutis contracted but one edge from every other small cut is contracted. Of course, our goal isto do away with randomization.A step towards this approach is a modi�cation of the Luby, Naor and Naor technique. Ifwe contract each edge with probability �(1=c), then with constant probability we contractno minimum cut edge while contracting edges in a constant fraction of the other small cuts.Pairwise independence in the contracting of edges is su�cient to make such an outcomelikely. However, this approach seems to contain the same aw as before:
(logn) phases ofselection are needed to contract edges in all the small cuts, and thus
(log2 n) random bitsare needed.We work around this problem with out third building block (Section 5.4). The problem of�nding a good set of edges to contract can be formulated abstractly as the Safe Sets Problem:given an unknown collection of sets over a known universe, with one of the unknown setsdeclared \safe," �nd a collection of elements that intersects every set except for the safeone. After giving a simple randomized solution, we show that this problem can be solved

74 CHAPTER 5. DETERMINISTIC CONTRACTION ALGORITHMSin NC by combining the techniques of pairwise independence [32, 144] with the techniqueof random walks on expanders [4]. This is the �rst time these two important techniqueshave been combined in a derandomization, although similar ideas have been used earlier tosave random bits in the work of Bellare, Goldreich and Goldwasser [13]. We feel that thecombination should have further application in derandomizing other algorithms.Finally, in Section 5.4.1 we apply the above results to �nding minimum cuts and toenumerating approximately minimum cuts.5.2 Sparse Certi�cates in ParallelWe now consider parallel sparse certi�cate algorithms. These play in important role inseveral other parts of our work. We give a new (deterministic) parallel algorithm for con-structing sparse certi�cates. This allows us to parallelize Matula's approximation algorithm.This deterministic parallel approximation algorithm plays a fundamental role in our deran-domization proof. Sparse certi�cates will also be used in randomized sequential and parallelalgorithms for �nding (1+ �)-approximations to the minimum cut in Chapter 6, improvingon Matula's approximation bound.Cheriyan, Kao, and Thurimella [29] give a parallel sparse certi�cate algorithm thatruns in O(k logn) time using m + kn processors. It is thus in NC when k = logO(1) n.We improve this result by presenting an algorithm that runs in O(logm) time using kmprocessors, and is thus in NC for all k = nO(1). It performs the same amount of work asthe algorithm of [29] but achieves a higher degree of parallelism. Our algorithm, unlikethose of [155] and [29] discussed in Section 3.3, does not simulate an iterated constructionand deletion of spanning forests. Instead, all the forests are constructed simultaneously.Since our algorithm is not using scan-�rst search, it is not guaranteed to leave an edgeout of the certi�cate and therefore cannot be used to implement Nagamochi and Ibaraki'scontraction-based algorithm of section 3.4.The notation needed to describe this construction is somewhat complex, so �rst we givesome intuition. To construct a maximal jungle, we begin with an empty jungle and repeat-edly augment it by adding additional edges from the graph until no further augmentation ispossible. Consider one of the forests in the jungle. The non-jungle edges that may be addedto that forest without creating a cycle are just the edges that cross between two di�erenttrees of that forest. We let each tree claim some such edge incident upon it. Hopefully,

5.2. SPARSE CERTIFICATES IN PARALLEL 75each forest will claim and receive a large number of edges, thus signi�cantly increasing thenumber of edges in the jungle.Two problems arise. The �rst is that several trees may claim a particular edge. However,the arbitration of these claims can be transformed into a maximal matching problem andsolved in NC. Another problem is that since each tree is claiming an edge, a cycle mightbe formed when the claimed edges are added to the forest (for example, two trees may eachclaim an edge connecting those two trees). We will remedy this problem as well.De�nition 5.2.1 An augmentation of a k-jungle J = fF1; : : : ; Fkg is a collection A =fE1; : : : ; Ekg of k disjoint sets of non-jungle edges from G. At least one of the sets Ei mustbe non-empty. The edges of Ei are added to forest Fi.De�nition 5.2.2 A valid augmentation of J is one that does not create any cycles in anyof the forests of J.Fact 5.2.3 A jungle is maximal i� it has no valid augmentation.Given a jungle, it is convenient to view it in the following fashion. We construct areduced (multi)graph GF for each forest F . For each tree T in F , the reduced graph containsa reduced vertex vT . For each edge e in G that connects trees T and U , we add an edge eFconnecting vT and vU . Since many edges can connect two forests, the reduced graph mayhave parallel edges. An edge e of G may induce many di�erent edges, one in each forest'sreduced graph.Given any augmentation, the edges added to forest F can be mapped to their corre-sponding edges in GF , inducing an augmentation subgraph of the reduced graph GF .Fact 5.2.4 An augmentation is valid i� the augmentation subgraph it induces in each for-est's reduced graph is a forest.Care should be taken not to confuse the forest F with the forest that is the augmentationsubgraph of GF .Our construction proceeds in a series of O(logm) phases in which we add edges to thejungle J . In each phase we �nd a valid augmentation of J whose size is a constant fractionof the largest possible valid augmentation. Since we reduce the maximum possible numberof edges that can be added to J by a constant fraction each time, and since the maximumjungle size is m, J will have to be maximal after O(logm) phases.

76 CHAPTER 5. DETERMINISTIC CONTRACTION ALGORITHMSTo �nd a large valid augmentation, we solve a maximal matching problem on a bipartitegraph H . Let one vertex set of H consist of the vertices vT in the various reduced multi-graphs, i.e., the trees in the jungle. Let the other vertex set consist of one vertex ve foreach non-jungle-edge e in G. Connect each reduced vertex vT of GF to ve if eF is incidenton vT in GF . Equivalently, we are connecting each tree in the jungle to the edges incidentupon it in G. Note that this means each edge in GF is a valid augmenting edge for F . Tobound the size of H , note that each vertex ve will have at most 2k incident edges, becauseit will be incident on at most 2 trees of each forest. Thus the total number of edges in His O(km).Lemma 5.2.5 A valid augmentation of J induces a matching in H of the same size.Proof: Consider a valid augmentation of the jungle. We set up a corresponding matchingin H between the edges of the augmentation and the reduced vertices as follows. For eachforest F in J , consider its reduced multigraph GF . Since the augmentation is valid, theaugmenting edges in GF form a forest (Fact 5.2.4). Root each tree in this forest arbitrarily.Each non-root reduced vertex vT has a unique augmentation edge eF leading to its parent.Since edge e is added to F no other forest F 0 will use edge eF 0 , so we can match vT to ve.It follows that every augmentation edge is matched to a unique reduced vertex.Lemma 5.2.6 Given a matching in H, a valid augmentation of J of size at least half thesize of the matching can be constructed in NC.Proof: If edge e 2 G is matched to reduced vertex vT 2 GF , tentatively assign e to forest F .Consider the set A of edges in GF that correspond to the G-edges assigned to F . The edgesof A may induce cycles in GF , which would mean (Fact 5.2.4) that A does not correspondto a valid augmentation of F . However, if we �nd an acyclic subset of A then the G-edgescorresponding to this subset will form a valid augmentation of F .To �nd this subset, arbitrarily number the vertices in the reduced graph GF . Directeach edge in A away from the reduced vertex to which it was matched (so each vertex hasoutdegree one), and split the edges into two groups: A0 � A are the edges directed froma smaller numbered to a larger numbered vertex, and A1 � A are the edges directed froma larger numbered to a smaller numbered vertex. One of these sets, say A0, contains atleast half the edges of A. However, A0 creates no cycles in the reduced multigraph. Its(directed) edges can form no cycle obeying the edge directions, since such a cycle must

5.2. SPARSE CERTIFICATES IN PARALLEL 77contain an edge directed from a larger numbered to a smaller numbered vertex. On theother hand, any cycle disobeying the edge directions must contain a vertex with outdegreetwo, an impossibility. It follows that the edges of A0 form a valid augmentation of F of atleast half the size of the matching.If we apply this construction to each forest F in parallel, we get a valid augmentationof the jungle. Furthermore, each forest will gain at least half the edges assigned to it in thematching, so the augmentation has the desired size.Theorem 5.2.7 Given G and k, a maximal k-jungle of G can be found in NC using O(km)processors.Proof: We begin with an empty jungle and repeatedly augment it. Given the currentjungle J , construct the bipartite graph H as was previously described and use it to �nd anaugmentation. Let a be the size of a maximum augmentation of J . Lemma 5.2.5 showsthat H must have a matching of size a. It follows that any maximal matching in H musthave size at least a=2, since at least one endpoint of each edge in any maximum matchingmust be matched in any maximal matching. Several NC algorithms for maximal matchingexist|for example, that of Israeli and Shiloach [93]. Lemma 5.2.6 shows that after we �nda maximal matching, we can (in NC) transform this matching into an augmentation ofsize at least a=4. Since we �nd an augmentation of size at least one fourth the maximumeach time, and since the maximum jungle size is m, the number of augmentations neededto make a J maximal is O(logm). Since each augmentation is found in NC, the maximaljungle can be found in NC.The processor cost of this algorithm is dominated by that of �nding the matching inthe graph H . The algorithm of Israeli and Shiloach requires a linear number of processors,and is being run on a graph of size O(km).5.2.1 Parallelizing Matula's AlgorithmNow observe that the central element of Matula`s approximation algorithm (Section 3.5)is the call to a sparse certi�cate subroutine. Furthermore, it is easy to implement theother steps of the algorithm in NC using a linear number of processors. Thus to parallelizeMatula's Algorithm we need only �nd sparse certi�cates in parallel. If we use our newlydeveloped sparse certi�cate algorithm (Section 5.2), we have:

78 CHAPTER 5. DETERMINISTIC CONTRACTION ALGORITHMSLemma 5.2.8 A (2 + �)-minimal cut in an unweighted graph can be found in NC usingO(cm) = O(m2=n) processors.Proof: A graph with m edges has a vertex with degree O(m=n); the minimum cut cantherefore be no larger. It follows that the approximation algorithm will construct k-jungleswith k = O(m=n).5.3 Reducing to ApproximationIn this section, we show how the problem of �nding a minimum cut in a graph can bereduced to that of �nding a (2+ �)-approximation. Our technique is to \kill" all cuts of sizeless than (2+ �)c other than the minimum cut itself. The minimum cut is then the only cutof size less than (2 + �)c, and thus must be the output of the approximation algorithm ofSection 5.2.1. To implement this idea, we focus on a particular minimum cut that partitionsthe vertices of G into two sets A and B. Consider the graphs induced by A and B.Lemma 5.3.1 The minimum cuts in A and in B have value at least c=2.Proof: Suppose A has a cut into X and Y of value less than c=2. Only c edges go fromX and Y to B, so one of X or Y (say X) must have at most c=2 edges leading to B.Since X also has less than c=2 edges leading to Y , the cut (X;X) has value less than c, acontradiction.It follows from the cut counting theorem (Theorem 4.7.6) that there are nO(1) cuts ofweight less than (2 + �)c. Call these cuts the target cuts.Lemma 5.3.2 Let Y be a set containing edges from every target cut but not the minimumcut. If every edge in Y is contracted, then the contracted graph has a unique cut of weightless than (2 + �)c|the one corresponding to the original minimum cut.Proof: Clearly contracting the edges of Y does not a�ect the minimum cut. Now supposethis contracted graph had some other cut C of value less than (2 + �)c. It corresponds tosome cut of the same value in the original graph. Since it is not the minimum cut, it mustinduce a cut in either A or B, and this induced cut must also have value less than (2+ �)c.This induced cut is then a target cut, so one of its edges will have been contracted. Butthis prevents C from being a cut in the contracted graph, a contradiction.

5.4. THE SAFE SETS PROBLEM 79It follows that by running the NC (2 + �)-approximation algorithm of Section 5.2.1 onthe contracted graph we will �nd the minimum cut, since the actual minimum cut is theonly one that is small enough to meet the approximation criterion. Our goal is thus to�nd a collection of edges that intersects every target cut but not the minimum cut. Thisproblem can be phrased more abstractly as follows: Over some universe U , an adversaryselects a polynomially sized collection of \target" sets of roughly equal size (the small cuts'edge sets), together with a disjoint \safe" set of about the same size (the minimum cutedges). We want to �nd a collection of elements that intersect every target set but not thesafe set. Note that we do not know what the target or safe sets are, but we do have anupper bound on the number of target sets. We proceed to formalize this problem as theSafe Sets Problem.5.4 The Safe Sets ProblemWe describe a general form of the problem. Fix a universe U = f1; : : : ; ug of size u.De�nition 5.4.1 A (u; k; �) safe set instance consists of a safe set S � U and a collectionof k target sets T1, : : :, Tk � U such that� constant � > 0,� for 1 � i � k, jTij � �jSj, and� for 1 � i � k, Ti \ S = ;.We will use the notation that s = jSj, ti = jTij, and t = �s � ti. The value of s is notspeci�ed in a safe set instance but, as will become clear shortly, it is reasonable to assumethat it is known explicitly. Finally, while the safe set S is disjoint from all the target sets,the target sets may intersect each other.De�nition 5.4.2 An isolator for the safe set instance is a set that intersects all the targetsets but not the safe set.An isolator is easy to compute (even in parallel) for any given safe sets instance providedthe sets S, T1, : : :, Tk are explicitly speci�ed. However, our goal is to �nd an isolator in thesetting where only u, k and � are known, but the actual sets S, T1, : : :, Tk are not speci�ed.We can formulate this goal as the problem of �nding a universal isolating family.

80 CHAPTER 5. DETERMINISTIC CONTRACTION ALGORITHMSDe�nition 5.4.3 A (u; k; �)-universal isolating family is a collection of subsets of U thatcontains an isolator for any (u; k; �) safe set instance.To see that this general formulation captures our cut isolation problem, note that theminimum cut is the safe set in an (m; k; �) safe set instance. The universe is the set ofedges, of size m; the target sets are the small cuts of the two sides of the minimum cut; kis the number of such small cuts and (by Theorem 4.7.6 and Lemma 5.3.2) can be boundedby a polynomial in n < m; and � = 2 + �. The safe set size s is the minimum cut size cand the approximation algorithm of Section 5.2.1 allows us to estimate s = c to within aconstant factor.In Section 5.5, we give an NC algorithm for constructing a polynomial-size (u; k; �)-universal isolating family. Before doing so, we give the details of how it can be used to solvethe minimum cut problem in NC.5.4.1 Unweighted Minimum Cuts and ApproximationsWe begin by addressing unweighted graphs, extending to weighted graphs in Section 5.4.2.We have already observed that we can solve the minimum cut problem by contracting anedge from every cut of value less than (2+�)c except the minimum cut. Let k = nO(1) be thebound on the number of target cuts. Using our NC solution to the Safe Sets Problem, wecan construct a polynomial size (m; k; �)-isolating family. One of the sets in the isolatingfamily intersects every target cut but not the minimum cut. Thus, if in parallel we tryeach set in the isolating family, contracting all the edges in it and �nding an approximatelyminimum cut in the resulting graph, then one of these trials will yield the minimum cut.Since each trial can easily be implemented in NC using the NC approximation algorithmof Section 5.2.1, and since there are only polynomially many trials, the entire process canbe implemented in NC.We also have the following extension to approximately minimum cuts which we need forthe weighted graph analysis:Lemma 5.4.4 If (A;B) is a cut with value (2 � �)c, then A and B both have minimumcut size at least �c.Proof: A variation on the proof of Lemma 5.3.1.

5.4. THE SAFE SETS PROBLEM 81Corollary 5.4.5 Given any positive constant �, all cuts of size less then (2� �)c can befound in NC.Proof: Given a (2� �)-minimum cut (A;B), the problem of contracting all cuts in A andB of size less than, say, 3(2� �)c is an (m; k; c) Safe Sets Problem with k = mO(1) (by theprevious lemma and Theorem 4.7.6). It follows that the safe sets approach can solve it.Afterwards, we �nd the cut by applying the approximation algorithm.Remark: This result says nothing about cuts of value exceeding twice the minimum. InChapter 9, we will show that in fact the derandomization holds for �nding cuts within anarbitrary constant multiple of the minimum.5.4.2 Extension to Weighted GraphsIf the weights in a graph are polynomially bounded integers, we can transform the graphinto a multigraph with a polynomial number of edges by replacing an edge of weight w withw parallel unweighted edges. Then we can use the unweighted multigraph algorithm to �ndthe minimum cut.If the edge weights are large, we use the minimum spanning tree technique of Sec-tion 4.6.2 to estimate the weight of the minimum cut to within a multiplicative factor ofO(n2). Let w < c < n2w be this estimated bound in the minimum cut weight c. Wecan immediately contract all edges of weight exceeding n2w, since they cannot cross theminimum cut. Afterwards, the total amount of weight remaining in the graph is at mostn4w. Now multiply each edge weight by n3=w, so that that the minimum cut is scaled to bebetween n3 and n5. Next round each edge weight to the nearest integer to get a graph withpolynomially bounded edge weights. This will change the value of each cut by at most n2in absolute terms, implying a relative change by at most a (1+1=n) factor. Thus the cut ofminimal weight in the original graph has weight within a (1 + 1=n) factor of the minimumcut in the new graph. By Corollary 5.4.5, all such nearly minimum cuts can be found in NCwith the previously described algorithms. All we need to do to �nd the actual minimumcut is inspect every one of the small cuts we �nd in the scaled graph and compute its valueaccording to the original edge weights.

82 CHAPTER 5. DETERMINISTIC CONTRACTION ALGORITHMS5.5 Solving the Safe Sets ProblemIn this section, we give the derandomization leading to an NC algorithm for constructingan isolating family. Our goal is: given U , k, and �, generate a (u; k; �)-universal isolatingfamily of size polynomial in u and k in NC. We �rst give an existence proof for universalfamilies of the desired size. For the purposes of this proof we assume that the value of s,the safe set size, is known explicitly. We discuss the validity of this assumption after theproof.Theorem 5.5.1 There exists a (u; k; �)-universal isolating family of size at most ukO(1).Proof: We use a standard probabilistic existence argument. Fix attention on a particularsafe set instance. Suppose we mark each element of the universe with probability log k=s,and let the marked elements form one member of the universal family. With probabilityk�O(1) the safe set is not marked but all the target sets are. Thus if we perform kO(1) trials,we can reduce the probability of not producing an isolator for this instance to 1=2. If wedo this ukO(1) times, then the probability of failure on the instance is 2�ukO(1). If we nowconsider all 2ukO(1) safe set instances, the probability that we fail to to generate a safe setfor all of them during all the trials is less than 1.It is not very hard to see that this existence proof can be converted into a randomized(RNC) construction of a polynomial size (u; k; �)-universal isolating family. In the appli-cation to the minimum cut problem, we only know of an upper bound on the value of k butit is clear that this su�ces for the existence proof and the randomized construction.It may appear that the assumption that s is known will not allow us to apply thisrandomized construction to the minimum cut problem where the whole point is to determinethe value of s = c. To remove this assumption, �rst note that it su�ces to have onlya constant factor approximation to the value of s, which is known in the minimum cutapplication. In general, however, we do not even need this constant factor approximationsince we could construct universal sets for s = 1; 2; 4; 8; : : : ; u and take their union, obtaininga family that was universal for all s. It would increase the number of sets in the family toukO(1) log u but would increase the total size of the family by only a constant factor.

5.5. SOLVING THE SAFE SETS PROBLEM 835.5.1 Constructing Universal FamiliesWe proceed to derandomize the construction of a universal isolating family. To perform thederandomization, we �x our attention on a particular safe set instance, and show that ourconstruction will contain an isolator for that instance. It will follow that our constructioncontains an isolator for every instance.Suppose we independently mark each element of U with probability 1=s. The probabilitythat a subset of size x does not contain any marked elements is (1 � 1=s)x. We use thefollowing standard inequalities:�e�1�1� 1s��x=s � �1� 1s�x � e�x=s:Let Ei be the event that Ti does contain some and S does not contain any marked elements.Then, using the fact that S and Ti are disjoint, it follows thatPr[Ei] = 1� �1� 1s�ti!�1� 1s�s� �1� e����e�1�1� 1s�� :Since � is a constant, there is a constant probability of Ei, i.e. that no element of S ismarked but some element of Ti is marked. Call this event good for Ti or simply good for iand call the set of marked elements a good set for Ti. For each trial, we have some constantprobability that the trial is good for a particular i. The marked elements would isolate S ifthey were good for every Ti.We now show that in fact pairwise independence in the marking of elements is all thatis needed to achieve the desired constant probability of being good for i. The analysis ofthe use of pairwise instead of complete independence is fairly standard [32, 144], and theparticular proof given below is similar to that of Luby, Naor, and Naor [145].Choose p = 1=�s where � = 2+�. Suppose each element of U is marked with probabilityp pairwise independently to obtain a mark set M � U . For any element x 2 U , we de�nethe following two events under the pairwise independent marking:� Mx: the event that element x is marked,� Sx: the event that element x is marked but no element of the safe set S is marked.We have that Pr[Mx] = p and the events fMxg are pairwise independent. Further, themark set M is good for a target set Ti if and only if the event Sx occurs for some element

84 CHAPTER 5. DETERMINISTIC CONTRACTION ALGORITHMSx 2 Ti. The following lemmas help to establish a constant lower bound on the probabilitythat M is good for Ti.Lemma 5.5.2 For any element x 2 U n S,Pr[Sx] � � � 1�2s :Proof: The probability that x is marked but no element of S is marked can we written asthe product of the following two probabilities:� the probability that x is marked, and� the probability that no element of S is marked conditional upon x being marked.We obtain that Pr[Sx] = Pr[\j2SMj j Mx]� Pr[Mx]= (1� Pr[[j2SMj j Mx])� Pr[Mx]� 0@1�Xj2S Pr[Mj j Mx]1A� Pr[Mx]:Since x 62 S, we have that j 6= x. The pairwise independence of the marking now impliesthat Pr[Mj j Mx] = Pr[Mj], and so we obtain thatPr[Sx] � 0@1�Xj2S Pr[Mj]1A� Pr[Mx]= (1� sp)p= �1� 1�� 1�s= � � 1�2s :Lemma 5.5.3 For any pair of elements x, y 2 U n S,Pr[Sx \ Sy] � 1�2s2 :

5.5. SOLVING THE SAFE SETS PROBLEM 85Proof: Using conditional probabilities as in the proof of Lemma 5.5.2, we have thatPr[Sx \ Sy] = Pr[(Mx \My)\ (\j2SMj)]= Pr[\j2SMj j Mx \My]� Pr[Mx \My]� Pr[Mx \My]= p2;where the last step follows from the pairwise independence of the marking. Plugging in thevalue of p gives the desired result.Theorem 5.5.4 The probability that the pairwise independent marking is good for anyspeci�c target set Ti is bounded from below by a positive constant.Proof: Recall that jTij � t = �s and arbitrarily choose a subset T � Ti such that jT j =t = �s, assuming without loss of generality that t is a positive integer. The probability themark set M is good for Ti is given by Pr[[x2TiSx]. We can lower bound this probability asfollows Pr[[x2TiSx] � Pr[[x2TSx]� Xx2T Pr[Sx]� Xx;y2T Pr[Sx \ Sy];using the principle of inclusion-exclusion. Invoking Lemmas 5.5.2 and 5.5.3, we obtain thatPr[[x2TiSx] � t(� � 1)�2s � t2! 1�2s2� t(� � 1)�2s � t2�2s2= �(� � 1)�2 � �22�2= �2(2 + �) ;where the last expression follows from our choice of � = 2 + �. Clearly, for any positiveconstant �, the last expression is a positive constant.The pairwise independence used above can be achieved using O(logu + log s) randombits as a seed to generate pairwise-independent variables for the marking trial. The O(log u)term comes from the need to generate u random variables; the O(log s) term comes from the

86 CHAPTER 5. DETERMINISTIC CONTRACTION ALGORITHMSfact that the denominator in the marking probability is proportional to s. Since s � u, thenumber of random bits needed to generate the pairwise independent marking is O(log u).We can boost the probability of success to any desired constant � by using O(1) in-dependent iterations of the random marking process, each yielding a di�erent mark set.This increases the size of the seed needed by only a constant factor. We can think of thispairwise independent marking algorithm as a function f that takes a truly random seed Rof O(log u) bits and returns O(1) subsets of U . Randomizing over seeds R, the probabilitythat f(R) contains at least one good set for target Ti is �.The next step is to reduce the probability of failure from a constant 1 � � to an in-verse polynomially small value. This reduction relies on the behavior of random walks onexpanders. We need an explicit construction of a family of bounded degree expanders, anda convenient construction is that of Gabber and Galil [65]. They show that for su�cientlylarge n, there exists a graph Gn on n vertices with the following properties: the graph is7-regular; it has a constant expansion factor; and, for some constant �, the second eigenvalueof the graph is at most 1� �. The following is a minor adaptation of a result due to Ajtai,Koml�os and Szemer�edi [4] (see also [92, 35]) which presents a crucial property of randomwalks on the expander Gn.Theorem 5.5.5 ([4]) Let B be a subset of V (Gn) of size at most (1 � �)n, for someconstant �. Then there exists a constant such that for a random walk of length log k onGn, the probability that the vertices visited are all from B is O(k�2).Notice that performing a random walk of length log k on Gn requires O(logn+ log k)random bits|choosing a random starting vertex requires log n random bits and, since thedegree is constant, each step of the walk requires O(1) random bits. We use this randomwalk result as follows. Each vertex of the expander corresponds to a seed for the markset generator f described above; thus, logn = O(log u), implying that we need a total ofO(log u + log k) random bits for the random walk. Choosing B to be the set of bad seedsfor Ti, i.e. those that generate set families containing no good sets for Ti, and noting thatby construction B has size (1� �)n, allows us to prove the following theorem.Theorem 5.5.6 A (u; k; �) universal family for U of size (uk)O(1) can be generated in NC.Proof: Use O(log u+log k) random bits in the expander walk to generate �(log k) pseudo-random seeds. Then use each seed as an input to the mark set generator f . Let H denote

5.5. SOLVING THE SAFE SETS PROBLEM 87the �(log k) sets generated throughout these trials (we give �(log k) inputs to f , each ofwhich generates O(1) sets). Since the probability that f generates a good-for-i set on arandom input is �, we can choose constants and apply Theorem 5.5.5 to ensure that withprobability 1 � 1=k2, one of our pseudo-random seeds is such that H contains a good setfor Ti. It follows that with probability 1 � 1=k, H contains good sets for every one of theTi. Note that the good sets for di�erent targets might be di�erent. However, considerthe collection C of all possible unions of sets in H . Since H has O(log k) sets, C has size2jHj = kO(1). One set in C consists of the union of all the good-for-some-i sets in H ; thisset intersects every Ti but does not intersect the safe set, and is thus an isolator for ourinstance.We have shown that with O(log u+logk) random bits, we generate a family of kO(1) setssuch that there is a nonzero probability that one of the sets isolates the safe sets instance.It follows that if we try all possible O(log u + log k) bit seeds, one of them must yield acollection that contains an isolator. All these seeds together will generate (uk)O(1) sets, oneof which must be the desired one.For a given input seed, the pairwise independent generation of sets by f is easily paral-lelizable. Given a particular O(log u+ log k) bit seed for the expander walk, Theorem 5.5.5says that performing the walk to generate the seeds for f takes O(log u+ log k) time. Wecan clearly perform walks in parallel for all possible seeds. The various sets that are outputas a result must contain a solution for any particular safe set instance; it follows that theoutput collection is a (u; k; c) universal isolating family.Remark: It should be noted that by itself, this safe sets construction is not su�cient toderandomize the minimum cut algorithm. Combined directly with the Luby, Naor, andNaor technique, it can �nd a set of edges that contains an edge incident to each vertex butnot any of the minimum cut edges. Unfortunately, such an edge set need only halve thenumber of vertices (e.g., if the edge set is a perfect matching), so
(logn) phases wouldstill be necessary|the same aw as in [145]. The power of the technique comes through itscombination with the approximation algorithm, which allows us to solve the entire problemin a single phase with O(logn) random bits. This, of course, lets us fully derandomize thealgorithm.

88 CHAPTER 5. DETERMINISTIC CONTRACTION ALGORITHMS5.6 ConclusionThis chapter has shown that the minimum cut problem can be solved in NC. However,the algorithm presented is somewhat impractical. The natural open problem is to �nd apractical NC algorithm for minimum cuts. An easier goal might be to improve the e�ciencyof the approximation algorithm. Our algorithm uses m2=n processors. Matula's sequentialapproximation algorithm uses only linear time, and the RNC minimum cut algorithm ofChapter 4 uses only n2 processors. Both these facts suggest that a more e�cient NCalgorithm might be possible.We also introduced a new combinatorial problem, the safe sets problem. This problemseems very natural and it would be nice to �nd further applications for it. Other applicationsof the combination of pairwise independence and random walks would also be interesting.A preliminary version of this chapter has appeared earlier as an extended abstract [107].

Chapter 6Random Sampling from Graphs6.1 IntroductionCuts play an important role in determining the solutions to many graph problems besidesglobal minimum cuts. The s-t minimum cut and maximum ow are determined by thesmallest of all cuts that separate s and t. In the NP-complete network design problem,the goal is to output a graph that satis�es certain speci�ed connectivity requirements bycontaining no small cuts. A special case is to �nd a minimum size (number of edges) k-connected subgraph of a k-connected graph. Other problems to which cuts are relevantinclude �nding a minimum balanced cut (in which both sides of the cut are \large") and�nding an orientation (assignment of directions) of the edges of an undirected graph whichmakes it k-connected as a directed graph. Cuts also play an important role in multicom-modity ow problems, though the connection is not as tight as for the standard max-owproblem [137].In this chapter we show that random sampling is a powerful tool for cut-dependentundirected graph problems. We de�ne and use a graph skeleton. Given a graph, a skeletonis constructed on the same set of vertices by including a small random sample from thegraph's edges. Our main result is that skeletons accurately approximate all cut valuesin the original graph. Thus, random subgraphs can often be used as substitutes for theoriginal graphs in cut and ow problems. Since the subgraphs are small, improved timebounds result. Skeletons are conceptually related to the sparse connectivity certi�catesdiscussed in Section 3.3. The skeleton is a kind of sparse approximate certi�cate.In the most obvious application, by computing minimum cuts and maximum ows in the89

90 CHAPTER 6. RANDOM SAMPLING FROM GRAPHSskeleton, we get fast algorithms for approximating minimum cuts and maximum ows. InSection 6.3, we give a linear time algorithm for �nding a (1+ �)-approximation to the mini-mum cut in any weighted graph, thus improving on Matula's previous (2+�)-approximationalgorithm. We also improve the processor bounds of the parallel (2 + �)-approximation al-gorithm of Section 5.2.1 and extend it to weighted graphs. Lastly, we show how to maintainan approximately minimum cut dynamically as edges are added to or deleted from a graph.These algorithms are all Monte Carlo. We give veri�cation techniques that can be used tomake the algorithms las Vegas. Finally, we give a randomized divide and conquer schemewhich to �nd a minimum cut in ~O(mpc) time, improving on Gabow's algorithm by a pcfactor.In Section 6.6, we show how to apply our theorems in randomized rounding for networkdesign problems. In these NP-complete problems, the goal is to construct a minimum costnetwork satisfying certain connectivity requirements. We improve the approximation ratiosfrom O(logn) to 1 + o(1) for a large class of these problems.All of our techniques apply only to undirected graphs, as cuts in directed graphs donot appear to have the same predictable behavior under random sampling. As might beexpected, the most direct applications of our techniques are to minimum cut problems; wefocus on these and leave extensions to other problems to Part II.6.1.1 Cuts and FlowsWe present algorithms for approximating and for exactly �nding s-t and global minimumcuts and maximum ows. To this end, we make the following extension to the de�nition of�-minimal cuts.De�nition 6.1.1 An �-minimal s-t cut is a cut whose weight is at most � times that ofthe s-t minimum cut. An �-maximal s-t ow is an s-t ow of value at least � times theoptimum.Supposing that an s-t minimum cut has value v, we give randomized Monte Carlo (MC)and Las Vegas (LV) algorithms to �nd the following objects in unweighted, undirectedgraphs:� A minimum cut in ~O(mpc) time (LV),� A (1 + �)-minimal cut in ~O(m+ n=�3) time (MC) or ~O(m=�) time (LV).

6.1. INTRODUCTION 91� An s-t maximum ow in ~O(mv=pc) time (LV),� A (1� �)-maximal s-t ow in ~O(mv=�c) time (LV),� A (1+ �)-minimal s-t cut in O(m+n(v=c)��3) = O(mv=�3c2) time (MC) or ~O(mv=�c)time (LV),Our cut approximation algorithms extend to weighted graphs with roughly the sametime bounds. The ow approximation algorithms and exact algorithms can use a \splitting"technique that, for a given maximum edge weight U , increases the time bounds of the owalgorithms by a factor of pU rather than the naive factor of U .Previously, the best time bound for computing maximum ows in unweighted graphswas O(m �min(v; n2=3;pm)), achieved using blocking ows (cf. [181]). In the unit graphsthat arise in bipartite matching problems, a running time of O(mpn) is achieved (Federand Motwani [55] improved this bound by an additional O(logn) factor). Our exact algo-rithm's bounds dominate these whenever the ratio v=pc is small, and in particular when cis large. Our approximation algorithms are even better: for example, we can approximates-t minimum cuts to within any constant factor in ~O(m) time so long as c =
(pn). Weare aware of no previous work on approximating s-t minimum cuts or maximum ows, al-though blocking ows can be used to achieve a certain large absolute error bound. Matula'salgorithm (Section 3.5) was previously the best approximation algorithm; we improve theaccuracy from (2+ �) to (1+ �) in a Las Vegas algorithm with the same time bound, as wellas giving e�cient parallel and dynamic approximation algorithms.6.1.2 Network DesignFrom random sampling, it is a small step to show that randomized rounding can be e�ec-tively applied to graphs with fractional edge weights, yielding integrally weighted graphswith roughly the same cut values. This makes randomized rounding a useful tool in net-work design problems. Here, we use random sampling as a postprocessing rather than apreprocessing step.A network design problem is speci�ed by an input graph G with each edge assigned acost. The goal is to output a subgraph of G satisfying certain connectivity requirements atminimum cost (measured as the sum of the costs of edges used). These requirements aredescribed by specifying a minimum number of edges that must cross each cut of G. Sincethe number of cuts is exponential, the requirements are typically described implicitly, for

92 CHAPTER 6. RANDOM SAMPLING FROM GRAPHSexample by specifying the desired connectivity of the output graph. The network designformulation easily captures many classic problems, some NP-complete, including perfectmatching, minimum cost ow, Steiner tree, and minimum T-join. It also captures theminimum cost k-connected subgraph problem, where the goal is to build a minimum costgraph with minimum cut k. The minimum cost 1-connected subgraph is just the minimumspanning tree, but for larger values of k the problem is NP-complete even when all edgecosts are 1 or in�nity [53].Our cut-sampling theorems allow edges to be sampled with di�erent probabilities. Thislets us apply the randomized rounding technique of Raghavan and Thompson [168] to thefractional solutions and get good approximation ratios, despite the fact that the roundingmust simultaneously satisfy exponentially many constraints. Our techniques apply to a largeclass of network design problems, the one restriction being that the minimum connectivityrequirement be large. For example, for the k-connected subgraph problem, we give anapproximation algorithm with performance ratio 1 + O(p(logn)=k). For any k � logn,this improves on the previous best known approximation factor of 2 given by Khuller andVishkin [119]. We give the same approximation ratio for a broader range of problems inwhich the previous best approximation ratio was O(logn).6.2 A Sampling Model and Theorems6.2.1 Graph SkeletonsOur algorithms are all based upon the following model of random sampling in graphs. Weare given an unweighted multigraph G with a sampling probability pe for each edge e, andwe construct a random subgraph, or skeleton, on the same vertices by placing each edge ein the skeleton independently with probability pe. Let Ĝ denote the weighted graph withthe vertices and edges of G and with edge weight pe assigned to edge e, and let ĉ be theminimum cut of Ĝ. There is an obvious 1 to 1 correspondence between cuts in G and Ĝ.The graph Ĝ is in some sense the \expected value" of G, since the value of a cut in Ĝ isthe expected value of the corresponding cut in G. The quantity ĉ is the minimum expectedvalue of any cut, which must be distinguished from the expected value of the minimum cut.Our main theorem says that so long as ĉ is su�ciently large, every cut in the skeleton takeson roughly its expected value.

6.2. A SAMPLING MODEL AND THEOREMS 93Theorem 6.2.1 Let � = p2(d+ 2)(lnn)=ĉ � 1. Then with probability 1� O(1=nd), everycut in the skeleton of G has value between (1� �) and (1 + �) times its expected value.Proof: We use two lemmas: The Cherno� bound (Appendix A.2) and Theorem 4.7.6 forcounting cuts. Theorem 4.7.6 applied to Ĝ says that the number of cuts with expectedvalue within an � factor of the minimum increases exponentially with �. On the otherhand, the Cherno� bound says that the probability one such cut diverges too far from itsexpected value decreases exponentially with �. Combining these two lemmas and balancingthe exponential rates proves the theorem.Let r = 2n � 2 be the number of cuts in the graph, and let c1; : : : ; cr be the expectedvalues of the r cuts in the skeleton. Without loss of generality, assume the ci are in increasingorder so that ĉ = c1 � c2; � � � � cr. Let pk be the probability that the kth cut diverges bymore than � from its expected value. Then the probability that some cut diverges by morethan � is at most P pk, which we proceed to bound from above.According to the Cherno� bound pk � e��2ck=2. We now proceed in two steps. First,consider the n2 smallest cuts. Each of them has ck � ĉ and thus pk � n�(d+2), so thatXk�n2 pk � (n2)(n�(d+2)) = n�d:Next, consider the remaining larger cuts. According to Theorem 4.7.6, there are less thann2� cuts of expected value less than �ĉ. Since we have numbered the cuts in increasingorder, this means that cn2� � �ĉ. In other words, writing k = n2�,ck � ln k2 lnn � ĉ;and thus pk � k�(d+2)=2:It follows that Xk>n2 pk � Xk>n2 k�(d+2)=2� Z rn2 k�(d+2)=2= O(n�d)

94 CHAPTER 6. RANDOM SAMPLING FROM GRAPHS6.2.2 p-SkeletonsIn many of our applications, we will �x some value p and set pe = p for all e. We call theresulting sample a p-skeleton of G and denote it G(p). We have the following immediatecorollary to Theorem 6.2.1.Corollary 6.2.2 Let G be any graph with minimum cut c and let p = 2(d + 2)(lnn)=�2cwhere � � 1. Then the probability that the value of some cut in G(p) has value more than(1 + �) or less than (1� �) times its expected value is O(1=nd).Proof: Note that the minimum expected cut is ĉ = pc and apply Theorem 6.2.1.To generate a skeleton, ip an appropriately biased coin for each edge. Flipping a biasedcoin is a special case of Random-Select in which we choose from the two-element set fH; Tg,and there requires amortized O(1) time per trial as is shown in Appendix A.3.Lemma 6.2.3 A p-skeleton of an unweighted graph can be constructed in O(m) time.6.2.3 Weighted GraphsWe need to use a di�erent approach to construct skeletons in weighted graphs. As with theContraction Algorithm, we can equate a weighted graph with its corresponding multigraph.But under the previous scheme, we would need to ip one coin for each unit of weight inthe graph, and this could take too much time. We therefore give an alternative scheme formultigraphs that has a better extension to weighted graphs.Corollary 6.2.4 Let G be an unweighted graph with minimum cut c and let p = 2(d +2)(lnn)=�2c. Let H be constructed from G by choosing dpme edges from G at random. Thenthe probability that the value of some cut of value v in G has value more than (1 + �)pv orless than (1� �)pv in H is O(n�dppm).Proof: We could prove this corollary the same way we proved the cut-counting theorem,using a variant of the Cherno� bound for �xed size samples. Instead, let ERR denote theevent that some cut diverges by more than � from its expected value. We know that if wesample each edge with probability p, then Pr[ERR] is O(1=nd). Let S denote the numberof edges actually chosen in such a sample. Note that S has the binomial distribution and

6.2. A SAMPLING MODEL AND THEOREMS 95that its so-called central term Pr[S = dpme] =
(1=ppm) (cf. [57]). We can evaluate ERRconditioning on the value of S:1=nd � Pr[ERR]= Xk Pr[S = k] � Pr[ERR j S = k]� Pr[S = dpme] � Pr[ERR j S = dpme]=
(1ppm � Pr[ERR j S = dpme]:In other words, Pr[ERR j S = dpme] = O(ppm=nd).This corollary tells us that so long as the expected number pm of edges in the skeletonis polynomial in n, we can construct the skeleton by taking a �xed size sample and get thesame desired result of all cuts being within � of their expectations with high probability. Wecan construct such a modi�ed p-skeleton by making pm random selections from among theedges of the graph. In the weighted graph, we simulate this behavior if we choose each edgewith probability proportional to the weight of the edge. This is accomplished in amortizedO(logm)-time per selection using procedure Random-Select from Appendix A.3.Corollary 6.2.5 In an m-edge graph with total edge weight W , a p-skeleton can be con-structed in O(pW logm) time.We have to deal with one small technicality. We would like to construct cumulativeedge weights only once, and then sample from them pW times. But this models a slightlydi�erent approach from our original one. When we use the original method, sampling eachedge of the corresponding multigraph with probability p, we select each edge at most once.If we perform pm samples without deleting multiedges, we might pick the same multiedgemore than once. To see that such repeated selection does not a�ect the outcome, supposewe multiply each edge weight by some large k. This scales all cut values without changingtheir structure. Now suppose we build a (p=k)-skeleton in the new graph. We do so byperforming (kW)(p=k) = pW samples with the same biases as before. Now, however, thereare so many multiedges in the corresponding multigraph that the probability of picking thesame one twice is negligible. It follows that our analysis applies even if we do use a modelof sampling without updating the sampling probabilities.

96 CHAPTER 6. RANDOM SAMPLING FROM GRAPHS6.3 Approximating Minimum CutsWe now show how sampling can be used for global minimum cuts. We have already discussedsequential (Gabow's algorithm of Section 3.2.2) and parallel (Section 5.2.1) minimum cutalgorithms that are e�cient on graphs with small minimum cuts. Using skeletons, wecan transform graphs with large minimum cuts into graphs with small minimum cuts andthen run these sparse graph algorithms. We use the following immediate extension ofCorollary 6.2.2:Theorem 6.3.1 Let G be any graph with minimum cut c and let p =
((lnn)=�2c). Thenwith high probability the minimum cut has value between (1� �)pc and (1 + �)pc.6.3.1 Estimating pThe obvious algorithm for estimating minimum cuts is to construct a p-skeleton, computeits minimum cut, and divide it by p to get a minimum cut in the original graph. In thesealgorithms, given an approximation bound �, we will want to sample with the correspondingp = �((ln n)=(�2c)) of Theorem 6.2.1 in order to ensure that in the skeleton no cut divergesin value by more than � times its expectation. This would appear to require knowledge ofc. We now note that instead p can be determined by examining the skeleton.Lemma 6.3.2 With high probability, if G(p) is constructed and has minimum cut ĉ =
((logn)=�2) for � � 1, then the minimum cut in G is (1� �)ĉ=p.Proof: Suppose pc � (logn)=�2. Consider a particular minimum cut. The Cherno� boundsays that with high probability, at most O(logn) edges will be sampled from the minimumcut and so the theorem is vacuously true. Otherwise, apply the sampling theorem.In other words, so long as the skeleton has minimum cut
(logn), the value of theminimum cut tells us the accuracy of the skeleton.Remark: This lemma suggests yet another approach to constructing skeletons. Namely,sample edges from G, adding them to the skeleton, until the skeleton has minimum cut(logn)=�2. At this point, we know the skeleton approximates cuts to within �. This will beimportant as we develop certain dynamic approximation algorithms in Section 10.5.This lemma means we can use the following repeated-doubling scheme in our approxi-mation algorithms. Suppose that the actual minimum cut is c and that the correct sampling

6.3. APPROXIMATING MINIMUM CUTS 97probability is p = O((logn)=�2c). If we use the correct p, then the sampling theorem saysthat the minimum cut is at least ĉ = O((logn)=�2) with high probability. Suppose we havean overestimate C > c for the minimum cut, and determine the corresponding samplingprobability P = O((logn)=�2C) for constructing an �-accurate skeleton in a graph withminimum cut C. Compute the minimum cut in this P -skeleton. If P < p=2, then samplingtheorem says that the minimum cut is less than ĉ with high probability. If we discoverthis, we can halve our guess for C (doubling P) and try again. Eventually, we will haveP > 2p, at which point the sampling theorem says the minimum cut in the P -skeletonexceeds ĉ. When we discover this, we also know by Lemma 6.3.2 that w.h.p. the P -skeletonapproximates all cuts to within �.Assuming we have an overestimate C > c, we will require O(log(C=c)) iterations of thisdoubling process to �nd the correct p. Furthermore, in each iteration, the minimum cutwill be at most ĉ = O((logn)=�2) and thus easy to compute.We now apply these ideas to develop sequential, parallel, and dynamic algorithms forapproximating the minimum cut. In each case, the goal is to take a minimum cut algorithmwhich is e�cient on sparse graphs and to extend it to dense graphs by constructing skeletons.6.3.2 Sequential AlgorithmsFor a sequential approximation algorithm, we apply Gabow's minimum cut algorithm (Sec-tion 3.2.2). Recall that Gabow's algorithm uses complete intersections, as an analogue tousing augmenting paths in maximum ows to �nd minimum s-t cuts, and shows that themaximum value (number of trees) in such a complete intersection is equal to the value ofthe minimum cut in the graph. He uses a subroutine called Round-Robin to augment thecomplete intersection by one tree in O(m log(m=n)) time, and thus �nds the minimum cutin ~O(mc) time.Lemma 6.3.3 In weighted graphs, a (1+�)-minimal cut can be found in O(m+n((logn)=�)4)time (Monte Carlo).Proof: Given an m edge graph, suppose �rst that c is known. Build a p-skeleton for pdetermined by c and �, and use Gabow's min-cut algorithm to �nd a minimum cut in it.The skeleton has minimum cut O((logn)=�2), so the running time is O(m(log4 n)=(�4c)).Now note that before we run the approximation algorithm, we can use Nagamochi andIbaraki's sparse certi�cate algorithm (discussed in Section 3.3) to construct (in O(m) time)

98 CHAPTER 6. RANDOM SAMPLING FROM GRAPHSan O(nc)-edge graph with the same approximately minimal cuts as our starting graph.This reduces the running time of the sampling algorithm to the stated bound. If the graphis weighted, the sparse certi�cate algorithm ensures that the total weight is cn; thus theweighted skeleton construction runs in O(pcn) = O(n((logn)=�2)) time and does not a�ectthe time bound.Now suppose that c is not known but the graph is unweighted. Using Matula's approx-imation algorithm, we can get an estimate C for the minimum cut such that c < C < 3c.If we let P = O((logn)=�2C) such that P > p, and generate a P -skeleton, it will cer-tainly approximate cuts to within �. However, since P = O(p), the analysis of the previousparagraph applies unchanged.To extend the previous paragraph to weighted graphs, we need only modify our construc-tion of the skeleton, since once we have constructed the skeleton our algorithms do not carewhether or not the original graph was weighted. We use the weighted skeleton constructionalgorithm of Section 6.2.3. Since the total graph weight W could be arbitrarily large, thenumber of samples needed for the skeleton (pW) could also be arbitrarily large. To handlethis problem, we construct a sparse 2C-connectivity certi�cate of the original graph, whichby de�nition has the same minimum cut and approximate minimum cuts as the originalgraph. The resulting graph has total weight O(nC), so the number of random samplesmade by the weighted skeleton construction is O(PnC) = O(n(logn)=�2) as desired.6.3.3 Parallel AlgorithmsThe skeleton construction can also be used to improve parallel minimum cut algorithms.Recall that in Section 5.2.1, we gave an NC algorithm for �nding a (2 + �)-approximationto the minimum cut c using cm processors. Using a skeleton construction, we can reducethe processor cost to m (at the price of introducing randomization). First consider theskeleton construction. In an unweighted graph, it is easy to construct a p-skeleton inparallel using m processors: assign one processor to each edge, and have each processor ipan appropriately biased coin to decide whether or not to include its edge. Similarly, we canuse pW processors to make pW selections from a graph of total weight W to construct aweighted graph's p-skeleton.Lemma 6.3.4 Let 1= logn < � < 1. In a weighted, undirected graph, a (2+ �)-minimal cutcan be found in RNC using m=�2 processors (Monte Carlo).

6.3. APPROXIMATING MINIMUM CUTS 99Proof: We initially assume c is known. Construct a p-skeleton, p = O(logn=�2c), whichapproximates cuts to within �=4 w.h.p. and has minimum cut O((logn)=�2). Use the sparsecut approximation algorithm of Section 5.2.1 to �nd a (2+�=4)-minimal cut in the skeleton;this can be done in RNC with m=�2 processors since the minimum cut is O((logn)=�2).The resulting cut has value at most (2 + �=4)(1 + �=4)pc in the skeleton. Therefore, by thesampling theorem, it corresponds to a cut of value at most (2 + �=4)(1+ �=4)c=(1� �=4) <(2 + �)c.Now suppose that c is not known but the graph is unweighted. We estimate the correctsampling probability using the repeated doubling scheme of Section 6.3.1. In an unweightedgraph, we can initially upper-bound the minimum cut by n. Therefore O(logn) iterationssu�ce to converge to the correct minimum cut value. But until that happens, the skeletalminimum cut will be at most O((logn)=�2) and this will guarantee that we need no moreprocessors than claimed.To extend this approach to weighted graphs, we use the approach of Section 5.4.2 roundthe edge weights down to polynomially bounded integers while introducing a negligible errorin the cut values. This gives graph with a polynomially bounded minimum cut and allowsus to use the same repeated doubling scheme as for unweighted graphs.Remark: In Section 9.4, we give a parallel (1 + �)-approximation algorithm with roughlythe same processor bounds.6.3.4 Dynamic AlgorithmsWe can also apply our skeleton techniques in a dynamic algorithm for approximating theminimum cut. Eppstein et al [51] give a dynamic algorithm that maintains the minimumcut c of a graph in ~O(c2n) time per edge-insertion or edge-deletion. This algorithm is inturn based on an algorithm that maintains a sparse c-connectivity certi�cate of a graphin O(cpn log(m=n)) time per update. After each update, once the certi�cate is updated,they execute Gabow's minimum cut algorithm (which runs in O(mc log(m=n)) time on anm edge graph) on the cn-edge certi�cate in O(nc2 log(m=n)) time.We extend this approach to approximation of large cut values. First consider unweightedgraphs. We again use the repeated doubling approach to estimate the minimum cut. We dy-namically maintain logn skeletons Gi, with Gi a (1=2i)-skeleton. By the repeated-doublingargument, we only care about skeletons with minimum cuts ĉ = O((log)=�2). There-fore, within each skeleton, we use the algorithm of Eppstein et al to maintain a sparse

100 CHAPTER 6. RANDOM SAMPLING FROM GRAPHSĉ-connectivity certi�cate; each time it changes, we use our Gabow's Algorithm to recom-pute the minimum cut in the certi�cate. Since each skeleton's certi�cate has minimum cutO((logn)=�2), recomputing the minimum cut takes ~O(n=�4) time.Whatever the minimum cut, there will be some i such that 1=2i is a proper samplingprobability for approximating cuts to within �. By Lemma 6.3.2, Gi will have a minimumcut large enough to con�rm that it is in fact approximating cuts to within �, and we canread the resulting approximately minimum cut from it.Lemma 6.3.5 In an unweighted graph, a (1+�)-minimal cut can be maintained dynamicallyin ~O(n=�4) time per edge insertion or deletion (Monte Carlo).Corollary 6.3.6 In an unweighted graph with minimum cut known to exceed c, a (1 +�)-minimal cut can be maintain dynamically in ~O(n=�4c) amortized time per insertion ordeletion.Proof: Since we know the minimum cut exceeds c, we only need to construct p-skeletonswith p = ~O(1=c). Thus the probability is ~O(1=c) that an incoming edge will actually beinserted in the skeleton, and this is the only time we have to update the skeleton. Similarly,when an edge is deleted, the probability is ~O(1=c) that it was ever in the skeleton (thisassumes the adversary cannot see the random choices we are making).If the graph is weighted, we can use the same approach, but must now maintain logWdi�erent skeletons, where W is the maximum edge weight.Lemma 6.3.7 In a weighted graph, a (1 + �)-minimal cut can be maintained dynamicallyin ~O(n(logW)=�4) time per edge insertion or deletion.Remark: An additional 1=� factor can be eliminated from the running time by replacingGabow's algorithm with the faster one we develop in Chapter 6.5.6.4 Las Vegas AlgorithmsThe algorithms we have just presented areMonte Carlo. That is, the algorithms have a smallchance of giving the wrong answer because the minimum cut in G(p) has a small probabilityof not corresponding to a small cut in G. In this section, we show how this problem canbe surmounted in unweighted graphs. Our solution is to give a veri�cation algorithm for

6.4. LAS VEGAS ALGORITHMS 101certifying that a graph's minimum cut is c. After running the Monte Carlo algorithm, wecan check its answer by using the veri�er. If the veri�er disagrees, we can repeat the MonteCarlo algorithm until it gets an answer the veri�er likes. Since this happens eventually withprobability 1, we are guaranteed to get a correct answer after some number of attempts.This means we have a Las Vegas algorithm.Consider �rst the sequential algorithm. Our approach to veri�cation is the following.Recall Gabow's argument that a graph has a minimum cut value exceeding c if and only ifit contains a complete intersection of value c. Therefore, if we �nd a cut of value K and acomplete intersection of value k in G, we know that necessarily k � c � K. If K=k � 1+ �,then we know that K=c � (1 + �), i.e. that the cut of value K is (1 + �)-minimal.Corollary 6.4.1 In an unweighted graph, (1+�)-minimal cut and (1��)-maximal completeintersection can be found in O(m(log2 n)=�2) time (Las Vegas).Proof: Suppose we �rst run the Monte Carlo algorithm to estimate c. Given p as deter-mined by � and the claimed c, randomly partition the edges into 1=p groups, creating 1=pgraphs (this partitioning takes O(m) time using Random-Select). Consider a particularone of these subgraphs H . Each edge is placed in H independently with probability p; i.e.H is a p-skeleton. The presence of an edge e in H means it does not appear in any othersubgraph; but this simply means that the skeletons are not independent, without changingthe analysis of each skeleton individually. Since H is a p skeleton, with high probability ithas a minimum cut exceeding (1 � �)pc; thus by Gabow's analysis it contains a completeintersection of value at least (1 � �)pc which can be found using Gabow's algorithm inO((pc)(pm)) = O(p2mc) time. Suppose we do this for each of the 1=p skeletons, taking atotal of O(pmc) time. We now have 1=p mutually disjoint complete intersections, each ofvalue (1 � �)pc. Their union is therefore a complete intersection of value (1 � �)c. If theintersection is smaller that we expected, run the whole algorithm again (including a newrun of the previous Monte Carlo algorithm to estimate c) until we get it right.A similar approach works for the parallel algorithm, making it Las Vegas with no increasein the processor cost. We do, however, lose another factor of two in the approximation.Lemma 6.4.2 In an unweighted graph, for any constant �, a (4 + �)-minimal cut can befound in RNC using m processors (Las Vegas).

102 CHAPTER 6. RANDOM SAMPLING FROM GRAPHSProof: We provide a veri�er for the Monte Carlo algorithm, just as we did in the sequentialcase. Given a conjectured approximate minimum cut of value k and its correspondingsampling probability p, divide the graph edges randomly into 1=p groups to get 1=p skeletonswith �(pm) edges. Run the deterministic approximation algorithm on each skeleton, using(1=p)(pk)(pm) = kpm processors, and let K be the sum of the values of the minimum cutsfound therein.Suppose that the actual minimum cut value is c. Since the minimum cut edges getdivided among the skeletons, the values of the minimum cuts in the skeletons sum to atmost c. Therefore, K < (2+�)c. It follows that if k < (2+2�)K, then we have a cut of valueat most (4 + 6�)c. We therefore run the cut-�nding algorithm and the veri�er until thisoccurs. To see that it is likely to happen quickly, note that by the sampling theorem, eachof the 1=p skeletons has minimum cut at least (1 � �)pc with high probability. Assumingthis happens, the sum of returned values K > (1 � �)c. Therefore, if the cut which wasfound had value less than (2+ �)c, which happens with high probability, then it will be thecase that k < (2 + 2�)K, as desired.A similar argument can be made for the dynamic algorithm, where we replace each(1=2i)-skeleton with a partition of the graph edges into 2i groups, in each of which wemaintain an O((logn)=�2)-connectivity certi�cate.Lemma 6.4.3 In an unweighted graph, a (1+ �)-minimal cut can be maintain dynamicallyin ~O(n=�4) amortized time per insertion or deletion (Las Vegas).6.5 A Faster Exact AlgorithmThe sampling approach can also be put to good use in an exact algorithm for �ndingminimum cuts; we sketch the approach here and elaborate on it in Chapter 10. Our approachis a randomized divide-and-conquer algorithm which is used to speed up Gabow's algorithm;we analyze it by treating each subproblem as a (non-independent) random sample. We usethe following algorithm which we call DAUG (Divide-and-conquer AUGmentation).1. Randomly split the edges of G into two groups (each edge goes to one or the othergroup with probability 1=2), yielding graphs G1 and G2.2. Recursively compute maximum complete intersections in G1 and G2.

6.6. THE NETWORK DESIGN PROBLEM 1033. The union of the two complete intersections is a complete intersection f in G.4. Use Round-Robin to increase f to a maximum complete intersection.Note that we cannot apply sampling in the cleanup phase (Step 4), because the graphwe are manipulating in the cleanup phase is directed, while our sampling theorems applyonly to undirected graphs. Note also that unlike our approximation algorithms, this exactalgorithm requires no prior guess as to the value of c. We have left out a condition forterminating the recursion; when the graph is su�ciently \small" (say with one edge) we usea trivial algorithm.The outcome of Steps 1{3 is a complete intersection. Regardless of its value, Step 4will transform it into a maximum complete intersection. Thus, our algorithm is clearlycorrect; the only question is how fast it runs. Consider G1. Since each edge of G is in G1with probability 1=2, we can apply Theorem 10.2.1 to deduce that with high probabilitythe minimum cut in G1 is (c=2)(1� ~O(p1=c)) = �(c=2). The same holds for G2 (the twographs are not independent, but this is irrelevant). It follows that the complete intersectionf has value c(1� ~O(1=pc)) = c� ~O(pc). Therefore the number of augmentations that mustbe performed in G by Round-Robin to make f maximum is ~O(pc). Each augmentationtakes O(m0) time on an m0-edge graph, and we have the following sort of recurrence for therunning time of the algorithm in terms of m and c:T (m; c) = 2T (m=2; c=2)+ ~O(mpc):(where we use the fact that each of the two subproblems expects to containm=2 edges). If wesolve this recurrence, it evaluates to T (m; c) = ~O(mpc). Of course, we must actual analyzea randomized recurrence, encountering some of the same problems as we did analyzing theminimum spanning tree algorithm and the contraction algorithm; these details are addressedin Chapter 10.6.6 The Network Design ProblemWe now turn to the network design problem. Here, rather than sampling as a preprocessingstep to reduce the problem size, we use sampling to as a postprocessing step to round afractional solution to an integral one.

104 CHAPTER 6. RANDOM SAMPLING FROM GRAPHS6.6.1 Problem De�nitionThe most general form of the network design problem is as an integer program with expo-nentially many constraints. We are given a set of vertices, and for each pair of vertices iand j, a cost cij of establishing a unit capacity link between i and j. For each cut C in thegraph, we are given a demand fC denoting the minimum number of edges that must crossthat cut in the output graph. Since there are exponentially many cuts, the demands mustbe speci�ed implicitly if the problem description is to be of polynomial size. Our goal is tobuild a graph of minimum cost that obeys all of the cut demands, i.e. to solve the followinginteger program: minimize P cijxijX(i;j) crossing C xij � dC (8 cuts C)xij � 0There are two variants of this problem: in the single edge use version, each xij must be 0or 1. In the repeated edge use version, the xij an be arbitrary integers.There are several specializations of the network design problem:The generalized Steiner problem speci�es a connectivity demand dij for each pair ofvertices i and j, and the demand across a cut C is just the maximum of dij over allpairs (i; j) separated by C. It was �rst formulated by Krarup (see [190]).A unit cost network design problem has all edge costs equal to one (may be used inthe solution) or in�nity (may not be used).The minimum cost k-connected graph problem has all demands dij = k.The minimum k-connected subgraph problem combines the previous two restrictions.Here the goal is to take an input graph (the edges of cost 1) and �nd a k-connectedsubgraph of the input graph that contains the minimum number of edges.Even the minimum k-connected subgraph problem is NP-complete for k = 2 [53].6.6.2 Past and Present WorkKhuller and Vishkin [119] gave a 2-approximation algorithm for the minimum cost k-connected graph problem; 2 is also the best known approximation factor for the minimum(unit cost) k-connected subgraph problem when k > 2.

6.6. THE NETWORK DESIGN PROBLEM 105Aggarwal, Klein, and Ravi [2] studied the repeated-edge-use generalized Steiner problem(with costs) and gave an O(log fmax) approximation algorithm, where fmax is the maximumdemand across a cut, namely maxdij.Williamson et al ([75], extending [189]) have recently given powerful algorithms for alarge class of network design problems, namely those de�ned by so-called weakly super-modular demand functions (this category includes all generalized Steiner problems). Theirapproximation algorithm, which we shall refer to as the Forest Algorithm, �nds a graphsatisfying the demands of cost at most O(log fmax) times the optimum. It applies to bothsingle and repeated edge use problems. They also note that a fractional solution, in whicheach edge is to be assigned a real-valued weight such that the resulting weighted graphsatis�es the demands with a minimum total cost, can be found in polynomial time by usingthe ellipsoid algorithm even though the number of constraints is exponential (see [71] fordetails).We give approximation algorithms whose bounds depend on fmin, the minimum connec-tivity requirement between any pair of vertices. Here, we focus for brevity on the versionin which edges can be reused. In Chapter 12, we consider the case where edges may notbe reused. If fmin � logn, our approximation bound is O((logn)=(fmin)). If fmin � logn,our approximation bound is 1 + O(p(logn)=fmin). This bound contrasts with a previ-ous best bound of O(log fmax) due to Aggarwal, Klein, and Ravi [2], providing signi�cantimprovements when the minimum demand is large.6.6.3 Randomized Rounding for Network DesignThe network design problem is a variant of the set cover problem. In this problem, we aregiven a collection of sets drawn from a universe, with each element of the universe possiblyassigned a cost. We are required to �nd a collection of elements of minimum total numberor cost which intersects every set. An extension of this problem corresponding more closelyto network design is the set multicover problem, in which a demand dS is speci�ed for eachset S and the covering set is required to contain dS elements of S. The network designproblem is an instance of set multicover in which each the universe is the set of edges, andeach cut induces a set consisting of the edges crossing it.The set cover problem is easily formulated as an integer linear program, and its linearprogramming dual is what is known as a packing problem: �nd a maximum collection ofsets that do not intersect. Raghavan and Thompson [168] developed a technique called

106 CHAPTER 6. RANDOM SAMPLING FROM GRAPHSrandomized rounding that can be used to solve such packing problems. The method is tosolve the linear programming relaxation of the packing problem and then use the fractionalvalues as probabilities that can be used to determine an integer solution by randomly settingvariables to 0 or 1.In the Raghavan-Thompson rounding analysis, the error introduced by rounding in-creases as the logarithm of the number of constraints. Thus, their approach typicallyapplies only to covering problems with polynomially many constraints. However, using thegraph sampling theorem (Theorem 6.2.1), we prove that the special structure of graphsallows us to surmount this problem. This gives a simple approach to solving the multiple-edge-use versions of network design problems. A more complicated approach described inChapter 12 gives us some weaker results for the single-edge-use version of the problem. Wenow describe the randomized rounding technique.Consider a fractional solution to a network design problem (which has been found, forexample, with the ellipsoid algorithm). Without loss of generality, we can assume everyedge has weight at most 1, since we can replace an edge of weight w by bwc parallel edges ofweight 1 and a single edge of weight w�bwc without changing the solution value. Therefore,the weights on the edges can be thought of as sampling probabilities.Suppose that we build a random graph by sampling each edge with the given probability.As a weighted graph, our fractional solution has minimum cut fmin and each cut C hasweight at least dC. Therefore, by the Theorem 6.2.1, each cut in the random graph hasvalue at least dC(1 � O(p(logn)=fmin)) with probability 1� 1=n2. Now consider the costof the random graph. Its expected value is just the cost c of the fractional solution, whichis clearly a lower bound on the cost of the optimum integral solution. Therefore, by theMarkov inequality, the probability that the random graph cost exceeds (1+1=n)c is at most1�1=n. Therefore, if we perform the rounding experiment O(n logn) times, we have a highprobability of getting one graph that satis�es the demands to within (1�O(p(logn)=fmin))at cost (1 + 1=n)c. To get our results, we need only explain how to deal with the slightunder-satisfaction of the demands.We consider the repeated edge-use version of the problem. Assume �rst that fmin >logn. Before rounding the fractional solution, we multiply each edge weight by (1 +O(p(log)=fmin)). This increases the cost by the same factor. Now when we round, weget a graph with cut values 1 � O(p(logn)=fmin) times the new values (w.h.p.). Thus by

6.7. CONCLUSION 107suitable choice of constants we can ensure that the rounded value exceed the original frac-tional values. This is where permitted use of repeated edges is needed. We can constrainthe fractional solution to assign weight at most 1 to each edge in an attempt to solve thesingle-edge-use version of the problem, but scaling up the fractional values in the solutioncould yield some fractional values greater than 1 that could round to an illegal value of 2.Now consider the case fmin < logn. The previous argument does not apply because(1 � p(logn)=fmin) < 0 and we thus get no approximation guarantee. However, if wemultiply each edge weight by O((logn)=fmin), we get a graph with minimum cut
(logn).If we round this graph, each cut gets value at least half its expected value, which is in turn
(logn) times its original value. This gives us the following:Theorem 6.6.1 The network design problem for weakly supermodular demand functionscan be solved in polynomial time to within 1 +O(p(logn)=fmin + (logn)=fmin) of optimum(Las Vegas).6.7 ConclusionWe have demonstrated that random edge failures tend to \preserve" the minimum cutinformation of a graph. This yields a linear time sequential approximation algorithm forminimum cuts, as well as a parallel algorithm that uses few processors.We can relate our sampling theorems to the study of random graphs [18]. Just as [19]studied the probability that a classical random graph is k-connected, here we study here theprobability that a more general random graph is k-connected. An interesting open questionis whether our probability thresholds can be tightened to the degree that those for randomgraphs have been.Skeletons can also be seen as a generalization of expanders [4]. Skeletons of the completegraph are expanders. Just as expanders approximate the expected cut values in the completegraph, skeletons approximate the expected cut values in arbitrary graphs. This motivatesus to ask whether it is possible to deterministically construct skeletons, as is the case forexpanders [65]. Furthermore, just as the expander of [65] has constant degree, it maybe possible to deterministically construct a skeleton with a constant minimum cut, ratherthan the
(logn) minimum cut produced by the randomized construction. One might �rstattempt the easier task of constructing the skeletons de�ned here deterministically.

108 CHAPTER 6. RANDOM SAMPLING FROM GRAPHSOur techniques extend to many other problems for which cuts are important. Forexample, in the minimum quotient cut or balanced cut problems, the goal is to output acut of small value but with many vertices on each side. In Chapter 10, we give furtherapplications of this technique to approximating s-t minimum cuts and maximum ows. Wealso give an evolutionarymodel of sampling in which we pick edges one at a time until certainconnectivity conditions are met. This is useful in developing improved dynamic minimumcut approximation algorithms. Among other results, this leads to a dynamic algorithm forapproximating the minimum cut to within p1 + 2=� in ~O(n�) time per edge insertion andin ~O(n1=2+�) time per edge deletion. We also extend the dynamic algorithm in Section 6.3.4to weighted graphs yielding an ~O(n=�4) time-per-update dynamic (1 + �)-approximationalgorithm.Our approach has given improved approximation algorithms for network design problemsin which edges can be reused and the minimum demand across any cut is large. Note thatin fact, all that is necessary is that the minimum cut of the solution be large, even thoughit may not be required in the design problem. In Chapter 12, we consider extensions of thisapproach to the case where edges may be used only once, as well as to the case where edgescan have variable capacities.An open question is whether we can get the same approximation ratio deterministically.Raghavan and Thomposon use the method of conditional expectations to derandomizedtheir randomized-rounding algorithm. However, this approach requires a computation foreach constraint. This is not feasible for our problem with its exponentially many constraints.Portions of this chapter appeared previously in [104] and [105].

Chapter 7Randomized Rounding for GraphColoring7.1 IntroductionIn this chapter, we push beyond the classic application of randomized rounding to linear pro-gramming problems and develop a new approach, pioneered by Goemans andWilliamson [77],to randomized rounding in more general semide�nite programming problems. The problemwe attack is that of graph coloring.17.1.1 The ProblemA legal vertex coloring of a graph G(V;E) is an assignment of colors to its vertices suchthat no two adjacent vertices receive the same color. Equivalently, a legal coloring of G by kcolors is a partition of its vertices into k independent sets. The minimum number of colorsneeded for such a coloring is called the chromatic number of G, and is usually denoted by�(G). Determining the chromatic number of a graph is known to be NP-hard (cf. [74]).Besides its theoretical signi�cance as a canonical NP-hard problem, graph coloringarises naturally in a variety of applications such as register allocation [23, 24, 25, 33] andtimetable/examination scheduling [16, 191]. In many applications that can be formulatedas graph coloring problems, it su�ces to �nd an approximately optimum graph coloring|acoloring of the graph with a small though non-optimum number of colors. This along with1This chapter is based on joint work with Rajeev Motwani and Madhu Sudan.109

110 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORINGthe apparent impossibility of an exact solution has led to some interest in the problem ofapproximate graph coloring.7.1.2 Prior WorkThe analysis of approximation algorithms for graph coloring started with the work of John-son [97] who shows that a version of the greedy algorithm gives anO(n= logn)-approximationalgorithm for k-coloring. Wigderson [188] improved this bound by giving an elegant algo-rithm which uses O(n1�1=(k�1)) colors to legally color a k-colorable graph. Subsequently,other polynomial time algorithms were provided by Blum [17] that use O(n3=8 log8=5 n)colors to legally color an n-vertex 3-colorable graph. This result generalizes to coloring ak-colorable graph with O(n1�1=(k�4=3) log8=5 n) colors. The best known performance guaran-tee for general graphs is due to Halld�orsson [87] who provided a polynomial time algorithmusing a number of colors that is within a factor of O(n(log logn)2= log3 n) of the optimum.Recent results in the hardness of approximations indicate that it may be not possibleto substantially improve the results described above. Lund and Yannakakis [146] used theresults of Arora, Lund, Motwani, Sudan, and Szegedy [11] and Feige, Goldwasser, Lov�asz,Safra, and Szegedy [56] to show that there exists a (small) constant � > 0 such that nopolynomial time algorithm can approximate the chromatic number of a graph to within aratio of n� unless P = NP. Recently, Bellare and Sudan [14] showed that the exponent � inthe hardness result can be improved to 1=10 unless NQP 6= co-RQP , and to 1=13 unlessNP = co-RP . F�urer has recently given a further improvement to � = 1=5 [64]. However,none of these hardness results apply to the special case of the problem where the inputgraph is guaranteed to be k-colorable for some small k. The best hardness result in thisdirection is due to Khanna, Linial, and Safra [117] who show that it is not possible to colora 3-colorable graph with 4 colors in polynomial time unless P = NP.7.1.3 Our ContributionIn this work we present improvements on the result of Blum. In particular, we provide arandomized polynomial time algorithm that colors a 3-colorable graph of maximum degree� with minf ~O(�1=3); O(n1=4 log n)g colors; moreover, this can be generalized to k-colorablegraphs to obtain a coloring using ~O(�1�2=k) or ~O(n1�3=(k+1)) colors. Besides giving thebest known approximations in terms of n, our results are the �rst non-trivial approxi-mations given in terms of �. Our results are based on the recent work of Goemans and

7.1. INTRODUCTION 111Williamson [77] who used an algorithm for semide�nite optimization problems (cf. [85, 5]) toobtain improved approximations for the MAX CUT and MAX 2-SAT problems. We followtheir basic paradigm of using algorithms for semide�nite programming to obtain an opti-mum solution to a relaxed version of the problem, and a randomized strategy for \rounding"this solution to a feasible but approximate solution to the original problem. Motwani andNaor [150] have shown that the approximate graph coloring problem is closely related tothe problem of �nding a CUT COVER of the edges of a graph. Our results can be viewedas generalizing the MAX CUT approximation algorithm of Goemans and Williamson tothe problem of �nding an approximate CUT COVER. In fact, our techniques also lead toimproved approximations for the MAX k-CUT problem [63]. We also establish a dualityrelationship between the value of the optimum solution to our semide�nite program and theLov�asz #-function [85, 86, 142]. We show lower bounds on the gap between the optimumsolution of our semide�nite program and the actual chromatic number; by duality this alsodemonstrates interesting new facts about the #-function.Alon and Kahale [7] use related techniques to devise a polynomial time algorithm for3-coloring random graphs drawn from a \hard" distribution on the space of all 3-colorablegraphs. Recently, Frieze and Jerrum [63] have used a semide�nite programming formulationand randomized rounding strategy essentially the same as ours to obtain improved approxi-mations for the MAX k-CUT problem with large values of k. Their results required a moresophisticated version of our analysis, but for the coloring problem our results are tight upto poly-logarithmic factors and their analysis does not help to improve our bounds.Semide�nite programming relaxations are an extension of the linear programming relax-ation approach to approximately solving NP-complete problems. We thus present our workin the style of the classical LP-relaxation approach. We begin in Section 7.2 by de�ninga relaxed version of the coloring problem. Since we use a more complex relaxation thanstandard linear programming, we must show that the relaxed problem can be solved; thisis done in Section 7.3. We then show relationships between the relaxation and the originalproblem. In Section 7.4, we show that (in a sense to be de�ned later) the value of the relax-ation bounds the value of the original problem. Then, in Sections 7.5, 7.6, 7.7, and 7.8 weshow how a solution to the relaxation can be \rounded" to make it a solution to the originalproblem. Combining the last two arguments shows that we can �nd a good approximation.Section 7.3, Section 7.4, and Sections 7.5{7.8 are in fact independent and can be read inany order after the de�nitions in Section 7.2. In Section 7.9, we investigate the relationship

112 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORINGbetween vector colorings and the Lov�asz #-function, showing that they are in fact dual toone another. We investigate the approximation error inherent in our formulation of thechromatic number via semi-de�nite programming in Section 7.10.7.2 A Vector Relaxation of ColoringIn this section, we describe the relaxed coloring problem whose solution is in turn used toapproximate the solution to the coloring problem. Instead of assigning colors to the verticesof a graph, we consider assigning (n-dimensional) unit vectors to the vertices. To capturethe property of a coloring, we aim for the vectors of adjacent vertices to be \di�erent"in a natural way. The vector k-coloring that we de�ne plays the role that a hypothetical\fractional k-coloring" would play in a classical linear-programming relaxation approach tothe problem. Our relaxation is related to the concept of an orthonormal representation ofa graph [142, 85].De�nition 7.2.1 Given a graph G = (V;E) on n vertices, a vector k-coloring of G is anassignment of unit vectors ui from the space <n to each vertex i 2 V , such that for any twoadjacent vertices i and j the dot product of their vectors satis�es the inequalityhui; uji � � 1k � 1 :The de�nition of an orthonormal representation [142, 85] requires that the given dotproducts be equal to zero, a weaker requirement than the one above.7.3 Solving the Vector Coloring ProblemIn this section we show how the vector coloring relaxation can be solved using semidef-inite programming. The methods in this section closely mimic those of Goemans andWilliamson [77].To solve the problem, we need the following auxiliary de�nition.De�nition 7.3.1 Given a graph G = (V;E) on n vertices, a matrix k-coloring of the graphis an n � n symmetric positive semide�nite matrix M , with mii = 1 and mij � � 1k�1 iffi; jg 2 E.

7.3. SOLVING THE VECTOR COLORING PROBLEM 113We now observe that matrix and vector k-colorings are in fact equivalent (cf. [77]).Thus, to solve the vector coloring relaxation it will su�ce to �nd a matrix k-coloring.Fact 7.3.2 A graph has a vector k-coloring if and only if it has matrix k-coloring. More-over, a vector (k+�)-coloring can be constructed from a matrix k-coloring in time polynomialin n and log(1=�) time.Proof: Given a vector k-coloring fvig, the matrix k-coloring is de�ned by mij = hvi; vji.For the other direction, it is well known that for every symmetric positive de�nite matrixM there exists a square matrix U such that UUT = M (where UT is the transpose of U).The rows of U are vectors fuigni=1 that form a vector k-coloring of G.An �-close approximation to the matrix U can be found in time polynomial in n andlog(1=�) can be found using the Incomplete Cholesky Decomposition [77, 81]. (Here by �-close we mean a matrix U 0 such that U 0U 0T �M has L1 norm less than �.) This in turngives a vector (k + �)-coloring of the graph, provided � is chosen appropriately.Lemma 7.3.3 If a graph G has a vector k-coloring then a vector (k + �)-coloring of thegraph can be constructed in time polynomial in k, n, and log 1� .Proof: Our proof is similar to those of Lov�asz [142] and Goemans-Williamson [77]. Weconstruct a semide�nite optimization problem (SDP) whose optimum is � 1k�1 when k isthe smallest real number such that a matrix k-coloring of G exists. The optimum solutionalso provides a matrix k-coloring of G.minimize �where fmijg is positive semide�nitesubject to mij � � if (i; j) 2 Emij = mjimii = 1:Consider a graph that has a vector (and matrix) k-coloring. This means there is a solutionto the above semide�nite program with � = � 1k�1 . The ellipsoid method or other interiorpoint based methods [85, 5] can be employed to �nd a feasible solution where the value ofthe objective is at most �1k�1 + � in time polynomial in n and log 1� . This implies that for

114 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORINGall fi; jg 2 E, mij is at most � � 1k�1 , which is at most �1k+��1 for � = 2�(k � 1)2, provided� � 12(k�1). Thus a matrix (k + �)-coloring can be found in time polynomial in k, n andlog 1� . From the matrix coloring, the vector coloring can be found in polynomial time aswas noted in the previous lemma.7.4 Relating the Original and Relaxed SolutionsIn this section, we show that our vector coloring problem is a useful relaxation because thesolution to it is related to the solution of the original problem. In order to understand thequality of the relaxed solution, we need the following geometric lemma:Lemma 7.4.1 For all positive integers k and n such that k � n + 1, there exist k unitvectors in <n such that the dot product of any distinct pair is �1=(k � 1).Proof: We prove the claim by induction on k. The base case with k = 2 is proved by theone-dimensional vectors (1) and (�1). Now assume that we can �nd k vectors v1; : : : ; vksuch that hvi; vji � �1k�1 for i 6= j. We use these vectors to create u1; : : : ; uk+1 as follows. Fori � k, let ui = �p(k�1)(k+1)k v1i ; : : : ; p(k�1)(k+1)k vki ;�1k� ;where vji denotes the jth component of the vector vi. In other words, ui contains �1=k inthe new coordinate and looks like vi (scaled to make ui a unit vector) in the old coordinates.The �nal vector uk+1 = (0; : : : ; 0; 1).Observe that the dot-product of any vector ui with uk+1 is �1=k. Moreover, for distincti, j � k, hui; uji = (k � 1)(k+ 1)k2 hvi; vji+ 1k2= �(k � 1)(k+ 1)k2(k � 1) + 1k2which is also equal to �1=k.Corollary 7.4.2 Every k-colorable graph G has a vector k-coloring.Proof: Bijectively map the k colors to the k vectors de�ned in the previous lemma.

7.5. SEMICOLORINGS 115Note that a graph is vector 2-colorable if and only if it is 2-colorable. Lemma 7.4.1 istight in that it provides the best possible value for minimizing the mutual dot-product of kunit vectors. This can be seen from the following lemma.Lemma 7.4.3 Let G be vector k-colorable and let i be a vertex in G. The induced subgraphon the vertices fj j j is a neighbor of i in Gg is vector (k � 1)-colorable.Proof: Let v1; : : : ; vn be a vector k-coloring of G and assume without loss of generality thatvi = (1; 0; 0; : : : ; 0). Associate with each neighbor j of i a vector v0j obtained by projectingvj onto coordinates 2 through n and then scaling it up so that v0j has unit length. It su�cesto show that for any two adjacent vertices j and j 0 in the neighborhood of i, hv0j ; v0j0i � �1k�2.Observe �rst that the projection of vj onto the �rst coordinate is negative and has magni-tude at least 1=(k�1). This implies that the scaling factor for v0j is at leastp(k � 1)=(k� 2).Thus hv0j ; v0j0i � k � 1k � 2(hvj; vj0i � 1(k � 1)2) � �1=(k � 2). A simple induction using the above lemma shows that any graph containing a (k + 1)-clique is not k-vector colorable. Thus the \vector chromatic number" lies between betweenthe clique and chromatic number. This also shows that the analysis of Lemma 7.4.1 istight in that � 1k�1 is the minimum possible value of the maximum of the dot-products of kvectors.In the next few sections we prove the harder part, namely, if a graph has a vectork-coloring then it has an ~O(n1� 3k+1)-coloring.7.5 SemicoloringsGiven the solution to the relaxed problem, our next step is to show how to \round" thesolution to the relaxed problem in order to get a solution to the original problem. Bothof the rounding techniques we present in the following sections produce the coloring byworking through an almost legal semicoloring of the graph, as de�ned below.De�nition 7.5.1 A k-semicoloring of a graph G is an assignment of k colors to the verticessuch that at most jV (G)j=4 edges are incident on two vertices of the same color.

116 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORINGAny constant larger than 2 can replace 4 in the denominator in the above de�nition.An algorithm for semicoloring leads naturally to a coloring algorithm:Lemma 7.5.2 If an algorithm A can ki-semicolor any i-vertex subgraph of graph G inpolynomial time, where ki increases with i, then A can be used to O(kn log n)-color G.Furthermore, if there exists � > 0 such that for all i, ki =
(i�), then A can be used to colorG with O(kn) colors.Proof: We show how to construct a coloring algorithm A0 to color any subgraph H of G.A0 starts by using A to semicolor H . Let S be the subset of vertices that have at least oneimproperly colored edge incident to them. Observe that jSj � jV (H)j=2. A0 �xes the colorsof vertices not in S, and then recursively colors the induced subgraph on S using a new setof colors.Let ci be the maximum number of colors used by A0 to color any i-vertex subgraph.Then ci satis�es the recurrence ci � ci=2 + ki:It is easy to see that this any ci satisfying this recurrence, must satisfy ci � ki log i. Inparticular this implies that cn � O(kn log n). Furthermore for the case where ki =
(i�) theabove recurrence is satis�ed only when ci = �(ki).Using the above lemma, we devote the next few sections to algorithms for transformingvector colorings into semicolorings.7.6 Rounding via Hyperplane PartitioningWe now focus our attention on vector 3-colorable graphs, leaving the extension to generalk for later. Let � be the maximum degree in a graph G. In this section, we outline arandomized rounding scheme for transforming a vector 3-coloring of G into an O(�log3 2)-semicoloring, and thus into an O(�log3 2 logn)-coloring of G. Combining this method withWigderson's technique yields an O(n0:386)-coloring of G. The method is based on [77] and isweaker than the method we describe in the following section; however, it introduces severalof the ideas we will use in the more powerful algorithm.Assume we are given a vector 3-coloring fuigni=1. Recall that the unit vectors ui and ujassociated with an adjacent pair of vertices i and j have a dot product of at most �1=2,implying that the angle between the two vectors is at least 2�=3 radians or 120 degrees.

7.6. ROUNDING VIA HYPERPLANE PARTITIONING 117De�nition 7.6.1 Consider a hyperplane H. We say that H separates two vectors if theydo not lie on the same side of the hyperplane. For any edge fi; jg 2 E, we say that thehyperplane H cuts the edge if it separates the vectors ui and uj.In the sequel, we use the term random hyperplane to denote the unique hyperplanecontaining the origin and having as its normal a random unit vector v uniformly distributedon the unit sphere Sn. The following lemma is a restatement of Lemma 1.2 of Goemans-Williamson [77].Lemma 7.6.2 (Goemans-Williamson [77]) Given two vectors at an angle of �, theprobability that they are separated by a random hyperplane is exactly �=�.We conclude that for any edge fi; jg 2 E, the probability that a random hyperplanecuts the edge is exactly 2=3. It follows that the expected fraction of the edges in G that arecut by a random hyperplane is exactly 2=3. Suppose that we pick r random hyperplanesindependently. Then, the probability that an edge is not cut by one of these hyperplanes is(1=3)r, and the expected fraction of the edges not cut is also (1=3)r.We claim that this gives us a good semicoloring algorithm for the graph G. Notice thatr hyperplanes can partition <n into at most 2r distinct regions. (For r � n this is tightsince r hyperplanes create exactly 2r regions.) An edge is cut by one of these r hyperplanesif and only if the vectors associated with its end-points lie in distinct regions. Thus, wecan associate a distinct color with each of the 2r regions and give each vertex the color ofthe region containing its vector. The expected number of edges whose end-points have thesame color is (1=3)rm, where m is the number of edges in E.Theorem 7.6.3 If a graph has a vector 3-coloring, then it has an O(�log3 2)-semicoloringthat can be constructed from the vector 3-coloring in polynomial time with high probability.Proof: We use the random hyperplane method just described. Fix r = 2 + dlog3�e, andnote that (1=3)r � 1=9� and that 2r = O(�log3 2). As noted above, r hyperplanes chosenindependently at random will cut an edge with probability 1=9�. Thus the expected numberof edges that are not cut is m=9� � n=18 � n=8, since the number of edges is at mostn�=2. By Markov's inequality, the probability that the number of uncut edges is more thantwice the expected value is at most 1=2. But if the number of uncut edges is less than n=4then we have a semicoloring.

118 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORINGRepeating the entire process t times means that we will �nd a O(�log3 2)-semicoloringwith probability at least 1� 1=2t.Noting that log3 2 < 0:631 and that � � n, this theorem and Lemma 7.5.2 implies asemicoloring using O(n0:631) colors. However, this can be improved using the following ideadue to Wigderson [188]. Fix a threshold value �. If there exists a vertex of degree greaterthan �, pick any one such vertex and 2-color its neighbors (its neighborhood is vector 2-colorable and hence 2-colorable). The colored vertices are removed and their colors are notused again. Repeating this as often as possible (or until half the vertices are colored) bringsthe maximum degree below � at the cost of using at most 2n=� colors. Thus, we can obtaina semicoloring using O(n=�+�0:631) colors. The optimum choice of � is around n0:613, whichimplies a semicoloring using O(n0:387) colors. This semicoloring can be used to legally colorG using O(n0:387) colors by applying Lemma 7.5.2.Corollary 7.6.4 A 3-colorable graph with n vertices can be colored using O(n0:387) colorsby a polynomial time randomized algorithm.By varying the number of hyperplanes, we can arrange for a tradeo� between the numberof colors used and the number of edges that violate the resulting coloring. This may beuseful in some applications where a nearly legal coloring is good enough.The bound just described is (marginally) weaker than the guarantee of an O(n0:375)coloring due to Blum [17]. We now improve this result by constructing a semicoloring withfewer colors.7.7 Rounding via Vector ProjectionsThis section is dedicated to proving the following more powerful version of Theorem 7.6.3.Theorem 7.7.1 If a graph has a vector k-coloring, then it has an ~O(�1�2=k)-semicoloringthat can be constructed from the vector coloring with high probability in polynomial time.As in the previous section, this has immediate consequences for approximate coloringthrough Lemma 7.5.2.We prove this theorem by analyzing a new method for assigning colors to vertices thatprovides a signi�cantly better semicoloring than the hyperplane partition method. Theidea is to pick t random centers c1; : : : ; ct 2 <n and use them to de�ne a set of t colors,

7.7. ROUNDING VIA VECTOR PROJECTIONS 119say 1; : : : ; t. Consider any vertex i and let ui be its associated unit vector from a vectorcoloring. We color vertex i according to the center \nearest" to vector ui, i.e. the centerwith the largest projection onto ui.De�nition 7.7.2 Given any �xed vector a, we say that a center cj captures a if for alli 6= j, hci; ai < hcj; ai:Note that this de�nition allows for some vertices not to be captured by any vector, but thishappens with probability approaching 0 in the limit.Observe that the centers need not be of equal length and thus the nearest center to amay not be the one of minimum angle displacement from a. Each vector ui is captured bya unique center and the index of that center is assigned to vertex i as its color. Clearly, thisgives a t-coloring of the vertices of G, but this need not be a legal coloring or even a goodpartial coloring in general. However, it is intuitive that since the vectors correspondingto the endpoints of an edge are \far apart," it is unlikely that both are captured by thesame center; thus, as in the hyperplane rounding method, an edge is likely to be cut by thecoloring. We formalize this intuition and show how to pick centers so that the resultingcoloring is indeed a semicoloring with high probability.Our basic plan for choosing centers is to give each center a \direction" selected uniformlyat random in <n. The most obvious method for doing this might be to choose the vectoruniformly from the points on the unit sphere in <n. Instead, we choose each center cjindependently at random from the n-dimensional normal distribution. This means that eachof the n components of cj is independently chosen from the standard normal distributionwith expectation 0 and variance 1. The reason for this choice of the distribution will becomeclear shortly. Notice that the lengths of these vectors are random, and so they are not unitvectors. It turns out that the limiting behavior of the random unit vector approach isexactly the same as for the one we use, but it is much more di�cult to analyze.We now give an overview of how and why this assignment of centers gives a semicoloring.As before, the problem reduces to showing that the probability that an edge is cut by theassignment of colors is high, which in turn reduces to showing that the two endpoints ofan edge are unlikely to be captured by the same center. In particular, suppose we havea graph with an n-dimensional vector k-coloring. Suppose we throw in t random centersand use them to assign colors as described above. By de�nition, the dot product between

120 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORINGthe unit vectors assigned to the endpoints of an edge is �1=(k � 1). Let Pk(n; t) be theprobability that two such widely separated vectors are captured by the same center. Thetechnical work of this section shows thatPk(n; t) � t�k=(k�2):Given this fact, we can use the same techniques as the hyperplane rounding scheme toconstruct a semicoloring. Take t to be about �1�2=k. Then Pk(n; t) is about 1=�. Usingthe same approach as with the hyperplane rounding method, this gives us a semicoloringwith t colors.We now discuss the analysis of Pk(n; t). This probability is just t times the probabilitythat both endpoints of an edge are captured by a particular center, say the �rst. To showthis probability is small, note that regardless of the orientation of the �rst center it mustbe \far" from at least one of the two vectors it is trying to capture, since these two vectorsare far from each other. For example, in the case of a vector 3-coloring any center must beat an angle of at least 60� from one of the endpoints of an edge. The center's projectiononto this distant vector is very small, making it likely that some other nearer center willhave a larger projection, thus preventing the center from capturing that far away vector.We have therefore reduced our analysis to the problem of determining the probabilitythat a center at a large angle from a given vector captures that vector. We start by derivingsome useful properties of the normal distribution. In particular, we show that the propertiesof the normal distribution allow us to reduce the n-dimensional problem under considerationto a two dimensional one. But �rst, we develop some technical tools that will be applied tothe two-dimensional analysis.7.7.1 Probability Distributions in <nRecall that the standard normal distribution has the density function �(x) = 1p2�e�x2=2with distribution function �(x), mean 0, and variance 1. A random vector r = (r1; : : : ; rn)is said to have the n-dimensional standard normal distribution if the components ri areindependent random variables, each component having the standard normal distribution.It is easy to verify that this distribution is spherically symmetric, in that the directionspeci�ed by the vector r is uniformly distributed. (Refer to Feller [57, v. II], Knuth [128],and R�enyi [173] for further details about the higher dimensional normal distributions.)

7.7. ROUNDING VIA VECTOR PROJECTIONS 121Subsequently, the phrase \random d-dimensional vector" will always denote a vectorchosen from the d-dimensional standard normal distribution. A crucial property of the nor-mal distribution that motivates its use in our algorithm is the following theorem paraphrasedfrom R�enyi [173] (see also Section III.4 of Feller [57, v. II]).Theorem 7.7.3 (Theorem IV.16.3 [173]) Let r = (r1; : : : ; rn) be a random n-dimensionalvector. The projections of r onto two lines `1 and `2 are independent (and normally dis-tributed) if and only if `1 and `2 are orthogonal.Alternatively, we can say that under any rotation of the coordinate axes, the projectionsof r along these axes are independent standard normal variables. In fact, it is known thatthe only distribution with this strong spherical symmetry property is the n-dimensionalstandard normal distribution. The latter fact is precisely the reason behind this choice ofdistribution2 in our algorithm. In particular, we will make use of the following corollary tothe preceding theorem.Corollary 7.7.4 Let r = (r1; : : : ; rn) be a random vector (of i.i.d. standard normal vari-ables). Suppose we �x two orthogonal unit vectors u1 and u2 in <n. The projections ofr along these two directions, given by the dot products hu1; ri and hu2; ri, are independentrandom variables with the standard normal distribution.It turns out that even if r is a random n-dimensional unit vector, the above lemma stillholds in the limit: as n grows, the projections of r on orthogonal lines approach (scaled)independent normal distributions. Thus using random unit vectors for centers turns out tobe equivalent to using random normal vectors in the limit, but is much more di�cult toanalyze.The following two lemmas are also useful in our analysis. The �rst lemma states that thesquare of the length of a random vector in two dimensions has the exponential distributionwith parameter 1=2. Recall that the exponential distribution with parameter � has densityfunction f(x) = �e��x, distribution function F (x) = 1� e��x and expectation 1=�.Lemma 7.7.5 Let X and Y be standard normal random variables. Then, the randomvariable S = X2 + Y 2 has the exponential distribution with parameter � = 1=2.2Readers familiar with physics will see the connection to Maxwell's law on the distribution of velocitiesof molecules in <3. Maxwell started with the assumption that in every Cartesian coordinate system in <3,the three components of the velocity vector are mutually independent and had expectation zero. Applyingthis assumption to rotations of the axes, we conclude that the velocity components must be independentnormal variables with identical variance. This immediately implies Maxwell's distribution on the velocities.

122 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORINGProof: Let U = X2 (and V = Y 2) have the density function g(z) and distribution functionG(z). Observe that G(z) = Pr[jX j � pz]= �(pz)� �(�pz)= 2�(pz)� 1:Di�erentiating both sides with respect to z,g(z) = 2 d�(pz)dz = 1pz�(pz) = 1p2�z e�z=2:Let S = U + V have density f(x) and distribution F (x). Letting y = z=x, we havef(x) = Z 1�1 g(z)g(x� z) dz= Z x0 e�z=2p2�z e�(x�z)=2p2�(x� z) dz= e�x=22� Z x0 1pz(x� z) dz= e�x=22� Z 10 1py(1� y) dyWe can �nish here with the observation that the remaining integral is a constant, andthat the density function is shown proportional to e�x=2 and must therefore be equal to12e�x=2. Alternatively, recall that Euler's beta function B(a; b) (cf. Exercise 1.2.6 (40) [126])is de�ned for all positive a and b asB(a; b) = Z 10 ya�1(1� y)b�1 dyand can be alternatively written as B(a; b) = �(a)�(b)�(a+ b)where the gamma function has values �(1=2) = p� and �(1) = 1. Noting that the integral inthe expression for f(x) is B(1=2; 1=2), we obtain that f(x) = 12e�x=2 de�ning the exponentialdistribution with parameter � = 1=2.

7.7. ROUNDING VIA VECTOR PROJECTIONS 123Lemma 7.7.6 Let Y1, : : :, Yr, and X have the exponential distribution with parameter� = 1=2. Then the probability of the event E that fX � q �maxi Yig is r + qr !�1;where �r+qr � is the generalized binomial coe�cient when q is not necessarily an integer.Proof: By elementary considerations, with f and F denoting the density and cumulativedistribution functions for the exponential distribution, and substituting y for e�x=2q,Pr[E] = Z 10 f(x) (F (x=q))r dx= Z 10 e�x=22 �1� e�x=2q�r dx= Z 01 yq2 (1� y)r �2qy dy= q Z 10 yq�1 (1� y)r dy= q Z 10 yq�1 rXi=0 ri! (�1)iyi! dy= q Z 10 rXi=0 ri! (�1)iyi+q�1! dy= q " rXi=0 ri! (�1)i yi+qi+ q!#10= q rXi=0 ri! (�1)ii+ q= 1 r + qr ! :The last equation is Exercise 1.2.6 (48) in Knuth [126]. Since q need not be an integer, thelast expression is a generalized binomial coe�cient.Notice that the probability bound is essentially r�q for large r. In our application,q = 1= cos2 ! where ! is half the angle between the endpoints of an edge. Since for vector3-colorings ! = �=3, we have cos! = 1=2, q = 4 and the probability bound is 1=r4.

124 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORING7.7.2 Analyzing the Vector Projection AlgorithmWe are now ready to analyze the quality of the partial coloring obtained by using theprojections of random vectors to color the vertices of G. The �rst step in the analysis is todetermine a tight bound on the probability that for a speci�c edge fx; yg the two endpointsreceive the same color. Let ux and uy denote the unit vectors associated with the twovertices. Recall that the angle between these two vertices is at least 2�=3. Note that thebad event happens when the same random center, say c1, captures both ux and uy. We willshow that this is unlikely to happen if the number of centers is large.Fix any two unit vectors a and b in <n such that they subtend an angle of 2�=3 (asdo the vectors of adjacent vertices in a vector 3-coloring). We will study the probability ofthe bad event with respect to these vectors, and by the spherical symmetry of the normaldistribution our analysis will apply to the case of two vertex vectors ux and uy. The crucialstep in this analysis is a reduction to a two-dimensional problem, as follows. Note that theuse of the n-dimensional normal distribution was motivated entirely by the need to facilitatethe following lemma.Lemma 7.7.7 Let � be such that cos � = �1=(k� 1). Let Pk(d; t) denote the probabilityof the event that, given any two vectors a, b 2 <d subtending an angle of �, they are bothcaptured by the same member of a collection of t random centers in <d. Then, for all d � 2and all t � 1, Pk(d; t) = Pk(2; t):Proof: Let H(a; b) be the plane determined by the two vectors a and b. Rotate thecoordinate axes so that the �rst two axes lie in this plane and all other axes are perpendicularto it. By Corollary 7.7.4, we can still view the random vectors as having been chosen bypicking their components along the new axes as standard normal random variables. Now,the projection of any vector in <d onto any line of this plane depends only on its componentsalong the two coordinate axes lying in the plane. In other words, any event depending onlyon the projection of the random vectors onto the lines in this plane does not depend on thecomponents of the vectors along the remaining d � 2 axes. In particular, the probabilityPk(d; t) is the same as Pk(2; t).In the rest of this section, we will assume that all vectors are in <2, and by the precedinglemma the resulting analysis will apply to the case of n-dimensional vectors. We focus on

7.7. ROUNDING VIA VECTOR PROJECTIONS 125the case where the angle between the vectors a and b is 2�=3 and thus bound P3(n; t), butthe analysis generalizes easily to other values of k as well.Theorem 7.7.8 Let 0 < � < �=3, p = �=�, � = �=3� �, and q = 1= cos2 �. Then,P3(n; t) = P3(2; t) = O(tpq�dqe(pt)�q):Proof: We will concentrate on bounding the probability that the �rst random vector, c1,captures both a and b; clearly, multiplying this by t will give the desired probability. Notethat any vector must subtend an angle of at least �=3 with one of the two vectors a and b.Assume that c1 subtends a larger angle with a, and hence is at least �=3 radians away fromit. Now, c1 captures a only if none of the remaining t � 1 vectors has a larger projectiononto a. We will bound the probability of this event from above. A similar argument appliesin the case where b is further away from c1.Let R denote the wedge of the plane within an angle of � from a, and suppose that rcenters fall in this region. If c1 captures a, then its projection onto a must be larger thanthat of the r centers in R. In fact, it is easy to see that the projection of c1 onto thenearer of the two lines bounding R must be larger than the lengths of all the centers in R.(Observe that the latter is a necessary, but not su�cient, condition for c1 to capture a.)Essentially this corresponds to the event F that the projection of c1 onto a line at an angleof � = �=3� � is longer than the lengths of all the centers lying in R.We will upper bound the probability of the event F . If r random vectors fall into theregion R, then by Lemma 7.7.6 we know that the probability of F is given by r + qr !�1,where q = 1= cos2 �. Since the random vectors have a spherically symmetric distribution, thenumber of random vectors lying in R has the binomial distribution B(t; p) with p = �=�.Thus, we obtain the following bound on the probability of F . In the �rst step of thederivation, we use an identity given in Exercise 1.2.6 (20) of Knuth's book [126], whichapplies to generalized binomial coe�cients.Pr[F] = tXr=0 tr!pr(1� p)t�r � r + qr !�1= t + qt !�1 tXr=0 t+ qt � k!pr(1� p)t�r= t + qt !�1 tXu=0 t + qu !pt�u(1� p)u

126 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORING� t + qt !�1 tXu=0 t + dqeu !pt�u(1� p)u= p�dqe t+ qt !�1 tXu=0 t+ dqeu !pt+dqe�u(1� p)u� pq�dqe pq t+ qt !!�1 (p+ (1� p))t+dqe= O(pq�dqe(pt)�q)By the preceding argument, multiplying this by t gives a bound on the probability Pk(n; t).Remark: The reason for introducing dqe is that there are two problems with directlyapplying the binomial theorem of calculus: for one, we are outside the radius of convergenceof the in�nite sum; and for the other, the in�nite sum has negative terms so we cannotimmediately make claims about the �rst few terms being less than the whole sum.The above theorem applies regardless of how we choose � (thus determining p and q).We now show how t and � should be chosen so as to ensure that we get a semicoloring.Corollary 7.7.9 P3(2; t) = O(t�3 log4 t):Proof: We set � = 1= log t. Thus p = 1=(� log t). To get q, we use the Taylor expansionsfor sines and cosines. In fact, the particular constants do not matter: it su�ces to notethat q = 1= cos2(�=3� �) = 4� O(�). Thus, q � dqe = O(�) andpq�dqe = ���(�) = log��(1= log t t = �(1):By Theorem 7.7.8 we haveP3(2; t) = O(t(pt)�q)= O �t(t log t)�4(1�O(1= log t))�= O(t�3 log4 t):Lemma 7.7.10 The vector projection algorithm provides an O(�1=3 log4=3�)-semicoloringof a 3-colorable graph G with maximum degree � (w.h.p.).

7.8. APPROXIMATION FOR K-COLORABLE GRAPHS 127Proof: We use t = �1=3 log4=3� random vectors and apply the above corollary. It followsthat the probability that a particular edge is not legally colored is at most O(1=�). Thusthe expected number of edges that are not legally colored is at most O(n), and can be madeless than n=4 by proper choice of constants.As in Theorem 7.6.3, we now apply the idea of �nding a legally colored set of linear sizeand recursively coloring the remaining graph.Theorem 7.7.11 A vector 3-colorable graph G with n vertices and maximum degree �can be colored with O(�1=3 log4=3� logn) colors by a polynomial time randomized algorithm(with high probability).As in Corollary 7.6.4, we now use Wigderson's technique (with � = n3=4= logn) to geta O(n1=4 logn)-semicoloring of any vector 3-colorable graph. The next result follows froman application of Lemma 7.5.2.Theorem 7.7.12 A vector 3-colorable graph G with n vertices can be colored with O(n1=4 log n)colors by a polynomial time randomized algorithm (with high probability).The analysis of the vector projection algorithm given above is tight to within polylog-arithmic factors. A tighter analysis, due to Coppersmith [40], shows that the number ofcolors used by this algorithm is �((n logn)1=4).7.8 Approximation for k-Colorable GraphsAn easy generalization of the above shows that for any constant vector-chromatic number �,we can color a graph of maximum degree � using �1�2=�+o(1) colors. The only change is inthe degree of separation between the vectors of the endpoints of an edge. Suppose a graphis �-colorable. Then it is vector �-colorable, meaning we can assign unit vectors so that thevectors on the endpoints of an edge have dot-product at most �1=(�� 1). We round thesevectors with the same approach of using random centers. The only change in the analysisis in determining the probability that with t random centers, the same center will captureboth endpoints of an edge. This analysis is a generalization of Theorem 7.7.8, where now� = 12 arccos(1=(�� 1))� �, so that q = 1= cos2 � � 2(� � 1)=(�� 2). We deduce that theprobability that an edge is cut is approximately t��=(��2) so that �1�2=�+o(1) centers su�ceto give a semicoloring.

128 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORINGIgnoring the o(1) term, we determine absolute approximation ratios independent of �.We identify a positive real function r(�) such that we can color a vector �-chromatic graphwith at most nr(�) colors. For each �, we establish a degree threshold �� = ��(n). Whilethe degree exceeds ��, we take a neighborhood of a vertex of degree d � �� and recursivelydr(��1)-color it and discard it (by Lemma 7.4.3 the neighborhood is vector (��1)-chromatic).The average number of colors used per vertex in this process is dr(��1)�1 � �r(��1)�1� . Thusthe total number of colors used up in this process is at most n�r(��1)�1� colors. Once thedegree is less than ��, we use our coloring algorithm directly to use an additional �1�2=��colors. We balance the colors used in each part by settingn�r(��1)�1� = �1�2=��which implies that n = �2�2=��r(��1)� ;�� = n1=(2�2=��r(��1))We obtain a coloring with n(1�2=�)=(2�2=��r(��1)) colors, in other wordsr(�) = (1� 2=�)=(2� 2=�� r(�� 1)):By substitution, r(�) = 1� 3=(�+ 1).Theorem 7.8.1 A vector �-colorable graph can be colored using ~O(�1�2=�) or ~O(n1�3=(�+1))colors.7.9 Duality TheoryThe most intensively studied relaxation of a semide�nite programming formulation to dateis the Lov�asz #-function [85, 86, 142]. This relaxation of the clique number of a graphled to the �rst polynomial-time algorithm for �nding the clique and chromatic numbers ofperfect graphs. We now investigate a connection between # and a close variant of the vectorchromatic number.Intuitively, the clique and coloring problems have a certain \duality" since large cliquesprevent a graph from being colored with few colors. Indeed, it is the equality of the cliqueand chromatic numbers in perfect graphs that lets us compute both in polynomial time.

7.9. DUALITY THEORY 129We proceed to formalize this intuition. The duality theory of linear programming has anextension to semide�nite programming. With the help of Eva Tardos and David Williamson,we have shown that in fact the #-function and a close variant of the vector chromatic numberare semide�nite programming duals to one another and are therefore equal.We �rst de�ne the variant.De�nition 7.9.1 Given a graph G = (V;E) on n vertices, a strict vector k-coloring of Gis an assignment of unit vectors ui from the space <n to each vertex i 2 V , such that forany two adjacent vertices i and j the dot product of their vectors satis�es the equalityhui; uji = � 1k � 1 :As usual we say that a graph is strictly vector k-colorable if it has a strict vector k-coloring. The strict vector chromatic number of a graph is the smallest real number kfor which it has a strict vector k-coloring. It follows from the de�nition that the vectorchromatic number of any graph lower bounds by the strict vector chromatic number.Theorem 7.9.2 The strict vector chromatic number of G is equal to #(G).Proof: Using any reference to semide�nite programming duality (for example, [5]), we �ndthe dual of our vector coloring semide�nite program:maximize �X piiwhere fpijg is positive semide�nitesubject to Xi6=j pij � 1pij = pjipij = 0 for (i; j) =2 E and i 6= jBy duality, the value of this SDP is �1=(k � 1) where k is the strict vector chromaticnumber. Our goal is to prove k = #. As before, the fact that fpijg is positive semide�nitemeans we can �nd vectors vi such that pij = hvi; vji. The last constraint says that thevectors v form an orthogonal labeling [86], i.e. that hvi; vji = 0 for (i; j) =2 E. We now claimthat optimization problem can be reformulated as follows:maximize �Phvi; viiPi6=jhvi; vji

130 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORINGover all orthogonal labelings fvig. To see this, consider an orthogonal labeling and de�ne� =Pi6=jhvi; vji. Note this is the value of the �rst constraint in the �rst formulation of thedual (so � � 1) and of the denominator in the second formulation. Then in an optimumsolution to the �rst formulation, we must have � = 1, since otherwise we can divide each viby p� and get a feasible solution with a larger objective value. Thus the optimum of thesecond formulation is at least as large as that of the �rst. Similarly, given any optimum fvigfor the second formulation, vi=p� forms a feasible solution to the �rst formulation with thesame value. Thus the optima are equal. We now manipulate the second formulation.max �Phvi; viiPi6=jhvi; vji = max �Phvi; viiPi;jhvi; vji �Phvi; vii= minPi;jhvi; vji �Phvi; vii�Phvi; vii !�1= min�Pi;jhvi; vjiPhvi; vii + 1!�1= � maxPi;jhvi; vjiPhvi; vii � 1!�1 :It follows from the last equation that the vector chromatic number ismaxPi;jhvi; vjiPhvi; vii :However, by the same argument as used to reformulate the dual, this is equal to problem ofmaximizing Pi;jhvi; vji over all orthogonal labelings such that Phvi; vii � 1. This is simplyLov�asz's #3 formulation of the #-function [86, page 287].7.10 The Gap between Vector Colorings and Chromatic Num-bersThe performance of our randomized rounding approach seems far from optimum. In thissection we ask why, and show that the problem is not in the randomized rounding but in thegap between the original problem and its relaxation. We investigate the following question:given a vector k-colorable graph G, how large can its chromatic number be in terms of kand n? We will show that a graph with chromatic number n
(1) can have bounded vectorchromatic number. This implies that our technique is tight in that it is not possible to

7.10. THE GAP BETWEENVECTOR COLORINGS ANDCHROMATIC NUMBERS131guarantee a coloring with no(1) colors on all vector 3-colorable graphs. Lov�asz [143] pointedout that for a random graph � = n= logn while # = pn, and that a graph constructedby Koniagin has � � n=2 and # = n1=3. However, such large gaps are not known for thecase of bounded #. Our \bad" graphs are the so-called Kneser graphs [125]. (Independentof our results, Szegedy [179] has also shown that a similar construction yields graphs withvector chromatic number at most 3 that are not n0:05-colorable. Notice that the exponentobtained from his result is better than the one shown below.)De�nition 7.10.1 The Kneser graph K(m; r; t) is de�ned as follows: the vertices are allpossible r-sets from a universe of size m; and, the vertices vi and vj are adjacent if andonly if the corresponding r-sets satisfy jSi \ Sj j < t.We will need following theorem of Milner [149] regarding intersecting hypergraphs. Re-call that a collection of sets is called an antichain if no set in the collection contains another.Theorem 7.10.2 (Milner) Let S1, : : :, S� be an antichain of sets from a universe of sizem such that, for all i and j, jSi \ Sjj � t:Then, it must be the case that � � mm+t+12 !:Notice that using all q-sets, for q = (m+ t + 1)=2, gives a tight example for this theorem.The following theorem establishes that the Kneser graphs have a large gap between theirvector chromatic number and chromatic numbers.Theorem 7.10.3 Let n = �mr � denote the number of vertices of the graph K(m; r; t). Forr = m=2 and t = m=8, this graph is 3-vector colorable but has chromatic number n0:0113.Proof: We prove a lower bound on the Kneser graph's chromatic number � by establishingan upper bound on its independence number �. It is easy to verify that the � in Milner'stheorem is exactly the independence number of the Kneser graph. We can bound � asfollows, using the standard equality that ab! = � �ab�b� aa � b�a�b!

132 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORINGfor b linearly related to a. For the purposes of determining the exponent in the chromaticnumber, the constant factor hidden in the �-notation can and will be ignored. We nowobserve that � � n�� �mr �� m(m+t)=2�= " (2)1=2(2)1=2(16=9)9=16(16=7)7=16#m= (1:007864)mAgain using the approximation,n = mr ! = h(2)1=2(2)1=2im � 2m:Since n � lgm, it follows that� � (1:007864)lgn = nlg 1:007864 � n0:0113:Finally, it remains to show that the vector chromatic number of this graph is 3. Thisfollows by associating with each vertex vi an m-dimensional vector obtained from the char-acteristic vector of the set Si. In the characteristic vector, +1 represents an element presentin Si and �1 represents elements absent from Si. The vector associated with a vertex isthe characteristic vector of Si scaled down by a factor of pm to obtain a unit vector. It iseasy to see that the dot product of adjacent vertices, or sets with intersection at most t, isbounded from above by �4r � 4t�mm = �1=2:This implies that the vector chromatic number is 3.More re�ned calculations can be used to improve this bound somewhat.Theorem 7.10.4 There exists a Kneser graph K(m; r; t) that is 3-vector colorable but haschromatic number exceeding n0:016101, where n = �mr � denotes the number of vertices in thegraph. Further, for large k, there exists a Kneser graph K(m; r; t) that is k-vector colorablebut has chromatic number exceeding n0:0717845.

7.11. CONCLUSIONS 133Proof: The basic idea is to improve the bound on the vector chromatic number of theKneser graph using an appropriately weighted version of the characteristic vectors. Weuse weights a and �1 to represent presence and absence, respectively, of an element in theset corresponding to a vertex in the Kneser graph, with appropriate scaling to obtain aunit vector. The value of a that minimizes the vector chromatic number can be found bydi�erentiation and is A = �1 + mrr2 � rt � mtr2 � rtSetting a = A proves that the vector chromatic number is at mostm(r � t)r2 �mt :At the same time, using Milner's Theorem proves that the exponent of the chromatic numberis at least 1� (m� t) log 2mm�t + (m+ t) log 2mm+t2 �(m� r) log mm�r + r log mr � :By plotting these functions, we have shown that there is a set of values with vector chro-matic number 3 and chromatic number at least n0:016101. For vector chromatic numberapproaching in�nity, the limiting value of the exponent of the chromatic number is roughly0:0717845.7.11 ConclusionsThe Lov�asz number of a graph has been a subject of active study due to the close connectionsbetween this parameter and the clique and chromatic numbers. In particular, the following\sandwich theorem" was proved by Lov�asz [142] (see Knuth [129] for a survey).!(G) � #(G) � �(G): (7.1)This has led to the hope that the following extended version may be true.Conjecture 7.11.1 There exist �, �0 > 0 such that, for any graph G on n vertices#(G)n1�� � !(G) � #(G) � �(G) � #(G)� n1��0 : (7.2)

134 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORINGOur work provides reinforcement for this hope by giving an upper bound on the the chro-matic number of G in terms of #(G). However, this is far from achieving the bound conjec-tured above and it remains to be seen if this conjecture is true. In related work, Szegedy [179]studies various aspects of the parameter # and, with respect to this conjecture, shows thatthere is such an � bounded away from zero if and only if there is an �0 bounded away fromzero. Alon, Kahale and Szegedy [160] have also been able to use the semide�nite pro-gramming technique in conjunction with our techniques to obtain algorithms for computingbounds on the clique number of a graph with linear-sized cliques, improving upon someresults due to Boppana and Halldorsson [20].In terms of disproving such a conjecture (or, proving upper bounds on � and �0), relevantresults include the following: Lov�asz [143] points out that for a random graph G, �(G) =n= logn while #(G) = pn; Koniagin has demonstrated the existence of a graph that has�(G) � n=2 and #(G) = O(n2=3 logn); Alon [6] has explicit constructions matching orslightly improving both these bounds. Our constructions from Section 7.10 are of a similaravor and provide graphs with vector chromatic number at most 3 but with �(G) � n�.In fact, by using a similar construction and applying a result of Frankl and Rodl [61],we can also construct graphs with #(G) � 3 and �(G) � n�. Independent of our results,Szegedy [178] has also shown that a similar construction yields graphs with vector chromaticnumber at most 3 but which are not colorable using n0:05 colors. Notice that the exponentobtained from his result is better than the one in Section 7.10. Alon [6] has obtained aslight improvement over Szegedy's bound by using an interesting variant of the Knesergraph construction.The connection between the vector chromatic number and the clique/chromatic numbersis far from being completely understood and it is our hope that this work will motivatefurther study of this relationship.A preliminary version of this chapter appeared in [108].

Chapter 8ConclusionThis work has discussed several di�erent approaches to random sampling for graph opti-mization problems. In all of them, the unifying idea has been that a random sample is\typical." Information about the entire problem can be gleaned from a small random sam-ple at little cost. A very general approach is to generate a small random representativesubproblem, solve it quickly, and use the information gained to home in on the solution tothe entire problem. In particular, an optimal solution to the subproblem may be a good so-lution to the original problem which can quickly be improved to an optimal solution. Whilethis paradigm has been applied frequently in the realm of computational geometry [34], itseems to have been less prevalent in general combinatorial optimization. There are thereforemany problems which could potentially bene�t from the approach. One broad category thatwe have not addressed is that of problems on directed graphs. None of the techniques wedeveloped here appear to apply, but we also have no proofs that random sampling cannotwork in such a case.Another general question is to what extent randomization is truly necessary. This canbe asked in a variety of ways. The purely theoretical is to ask whether it is possible toderandomize the algorithm. We have shown that this is the case for the minimum cutproblem, giving a deterministic parallel algorithm. On the other hand, for the problemof constructing graph skeletons deterministically, we do not yet have even a deterministicpolynomial time algorithm, much less a deterministic parallel one. From a more practicalperspective, derandomization is questionable when it causes tremendous increases in therunning times or processor bounds (as was the case for our minimum cut algorithm). Thegoal instead is to �nd practical derandomizations which do not increase time bounds. One135

136 CHAPTER 8. CONCLUSIONquestion which arises here is whether there is a deterministic linear time minimum spanningtree algorithm. Another is whether our graph coloring algorithm can be derandomized.

Part IIExtensions

137

Chapter 9Extensions of the ContractionAlgorithmWe now discuss extensions to Contraction Algorithm algorithm. Our algorithm can be usedto compute (and enumerate) minimum multi-way cuts. The minimum r-way cut problemis to �nd a minimum weight set of edges whose removal partitions a given graph into rseparate components. Previously, the best known sequential bound, due to Goldschmidt andHochbaum [80], was O(nr2=2�r+11=2), and no parallel algorithm was known. Our algorithmruns in ~O(n2(r�1)) time, and in RNC using n2(r�1) processors. This shows that the minimumr-way cut problem is in RNC for any constant r. In contrast, it is shown in [42] that themultiway cut problem in which r speci�ed vertices are required to be separated (i.e., ageneralization of the s-t minimum cut problem) is NP-complete for any r > 2. Thealgorithm can be derandomized in the same way as for minimum cuts, which as a sidee�ect lets us enumerate all minimum cuts within an arbitrary constant factor multiple ofthe optimum.A minor modi�cation of Recursive-Contract lets us use it to construct the cactusrepresentation of minimum cuts introduced in [44]. We improve the sequential time boundof this construction to ~O(n2) from ~O(mn). We give the �rst RNC algorithm for weightedgraphs, improving the previous (unweighted graph) processor bound from mn4:5 to n4.A more complex modi�cation lets us us make the contraction algorithm more e�cient ifwe are willing to accept an approximately minimum cut as the answer. We give an algorithmthat uses m+ c2n2=� processors to �nd a cut of value at most � times the minimum cut c.The dependence on c can be eliminated using p-skeleton techniques from Chapter 6.139

140 CHAPTER 9. EXTENSIONS OF THE CONTRACTION ALGORITHMWe �nish this chapter with two complexity-theoretic results. In Section 9.5 we discusstrading time for space, showing that we can still match the ~O(mn) time bounds of pre-vious minimum cut algorithms, even if our computational space is restricted to O(n). InSection 9.6, we show that the minimum cut lies near the bottom of the parallel complexityhierarchy, since it can be solved in O(logn) time in the EREW model of computation.9.1 Multiway CutsWith a small change, the Contraction Algorithm can be used to �nd a minimum weightr-way cut that partitions the graph into r pieces rather than 2. As before, the key to theanalysis is to apply Lemma 3.4.1 by bounding the probability p that a randomly selectedgraph edge is from a particular minimum r-cut. Throughout, to simplify our asymptoticnotation, we assume r is as constant.Lemma 9.1.1 The number of edges in the minimum r-way cut of a graph with m edgesand n vertices is at most [1� (1� r � 1n)(1� r � 1n � 1)]mProof: We use the probabilistic method. Suppose we choose r � 1 vertices uniformly atrandom, and consider the r-way cut de�ned by taking each of the chosen vertices alone asof the r � 1 vertex sets of the cut and all the other vertices as the last set. An edge is inan r-way cut if its endpoints are in di�erent partitions. The probability that a particularedge is in the cut is thus the probability that either of its endpoints is one of the r � 1single-vertex components of the cut, which is just1� (1� r � 1n)(1� r � 1n� 1):Let f be the number of edges cut by this random partition, and m the number of graphedges. The number of edges we expect to cut is m times the probability that any one edgeis cut, i.e. E[f] = [1� (1� r � 1n)(1� r � 1n� 1)]m;Since f can be no less than the value of the minimum r-way cut, E[f] must also be no lessthan the minimum r-way cut.The quantity in brackets is thus an upper bound on the probability that a randomlyselected edge is an r-way minimum cut edge.

9.1. MULTIWAY CUTS 141Theorem 9.1.2 Stopping the Contraction Algorithm when r vertices remain yields a par-ticular minimum r-way cut with probability at leastr nr � 1!�1 n� 1r � 1!�1 =
(n�2(r�1)):Proof: By the previous lemma, arguing as in Lemma 4.2.1, the probability that a particularminimum r-cut survives the reduction process until there are r vertices remaining is at leastnYu=r+1(1� r � 1u)(1� r � 1u� 1)= nYu=r+1(1� r� 1u) nYu=r+1(1� r � 1u� 1)= r nr � 1!�1 n � 1r � 1!�1:Corollary 9.1.3 The probability that a particular minimum r-way cut survives contractionto k � r vertices is
((k=n)2(r�1)).Corollary 9.1.4 There are O(n2(r�1)) minimum multiway cuts in a graph.Proof: Use the same argument as for counting approximately minimum cuts.Theorem 9.1.5 All minimum r-way cuts in a graph can be found with high probability inO(n2(r�1) log2 n) time, or in RNC using n2(r�1) processors.Proof: Apply the Recursive Contraction Algorithm, but contract at each level by a factorof 2(r�1)p2 and stop when r vertices remain. The recurrence for the probability of success isunchanged. The running time recurrence becomesT (n) = n2 + 2T (n=21=2(r�1))and solves to T (n) = O(n2(r�1)). The fact that all cuts are found follows as in the approxi-mately minimal cuts case.Remark: The disappearance of an O(logn) factor that was present in the 2-way cut casewas brought to our attention by Jan Hvid Sorensen.

142 CHAPTER 9. EXTENSIONS OF THE CONTRACTION ALGORITHMThis is a signi�cant improvement over the previously best known sequential time boundof O(nr2�r+11=2) reported in [80]. This also provides the �rst proof that the multiwaycut problem is in RNC for constant r. The extension of these techniques to approximatelyminimum multiway cuts is an easy exercise that we omit due to rather complicated notationneeded.9.2 Derandomization ExtensionsIn this section, we show how our derandomization techniques can be extended to �ndingminimum multiway cuts and approximately minimum cuts in NC.9.2.1 Multiway CutsWe can derandomize the multiway cut problem as we did the minimum cut problem. Forconstant r, we can use the safe sets technique to solve the r-way cut problem in NC. Thefollowing lemma is the natural extension of the cut counting lemma to multiway cuts, andis proved in the same way as Theorem 4.7.6 and Corollary 9.1.4.Lemma 9.2.1 The number of r-way cuts with value within a multiplicative factor of � ofthe r-way min-cut is O(n2�(r�1)).The next lemma reduces to Lemma 5.3.1 when r = 2.Lemma 9.2.2 In an r-way min-cut (X1; : : : ; Xr) of value c, each Xi has minimum cut atleast 2c=(r� 1)(r+ 2).Proof: Assume that set X1 has a cut (A;B) of w edges. We prove the lemma by lowerbounding w.Suppose that two sets Xi and Xj are connected by more than w edges. Then mergingXi and Xj and splitting X1 into A and B would yield an r-way cut of smaller value, acontradiction. It follows that the total number of cut edges not incident on X1 can be atmost �r�12 �w.Now suppose that more than 2w edges connect X1 and some Xj. Then more than wedges lead from Xj to either A or B, say A. Thus splitting X1 into A and B and mergingA with Xj would produce a smaller r-way cut, a contradiction. It follows that the numberof edges incident on X1 can be at most 2(r� 1).

9.2. DERANDOMIZATION EXTENSIONS 143Combining the previous two arguments, we see that the r-way cut value c must satisfyc � r � 12 !w + 2w(r� 1);implying the desired result.Combining the two previous lemmas shows that there is a polynomial-sized set of ap-proximately minimum cuts that we can eliminate with the safe sets technique to isolate theminimum r-way cut.Theorem 9.2.3 On unweighted graphs, the r-way min-cut problem can be solved in NCfor any constant r.Proof: We proceed exactly as in the two-way min-cut case. Consider the minimum r-waycut (X1; : : : ; Xr) of value c. By the previous lemma, the minimum cut in each componentis large; thus by Lemma 5.3.2 the number of cuts whose size is less than 2c is polynomialin n. It follows that we can �nd a universal isolating family contains an isolator for theminimum r-way cut. Contracting the edges in this isolator yields a graph in which eachcomponent of the r-way minimum cut has no small cut. Then the (2-way) minimum cutin this contracted graph must be a \part of" the r-way minimum cut. More precisely, itcannot cut any one of the Xi, so each Xi is entirely on one or the other side of the cut. Wecan now �nd minimum cuts in each of the sides of the minimum cut; again they must bepart of the r-way minimum cut. If we repeat this process r times, we will �nd the r-wayminimum cut.9.2.2 Approximate CutsWe can similarly extend our algorithm to enumerate all cuts with value within any constantfactor multiple of the minimum cut. This plays an important role in our extension toweighted graphs.Lemma 9.2.4 Let c be the minimum cut in a graph. If (A;B) is a cut with value �c, thenthe minimum r-way cut in A has value at least (r � �)c=2.Proof: Let fXigri=1 be the optimum r-way cut of A, with value �. This means there are �edges with both endpoints in A. There are also �c edges with exactly one endpoint in A.

144 CHAPTER 9. EXTENSIONS OF THE CONTRACTION ALGORITHMThus the sum of the degrees of the Xi is 2� + �c. We also know that each Xi has degreeat least c. Thus 2� + �c � rc, and the result follows.Theorem 9.2.5 For constant �, all cuts with value at most � times the minimum cut'scan be found in NC.Proof: For simplicity, assume without loss of generality that � is an integer. Fix a particularcut (A;B) of value �c. Let r = �+ 2. By Lemma 9.2.4, the minimum r-way cut in A (andin B) has value at least c. Lemma 9.2.1 says that as a consequence there are nO(1) r-waycuts in A (or B) with value less than 3r�c. De�ne a safe sets instance whose target sets areall such multiway cuts and whose safe set is the cut (A;B). By �nding an isolator for theinstance and contracting the edges in it, we ensure that the minimum r-way cut in each ofA and B exceeds 3r�c.Suppose that after isolating the cut we want, we run our parallelization of Matula'sAlgorithm, constructing k-jungles with k = �c. Since the r-way cut is at least 3r�c in eachof A and B, at most (r � 1) vertices in each set have degree less than 6�c. It follows thatso long as the number of vertices exceeds 4r, the number of edges will reduce by a constantfactor in each iteration of the algorithm. In other words, in O(logm) steps, the number ofvertices will be reduced to 4r in such a way that the cut of value �c is preserved. We can�nd it by examining all possible partitions of the 4r remaining vertices, since there are onlya constant number.There is an obvious extension to approximate multiway cuts; however we omit thenotationally complicated exposition.9.3 Cut Data StructuresResearchers have investigated several representations of the minimum cuts of a graph. Desir-able properties of such representations include small space requirements and, perhaps moreimportantly, the ability to quickly answer queries about the minimum cuts in the graph.Several representations are known [44, 66]. We concentrate on the cactus representation [44]and show how that Contraction Algorithm can be used to construct it.

9.3. CUT DATA STRUCTURES 1459.3.1 The Cactus RepresentationThis data structure represents all �n2� minimum cuts via an n-node, O(n)-edge graph. Itcan be used to quickly identify, for example, all minimum cuts separating a particular pairof vertices. A cactus is a graph such that every edge is contained in at most one cycle. Ittherefore looks like a tree, except that each of the \nodes" in the cactus can be a vertex ora simple cycle. In a c-weighted cactus, each non-cycle edge of the cactus gets weight c andeach cycle edge gets weight c=2. The minimum cuts in this cactus are therefore producedby cutting either a single non-cycle edge or two cycle edges on the same cycle. A cactusrepresentation for a graph G with minimum cut c is a c-weighted cactus C and a (notnecessarily injective) mapping � from the vertices of G to those of C, such that there is aone to one correspondence between the minimum cuts of G and those in the cactus. Moreprecisely, for vertex set X , let �(X) = f�(v) j v 2 Xg. Then X should be one side of aminimum cut in G if and only if �(X) is one side of a minimum cut in C.Karzanov and Timofeev [116] give an algorithm for constructing the cactus sequentially;their algorithm is parallelized by Naor and Vazirani [156]. We describe the general frame-work of both algorithms below. The reader is referred to [156] for a much more detaileddescription.1. Number the vertices so that for each vertex (except vertex 1) is connected to at leastone lower numbered vertex.2. For each i � 2, compute the set Si of minimum cuts that separate vertices f1; : : : ; i�1gfrom vertex i.3. Form a cactus out of [iSi.Step 2 turns out to be the crux of the algorithm. The sets Si form what we call thechain representation of minimum cuts, for reasons we now explain. For our explanation, itis convenient to slightly change our de�nition of cuts. Given a cut (A;B), we can identifythe cut with either set A or set B since one is a complement of the other. To make theidenti�cation unique we take the set containing vertex 1. Thus a cut is simply a set A ofvertices containing vertex 1, and its value is weight of edges with exactly one endpoint inA. We will say that the vertices in A are inside the cut, and those not in A are outside thecut. We let the size of a cut be the number of vertices in its representative set.

146 CHAPTER 9. EXTENSIONS OF THE CONTRACTION ALGORITHMGiven the numbering of Step 1 and our rede�nition of cuts, each Si has a particularlynice structure. Namely, given any two cuts A and A0 in Si, either A � A0 or A0 � A.This property is typically referred to the non-crossing cut property. It follows that the cutsin Si form a chain, i.e. the cuts can be numbered as Ai such that A1 � A2 � � � � � Ak.Therefore, it is easy to represent each set Si in O(n) space, meaning that the sets Si forman O(n2)-size chain representation of the minimum cuts of G.We now consider the implementations of the cactus construction. Step 1 of the algorithmcan be implemented easily: �nd a spanning tree of G and then number the vertices accordingto a preorder traversal. This can be done in O(m) time sequentially and also in O(logn)time using m= logn processors in parallel [114]. Step 3 can also be implemented relativelye�ciently. Karzanov and Timofeev [116] describe a sequential implementation that, giventhe set of chains for each Si, takes O(n2) time. Naor and Vazirani [156] do not explicitlybound their implementation of Step 3, but it can be shown to run in O(log2 n) time using n4processors. For both the sequential and parallel algorithms, the bottleneck in performanceturned out to be Step 2, constructing the chain representation fSig.Each Si can be found via a maximum ow computation and a strongly connected com-ponents computation and thus Step 2 can be done by n such computations. This led toa sequential algorithm that took ~O(n2m) time [116] and an O(log2 n) time randomized al-gorithm that used n4:5m processors on unweighted graphs [156]. We will explain how toimplement Step 2 to run with the same bounds as the Recursive Contraction Algorithm(up to constant factors), thus leading to improved sequential time and parallel processorbounds.9.3.2 The Chain RepresentationSuppose that for each vertex number j, we know the size of the smallest cut in Si containingj (that is, with j on the same side as vertex 1). Then it is straightforward to construct Siin O(n) time. Bucket-sort the vertices according to the smallest Si-cut containing them.Those inside the smallest cut form A1; those inside the next smallest form A2 � A1, andso on. Therefore, we have reduced the problem of constructing the Si to the following: foreach i and j, identify the smallest Si-cut containing j. We now show how to modify theRecursive Contraction Algorithm to recursively compute this information. For simplicity,assume that we have already run the Recursive Contraction Algorithm once so that thevalue of the minimum cut is known.

9.3. CUT DATA STRUCTURES 147We begin by adding two information �elds to each metavertex v that arises duringthe Recursive Contraction Algorithm's execution. Let size(v) be the number of verticescontained in v, and let min(v) be the smallest label of a vertex in v. Note that these twoquantities are easy to update as the algorithm executes; when we merge two metavertices,the updated values are determined by a sum and a minimum operation. Now consider aleaf in the computation tree of the Recursive Contraction Algorithm. One metavertex v inthis leaf will have min(v) = 1 while the other metavertex w will have min(w) = i for somei. If this leaf corresponds to a minimum cut of G, then we call it an i-leaf. Each i-leafmust correspond to a cut in Si, since by the labeling vertices 1; : : : ; i� 1 must be in v whilevertex i must be in w. Furthermore, size(v), which we also call the size of the i-leaf, is justthe number of vertices inside the corresponding minimum cut. We have therefore reducedour chain construction problem to the following: for each pair of labels i and j, �nd theminimum size i-leaf containing j (where we identify an i-leaf with the cut (set of vertices)it represents).We solve this problem by generalizing it while running the Recursive Contraction Algo-rithm. Consider some graph G that arises at some point in the computation tree. We solvethe following problem: for each pair of labels i and j of vertices in G, consider all i-leavesthat are descendants of G, and �nd �iG(j), the smallest i-leaf descendant of G containing j.Recalling that in the computation tree G has two contracted graphs G0 and G00 as children,we show that it is easy to compute �iG from �iG0 and �iG00 . Note that each i-leaf descendedfrom G is descended from either G0 or G00. Consider graph G0. The metavertices with labelsi and j in G are merged into metavertices with labels i0 and j 0 in G0. Suppose i 6= i0. Thenthere is no vertex labeled i in G0, and it follows by induction that there is no i-leaf descendedfrom G0. If i = i0, then the smallest i-leaf descendent of G0 containing j is just the smallesti0-leaf descendant of G0 containing j 0, namely �i0G0(j 0). Applying the same argument to G00,it follows that �iG(j) = min(�iG0(j 0); �iG00(j 0));where �iG() is de�ned to be in�nite if there is no vertex labeled i in G.We have therefore shown that, after the recursive calls to G0 and G00 which return �G0and �G00 , the new �iG(j) can be computed in constant time for each pair of labels i and jin G. Therefore, if G has n vertices and thus n labels, the time to compute all �iG(j) isO(n2). Since the original contraction algorithm already performs O(n2) work at each sizen graph in the computation, the additional O(n2) work does not a�ect the running time

148 CHAPTER 9. EXTENSIONS OF THE CONTRACTION ALGORITHMbound. This procedure is easy to parallelize, as computing �iG(j) for all pairs i and j canbe done simultaneously, and the sorting can also be done e�ciently in NC.Finally, recall that we run the Recursive Contraction Algorithm �(log2 n) times in orderto get a high probability of �nding every minimum cut. It is trivial to combine the resulting� values from these �(log2 n) computations in O(n2 log2 n) time or with n2 processors inRNC time. We have therefore shown:Theorem 9.3.1 The chain representation of minimum cuts in a weighted labeled graph canbe computed with high probability in O(n2 log3 n) time, or in RNC using n2 processors.Corollary 9.3.2 The cactus representation of minimum cuts in a graph can be computedin O(n2 log3 n) time or in RNC using n4 processors.9.4 Parallel (1 + �)-ApproximationThere are two reasons Recursive-Contract requires n2 processors. One derives from theContraction Algorithm: since its success probability is �(n�2), it is necessary to perform
(n2) trials to get a high success probability. This forces us to do
(n2) work even afterRecursive-Contract reduces the amount of work per trial to nearly a constant. Thesecond reason derives from dense subproblems. As the algorithm performs recursive calls,it is impossible to bound the number of edges in the graphs that are its arguments|thusthe best bound that can be put on the number of edges in an r vertex graph is r2, and thisforces us to allocate r2 processors even to examine the input.In this section, we show how both these problems can be circumvented, though at acost. We develop a (1 + �)-approximation algorithm for the case where the minimum cutis small. The small minimum cut lets us keep the recursive subproblems small by usingsparse certi�cates. The willingness to approximate reduces the number of trials we needto perform. Our develop a sequential algorithm that �nds a cut of value at most �c in~O(m + cn2�) time and a parallel algorithms that uses m + c2n2=� processors. We thenstrengthen it by applying the skeleton construction to eliminate the dependence it, leavingan algorithm which requires only m+ n2=� processors.We proceed to modify the Recursive Contraction Algorithm (Recursive-Contract) totake advantage of the combination of small minimum cuts and a willingness to approximate.Recall that Recursive-Contract uses the more primitive Contraction Algorithm. The

9.4. PARALLEL (1 + �)-APPROXIMATION 149Contraction Algorithm, denoted Contract(G; k), takes a graph G of n vertices and medges, and using m processors in RNC returns a contraction of G to k vertices such thatwith probability
((k=n)2), the contracted graph has the same minimum cut as the original.9.4.1 Modifying the Contraction AlgorithmThe original analysis of the Contraction Algorithm Contract (Section 4.2) showed that withprobability
(n�2), it produced a minimum cut. However, a willingness to approximateincreases the success probability of the Contraction Algorithm. Since we are willing tosettle for an approximation, we can halt the Contraction Algorithm as soon as we �nd anearly optimum cut. In particular, we can stop as soon as a vertex of degree less than �cis created by contractions, because such a vertex corresponds to a cut of value less than �cin the original graph. This observation allows us to improve the analysis by making theassumption that no such small cut has yet been found.Lemma 9.4.1 If an n vertex graph is contracted to k vertices, then with probability
((k=n)2=�),the contractions will either preserve the minimum cut or create a metavertex of degree lessthan �c (corresponding to an �-minimal cut).Proof: If the average degree falls bellow �c, it means that some vertex has degree lessthan �c. This vertex in turn de�nes a cut of value less than �c. If this does not occur,then we can assume at all times that the average degree exceeds �c. We now modify theanalysis of Theorem 4.2.1, using the fact that the average degree always exceeds �c. Moreprecisely, when r vertices remain, the assumption that the average degree exceeds �c meansthat there are at least n�c=2 edges in the graph. Thus with probability (1 � 2=(n�)), wewill pick a non-min-cut edge to contract. Therefore, as r decreases to k, the probabilitythat we never pick a minimum cut edge is(1� 2=�n)(1� 2=�n� 1) � � �(1� 2=�k + 1) =
((k=n)2=�)To use Lemma 9.4.1, we modify Contract in order to keep track of the average degreeduring contractions. Afterwards, we compare the output of the algorithm to this minimumdegree, and use the minimum degree if it is smaller. However, we defer the discussion ofthis change to Section 9.4.3 and �rst discuss the use of the modi�ed algorithm in the �nalapproximation algorithm.

150 CHAPTER 9. EXTENSIONS OF THE CONTRACTION ALGORITHM9.4.2 Modifying the Recursive AlgorithmHaving modi�ed the Contraction Algorithm Contract to increase its success probability,we proceed to modify Recursive-Contract to reduce the amount of work it does. Recallthat the algorithm Contract(G; k), given a graph on n vertices, will either encounter a cutof value at most �c or ensure that the minimum cut survives the contraction to k verticeswith probability
((k=n)2=�).Figure 9.1 gives the modi�ed algorithm Recursive-Contract� for �nding an �-minimalcut in a graph with minimum cut k. We assume that the algorithm is given an upper boundC on the value of the minimum cut; later we will show this assumption is unnecessary. Thealgorithm uses sparse certi�cates (Section 3.3) to keep the number of edges in the graphsmall as we contract it. Recall that a sparse �C-connectivity certi�cate preserves all cutsof value exceeding �C. Since the minimum cut c � C, any cut of value exceeding �c in Gcorresponds to a cut of value exceeding �c in the certi�cate.Algorithm Recursive-Contract�(G)input A graph G with n vertices.if n = 2then examine the implied cut of the original graphelse �nd an (�C)-connectivity certi�cate G' of Grepeat twiceG00 Contract(G0; n=2�=2)Recursive-Contract�(G00)Figure 9.1: The Modi�ed AlgorithmAs a consequence of Lemma 9.4.1, if we are looking for an �-minimal cut and contractan n-vertex graph to n=2�=2 vertices, we have a 50% chance of either �nding an �-minimalcut or preserving the minimum cut of the original graph. Since in the algorithm we performthis experiment twice, we expect that one of the experiments will succeed. The remainderof the proof of correctness follows Section 4.4. In particular, a recurrence P (n) for the

9.4. PARALLEL (1 + �)-APPROXIMATION 151probability of success is P (n) = 1� (1� (12P (n=2�=2)))2:Thus P (n) =
(logn). The only necessary addition here is to observe that the sparsecerti�cate algorithm used here does not a�ect the minimum cut.Now consider a sequential implementation of this algorithm. We can use Nagamochiand Ibaraki's Scan-First-Search to construct a sparse certi�cate in linear time. Sincewe run the sparse certi�cate algorithm before calling Recursive-Contract� recursively, wecan be sure by induction that at all levels of the recursion, whenever Recursive-Contract�is called with a graph of n vertices, that graph has O(Cn) edges (the one exception is thetop level, where the number of edges is m). This gives a recurrence for the running time:T (n) = ~O(Cn) + 2T (n=2�=2);which solves to T (n) = ~O(m+ Cn2=�).We can also consider a parallel algorithm for the problem. If we use the m-processor,~O(C)-time sparse certi�cate algorithm of [29], we deduce a processor recurrence identicalto the sequential running time recurrence, for a processor cost of m + Cn2=�. Since thedepth of the recursion tree is logarithmic, and since the running time at each level is ~O(c)(dominated by the sparse certi�cate algorithm), the overall running time is ~O(c).In Section 5.2, we will give a new parallel sparse certi�cate algorithm that runs inpolylogm time using Cm processors (it therefore does the same amount of work as the al-gorithm of [29], but with a higher degree of parallelism). This gives the following recurrencefor the processor cost: T (n) = 2(C2n+ T (n=2�=2)):This recurrence solves to T (n) = O(C2n2=�). The recursion depth is O(logn), and the timespent at each level of the recursion is polylogarithmic (dominated by the sparse certi�cateconstruction).Now observe that the estimate C is not actually necessary. We begin with a guess C = 1,and repeatedly double it. We call Recursive-Contract� until the guess is con�rmed bythe return of a cut of value less than our current guess C. It requires O(log c) doublingphases to increase our guess above c, and so long as C = O(c), the number of processorsused is O(m+ c2n2=�). We therefore have the following result:Lemma 9.4.2 An �-minimal cut can be found with high probability in ~O(m+ cn2=�) timeor in RNC using m+ c2n2=� processors.

152 CHAPTER 9. EXTENSIONS OF THE CONTRACTION ALGORITHMRemark: Neither a sparse graph nor the willingness to approximate can in itself givea faster algorithm. Even if the graph is sparse, using Recursive-Contract to �nd theminimum cut exactly requires
(n2) processors. On the other hand, if we are willing toapproximate but fail to sparsify, the fact that we are recursively calling CA� on dense graphsmeans that it may require
(n2) processors for details).Corollary 9.4.3 Let 1= logn < � < 1. In a weighted, undirected graph, a (1 + �)-minimalcut can be found in RNC using ~O(m=�2+n2=(1+�)) processors. In particular, a linear numberof processor can �nd a twice-minimal cut in RNC.Proof: Apply the skeleton construction of Section 6.3 to ensure the graph whose minimumcut we estimate has a small minimum cut.9.4.3 Tracking the DegreeAn m-processor parallel implementation of the Contraction Algorithm is given in Sec-tion 4.5. We modify this implementation to keep track of the average degree; this mod-i�cation in turn lets us implement the approximation algorithm of the previous section.We describe only the parallel implementation, the sequential implementation is then a spe-cial case. Recall that we simulate the sequence of contractions by generating a randompermutation of the edges and then contracting edges in order of the permutation. As weconsider the sequence of contractions induced by the permutation, let epoch i denote theperiod when n� i vertices remain in the graph. Our goal is to determine the average degreeat each epoch, which is equivalent to determining the number of edges that exist at eachepoch. This is easy if we determine, for each edge, the epoch until which it survives.As a �rst step towards making this determination, we identify the contracted edges.These are the at most n � 2 edges that are actually chosen for contraction, distinguishedfrom the edges that disappear when their endpoints are merged by some other contraction.Given the edge permutation, a particular edge is contracted if and only if all the edgespreceding it fail to connect its endpoints. If we rank the edges by their order in the permu-tation, and construct a minimum spanning tree (MST) based on the ranks, then the MSTedges are precisely the edges satisfying this property. The MST can be found in NC usingm processors [12, 95, 31]. Furthermore, the order of the MST edges in the permutationdetermines the order of contractions: the �rst (smallest rank) MST edge causes the �rst

9.5. OPTIMIZING SPACE 153contraction, and therefore initiates the �rst epoch. The second MST edge initiates thesecond epoch, and so on. Label each MST edge based on this order.This labeling gives us the information we need to determine until which epoch each edgesurvives. An edge e survives until epoch i if and only if the edges contracted before epochi, namely the MST edges with labels less than i, fail to connect e's endpoints. Thus, theepoch in which e disappears is simply the label of the largest labeled edge on the MST pathbetween the endpoints of e. We have thus reduced our problem to the following: given theminimum spanning tree, compute for each edge the largest edge label on the path betweenits endpoints. This problem (essentially that of minimum spanning tree veri�cation) canbe solved in NC using m processors [8].If we determine that in some epoch the average degree fell below �c, it is simple to per-form the contraction up to that epoch using Compact (Section 4.5) and then �nd the mini-mum degree vertex in the partially contracted graph; this vertex corresponds to a cut of thedesired value. We have therefore shown how to implement Algorithm Recursive-Contract�of Figure 9.1.9.5 Optimizing SpaceIn this section, we show how the Contraction Algorithm can be implemented to run inO(n) space, though with an increase in running time. We �rst consider unweighted graphs.The Union-Find data structure of [181, page 23] provides for an implementation of theContraction Algorithm. We use the Union-Find data structure to identify sets of verticesthat have been merged by the contractions. This data structure has sets of vertices as itsobjects and supports operation union (combining two sets) and �nd (identifying the setcontaining a given vertex) in O(log� n) amortized time per operation. Initially, each vertexis in its own set. We repeatedly choose an edge at random, and apply a union operation toits endpoints' sets if they do not already belong to the same set. We continue until only twosets remain. Each choice of an edge requires one �nd operation, and we will also performa total of n � 2 union operations. Furthermore, after O(m logm) random selections, theprobability is high that we will have selected each edge at least once. Thus, if the graph isconnected, we will have contracted to two vertices by this time. Therefore the total runningtime of the Contraction Algorithm will be O(m logm) with high probability. The use ofpath compression in the union-�nd data structure provides no improvement in this running

154 CHAPTER 9. EXTENSIONS OF THE CONTRACTION ALGORITHMtime, which is dominated by the requirement that every edge be sampled at least once.This result can be summarized as follows:Theorem 9.5.1 On unweighted graphs, the Contraction Algorithm can be implemented torun in O(m logm) time and O(n) space with high probability.We can �nd a minimum cut by running this algorithm O(n2 log n) times and taking thebest result. An improved approach is the following. First, use the contraction algorithm toreduce the graph to pn vertices. Afterwards, since the resulting graph has O(pn) verticesand thus O(n) edges, we can build the contracted graph in memory and run the RecursiveContraction Algorithm in ~O(n) time. The minimum cut survives the contraction to pnvertices with probability
(1=n), so we need to run the space-saving algorithm ~O(n) timesin order to have a high probability of �nding the minimum cut. This means the overallrunning time is ~O(mn). More generally, we have the following:Lemma 9.5.2 Using s � n space, it is possible to �nd the minimum cut in an unweightedgraph in ~O(ms=n2) time with high probability.We can extend this unweighted-graph approach to weighted graphs, although the timebound becomes worse. As before, we use the union-�nd data structure of [181] to contractedges as we select them. As with the parallel implementation of the algorithm, we use aminimum spanning tree computation to estimate the minimum cut to within a factor of n2,and start by contracting all edges of greater weight. Afterwards, we sample and contractfrom among the remaining edges (since the array of cumulative weights is too large to store,we simply compute the total weight of uncontracted edges and then use linear search ratherthan binary search to select an edge.Since the maximum edge weight is at most n2c, the probability is high that after only apolynomial number of samples we will have selected every edge with weight exceeding c=n2,by which time we must have �nished contracting the graph.Lemma 9.5.3 In weighted graphs, a minimum cut can be found with high probability inO(n) space in polynomial time.9.6 Optimizing Parallel ComplexityIf speed is of the utmost importance, we can decrease the parallel running time of the Con-traction Algorithm toO(logn) on unweighted graphs, even on an EREWPRAM. We modify

9.7. CONCLUSION 155the original implementation of a single trial of the Contraction Algorithm. Recall that in thecase of an unweighted graph, a permutation of the edges can be generated in O(logn) timeby assigning a random score to each edge and sorting. After generating the permutation,instead of using Compact to identify the correct permutation pre�x, we examine all pre�xesin parallel. Each pre�x requires a single connected components computation, which can beperformed in O(logn) time, even on an EREW PRAM, using m= logn processors [88]. Wecan therefore perform a single trial of the Contraction Algorithm in O(logn) time usingm2 processors. As was mentioned in the overview, running this algorithm n2 logn times inparallel yields the minimum cut with high probability. All of this takes O(logn) time usingm2n2 logn processors. This matches the
(logn) EREW lower bound of [39], and closelyapproaches the
(logn= log logn) CRCW lower bound of [90].9.7 ConclusionOur analysis of multi-way minimum cuts has given new information about the structureof these cuts. Indeed, the \trace"" of the execution of our algorithm as it �nds these cutsprovides a size ~O(n2(r�1)) data structure representing these cuts. We might hope to �nd amore compact data structure reminiscent of the cactus representation for minimum cuts.Benczur [15] developed an alternative technique for using the Contraction Algorithmto construct the cactus representation. He gives matching sequential bounds and a betterparallel bound. He has also tightened our counting bounds to show there are only O(n2)6=5-minimal cuts.

Chapter 10More Cut-Sampling AlgorithmsIn this chapter, we discuss several additional sampling-based algorithms for cut problems.In Section 10.1, we give a fully polynomial time approximation scheme for estimating thereliability of a network under random edge failures. We extend our cut approximationalgorithms to s-t minimum cut and maximum ow problems, devising fast approximationalgorithms. We also give more careful proofs than those that were sketched in Chapter 6,including in particular a formal analysis of the randomized ~O(mpc)-time algorithm forminimum cuts. We also improve the time to compute a maximum ow of value v fromO(mv) to ~O(mv=pc). Our methods also improve the total work done by some parallel cutand ow algorithms.In Section 10.4, we show how our sampling algorithms for ows can be extended toweighted graphs. In Section 10.5, we give an evolutionary model of sampling that canbe used to give better dynamic minimum cut algorithms. One somewhat odd result is adynamic algorithm that maintains a p1 + 2=�-approximation to the minimum cut valuein O(n�)-time per update without giving any indication as to where the approximatelyminimum cut might be found. In Section 10.7, we discuss several other applications to cutproblems, including parallel ow algorithms, balanced graph cut, multicommodity ows,and graph orientation.10.1 Applications to Network ReliabilityBounding the number of approximately minimum cuts has useful applications in networkreliability theory. This �eld considers a network whose edges (links) fail independently with156

10.1. APPLICATIONS TO NETWORK RELIABILITY 157some probability, and aims to determine the probabilities of certain connectivity-relatedevents in this network. The most basic question is to determine the the probability that thenetwork remains connected. Others include determining the probability that two particularnodes become disconnected, and so on. The practical applications of these questions tocommunication networks are obvious, and the problem has therefore been the subject of agreat deal of study. Most of these problems are]P-complete, so the emphasis has been onheauristics and special cases. A comprehensive survey can be found in [36]. In this section,we give an algorithm for approximating the probability the network becomes disconnected,a long standing open problem.More formally, a network is modeled as a a graph G, each of whose edges e is presumed tofail (disappear) with some probability pe, and thus to survive with probability qe = 1� pe(a simpli�ed version that we will focus on assumes each pe = p). Network reliabilityis concerned with determining the probabilities of certain connectivity-related events inthis network. The most basic question of all-terminal network reliability is determiningthe probability that the network becomes disconnected. Others include determining theprobability that two particular nodes become disconnected (two terminal reliability), andso on.Most such problems, including the two just mentioned, are]P-complete [182, 166]. Thatis to say, they are in a complexity class at least as intractable as NP and therefore seemunlikely to have polynomial time solutions. Attention therefore turned to approximationalgorithms. Provan and Ball [166] proved that it is]P-complete even to approximate thereliability of a network to within a relative error of �. However, they made the currentlyunfashionable assumption that the approximation parameter � is part of the input, and usedan exponentially small � to prove their claim. They note at the end of their article that \aseemingly more di�cult unsolved problem involves the case where � is constant, i.e. is notallowed to vary as part of the input list."Since that time, their idea was formalized by the idea of a polynomial time approxi-mation scheme (PTAS). In this model, the interesting question is the running time of theapproximation algorithm as a function of n and 1=� separately, and the goal is for a runningtime that is polynomial in n, but might not be in � (e.g., O(21=�n)). If the running time isalso polynomial in 1=�, the algorithm is said to be a fully polynomial time approximationscheme (FPTAS). An alternative interpretation of these algorithms is that they have run-ning time polynomial in the input size when � is constrainted to be input in unary rather

158 CHAPTER 10. MORE CUT-SAMPLING ALGORITHMSthan binary notation.FPTASs have been given for several]P-complete problems such as counting maximummatchings in dense graph [94], measuring the volume of a convex polytope [46], and disjunc-tive normal form (DNF) counting|estimating the probability that a given DNF formulaevaluates to true of the variables are made true or false at random [113]. In his plenarytalk at FOCS [99], Kannan raised the problem of network reliability as one of the mainremaining open problems needing an approximation scheme.Here, we provide a fully polynomial approximation scheme for the all-terminal networkreliability problem. Given a failure probability p for the edges, our algorithm, in timepolynomial in n and 1=�, returns a number P that estimates the probability FAIL(p) thatthe graph becomes disconnected. With high probability, P is in the range (1� �)FAIL(p).The algorithm is Monte Carlo, meaning that it is not possible to verify the correctness of theapproximation. It generalizes to the case where the edge failure probabilities are di�erent.Our algorithm is in fact a (derandomizable) reduction to the problem of DNF counting.At present, the only FPTASs for DNF counting are randomized [113, 112]. Should a deter-ministic algorithm for that problem be developed, it will immediately give a deterministicFPTAS for the network reliability problem discussed here.Some care must be taken with the notion of approximation. We can ask either to approx-imate the failure probability FAIL(p) or the reliability (probability of remaining connected)REL(p) = 1�FAIL(p). Consider a graph with a very low failure probability, say 1��. Thenapproximation REL(p) by 1 gives a (1 + �)-approximation to the reliability, but approxi-mating the failure probability by 0 gives a very (in�nite) poor approximation ratio. Thus,the failure probability is the harder (and more important) quantity to approximate well.On the other hand, in a very unreliable graph, the FAIL(p) becomes easy to approximate(by 1) while REL(p) becomes the challenging quantity. Our algorithm is an FPTAS forFAIL(p). This means that in extremely unreliable graphs, it does not achieve the moredesirable goal of approximating REL(p). However, it does solve the harder approximationproblem on reliable graphs, which are clearly the ones likely to be encountered in practice.Our algorithm is easy to implement and appears likely to have satisfactory time bounds inpractice.Karp and Luby [113] developed an FPTAS for a restricted class of planar graphs; ouralgorithm applies to all graphs.

10.1. APPLICATIONS TO NETWORK RELIABILITY 15910.1.1 A Reliability TheoremUsing our cut counting lemmas, we �rst prove a variant of the k-cycle bound proven byLomonosov and Polesskii [140].Theorem 10.1.1 ([140]) Of all graphs with minimum cut c, the least reliable graph (i.e.,the one most likely to become disconnected if each edge fails with probability p) is the cycleon n nodes with c=2 edges between adjacent nodes.Corollary 10.1.2 If each edge of a graph with minimum cut c is removed with probabilityp, then the probability that the graph becomes disconnected is at least pc and at most n2pc.Proof: Consider any graph with minimum cut c and consider the c edges in some minimumcut. They all fail with probability pc; and the graph certainly becomes disconnected in thiscase. For the upper bound, by the previous theorem, it su�ces to prove the result forthe n node cycle with c=2 edge between adjacent vertices. But for this cycle to becomedisconnected, two pairs of adjacent vertices must both have their connecting set of c=2edges all fail. The probability any two particular groups of c=2 edges fail is pc, and thereare only �n2� < n2 pairs of groups.We prove a variant of the above corollary. It gives a slightly weaker bound, but alsogives information about s-t connectivity.Lemma 10.1.3 Suppose a graph has minimum cut c and s-t minimum cut v, and supposeeach edge of the graph fails independently with probability p, where pc < n�(2+�) for some�. Then the probability that the network becomes disconnected is O(n��(1+ 1=�)), while theprobability that s and t become disconnected is O(n��v=c(1 + 1=�)).Proof: For the graph to become disconnected, all the edges in some cut must fail. Wetherefore bound the failure probability by summing the probabilities that each cut fails. Letr = 2n� 2 be the number of cuts in the graph, and let c1; : : : ; cr be the values of the r cuts.Without loss of generality, assume the ci are in increasing order so that c = c1 � c2; � � � � cr.Let pk = pck be the probability that all edges in the kth cut fail. Then the probability thatthe graph disconnects is at most P pk, which we proceed to bound from above.We now proceed in two steps. First, consider the n2 smallest cuts. Each of them hasck � c and thus pk � n��, so thatXk�n2 pk � (n2)(n��) = n��:

160 CHAPTER 10. MORE CUT-SAMPLING ALGORITHMSNext, consider the remaining larger cuts. According to Theorem 4.7.6, there are at mostn2� cuts of value less than �c. Since we have numbered the cuts in increasing order, thismeans that cn2� � �c. In other words, writing k = n2�,ck � ln k2 ln 2n � c;and thus pk � (pc) ln k2 ln 2n = k�(1+�=2):It follows that Xk>n2 pk � Xk>n2 k�(1+�=2)� Z rn2 k�(1+�=2) dk= O(n��=�)The proof of s-t connectivity is the same, except that we sum only over those cuts ofvalue at least v.Remark: In Chapter 6 we consider a variant of this approach that estimates the value ofthe random graph's connectivity, rather than deciding whether or not the value is 0.10.1.2 An Approximation AlgorithmWe now consider the problem of estimating the probability that a graph remains connectedif each edge fails independently with probability p.Theorem 10.1.4 Assuming the probability of remaining connected exceeds 1=n, there isa (Monte Carlo) fully polynomial time approximation scheme for estimating all-terminalreliability.Proof: Note �rst that if the failure probability is between, say, n�3 and 1� 1=n, a trivialMonte Carlo algorithm can be used to estimate the failure probability accurately. Justperform a polynomial number of trials (killing edges with probability p and checking if theresulting graph is connected) and determine the fraction of them that yield a connectedgraph. A Cherno� bound argument shows that (w.h.p.) this fraction gives an estimateaccurate to within (1 + �) after (n=�)O(1) trials.

10.1. APPLICATIONS TO NETWORK RELIABILITY 161So we can restrict to the case where the probability of disconnection is less than n�3. Inthis case, our previous reliability theorem can be used to show that the probability that a cutof value much larger than c fails is negligible, so that we need only determine the probabilitythat a cut of value near c fails. Since the cuts of value near c can be enumerated, we cangenerate a polynomial size boolean expression (with a variable for each edge) which is trueif one such cut has failed. We then need to determine the probability that this booleanexpression is true, which can be done using techniques of Karp, Luby, and Madras [112].More formally, suppose we wish to estimate the failure probability P to within 1 � �times its correct value. The probability that a particular minimum cut fails is pc � n�3.We show there is a constant � such that the probability that any cut of value greater than�c fails is at most �pc, i.e. at most a � fraction of the failure probability. Therefore, weneed only determine the probability that some cut of value less than �c fails. It remains todetermine �. We want the probability that a cut of value exceeding �c fails to be at most�pc. Write pc = n�(2+�); by hypothesis � � 1. Thus by the previous lemma, this probabilityis at most n���. Solving, we �nd that � = 1 + 2=� + (ln �)= lnn � 3 + (ln �)= lnn su�cesand that we must therefore examine the smallest O(n2�) = O(n6=�4) cuts.Since there are only n2� of these small cuts, we can enumerate them in polynomial timeusing the Contraction Algorithm. Let Ei be the set of edges in the ith small cut. Supposewe assign a boolean variable xe to each edge e; xe is true if edge e fails and false otherwise.Therefore, xe is true independently of the other xe and false otherwise. Since the ith cutfails if and only if all edges in it fail, the event of the ith small cut failing can be written asFi = ^e�Eixe. Therefore, the event of some small cut failing can be written as F = [iFi. Wewish to know the probability that F is true. Note that F is a formula in disjunctive normalform. Karp, Luby, and Madras [112] gave a (randomized) fully polynomial approximationscheme for this problem; with high probability it estimates the correct probability of Fbeing true to within (1� �) in (n=�)O(1) time.We are therefore able to estimate to within (1 � �) the value of a probability (theprobability of a small cut failing) that is within (1 � �) of the probability of the event wereally care about (the probability of some cut failing). This gives us an overall estimateaccurate to within (1� �)2 � (1� 2�).

162 CHAPTER 10. MORE CUT-SAMPLING ALGORITHMS10.2 s-t Minimum Cuts and Maximum FlowsWe show how the skeleton approach can be applied to minimum cuts and maximum ows.In unweighted graphs, the s-t maximum ow problem is to �nd a maximum set, or packing,of edge disjoint s-t paths. It is known [60] that the value of this ow is equal to that valueof the minimum s-t cut. We have the following immediate extension of Corollary 6.2.2:Theorem 10.2.1 Let G be any graph with minimum cut c and let p = �((lnn)=�2c).Suppose the s-t minimum cut for G has value v. Then with high probability, the s-t minimumcut in G(p) has value between (1��)pv and (1+�)pv, and the minimum cut has value between(1� �)pc and (1 + �)pc.Recall the classic augmenting path algorithm for maximum ows (cf. [181]). Given anuncapacitated graph and an s-t ow of value f , a linear time depth �rst search of the socalled residual graph will either show how to augment the ow to one of value f + 1 orwill prove that f is the value of the maximum ow. This algorithm can be used to �nd amaximum ow of value v in O(mv) time by �nding v augmenting paths.In this section we will assume that the minimum cut is known approximately because thealgorithms of Chapter 6 can approximate it accurately in time bounds that are dominatedby those of the algorithms given here.All the unweighted graph algorithms presented here can use Nagamochi and Ibaraki'ssparse certi�cate algorithm Scan-First-Search (Section 3.3) as a preprocessing step. Ifwe care only about cuts of value at most v, this preprocessing lets us replace a time boundof the form mt by one of the form m + nvt. However, for clarity we leave m in the timebounds and leave the reduction to the reader, except in a few critical places.10.2.1 Approximate Minimum CutsThe most obvious application of Theorem 10.2.1 is to approximate s-t minimum cuts. Wecan �nd an approximate s-t minimum cut by �nding an s-t minimum cut in a skeleton.Lemma 10.2.2 In a graph with minimum cut c, a (1+�)-approximation to the s-t minimumcut of value v can be computed in ~O(mv=�4c2) time (MC).Proof: Given �, determine the corresponding p = O((logn)=�2c) from Theorem 10.2.1. Ifp � 1 because c = O((logn)=�2), run the standard max-ow algorithm (we shall ignore

10.2. S-T MINIMUM CUTS AND MAXIMUM FLOWS 163this case from now on). Otherwise, construct a p-skeleton G(p) in O(m) time. Supposewe compute an s-t maximum ow in G(p). By Theorem 10.2.1, 1=p times the value of thecomputed maximum ow gives a (1+ �)-approximation to the s-t min-cut value (with highprobability). Furthermore, any ow-saturated cut in G(p) will be a (1 + �)-minimal s-t cutin G.By the Cherno� bound, the skeleton has O(pm) edges with high probability. Also,by Theorem 10.2.1, the s-t minimum cut in the skeleton has value O(pv). Therefore, thestandard augmenting path algorithm can �nd a skeletal s-tmaximum ow in O((pm)(pv)) =O(mv log2 n=�4c2) time.This bound will soon be improved by the introduction of a faster exact maximum owalgorithm.10.2.2 Approximate Maximum FlowsA slight variation on the previous algorithm will compute approximate maximum ows.This result, too, is improved later.Lemma 10.2.3 In a graph with minimum cut c and s-t maximum ow v, a (1��)-maximals-t ow can be found in ~O(mv=�2c) time (MC).Proof: Given p as determined by �, randomly partition the edges into 1=p groups, creating1=p graphs (this partitioning takes O(m) time (w.h.p.) using Random-Select). Each graphlooks like a p-skeleton, and thus has a maximum ow of value at least pv(1 � �) thatcan be computed in O((pm)(pv)) time as in the previous section (the skeletons are notindependent, but we simply add the probabilities that any one of them violates the samplingtheorem). Adding the 1=p ows that result gives a ow of value v(1� �). The running timeis O((1=p)(pm)(pv)).10.2.3 Exact Maximum FlowsWe next use sampling ideas to speed up the familiar augmenting paths algorithm for max-imum ows. Our approach is a randomized divide-and-conquer algorithm that we analyzeby treating each subproblem as a (non-independent) random sample. We use the followingalgorithm which we call DAUG (Divide-and-conquer AUGmentation).

164 CHAPTER 10. MORE CUT-SAMPLING ALGORITHMS1. Randomly split the edges of G into two groups (each edge goes to one or the othergroup with probability 1=2), yielding graphs G1 and G2.2. Recursively compute s-t maximum ows in G1 and G2.3. Add the two ows, yielding an s-t ow f in G.4. Use augmenting paths (or blocking ows) to increase f to a maximum ow.Note that we cannot apply sampling in the cleanup phase (Step 4), because the graphwe are manipulating in the cleanup phase is directed, while our sampling theorems applyonly to undirected graphs. Note also that unlike our approximation algorithms, this exactalgorithm requires no prior guess as to the value of c. We have left out a condition forterminating the recursion; when the graph is su�ciently \small" (say with one edge) we usethe basic augmenting path algorithm.The outcome of Steps 1{3 is a ow. Regardless of its value, Step 4 will transform thisow into a maximum ow. Thus, our algorithm is clearly correct; the only question is howfast it runs. Suppose the s-t maximum ow is v. Consider G1. Since each edge of G is inG1 with probability 1=2, we can apply Theorem 10.2.1 to deduce that with high probabilitythe s-t maximum ow in G1 is (v=2)(1� ~O(p1=c)) and the global minimum cut is �(c=2).The same holds for G2 (the two graphs are not independent, but this is irrelevant). Itfollows that the ow f has value v(1� ~O(1=pc)) = v � ~O(v=pc). Therefore the number ofaugmentations that must be performed in G to make f a maximum ow is ~O(v=pc). Bydeleting isolated vertices as they arise, we can ensure that every problem instance has moreedges than vertices. Thus each augmentation takes O(m0) time on an m0-edge graph, andwe have the following sort of recurrence for the running time of the algorithm in terms ofm, v, and c: T (m; v; c) = 2T (m=2; v=2; c=2)+ ~O(mv=pc):(where we use the fact that each of the two subproblems expects to contain m=2 edges). Ifwe solve this recurrence, it evaluates to T (m; v; c) = ~O(mv=pc).Unfortunately, this argument does not constitute a proof because the actual runningtime recurrence is in fact a probabilistic recurrence: the sizes of and values of cuts in thesubproblems are random variable not guaranteed to equal their expectations. Actuallyproving the result requires some additional work.

10.2. S-T MINIMUM CUTS AND MAXIMUM FLOWS 165We perform an analysis of the entire tree of recursive calls made by our algorithm,just as we did to analyze the minimum spanning tree algorithm of Chapter 2. Each nodeof the computation tree corresponds to an invocation of the recursive algorithm. We canthen bound the total running time by summing the work performed at all the nodes in therecursion tree.Lemma 10.2.4 The depth of the computation tree is O(logm).Proof: The number of computation nodes at depth d is 2d. Each edge of the graph ends upin exactly one of these nodes chosen uniformly and independently at random from amongthem all. Thus, the probability that two di�erent edges both end up in the same node atdepth 3 logm is negligible.Lemma 10.2.5 DAUG runs in O(m logm+mvq lognc) time.Proof: First we bound the non-augmenting-path work in Steps 1{3 of DAUG. Note that ateach node in the computation tree, the amount of work needed to execute these steps islinear in the size of the node. At each level of the recursion tree, each edge of the originalgraph is located in exactly one node. Therefore, the total size of nodes at a given level isO(m). Since there are O(logm) levels in the recursion, the total work is O(m logm).It remains to bound the work of the augmenting paths computations. Note �rst thateach node performs one \useless" augmenting path computation in order to discover that ithas found a maximum ow. Since the work of this augmenting path computation is linearin the size of the node, it can be absorbed in the O(m logm) time-bound of the previousparagraph.We now bound the work of the \successful" augmentations which add a unit of ow at anode. The number of such augmentations is equal to the di�erence between the maximumow at the node and the sum of the children's maximum ows. Consider a node N atdepth d. Each edge of the original graph ends up at N independently with probability1=2d. Thus, the graph at N looks like a (2�d)-skeleton. Applying the sampling theorem,we deduce that the maximum ow at N is 2�dv(1 � O(q2d lognc)) w.h.p.. Now considerthe two children of node N . By the same argument, each has a maximum ow of value2�(d+1)v(1� O(q2d+1 lognc)). It follows that the total number of augmentations that mustbe performed at N isv2d (1�O(s2d lognc))� 2 � v2d+1 (1� O(s2d+1 lognc)) = O(vs logn2dc):

166 CHAPTER 10. MORE CUT-SAMPLING ALGORITHMSBy the Cherno� bound, each node at depth d has O(m=2d) edges with high probability.Thus the total amount of augmentation work done at the node is O(m=2d) times the abovebound. Summing over the 2d nodes at depth d gives an overall bound for the work at leveld of O(mvslog n2dc):We now sum the work over all O(logm) depths to get an overall bound of O(mvq lognc).On apparent aw in the above lemma is that it suggests our algorithm is slower thanaugmenting paths when c = O(logm). This is not the case:Lemma 10.2.6 The divide and conquer algorithm runs in O(m logm+mv) time.Proof: The previous lemma bounded the overhead and unsuccessful augmentation workby O(m logm). Therefore, we need only bound the time spent on successful augmentationsthat increase the ow at their node by one. We claim that the number of successful aug-mentations, taken over the entire tree, is v. To see this, telescope the argument that thenumber of successful augmentations at a node in the computation tree is equal to the valueof the maximum ow at that node minus the sum of the maximum ows at the two childrenof that node. Since each successful augmentation takes O(m) time, the total time spent onsuccessful augmentations is O(mv).The above time bounds are still not quite satisfactory, because the extra O(m logm)term means the algorithm is slower than standard augmenting paths when v is less thanlogm. This problem is easy to �x. Before running DAUG, perform O(logm) augmenting pathcomputations on the original graph, stopping if a maximum ow is found. This guaranteesthat when v = O(logm), the running time is O(mv). This brings us to our �nal theorem:Theorem 10.2.7 In a graph with minimum cut value c, a maximum ow of value v canbe found in O(mvmin(1;p(logn)=c)) time.We can use our faster maximum ow algorithm instead of the standard one in ourapproximation algorithms.Corollary 10.2.8 A (1+�)-minimal s-t cut can be found with high probability in ~O(mv=�3c2)time (MC).

10.3. GLOBAL MINIMUM CUTS 167Proof: Apply the cut approximation algorithm of Lemma 10.2.2. Instead of using thestandard augmenting path max-ow algorithm, use the faster one just presented. Since theskeleton has minimum cut �(pc), the running time of the skeletal max-ow computation isimproved from O((pm)(pv)) to O((pm)(pv)p(logn)=pc) = O(mv(log2 n)=�3c2).Corollary 10.2.9 A (1��)-maximal s-t ow can be found with high probability in ~O(mv=�c)time (MC).10.2.4 Las Vegas AlgorithmsOur max-ow and min-cut approximation algorithms are both Monte Carlo, since theyare not guaranteed to give the correct output (though the error probability can be madearbitrarily small). However, by combining the two approximation algorithms, we can certifythe correctness of our results and obtain a Las Vegas algorithm for both problems|one thatis guaranteed to �nd the right answer, but has a small probability of taking a long time todo so.Corollary 10.2.10 In a graph with minimum cut c and s-t maximum ow v, a (1 � �)-maximal s-t ow and a (1 + �)-minimal s-t cut can be found in ~O(mv=�c) time (LV).Proof: Run both the approximate min-cut and approximate max-ow algorithms, obtain-ing a (1� �=2)-maximal ow of value v0 and a (1� �=2)-minimal cut of value v1. We knowthat v0 � v � v1, so to verify the correctness of the results all we need do is check that(1+ �=2)v0 � (1� �=2)v1, which happens with high probability. To make the algorithm LasVegas, we repeat the two algorithms until each demonstrates the other's correctness.An intriguing open question is whether this combination of an approximate cut andow together can be used to identify an actual maximum ow more quickly than the exactalgorithm previously described.10.3 Global Minimum Cuts10.3.1 Analysis of the Exact AlgorithmWe can improve Gabow's minimum cut algorithm as we did the maximum ow algorithm.Use DAUG, but replace the augmenting path steps with calls to Round-Robin. We could

168 CHAPTER 10. MORE CUT-SAMPLING ALGORITHMSsimply apply the max-ow analysis, replacing v by c, except that the time for a singleaugmentation is no longer linear.Lemma 10.3.1 A minimum cut of value c can be found in O(m log2m+mpc logm log(n2=m))time (LV).Proof: As with the maximum ow analysis, the depth of the recursion tree for DAUG isO(logm). The overhead in setting up the subproblems is O(m logm). Since the time peraugmentation is no longer linear, we must change the analysis of work performed duringaugmentations. Consider �rst the \unsuccessful" augmentations which identify maximalcomplete intersections. Each node in the recursion tree performs one, and the total workover all nodes is thus O(logn)Xd=1 2d(m=2d) log(2dn2=m) = O(m log2m)(note we weaken log(2dn2=m) to logm).We analyze the successful Round-Robin calls as in the maximum ow case. Comparingthe minimum cuts of a parent node and its children, we see that at depth d, each ofthe 2d nodes has m=2d edges and requires O(pc(logn)=2d) Round-Robin calls for total ofO(mpc(logn)=2d log(2dn2=m)) work at depth d. Summing over all depths gives a totalwork bound of O(mpc logn log(n2=m)).As with maximum ows, Gabow's algorithm is better than DAUG for small minimumcut values. The problem is the extra m log2m work caused by the unsuccessful calls toRound-Robin. To �x this problem, before running the algorithm, approximate the minimumcut c to within some constant factor in linear time (using Matula's Algorithm or skeletons).Then, modify the divide and conquer algorithm: at depth log(c= logn) in the recursion,abandon DAUG and use Gabow's original algorithm. Thus, if the minimum cut is less thanlogn, the running time matches Gabow's since we do not call DAUG. If the minimum cutexceeds logn, we modify the proof of the previous lemma by showing a better bound onthe work of unsuccessful augmentations. Since we stop the recursion at depth log(c= logn),that time is bounded bylog(c= logn)Xd=1 m log(2dn2=m) = O(m(log2(c= logn) + log(c= logn) log(n2=m))):

10.3. GLOBAL MINIMUM CUTS 169We also consider the work in the calls to Gabow's algorithm. At depth d = log(c= logn),there will be 2d such calls on graphs with minimum cut O(logn), each takingO((m=2d)(logn)(log(n2c=m logn)))time. Since by assumption c > logn, simple calculations show that these time bounds aredominated by the time bound for successful augmentations. We therefore have:Theorem 10.3.2 The minimum cut can be found in O(mmin(c;pc logn) log(n2=m)) time(LV).The improved time for computing a complete c-intersection has other rami�cations inGabow's work [66]. He presents other algorithms for which computing a maximum completeintersection is the computational bottleneck. He presents an algorithm for computing acompact m-tree representation of all minimum cuts, and shows that this representation canbe converted to the older O(n)-space cactus representation [44] in linear time. He also givesan algorithm for �nding a minimum set of edges to add to augment the connectivity of agraph from c to c+ �. In both of these algorithms, computing the minimum cut forms thebottleneck in the running time.Corollary 10.3.3 The cactus and m-tree representations of all minimum cuts in an undi-rected graph can be constructed in ~O(mpc) time (LV).Corollary 10.3.4 A minimum set of edges augmenting the connectivity of a graph from cto c+ � can be computed in ~O(m+ n(c3=2 + �c+ �2)) time (LV).10.3.2 Approximation AlgorithmsJust as with maximum ows, we can combine a minimum cut algorithm with random sam-pling to develop Monte Carlo and Las Vegas algorithms for �nding approximate minimumcuts.Corollary 10.3.5 A (1+ �)-minimal cut can be found in O(m+n((logn)=�)3) time (MC).Proof: Replace Gabow's algorithm with our new, faster minimum cut algorithm in Lemma 6.3.3.Corollary 10.3.6 A (1+ �)-minimal cut and (1� �)-maximal complete intersection can befound in O(m(log2 n)=�) time (LV).

170 CHAPTER 10. MORE CUT-SAMPLING ALGORITHMSProof: Given � and its corresponding p, divide the graph in 1=p pieces, �nd a maximumcomplete intersection in each of the pieces independently, and add the intersections. Theanalysis proceeds exactly as in the approximate max-ow algorithm of Section 10.2.2. Asin Corollary 10.2.10, the combination of a cut of value (1+ �=2)c and a complete (1� �=2)c-intersection brackets the minimum cut between these two bounds.10.4 Weighted GraphsWe now investigate the changes that occur when we apply our cut and ow algorithms toweighted graphs. Our cut approximation time bounds are essentially unchanged, but thetime for approximate and exact ows increases. The only change for s-t our cut approxi-mation is that we use the O(pm logn)-time weighted-graph skeleton construction.Corollary 10.4.1 In a weighted graph, a (1 + �)-minimal s-t cut can be found in ~O(m +n(v=c)2��3) time (MC).Proof: Use Scan-First-Search (Section 3.3) to construct a sparse 3nv-connectivity cer-ti�cate of total weight O(nv) (use repeated doubling to estimate the value of v). Assuming� < 1, approximate cuts in the certi�cate correspond to those in the original graph. Con-struct a p-skeleton of the certi�cate using weighted selection in O(pnv logm) time. Nowproceed as in the unweighted graph case.We can also adapt our sampling-based maximum ow and complete intersection algo-rithms to weighted graphs. If we directly simulated the unweighted graph algorithm, wewould simulate the random partitioning of the edges into two groups by generating a bino-mial distribution for each weighted edge in order to determine how much of its weight wentto each of the two subgraphs. To avoid having to generate such complicated distributions,we return to Theorem 6.2.1 and use the following approach. If w is even, assign weight w=2to each group. If w is odd, then assign weight bw=2c to each group, and ip a coin to decidewhich group gets the remaining single unit of weight. Since the minimum expected cut (ĉof Theorem 6.2.1) which results in each half is still c=2, we can deduce as in unweightedcase that little augmentation need be done after the recursive calls.We have described the change in implementation, and correctness is clear, but we haveto change the time bound analysis. It is no longer true that each new graph has half theedges of the old. Indeed, if all edge weights are large, then each new graph will have just

10.5. AN EVOLUTIONARY GRAPH MODEL FOR DYNAMIC ALGORITHMS 171as many edges as the old. We therefore add a new parameter and analyze the algorithmin terms of the number of edges m, the minimum cut c, the desired ow value v, and thetotal weight W of edges in the graph. Note the two subgraphs that we recurse on have totalweight roughly W=2. In order to contrast with scaling techniques, we also use the averageedge weight U = W=m which is no more than the maximum edge weight. The unweightedanalysis suggests a time bound for minimum cuts of ~O(Wpc) = ~O(mUpc), but we canshow a better one:Lemma 10.4.2 The minimum cut of value c can be found in ~O(mpcU) time (LV).Proof: We divide the recursion tree into two parts. At depths d � log(W=m), we boundthe number of edges in a node by m. As in the unweighted analysis, we know each node atdepth d has to perform ~O(pc=2d) augmentations, each taking ~O(m) time, so the total workat depth d is ~O(2dmpc=2d) = ~O(mp2dc). Summing over d � log(W=m) gives a total workbound of ~O(mpWc=m) = ~O(mpcU). At depth log(W=m), we have W=m computationnodes, each with minimum cut ~O(mc=W) (by the sampling theorem) and O(m) edges (bythe Cherno� bound). Our unweighted graph analysis shows that the time taken by eachsuch node together with its children is ~O(mpmc=W). Thus the total work below depthlog(W=m) is ~O((W=m)(mpmc=W)) = ~O(mpcU).Corollary 10.4.3 In a weighted graph, a (1+ �)-minimal cut and (1� �)-maximal ow canbe found in ~O(mpU=�) time (LV).A similar result can be derived if we use the same algorithm to �nd ows, replacingGabow's Round Robin Algorithm with standard augmenting paths.Corollary 10.4.4 A maximum ow of value v can be found in ~O(mvpU=c) time (LV).Corollary 10.4.5 A (1� �)-maximal ow of value v can be found in ~O(mvpU=�c) time.10.5 An Evolutionary Graph Model for Dynamic AlgorithmsWe now consider an alternative approach to sparsi�cation. Rather than �xing a probabilityp and using the sparse graph G(p) to estimate the minimum cut in G, we estimate theminimum cut in G by determining the value of p for which G(p) is sparse. This approachyields algorithms which dynamically maintain a (p1 + 2=�)-approximation to the minimum

172 CHAPTER 10. MORE CUT-SAMPLING ALGORITHMScut value as edges are inserted in and deleted from a graph; the cost per update is O(n�)if only insertions are allowed, and O(n�+1=2) if both insertions and deletions are permitted.This algorithm gives the approximate value but does not exhibit a cut of the given value;it is not clear that the technique generalizes to �nding a cut.10.5.1 MotivationWe recall the following result from Section 10.1:Corollary 10.1.2 If each edge of a graph with minimum cut c is removed with probabilityp, then the probability that the graph becomes disconnected is at least pc and at most n2pc.The corollary suggests the following idea for approximating minimum cuts using onlyconnectivity tests. The corollary gives the disconnection probability as a function of c andcan therefore be inverted to give c as a function of the disconnection probability. This letsus estimate c by causing random edge failures and observing the resulting disconnectionprobability.More precisely, given the graphG, �x some � < 1 and identify the value p such that killingeach edge with probability p causes the graph to become disconnected with probability n��.Then use Corollary 10.1.2 to estimate the minimum cut as follows. The corollary says thatpc < n�� < n2pc:Since we know all other quantities, we can solve for c to deduce� ln1=p n < c < (2 + �) ln1=p nThus if we take c to be the geometric mean of its two bounds, the error in approximationcan be at most p1 + 2=�.The di�culty in this approach is in determining the correct value of p to cause discon-nection at the appropriate probability. Note that it is insu�cient to simply try a smallnumber of di�erent possible values of p, since the fact that p is exponentiated by c meansthat a small variation in p can cause a tremendous change in the disconnection probabil-ity. The same problem makes binary search among p-values infeasible: c bits of accuracywould be needed. The problem becomes particularly challenging when we need to solve itin a dynamic fashion. Therefore we de�ne a new sampling model which lets us reformulateCorollary 10.1.2 more usefully.

10.5. AN EVOLUTIONARY GRAPH MODEL FOR DYNAMIC ALGORITHMS 17310.5.2 Evolutionary ConnectivityWe consider an evolutionary graph model. Each edge e of G is given a random arrival timete chosen uniformly from the interval [0; 1]. We can now consider the graph G(t) consistingof those edge which arrived at or before time t. We study the connectivity time tconn(G), arandom variable equal to the minimum t such that G(t) is connected. Note that given thearrival times, tconn(G) is the maximum value of an edge in the minimum spanning tree ofG if we use the arrival times as edge weights. We can rephrase corollary 10.1.2 in terms ofconnectivity times:Corollary 10.5.1 If G has minimum cut c and the edge arrival times are independentuniform [0; 1] variables, then(1� t)c < Pr[tconn(G) > t] < n2(1� t)c:Proof: The value tconn(G) is just the smallest time t such that if all edges of arrival timegreater than t are removed from G then G remains connected. Thus Pr[tconn(G) > t] is justthe probability that G becomes disconnected if we remove all edges with arrival times t ormore. However, assigning uniform arrival times and then deleting all edges of time at leastt is equivalent to deleting each edge with probability 1� t, so Corollary 10.1.2 applies withp = 1� q.We have therefore reduced our problem to the following: identify the time t� such thatPr[tconn(G) > t�] = n��. Computing t� exactly is hard, so we settle for an approximation.We perform N experiments. In each, we assign random arrival times to edges and computethe resulting tconn(G). The gives us N di�erent values; we take the (n��N)th largest valuet as an estimate for t�. The following claim is easy to verify using Cherno� bounds: if N =O(n�(logn)=�2), then with high probability t will be such that Pr[tconn(G) > t] 2 (1��)n��.It follows from Corollary 10.5.1 that (1� t)c < (1+ �)n�� and that (1� �)n�� < n2(1� t)c.Rearranging, we have�� lnn + ln(1 + �)ln(1� t) � c � �(2 + �) lnn+ ln(1� �)ln(1� t)and thus the geometric mean of the bounds estimates the minimum cut to within ap1 + 2=�+O(�= logn) bound.Theorem 10.5.2 A (p1 + 2=�+o(1))-approximation to the value of the minimum cut canbe computed through O(n� logn) minimum spanning tree computations.

174 CHAPTER 10. MORE CUT-SAMPLING ALGORITHMSOne might hypothesize that the cut produced by removing the heaviest minimum span-ning tree edge (i.e. the last edge to arrive) would by an approximately minimum cut, butwe have not yet been able to prove this fact. All we can prove is a approximation to theminimum cut value, while the actual approximate cut eludes us. Note, though, that ourevolutionary graph is in e�ect implementing the contraction algorithm: the two connectedcomponents existing just before time tconn(G) are the two sides of the cut the contractionalgorithm would produce. Thus the probability does exceed n2 that we will output theactual minimum cut.10.5.3 Weighted GraphsWe now discuss the changes needed to extend this approach to weighted graphs. In aweighted graph, the natural approach is to treat an edge of weight w as a set of w parallelunweighted edges. We can then immediately apply the approach of the previous section.Unfortunately, this would suggest that we must generate w random arrival times for an edgeof weight w. To solve this problem, observe that the arrival times are used to constructa minimum spanning tree. Thus, the only value the matters is the smallest among thearrival times on the parallel edges. Thus, for an edge of weight w, it su�ces to generate onerandom arrival time distributed as the minimum of w uniform distributions. This problemwas already addressed in Section 4.5.2, where we showed that the solution was to assigneach edge a score drawn at random from the exponential distribution. More precisely, weconsider replacing each edge of weight w by kw unweighted edges, each with an arrival timeuniformly distributed in the interval [0; k]. Now the probability that no edge arrives beforetime t is (1� t=k)wk, which approaches e�wt as k grows large. The techniques needed forgenerating these exponential variates using only unbiased random bits can be found in theappendix.Corollary 10.5.3 In a weighted graph, O(n� logn) minimum spanning tree computationscan be used to estimate the minimum cut to within a factor of p1 + 2=� (Monte Carlo).10.5.4 Dynamic ApproximationWe now use \inverse sparsi�cation" in dynamic approximation algorithms. Eppstein etal [51] give an algorithm for dynamically maintaining a minimum spanning tree of a graphin ~O(pn) time per edge insertion or deletion (coincidentally, their algorithm is also based on

10.5. AN EVOLUTIONARY GRAPH MODEL FOR DYNAMIC ALGORITHMS 175a graph sparsi�cation technique). They give another algorithm which maintains a minimumspanning tree under insertions only in ~O(1) time per insertion. We use this as follows. Givenan unweighted graph G, we maintain ~O(n�) copies Gi of G, each with randomly assignededge weights, and dynamically maintain the minimum spanning trees of the Gi. When anedge is added to our graph G, we add the edge to each Gi, assigning it an independentlychosen random weight in each. When an edge is deleted, we delete it from each of the Gi.It is easy to modify the dynamic minimum-spanning tree algorithms to maintain the valuesw(Gi) with no additional overhead. Thus after each update, we simply inspect the valuesw(Gi) in order to estimate the minimum cut. By choosing constants appropriately, we canensure a polynomially small probability that our analysis will fail at any particular step inthe update sequence. It follows that over any polynomial length sequence of updates, wehave a high probability of the analysis being correct at all points in the sequence. If we nowplug in the time bounds for the dynamic minimum spanning tree algorithms, we deducetime bounds for dynamically approximating the minimum cut.Theorem 10.5.4 The minimum cut of an unweighted graph can be dynamically approxi-mated with high probability to within a p1 + 2=� factor in ~O(n�+1=2) time.Remark: We must be careful with the precise meaning of high probability. Our analy-sis shows that the ~O(n�) minimum spanning tree existing at one particular point in theinsertion/deletion sequence has only a polynomially small probability of giving the wronganswer about the minimum cut at that point in the sequence. Unfortunately, this meansthat if the length of the insertion/deletion sequence is superpolynomial, we cannot claimthat that we will be right all the time. Therefore, we restrict our discussion to the case ofpolynomial-length update sequences.Theorem 10.5.5 The minimum cut of an unweighted graph can be dynamically approxi-mated to within a p1 + 2=� factor over any polynomial length sequence of edge insertionsin ~O(n�) time per insertion (Monte Carlo).Remark: It should be noted that in these dynamic algorithms an important but naturalassumption is that the adversary determining the update sequence is not aware of any ofthe random bits used by the algorithm.

176 CHAPTER 10. MORE CUT-SAMPLING ALGORITHMS10.6 Evolutionary k-ConnectivitySince the Recursive Contraction Algorithm can compute minimum cuts from scratch in~O(n2) time, the previous dynamic scheme is useful only when � < 2, implying that the bestapproximation it gives is p2. In Section 6.3.4, we gave a graph which used ~O(n=�3) timeper update to approximate minimum cuts to within �. However, that algorithm maintainedand updated O(log c) skeletons of the graph in question and was therefore slow for graphswith very large minimum cuts. Here, we use the evolutionary sampling model to get similarbounds for weighted graphs. Indeed, even for unweighted graphs, we improve the algorithmby maintaining only a single skeleton instead of O(logn) of them.We start with unweighted graphs. As before, we can assign a uniformly distributedarrival time to each edge and watch the evolving graph G(t). Eventually, at a certain timetk�conn = tk�conn(G), the evolving graph will have minimum cut k > log n. We argue thatat this point in time G(tk�conn) approximates the minimum cut of G very accurately.Lemma 10.6.1 There is a k = O((logn)=�2) such that the minimum cut of G(tk�conn)corresponds to a (1 + �)-minimal cut of G with high probability.Proof: Since each edge has probability t of arriving before time t, examining G(t) is thesame as building a t-skeleton. Let G have minimum cut c and let t = O((logn)=�2c) fromthe sampling theorem. Finally, let k = (1 + �)tc.The sampling theorem says that at time t, (1 � �)tv edges have arrived from any cutof value v. In particular, the minimum cut of G(t) is at most (1 + �)tc = k. Furthermore,more than k edges have arrived from every cut of value exceeding k=(1� �). On the otherhand, at time t(1+ �)=(1� �), the sampling theorem says that at least k edges have arrivedin every cut. In other words, the minimum cut of G(t(1+ �)=(1� �)) exceeds k. Therefore,t � tconn � t(1 + �)=(1� �) � t(1 + 2�) with high probability.Since at time t at least (1 � �)tv edges have arrived from every cut of value v in G,any cut of G(t) containing at most k edges can correspond to a cut of value at mostk=t(1� �) = (1+ �)c=(1� �) � (1+ 2�)c in G. This clearly continues to be true at any timeafter time t. Therefore, any cut of value k in G(tk�conn) corresponds to a cut of value atmost (1 + 2�)c in G.Corollary 10.6.2 There is a k = O((logn)=�2) such that with high probability, c = (1 ��)k=tk�conn, and any minimum cut of G(tk�conn) corresponds to a (1+ �)-minimal cut of G.

10.6. EVOLUTIONARY K-CONNECTIVITY 177The edge corresponding to tk�conn(G) is such that if it is removed, there will be a singlecut of value k � 1 in the graph. The lemma which we have just proved says that with highprobability, this cut corresponds to a (1 + �)-minimal cut in the graph. We have thereforereduced the problem of (1+ �) approximation to the problem of performing an evolutionaryexperiment until we get a k-connected graph, k = O((logn)=�2).10.6.1 Dynamic MaintenanceTo do so, we return to sparse certi�cates and the dynamic minimum spanning trees of [51].Suppose that we have already assigned random arrival times to the edges. We show howto �nd tk�conn in a specially constructed sparse certi�cate of G. Let F1 be the minimumspanning forest of G (according to arrival times). Let F2 be the minimum spanning forestof G� F1, F3 the minimum spanning forest of G� (F1 [F2), and so on through Fk. Let Sbe [ki=1Fk. S is clearly a sparse k-connectivity certi�cate of G, since it was constructed bya particular implementation of the greedy sparse certi�cate algorithm of Section 3.3. Weshow that in addition, tk�conn(G) = tk�conn(S).Lemma 10.6.3 The k earliest arriving edges of every cut of G are in S.Lemma 10.6.4 tk�conn(S) = tk�conn(G):Proof: Clearly tk�conn(S) � tk�conn(G) since every k-connected subgraph of S is a k-connected subgraph of G; we show the converse. Let us consider the edge e whose arrivalmakes S k-connected, so te = tk�conn(S). Since S is k-connected before e arrives but notafter, e must cross a cut C of value k. By the previous lemma, the k smallest edges crossingC in G are all in S. Therefore, the only way S can fail to have k edges crossing before timete is if e is one of the k earliest-arriving edges crossing C in G. But in this case, G(t) willalso not be k-connected before the arrival of edge e. Thus, tk�conn(S) = te � tk�conn(G), asdesired.It therefore su�ces to identify tk�conn(S) and the minimum cut of S at that time. Todo so, order the edges of S by arrival time and perform a binary search to identify the indexi such that the i smallest edges are necessary and su�cient to k-connect the graph. Theith edge determines tk�conn(S) = tk�conn(G), and removing it creates a single cut of valuek � 1. If we use the randomized complete intersection algorithm of Section 10.3, this takes~O(mpk) time in a graph with m edges.

178 CHAPTER 10. MORE CUT-SAMPLING ALGORITHMSNow note that all this information can be maintained dynamically. To maintain thegreedy weighted sparse certi�cate S of G, we use the dynamic minimum spanning treealgorithm of Eppstein et al to maintain the �rst forest F1, maintain G� F1, maintain F2,the minimum spanning forest of G� F1, and so on. Inserting a weighted edge requires atmost k updates, one for each minimum spanning tree (the argument is the same as in [51]for maintaining standard sparse connectivity certi�cates) and therefore takes ~O(kpn) time.Now, however, we can perform our identi�cation of tk�conn(G) in the sparse certi�cate S.Since S has O(kn) edges, this takes ~O(nk3=2) time. This proves the following:Lemma 10.6.5 A (1 + �)-approximation to the minimum cut in an unweighted graph canbe maintained ~O(n=�3) time per insertion or deletion.10.6.2 Weighted GraphsWe can again extend this approach to weighted graphs using exponential variates. Sup-pose we replace an edge of weight w with rw multiple edges and assign each of them anarrival time uniformly distributed in the interval [0; r]. Since we are interested only in k-connectivity, we can stop looking at a particular pair of endpoints as soon as k edges withthose endpoints have arrived, since at this point the two endpoints are clearly k-connected.Therefore, we are asking for the k smallest values among rw uniform selections from theinterval [0; r]. In the limit as r grows, these values converge to a Poisson Distribution.That is, if the kth smallest arrival time is ti, then the values ti+1 � ti are independent andexponentially distributed with parameter w. We can therefore determine t1 through tk asthe cumulative sums of k exponential variables whose generation is described in the ap-pendix. As is discussed there, generating k exponential variables takes ~O(k) time with highprobability. We have therefore shown:Lemma 10.6.6 A (1 + �)-approximation to the minimum cut in a weighted graph can bemaintained ~O(n=�3) time per insertion or deletion.10.7 Other Cut Problems10.7.1 Parallel Flow AlgorithmsIn the s-t min-cut problem the need for the �nal \cleanup" augmentations interferes withthe development of e�cient RNC algorithms for the problems, because there are no good

10.7. OTHER CUT PROBLEMS 179parallel reachability algorithms for directed graphs. However, we can still take advantageof the randomized divide-and-conquer technique in a partially parallel algorithm for theproblem. Khuller and Schieber [118] give an algorithm for �nding disjoint s-t paths inundirected graphs. It uses a subroutine which augments a set of k disjoint s-t paths to k+1if possible, using ~O(k) time and kn processors. This lets them �nd a ow of value v in in~O(v2) time using vn processors. We can speed up this algorithm by applying the randomizeddivide and conquer technique we used for maximum ows. Finding the �nal augmentationsafter merging the results of the recursive calls is the dominant step in the computation, andrequires ~O(v2=pc) time using vn processors. Thus we decrease the running time of theiralgorithm by an ~O(pc) factor, without changing the processor cost.10.7.2 Balanced and Quotient CutsThe balanced cut problem is to �nd a cut with a minimum number of edges such thatn=2 vertices are on each side. The quotient cut problem is to �nd a cut (A;B) of valuev minimizing the value of the quotient v=(kAkkBk). These problems are NP-completeand the best known approximation ratio is O(logn). One algorithm which achieves thisapproximation for quotient cuts is due to Leighton and Rao [137].Klein, Stein, and Tardos [123] give a fast concurrent ow algorithm which they useto improve the running time of Leighton and Rao's algorithm. Their algorithm runs inO(m2 logm) time, and �nds a cut with quotient within an O(logn) factor of the optimum.Consider a skeleton of the graph which approximates cuts to within a (1��) factor. Since thedenominator of a cut's quotient is unchanged in the skeleton, the quotients in the skeletonalso approximate their original values to within a (1� �) factor. It follows that we can takep = O(logn=c) and introduce only a constant factor additional error in the approximation.By the same argument, it su�ces to look for balanced cuts in a skeleton rather than theoriginal graph.Theorem 10.7.1 An O(logn)-approximation to the minimum quotient cut can be com-puted in O((m=c)2 logm) time (MC).10.7.3 Orienting a GraphGiven an undirected graph, the graph orientation problem is to �nd an assignment of direc-tions to the edges such that the resulting directed graph has the largest possible (directed)

180 CHAPTER 10. MORE CUT-SAMPLING ALGORITHMSconnectivity. Gabow [68] cites a theorem of Nash-Williams [157] showing that a solutionof connectivity k exists if and only if the input graph is 2k-connected, and also gives asubmodular-ow-based algorithm for �nding the orientation in O(kn2(pkn+ k2 log(n=k)))time. We have the following result:Lemma 10.7.2 A (k�O(pk logn))-connected orientation of a 2k-connected graph can befound in linear time.Proof: Orient each edge randomly with probability 1=2 in each direction. A minor adap-tation of Theorem 6.2.1 shows that with high probability, for each cut, there will be at leastk � O(pk logn) edges oriented in each direction. In other words, every directed cut willhave a value exceeding the desired one.Using this randomly oriented graph as a starting point in Gabow's algorithm also allowsus to speed up that algorithm by a factor of ~O(pk).10.7.4 Integral Multicommodity FlowsSuppose we are given an unweighted graph G and a multicommodity ow problem withk source-sink pairs (si; ti) and demands di. Let ci be the value of the si-ti minimum cutand suppose that Pdi=ci � 1. Then it is obvious that there is a fractional solution to theproblem: divide the graph into k new graphs Gi, giving a di=ci fraction of the capacityof each edge to graph Gi. Then the si-ti minimum cut of Gi has value exceeding di, socommodity i can be routed in graph Gi. There has been some interest in the question ofwhen an integral multicommodity ow can be found [60, 153]. Sampling lets us �nd anintegral solution, and �nd it faster, if we have some slack. Rather than assigning a fractionof each edge to each graph, assign each edge to a graph Gi with probability proportionalto di=ci. We now argue as for the ow algorithms, that given the right conditions on c,each graph Gi will be able to integrally satisfy the demands for commodity i. Thus kmax-ow computations will su�ce to route all the commodities. In fact, in an unweightedgraph, if mi is the number of edges in Gi, we have that Pmi = m, so that the max-owcomputations will take a time of O(Pmin) = O(mn) time. Various results follow; we giveone as an example:Lemma 10.7.3 Suppose that each di � log n, and that P di=c � 1=2. Then an integralmulticommodity ow satisfying the demands can be found in O(mn) time.

10.8. CONCLUSIONS 181Proof: Assign each each to group i with probability proportional to di=c. Since Pdi=c �1=2, this means the probability an edge goes to i is at least 2di=c. This the minimumexpected cut in Gi is at least 2di, so the minimum cut exceeds di with high probability andthat graph can satisfy the ith demand.10.8 ConclusionsWe have given further applications of random sampling in problems involving cuts. Clearly,there are many more potential applications. We might wish to reexamine some problemsto see if they can be reformulated in terms of cuts so that random sampling can be applied.One result of this approach has been to reduce large maximum ow and min-cut prob-lems on undirected graphs to small maximum ow and minimum cut problems on directedgraphs. Our techniques are in a sense \meta-algorithms" in that improved cut or owalgorithms that are subsequently developed may well be accelerated by application of ourtechnique. In particular, our exact algorithms running times are dominated by the timeneeded to perform \cleaning up" augmenting path computations; any improvement in thetime to compute a sequence of augmenting paths would translate immediately into an im-provement in our algorithm's running time. One way to get such an improvement might beto generalize our sampling theorems to the case of directed graphs.We have considered dynamic sampling at two \points in time:" when the graph becomesconnected, and when the graph becomes O(logn)-connected. The larger connectivity in-duces a greater accuracy in our approximations. There is in fact a smooth improvement inaccuracy over time: the graph's biconnectivity time gives more accurate information thanits connectivity time; its triconnectivity time gives yet more accuracy, and so on. We canuse fast dynamic biconnectivity and triconnectivity algorithms [51] to estimate these higherconnectivity times. Unfortunately, the tradeo� of connectivity for accuracy means thatbiconnectivity and triconnectivity times give only o(1) improvements in the accuracy com-pared to the connectivity time. The best dynamic algorithm for higher connectivities than 4is the same one we used for O(logn)-connectivity. It might therefore be worth investigatingdynamic algorithms for k-connectivity when k is a very slowly growing function.Portions of this chapter appeared in [105] and [104].

Chapter 11Random Sampling in Matroids11.1 IntroductionIn this chapter, we put our results on random sampling into a more general framework. Weextend our sampling theorems to matroid optimization (a generalization of the minimumspanning tree problem) and to basis packing (a generalization and variation on our minimumcut/maximum ow results).11.1.1 Matroids and the Greedy AlgorithmWe give a brief discussion of matroids and the rami�cations of our approach to them. Anextensive discussion of matroids can be found in [186].The matroid is a powerful abstraction that generalizes both graphs and vector spaces. AmatroidM consists of a ground setM of which some subsets are declared to be independent.The independent sets must satisfy three properties:� The empty set is independent.� All subsets of an independent set are independent.� If U and V are independent, and jU j > jV j, then some element of U can be added toV to yield an independent set.This de�nition clearly generalizes the notion of linear independence in vector spaces; indeedthis was the �rst use of matroids. However, it was quickly noted [187, 183] that matroidsalso generalize graphs: in the graphic matroid the edges of the graph form the ground set,182

11.1. INTRODUCTION 183and the independent sets are the acyclic sets of edges (forests). Maximal independent setsof a matroid are called bases; bases in a vector space are the standard ones while bases in agraph are the spanning forests (spanning trees, if the graph is connected). In the matchingmatroid of a graph [134], bases correspond to maximum matchings.Matroids have rich structure and are the subject of much study in their own right [186].Matroid theory is used to solve problems in electrical circuit analysis and structural rigid-ity [171]. A discussion of many optimization problems that turn out to be special cases ofmatroid problems can be found in [136]. In computer science, perhaps the most naturalproblem involving matroids is matroid optimization. If a weight is assigned to each ele-ment of a matroid, and the weight of a set is de�ned as the sum of its elements' weights,the optimization problem is to �nd a basis of minimum weight. The MST problem is thematroid optimization problem on the graphic matroid. Several other problems can also beformulated as instances of matroid optimization [41, 134, 136].11.1.2 Matroid OptimizationEdmonds [48] was the �rst to observe that the matroid optimization problem can be solvedby the following natural greedy algorithm. Begin with an empty independent set I , andconsider the matroid elements in order of increasing weight. Add each element to I if doingso will keep I independent. Applying the greedy algorithm to the graphic matroid yieldsKruskal's algorithm [133] for minimum spanning trees: grow a forest by repeatedly addingto the forest the minimum weight edge that does not form a cycle with edges already in theforest. A converse result [186] is that if a family of sets does not form a matroid, then thereis an assignment of weights to the elements for which the greedy algorithm will fail to �ndan optimum set in the family.The greedy algorithm has two drawbacks. First, the elements of the matroid mustbe examined in order of weight. Thus the matroid elements must be sorted, forcing an
(m logm) lower bound on the running time of the greedy algorithm on an m-elementmatroid. Second, the independent set under construction is constantly changing, so thatthe problem of determining independence of elements is a dynamic one.Contrast the optimization problem with that of verifying the optimality of a givenbasis. For matroids, all that is necessary is to verify that no single element of the matroidM \improves" the basis. Thus in veri�cation the elements of M can be examined in anyorder. Furthermore, the basis that must be veri�ed is static. Extensive study of dynamic

184 CHAPTER 11. RANDOM SAMPLING IN MATROIDSalgorithms has demonstrated that they tend to be signi�cantly more complicated than theirstatic counterparts|in particular, algorithms on a static input can preprocess the input soas to accelerate queries against it.Extending our minimum spanning tree result, we show how an algorithm for verifyingbasis optimality can be used to construct an optimum basis. The reduction is very simpleand suggests that the best way to develop a good optimization algorithm for a matroidis to focus attention on developing a good veri�cation algorithm. To demonstrate thisapproach, we give a new algorithm for the problem of scheduling unit time tasks withdeadlines and penalties, a classic problem that can be found in many discussions of matroidoptimization [134, 136, 41].11.1.3 Matroid Basis PackingWe also investigate the problem of packing matroid bases, i.e. �nding a maximum set ofdisjoint bases in a matroid.1 This problem arises in the analysis of electrical networks andalso in the analysis of the structural rigidity of physical structures (see [136] for details).Edmonds [47] gave an early algorithm for the problem. A simpler algorithm was given byKnuth [127]. Faster algorithms exist for the special case of the graphic matroid [72] wherethe problem is to �nd a maximum collection of disjoint spanning trees (this particularproblem is important in network reliability|see for example Colbourn's book [36]).We apply random sampling to the basis packing problem. Let the packing number of amatroid be the maximum number of disjoint bases in it. We show that a random sample ofa 1=k fraction of the elements from a matroid with packing number n has a packing numbertightly distributed around n=k. This provides the approximation results needed to applyour sampling-based approaches.11.1.4 Related workThere has been relatively little study of applications of randomization to matroids. Reifand Spirakis [172] studied random matroids; however, they used a more general notionof matroids and focused on other problems; their results generalized existence proofs andalgorithms for Hamiltonian paths and perfect matchings in random graphs. Their approach1Unlike the problem of counting disjoint bases, the problem of counting the total number of bases in amatroid is hard. This]P-complete generalization of the problem of counting perfect matchings in a graphhas been the focus of much recent work; see for example [54].

11.2. SAMPLING FOR OPTIMIZATION 185was to analyze the average case behavior of matroid algorithms on random inputs, whileour goal is to develop randomized algorithms that work well on all inputs. Polesskii [165],generalizing his earlier work with Lomonosov (Theorem 10.1.1, proven in [140]) studiedthe probability that a random sample from a matroid contains one basis; he derived anequivalent to our Theorem 11.3.3.11.2 Sampling for OptimizationWe now observe that our minimum spanning tree results extend almost without change tomatroid optimization.11.2.1 A Sampling TheoremWe begin with a de�nition of random sampling.De�nition 11.2.1 For a �xed universe S, S(p) is a set generated from S by including eachelement independently with probability p. For A � S, A(p) = A \ S(p).De�nition 11.2.2 An independent set X spans an element e if X[feg is not independent.Note that X spans e in a graph if it contains a path between the endpoints of e.De�nition 11.2.3 Given an independent set F , element e is F -heavy if the elements of Flighter than e span e, and F -light otherwise.Consider now Lemma 2.2.1 about minimum spanning trees. We claim that this lemmaapplies unchanged to more general matroids.Theorem 11.2.4 Let M have rank r. and let F be the optimum basis of M(p). Theexpected number of F -light elements of M is less than r=p. For any constant � > 0, theprobability that more than (1 + �)r=p elements of M are F -light is O(e�
(r)).Proof: This follows immediately from the fact that Kruskal's algorithm is simply the greedyalgorithm for matroid optimization. So just replace the word \edge" with \matroid element"and the word \forest" with \independent set" everywhere in the proof of Lemma 2.2.1.

186 CHAPTER 11. RANDOM SAMPLING IN MATROIDS11.2.2 Optimizing by VerifyingIt follows that we can apply the minimum spanning tree's sampling techniques to matroidoptimization, reducing the problem of constructing the optimum basis to the problem ofverifying a basis F to determine which matroid elements are F -light. To begin with, supposethat we have two algorithms available: a construction algorithm that takes a matroid ofsize m and rank r and �nds its optimum basis in time C(m; r); and a veri�cation algorithmthat takes a size m, rank r matroid M and an independent set F and determines whichelements of M violate F in time V (m; r). We show how to combine these two algorithmsto yield a more e�cient construction algorithm when V is faster than C.At this point, we must diverge slightly from the minimum spanning tree approach be-cause there is no analogue of Bor�uvka's algorithm for reducing the rank of a general matroid.We apply the algorithm Recursive-Refinement of Figure 11.1.Procedure Recursive-Refinement(M)if m < 3r thenreturn C(M)else F recursive-refinement(M(1=2))U F -light elements of M (using veri�er)return C(U) Figure 11.1: Recursive-RefinementAlgorithm Recursive-Refinement is clearly correct; we analyze its running time. Bya standard Cherno� bound, M(1=2) will have size at most m=1:9 with high probability.Furthermore, by Theorem 11.2.4, U will have size at most 3n with high probability. Thisleads to a recurrence for the running time C 0 of the new construction algorithm.C0(3n; n) = C(3n; n)C0(m;n) � C 0(m=1:9; n) + V (m;n) + C(3n; n):Given the assumption that V (m;n) =
(m) (since every element must be examined), this

11.2. SAMPLING FOR OPTIMIZATION 187recurrence solves to C 0(m;n) = O(V (m;n) + C(3n; n) log(m=n)):we have therefore proved the following:Lemma 11.2.5 Suppose an m element, rank r matroid has algorithms for constructingan optimum basis in C(m; r) time and for determining the elements that violate a givenindependent set in V (m; r) time. Then with high probability, an optimum basis for thematroid can be found in O(V (m; r) + C(r; r) log(m=r)) time.11.2.3 Application: Scheduling with DeadlinesIn their survey paper [136], Lee and Ryan discuss several applications of matroid optimiza-tion. These include job sequencing and �nding a minimum cycle basis of a graph. In theapplications they discuss, attention has apparently been focused on the construction ratherthan the veri�cation of the optimum basis. Sampling indicates a potential avenue towardimproved algorithms for them.We apply this idea to the problem of scheduling unit-time tasks with deadlines andpenalties for a single processor. This problem is a favorite pedagogical example of matroidoptimization, appearing among others in [134] and [41]. We follow the treatment of [41,Section 17.5]. We are given a set ofm unit time tasks, each with a deadline by which it mustbe performed and a penalty we pay if the deadline is missed. The tasks must be linearlyordered so that each task is assigned to one unit-time slot and each slot receives only onetask. A penalty is paid for each task whose deadline precedes the time slot to which it isassigned. The goal is to schedule the problems so as to minimize the total penalty. Given aschedule of tasks, call a task early if it is scheduled to be done before its deadline. We calla set of tasks independent if there is a schedule in which they are all early. It is shown thatthis de�nes a matroid on the universe of tasks. The rank r of this matroid is simply themaximum number of tasks that can be simultaneously early, and may be much less thanm. In particular, it is no more than then the largest deadline. An algorithm to solve theproblem is given, but it runs in
(m logm) time because the tasks must be sorted in orderof decreasing penalty. By applying the sampling method, we can make the running timeO(m + r log r log(m=r)); this output sensitive algorithm will run faster when the outputsolution is small.

188 CHAPTER 11. RANDOM SAMPLING IN MATROIDSTo achieve this time bound, we apply sampling through an O(r log r)-time veri�cationalgorithm which we now present. It is based on the O(r log r)-time construction algorithmgiven in [41, Problem 17-3]. This algorithm will schedule a set of tasks legally or willdetermine that they are not independent. Sort the tasks in order of decreasing penalty. Weconsider them in this order, and add each task to the latest free slot remaining before itsdeadline. If no such free slot exists, we stop because the set of tasks is not independent.After sorting, it is easy to implement this algorithm using disjoint set union over the universeof slots: the roots of the sets are the remaining free slots and each slot is in the set of the�rst free slot preceding it.We now modify this algorithm so that on a given independent set of tasks T it prepro-cesses them so as to allow any other task t to be veri�ed against T (checking if it is spannedby the tasks of larger penalty than its own in T) in unit time. Suppose task t has deadline dand penalty p and consider running the algorithm on T [fpg. Let P � T be the set of tasksin T with penalties larger than p. Then from the correctness of the construction algorithmwe know that t is spanned by P if and only if there is no free slot preceding d after thetasks in P have been added. We therefore modify the scheduling algorithm to assign toeach slot the penalty associated with the job that �lled it (this does not change the runningtime). Then t is spanned by P if and only if every slot preceding d has a penalty exceedingp, i.e. the minimum penalty preceding d is larger than p. Therefore, after performing theschedule, in time O(kTk) we compute for each slot the minimum of the penalties precedingit. Then, to verify that t is not spanned by P we simply check whether the value in slotd is less than p or not. Since we run the veri�er only on independent sets, kTk � r and itfollows that the time to verify a candidate early task set against the m tasks is O(r log r)to preprocess plus O(m) to verify for a total of O(m+ r log r). Applying random sampling(Lemma 11.2.5) immediately gives the desired result:Theorem 11.2.6 Scheduling unit-time tasks with deadlines and penalties for a single pro-cessor can be solved in O(m+ r log r log(m=r)) time (Las Vegas).11.3 Sampling for PackingWe now turn to the basis packing problem. The basis packing problem is to �nd a maximumdisjoint collection of bases in a matroidM. The �rst algorithm for this problem was givenby Edmonds [47], and there have been several improvements. It is closely related to the

11.3. SAMPLING FOR PACKING 189problem of �nding a basis in a k-fold matroid sum for M, whose independent sets are thesets that can be partitioned into k independent sets ofM. Recall that Gabow's minimumcut algorithm used just such a concept.Many matroid packing algorithms use a concept of augmentation: the algorithms re-peatedly augment a collection of independent sets by a single element until they form thedesired number of bases. These augmentation steps generally have running times depen-dent on the matroid size m, the matroid rank r, and k, the number of bases already found.For example Knuth's algorithm [127] �nds an augmenting path in O(mrk) time and cantherefore �nd a set of k disjoint bases of total size rk (if they exist) in time O(mr2k2) (Timehere is measured as the number of calls that must be made to an independence oracle thatdetermines whether a given set is independent). We can use such augmentation algorithmsin the same ways as we used augmenting paths and Round-Robin in sampling for maximumows and minimum cuts.As the proofs needed for this section are quite technical, we have left them for a latersection and will focus here on how the sampling theorems can be used. After discussing thesampling theorems, we show how they lead to e�cient algorithms for packing problems.11.3.1 Packing TheoremsWe generalize and extend a well known fact sue to Erd�os and Renyi [52, 18] that if a randomgraph on n vertices is generated by including each edge independently with probabilityexceeding (ln n)=n, then the graph is likely to be connected. Rephrased in the languageof graphic matroids, if the edges of a complete graph on n vertices are sampled with thegiven probability, then the sampled edges are likely to contain a spanning tree, i.e. a basis.We generalize this result to arbitrary matroids. Similarly, we generalize our cut-samplingtheorem to analyze the number of bases in a random sample from a matroid. As before, weconsider constructing a matroid sample M(p) from matroidM by including each elementof the matroid's ground set M in the sample with probability p.De�nition 11.3.1 The packing number P (M) for a matroid M is the maximum numberof disjoint bases in it.If we sample matroid elements with probability p, the most obvious guess as to theexpected number of bases in the sample is that it should scale by a factor of p. This turnsout to be true. The main theorem we shall apply is the following:

190 CHAPTER 11. RANDOM SAMPLING IN MATROIDSTheorem 11.3.2 Given a matroidM of rank r and packing number n, and given p, let n0be the number of disjoint bases ofM inM(p). ThenPr[jn0 � npj > �np] < re��2np=2:Proof: Section 11.4A special case of this theorem was proven by Polesskii [165]:Theorem 11.3.3 Suppose M contains a+2+k ln r disjoint bases. Then M(1=k) containsa basis forM with probability 1�O(e�a=k).Proof: Section 11.4Remark: The second theorem is in a sense orthogonal to Theorem 11.2.4. That theoremshows that regardless of the number of bases, few elements are likely to be independent ofthe sample. However, it does not prove that the sample contains a basis. This corollaryshows that if the number of bases is large enough, no elements will be independent of thesample (because the sample will contain a basis).Consider the graphic matroid on G. The bases of the graphic matroid are the spanningtrees of the graph.Corollary 11.3.4 If a graph G contains k disjoint spanning trees, then with high probabilityG(p) contains between kp� 2pkp logn and kp+ 2pkp logn disjoint spanning trees.Remark: It is interesting to contrast this corollary with Corollary 6.2.2 on the connec-tivity of a skeleton. A theorem of Polesskii [36] shows that a graph with minimum cut ccontains between c=2 and c disjoint spanning trees. However, both these boundary valuecan be obtained (one with a cycle, the other with a tree). Thus, though one might ex-pect one corollary to follow from or be equivalent to the other, they in fact appear to beindependent.11.3.2 Packing AlgorithmsHaving developed approximation theorems for basis packing, we now use sampling to de-velop algorithms for exact and approximate basis packing.We begin by estimating the packing number of a matroid.

11.3. SAMPLING FOR PACKING 191Theorem 11.3.5 The packing number k of an m-element matroid of rank r can be esti-mated to within any constant factor using O(mr2=k) independence tests.Proof: If we �nd p such that M(p) has packing number z = �(logn), then from Theo-rem 11.3.2 we can be sure thatM has packing number k roughly equal to z=p. By startingwith a very small p and repeatedly doubling it until the proper number of bases is observedin the sample, we can ensure that p = O((logn)=k). Thus all the samples we examinehave ~O(m=k) elements and ~O(1) disjoint independent sets. Furthermore, in a matroid withpacking number k, the sample we examine will have O(m=k) elements.We can extend this approach in a randomized divide and conquer algorithm to �nd amaximum packing of bases, exactly as we used augmentation to �nd maximum ows andcomplete intersections.Theorem 11.3.6 A maximum packing of k matroid bases in an m element, rank r matroidcan be found with high probability in O(mr2k3=2) time.This result \accelerates" Knuth's algorithm by a factor of pk.Proof: Suppose that the matroid contains k bases. We can randomly partition the matroidelements into 2 groups by ipping a coin to decide which group each element goes in.This means each group looks like a random sample with p = 1=2, though the groups arenot independent. We can apply the sampling theorem with p = 1=2 to each group todeduce that with high probability each group contains k=2�O(pk log n) disjoint bases. Werecursively run the packing algorithm on each group to �nd each subcollection of bases, andjoin them to yield a set of k�O(pk log n) bases. The bene�t is that this packing was foundby examining smaller matroids. We now augment the packing to k bases using Knuth'salgorithm; this takes O(mr2k3=2) time and is the dominant term in the running time of ouralgorithm.Gabow and Westermann [72] study the problem of packing spanning trees in the graphicmatroid, and give algorithms that are faster than the one just presented (they use specialproperties of graphs, and are based on an analogue to blocking ows rather than augmentingpaths). Combining their algorithm with our sampling techniques, we can estimate thenumber of disjoint spanning trees in a graph to within any constant factor in ~O(m3=2)time. It is an open problem to combine our sampling approach with their algorithm to �ndoptimum packings faster than they already do.

192 CHAPTER 11. RANDOM SAMPLING IN MATROIDS11.4 ProofsIn the section we proved the theorems about sampling matroid bases. To introduce ourtechniques intuitively, we begin by proving a theorem on the existence of a basis in thesample, and we then generalize this theorem by estimating the number of disjoint bases wewill �nd in the sample.11.4.1 Finding a BasisWe begin with some de�nitions needed in the proof.De�nition 11.4.1 The rank of A �M , denoted �A, is the size of the largest independentsubset of A.De�nition 11.4.2 A set A spans an element x if �A = �(A[fxg). The span of a set A,denoted �A, is the set of elements spanned by A. A spans B if B � �A.If A � B then �A � �B. If A spans B and B spans C then A spans C.The concept of a contracted matroid is well known in matroid theory; however, we useslightly di�erent terminology. For the following de�nitions, �x some independent set T inM.De�nition 11.4.3 A set A is T -independent or independent of T if A [T is independentinM.De�nition 11.4.4 The contraction ofM by T , denotedM=T , is the matroid on M whoseindependent sets are all the T -independent sets ofM.De�nition 11.4.5 A=T is any maximal T -independent subset of A.Lemma 11.4.6 If A is a basis of M, then A=T is a basis for M=T .Lemma 11.4.7 If B is a a basis of M=T , then B [T is a basis of M.Recall the binomial distribution B(n; p) (see the appendix for details). To avoid de�n-ing a dummy variable, we also use B(n; p) to denote a single sample from the binomialdistribution.

11.4. PROOFS 193Theorem 11.4.8 Suppose M contains a+2+k ln r disjoint bases. Then M(1=k) containsa basis forM with probability 1�O(e�a=k).Proof: Let p = 1=k. Let fBiga+2+k ln ri=1 be disjoint bases of M. We construct the basisin M(p) by examining the sets Bi(p) one at a time and adding some of their elements toan independent set I (initially empty) until I is large enough to be a basis. We invert theproblem by asking how many bases must be examined before I becomes a basis. Supposewe determine U = B1(p), the set of elements of B1 contained in M(p). Note that thesize u of U is distributed as B(r; p); thus E[u] = rp. Consider the contractionM=U . ByLemma 11.4.6, this matroid contains disjoint bases B2=U;B3=U; : : :, and has rank r � u.We ask recursively how many of these bases we need to examine to construct a basis B forthe contracted matroid. Once we have done so, we know from Lemma 11.4.7 that U [Bis a basis forM. This gives a probabilistic recurrence for the number of bases we need toexamine: T (r) = 1 + T (r � u); u = B(r; p):If we replaced random variables by their expected values, we would get a recurrence of theform S(r) = 1+S((1�p)r), which solves to S(r) = logb r, where b = 1=(1�p). Probabilisticrecurrences are studied by Karp in [111]. His �rst theorem exactly describes our recurrence,and proves that for any a,Pr[T (r) � blogb rc+ a + 2] � (1� 1=k)a:In our case, logb r � k ln r.11.4.2 Counting BasesWe devote this section to the proof of the following theorem:Theorem 11.4.9 If P (M) = n then the probability that M(p) fails to contain k disjointbases of M is at most r � Pr[B(n; p) � k].To prove it, we generalize the technique of the previous section. We line up the basesfBig and pass through them one by one, adding some of the sampled elements from eachbasis to an independent set I that grows until it is itself a basis. For each Bi, we set asidesome of the elements because they are dependent on elements already added to I ; we then

194 CHAPTER 11. RANDOM SAMPLING IN MATROIDSexamine the remaining elements of Bi to �nd out which ones were actually sampled andadd those sampled elements to I . The change in the procedure is that we do this more thanonce: to construct the next basis, we examine those elements set aside the �rst time.Consider a series of phases; in each phase we will construct one basis. At the beginningof phase k, there will be a remaining portion Rkn of Bn; the elements of Rkn are those elementsof Bn that were not examined in any of the previous phases. We construct an independentset Ik by processing each of the Rkn in order. Let Ikn�1 be the portion of Ik that we haveconstructed before processing Rkn. To process Rkn, we split it into two sets: Rk+1n are thoseelements that are set aside until the next phase, while Ekn = Rkn�Rk+1n is the set of elementswe examine in this phase. The elements of Ekn will be independent of Ikn�1. Thus as in thesingle-basis case, we simply check which elements of Ekn are in the sampled set, identifyingthe set Ukn = Ekn(p) of elements we use, and add them to our growing basis. Formally, welet Ikn = Ikn�1 [Ukn ; by construction Ikn will be independent.Ikn Independent set so far.Rkn Remainder of nth basis.Ekn Elements examined for use.Ukn Elements actually used from Ekn, namely Ekn(p).Figure 11.2: Variables describing nth basis in kth phaseWe now explain precisely how we determine the split of Rkn into Rk+1n and Ekn. Let rkn,ikn, ekn, and ukn be the size of Rkn, Ikn, Ekn, and Ukn respectively. Suppose that we have Ikn�1in hand, and wish to extend it by examining elements of Rkn. We assume by induction thatikn�1 � rkn. It follows from the de�nition of matroids that there must exist a set Ekn � Rknsuch that Ikn�1 [Ekn is independent and has size rkn. De�ning Ekn this way determinesRk+1n = Rkn � Ekn. We then set Ukn = Ekn(p), and Ikn = Ikn�1 [Ukn .To justify our inductive assumption we use induction on k. To prove it for k + 1, notethat our construction makes rk+1n = ikn�1. Thus the fact that ikn�2 � ikn�1 implies thatrk+1n�1 � rk+1n . Our construction forces ik+1n�1 � rk+1n�1; thus ik+1n�1 � rk+1n as desired.We now use the just noted invariant rk+1n = ikn�1 to derive recurrences for the sizes ofthe various sets. Note that when we reach a value n such that Ikn = r, we have constructedthe kth basis. As before, the recurrences will be probabilistic in nature. Let fkn = E[ekn].

11.4. PROOFS 195Lemma 11.4.10 fkn = �nk�pk(1� p)n�kProof: Recall that ukn is the size of Ukn , so ukn = B(ekn; p). Thusrk+1n = ikn�1= ikn�2 + ukn�1= rk+1n�1+ B(ekn�1; p):It follows that ekn = rkn � rk+1n= [rkn�1 +B(ek�1n�1; p)]� [rk+1n�1+ B(ekn�1; p)]= ekn�1 �B(ekn�1; p) +B(ek�1n�1; p):Now let fkn = E[ekn]. Linearity of expectation applied the recurrence shows thatfkn = (1� p)fkn�1 + pfk�1n�1 :Since we examine the entire �rst basis in the �rst phase, e00 = r and ek0 = 0 for k > 0.Therefore this recurrence is solved byfkn = nk!pk(1� p)n�kr:We now ask how big n needs to be to give us a basis in the kth phase. As in Section 11.3,it simpli�es matters to assume that we begin with an in�nite set of disjoint bases, and askfor the value of n such that in the kth phase, we �nish constructing the kth sampled basisIk before we reach the nth original basis Bn. Recall the variable ukn denoting the number ofitems from Bn used in Ik. Suppose that in the kth phase we use no elements from any basisafter Bn. One way this might happen is if we never �nish constructing Ik. However, thisis a probability 0 event. The only other possibility is that we have �nished constructing Ikby the time we reach Bn so that we examine no more bases.It follows that if ukj = 0 for every j � n, then we must have �nished constructing Ikbefore we examined Bn. Since the ukj are non-negative, this is equivalent to saying thatPj�n ukj = 0. It follows that our problem can be solved by determining the value n suchthat Pj�n ukj = 0 with high probability.

196 CHAPTER 11. RANDOM SAMPLING IN MATROIDSFrom the Markov inequality, which says that for positive integer random variablesPr[X > 0] � E[X], and from the fact that E[ukj] = pE[ekj] = pfkj , we deduce that theprobability that we fail to construct Ik before reaching Bn is at mostskn = E 24Xj�nukj35 = pXj�n fkj :To bound skn, we can sum by parts to prove (c.f. [84, Chapter 2]) thatskn = pXj�n jk!pk(1� p)j�kr= prk! � p1� p�kXj�n jk(1� p)j= prk! � p1� p�k0@ jk (1� p)j�p ����1n �Xj�nkjk�1(1� p)j+11A< prk! � p1� p�k �nk (1� p)np �= nk!pk(1� p)n�kr= rPr[B(n; p) = k](Note jk = k(k � 1) � � �(k � j + 1)). This proves the theorem.The probability of �nding no bases is thus at most s0n � re�np; this is exactly the resultproven in the previous section.We also consider the converse problem, namely to upper bound the number of basesthat survive. This analysis is relatively easy thanks to the following packing theorem dueto Edmonds [47]. Let A denote M �A.Theorem 11.4.11 (Edmonds) A matroid M on M with rank r has n disjoint bases ifand only if n�(A) + jAj � nrfor every A �M .Corollary 11.4.12 If P (M) � n, and k > np, then the probability that M(p) containsmore than k disjoint bases of M is at most Pr[B(n; p) � k].

11.5. CONCLUSION 197Proof: By Edmonds' theorem, there must exist some A �M such that(n+ 1)�(A) + jAj < (n+ 1)r:If �(A) = r, the above statement cannot be true. Thus �(A) � r� 1. It follows that in fact(n+ 1)�(A) + max(jAj; n) < (n+ 1)r:Now consider what happens in M(p). If M(p) contains no basis of M, then certainly itcontains fewer than k bases. On the other hand, if M(p) does contain a basis then M(p)has rank r. The rank of A(p) is certainly at most �(A). To bound jA(p)j, consider twocases. If jAj � n, then Pr[jA(p)j > (k=n)jAj] < Pr[B(n; p) > k]. On the other hand, ifjAj < n, then Pr[jAj > k] < Pr[B(n; p) > k]. In other words, with the desired probabilityjA(p)j < (1 + �)pmax(jAj; n). It follows that with the desired probability,(k + 1)�(A(p)) + jA(p)j < (k + 1)�(A) + k + 1n + 1 max(jAj; n)= k + 1n + 1[(n+ 1)�(A) + max(jAj; n)]< k + 1n + 1(n+ 1)r= (k + 1)rIn other words, A(p) demonstrates through Edmonds' Theorem thatM(p) contains at mostk bases.Applying the Cherno� bound [30] to the previous two theorems yields Theorem 11.3.2.11.5 ConclusionThis chapter has suggested extended our random sampling approach from graphs to moregeneral matroids, and given results that apply to matroids as models for greedy algorithmsand as packing problems. A natural question is whether the paradigms we presented canbe extended further. In one direction, Korte, Lov�asz and Schrader [132] de�ne greedoids,structures that capture more general greedy algorithms than those of matroids. Does ouroptimization approach generalize as well? In the other direction, is it possible to de�nesome sort of \packoid" that would capture the properties needed for our sampling andrandomized divide-and-conquer algorithms to work?

198 CHAPTER 11. RANDOM SAMPLING IN MATROIDSLomonosov [138] also examined the probability that a random sample from a matroidwould contain a basis. He derived formula's based on parameters very di�erent from,and apparently more complicated than, the number of disjoint bases. He did not addresscounting the number of bases in the sample. His work and this one should probably beuni�ed.The true power of matroids is shown when we consider the matroid intersection problem,which captures problems such as maximum matching. The goal is to �nd a set that is si-multaneously a basis in two di�erent matroids. Can any of our random sampling techniquesbe applied there?In the realm of combinatorics, how much of the theory of random graphs can be extendedto the more general matroid model? There is a well de�ned notion of connectivity inmatroids [186]; is this relevant to the basis packing results presented here? What furtherinsight into random graphs can be gained by examining them from a matroid perspective?Erd�os and Renyi showed a tight threshold of p = (lnn)=n for connectivity in random graphs,whereas our result gives a looser result of p =
((logn)=n) for matroid bases. Is there a0-1 law for bases in a matroid?

Chapter 12Network Design without RepeatedEdgesIn this chapter, we address additional variants of the network design problem, the mostimportant variant being that which allows edges to be used only once. Recall that inorder to use randomized rounding, we scaled up each edge weight in order to make up forthe loss in cut value caused by randomized rounding. In the single edge-use case, we areconstrained not to let scaling increase the value of a fractional variable above 1. In orderto solve this problem, we �rst consider general covering problems. We present a modi�edCherno� bound argument that goes some way towards solving the problem. We then discussthe approximation ratio we can achieve by using this Cherno� bound.We also consider a generalization of network design. In the �xed charge version [75], theedges have not only arbitrary costs but also arbitrary capacities; one can buy all or none ofthe capacity but not a fraction of it.12.1 Oversampling for Covering ProblemsHere, we give a variant of the Cherno� bound which we can use if we are not allowed toscale weights above 1.De�nition 12.1.1 Consider a random sum S = Pni=1Xi in which Xi = 1 with probabilitypi and 0 otherwise. De�ne the oversampling of S by � as S(�) = Pni=1 Yi, where Yi = 1with probability min(1; �pi) and 0 otherwise.199

200 CHAPTER 12. NETWORK DESIGN WITHOUT REPEATED EDGESNote that S(1) = S.Theorem 12.1.2 Let E[S] = �. Then Pr[S(1+ �) < (1� �)�] < e����=2.Proof: Suppose S =PXi. Write S = S1+S2, where S1 is the sum ofXi with pi � 1=(1+�)and S2 is the sum of the remaining Xi. Let �1 = E[S1] and �2 = E[S2]. We see that� = �1 + �2, and also that S(1 + �) = S1(1 + �) + S2(1 + �).Since the variables in S1 have pi � 1=(1 + �), S1(1 + �) is not random: it is simply thenumber of variables in S1, since each is 1 with probability one. In particular, S1(1 + �) iscertainly at least �1. It follows that that S(1 + �) < (1� �)� only if S2 < (1� �)� � �1 =�2 � ��.The variables in S2 have pi < 1=(1 + �) so that the corresponding oversamplings haveprobabilities (1 + �)pi. It follows that E[S2(1 + �)] = (1 + �)�2. By the standard Cherno�bound, the probability that S2 < �2 � �� is at mostexp(�((1 + �)�2 � (u2 � ��))22(1 + �)�2) = exp(�(��2 + ��)22(1 + �)�2)Our weakest bound arises when the above quantity is maximized with respect to �2. Itis straightforward to show that the quantity is a concave function of �2 with its globalmaximum at �2 = ��=�. However, �2 is constrained to be at least �� (since otherwise�1 � (1� �)�, immediately giving S(1 + �) � �1). We thus have two cases to consider. If� < 1, then ��=� is a valid value for �2. and the corresponding bound is exp(2���=(1+ �)).If � > 1, then the bound is maximized at the smallest possible �2, namely �2 = ��, in whichcase the bound is ��(1 + �)=2. Over the given ranges of �, each of these bounds is less thanthe bound given in the theorem.The theorem easily extends to the case where the Xi take on arbitrary values between0 and w. In this case, e���� bounds the probability that the deviation exceeds �w� ratherthan ��.Consider applying oversampling to a covering problem of minimizing cx subject to Ax �b. Suppose there are m constraints in the problem, and that for simplicity the all bi havethe same value, say �. Given the fractional solution, suppose we oversample with rate(1 + �). The cost of the resulting solution will have value at most about (1 + �) timesoptimum with high probability, but we must also consider its feasibility. Let ai be the rowsof matrix A. Theorem 12.1.2 proves that with probability 1� 1=m2, aix � (1� �)�, where

12.2. NETWORK DESIGN 201� = 6(lnm)=(��). This is thus true for all ai with probability 1�1=m. In other words, withhigh probability we have that for each i, aix � b� 6(lnm)=�.We can apply this result in several di�erent ways. One approach is to take � = 7 lnm.It follows that aix � b � 6=7 (w.h.p.). Since a and b are integers, it follows that in factaix � b. This means that we can always achieve an O(logm) factor approximation to theset cover problem. This was already known [96, 141].More interestingly, consider the bounded degree set multicover problem in which eachelement is contained in at most d sets. It follows that the size of the optimum solutionmust exceed m�=d. After oversampling by (1 + �), we can certainly cover the remainingO(m(logm)=�) remaining units of demand with O(m(logm)=�) additional elements (thoughof course in practice we would use a better scheme). The cost of the resulting solutionrelative to the optimum value v is at most(1 + �)v +m(logm)=� = v(1 +m(logm)=(�v))� v(1 + � +m(logm)=(�(m�=d)))� v(1 + � +O(d(logm)=(��)))If we minimize with respect to choice of �, we achieve an approximation ratio of 1 +O(pd(logm)=�). This ratio is useful when the degree is much less than the demand.12.2 Network DesignWe now consider the network design version in which it is only permissible to use an edgea single time. This means that we cannot arbitrarily scale up the weights in the fractionalsolution as we did in the multiple use case. We can still use oversampling, but we are nowforced to truncate weights at 1 and apply Theorem 12.1.2. In particular, combining thattheorem with the proof of Theorem 6.2.1 yields the following:Corollary 12.2.1 Given a fractional solution to f to a network design problem, if eachedge weight we is increased to min(1; (1 + �)we), and randomized rounding is performed,than high probability no cut in the rounded graph will have value less than (1� �) time itsvalue in the original weighted graph, where � = O(logn=(�fmin)).

202 CHAPTER 12. NETWORK DESIGN WITHOUT REPEATED EDGESThis theorem does not guarantee our rounded values will meet the desired demands, butit does guarantee we will get close. We therefore investigate ways to augment the nearlyfeasible solution to a feasible on at little cost. We therefore make the following de�nition:De�nition 12.2.2 Given a tentative solution, the de�cit of a cut is the di�erence betweenthe demand across that cut and the number of tentative solution edges crossing it.The unit-cost network design problem is relatively easy to deal with because we havegood bounds on the value of the optimum. First observe that any k-connected graph mustcontain at least kn=2 edges. This follows from the fact that the minimum degree at eachvertex must be at least k.For the speci�c case of the minimum k-connected subgraph problem, it is easy to achievean approximation ratio of two (a di�erent 2-approximation algorithm extending to weightedgraphs is given in [119]). Simply construct a sparse k-connectivity certi�cate. This graphwill contain at most kn edges, while the optimum graph must have at least kn=2.We improve this result with randomized rounding:Theorem 12.2.3 For k > log n, a (1 + O(p(logn)=k)-approximation to the minimumk-connected subgraph can be found in polynomial time (LV).Proof: Begin with the fractional solution F as found by the ellipsoid algorithm [71]. Byde�nition, F has minimum cut k. Suppose the solution has total weight W (which mustexceed kn=2 to give minimum degree k). Clearly W is a lower bound on the number ofedges in the integral solution. Treating the weights pe as probabilities, we build a subgraphH by including edge e with probability pe. Since F has minimum cut k, Theorem 6.2.1 saysthat H has minimum cut k � O(pk logn) with high probability. By the Cherno� bound,the number of edges in H is W +O(pW logn) with high probability.After deleting all the edges in H , build a sparse O(pk logn)-connectivity certi�cate Cin the remaining graph. Clearly, C [H is k-connected. C has O(npk log n) edges. SinceW � kn=2, npk logn = O(Wp(logn)=k) and pW logn = O(Wp(logn)=kn). Thus thetotal number of edges in H [C is W + O(pW logn) + O(pk logn), which is O(W (1 +p(logn)=k)).We can use much the same approach to the generalized Steiner problem. The onlychange is in how we augment the rounded solution to a feasible one. Since we can no longerbound the optimum directly, we instead use the Forest Algorithm of [75]. This algorithm

12.3. FIXED CHARGE NETWORKS 203augments a graph to meet the demands f at a total cost of log� times the optimum, where� is the maximum de�cit.We use Corollary 12.2.1. Set � = 2, so that at cost twice the optimum we get a graph inwhich the maximum de�cit is O(logn). Then use the Forest Algorithm of [75] to augmentit to optimum. This yields the following:Lemma 12.2.4 An O(log log n) approximation to the minimum cost k-connected subgraphcan be found in polynomial time.This result is not useful, since there is already a simple 2-approximation algorithm forthe minimum cost k-connected subgraph problem [119]. However, the generalization is new:Lemma 12.2.5 There is an O(log fmax lognfmin)) approximation algorithm for the network de-sign problem.This compares favorably with the Forest Algorithm'sO(log fmax) bound whenever fmin >logn.12.3 Fixed Charge NetworksOur algorithms also apply to the �xed charge problem in which edges have capacities. Inthis problem, the best currently known approximation ratio is a factor of fmax [75]. Theintroduction of large capacities increases the variances in our random sampling theorems.In particular, if we let U denote the maximum edge capacity, we have the following resultbased on a modi�cation of Theorem 6.2.1:Corollary 12.3.1 Given a fractional solution to f , if each edge weight we is increasedto (1 + �)we), and randomized rounding is performed, than high probability no cut in therounded graph will have value less than its value in the original fractionally weighted graph,where � = O(U logn=(�fmin)).Corollary 12.3.2 There is a (1 + O(qUfmax lognfmin))-approximation algorithm for the �xed-charge generalized Steiner problem.Note that without loss of generality we can assume U � fmax, since we can alwaysdecrease the capacities of larger edges without changing the optimum solution.

204 CHAPTER 12. NETWORK DESIGN WITHOUT REPEATED EDGESCorollary 12.3.3 There is an O(fmaxq lognfmin)-approximation algorithms for the �xed chargegeneralized Steiner problem.Corollary 12.3.4 There is an O(pk logn)-approximation algorithm for the �xed-chargek-connected subgraph problem.12.4 General DistributionsThe random graph model can be generalized: instead of the simple version in which an edgee is either present or not present with probability pe, we can give the edge a weight whichis a random variable we chosen from some arbitrary distribution. We de�ne an \expectedgraph" Ĝ and its associated minimum expected cut ĉ and expected s-t cut ĉst by assigningedge weights E[we] to Ĝ.To analyze this more general model, note that the only time the proof of Theorem 6.2.1used knowledge of the distribution was in the application of the Cherno� bound. We there-fore use the following easy generalization of the Cherno� bound to arbitrary distributions:Lemma 12.4.1 Let S = PXi be a sum of independent random variables arbitrarily dis-tributed on the interval [0; 1], and let �E[S]. ThenPr[jS � �j > ��] < e��2�=2:The proof follows from a perturbation argument that shows that binomial random variableshave the \worst" tails.Using this lemma immediately lets us generalize our sampling theorem:Theorem 12.4.2 Let G be a random graph with edge weights independently chosen fromvarious distributions on the [0; 1] interval. Then with high probability, every cut S in Gsatis�es j�(S)� �̂(S)j < ��̂(S)], where � = q6 lognĉ and ĉ is the minimum expected cut of G.Distributions on larger intervals can be handled simply by scaling the distributionsso that the maximum value in a distribution becomes 1. Corollaries for minimum cutsand s-t minimum cuts follow as before. What we have essentially shown is that so long asĉ =
(W logn), whereW is the maximum possible weight of an edge, the cuts in the randomgraph have predictable values. This bound simply says that if the failure of one edge cancause catastrophic changes in the value of a cut, then the outcome becomes unpredictable.

12.4. GENERAL DISTRIBUTIONS 205NotesGoemans, Tardos, and Williamson [76] have observed that for the case of weakly super-modular functions, it is possible to \uncross" the fractional solution into a laminar systemso that only O(n) edges have fractional values. This gives a (1 + O(1=k))-approximationalgorithm for the k-connected subgraph problem.

Chapter 13EREW Minimum Spanning TreeAlgorithmsWe now show how sampling can be used to improve the e�ciency of parallel algorithms forminimum spanning trees. We concentrate on the restrictive exclusive-write PRAM modelof computation, in which each location in shared memory can be written to by at most oneprocessor in each time step. We consider both exclusive-read and concurrent read models.The problem of �nding a minimum spanning forest is a generalization of �nding aspanning forest, which is equivalent to �nding connected components in a graph. It isknown [39] that there is an
(logn) time bound for �nding connected components on aCREW PRAM; this bound clearly applies to minimum spanning trees as well. There is alsoan obvious
(m) time bound on the total work (time-processor product) required to solveeither problem.Until recently, the best time bound for connected components or minimum spanningtrees was O(log2 n). Johnson and Metaxas [95] broke this barrier with an O(log1:5 n)time, m + n processor CREW algorithm for connected components, and soon achievedthe same time bound for minimum spanning trees. Their minimum spanning tree algo-rithm was improved by Chong and Lam [31] to a running time of O(logn log logn) in theEREW model with the same processor cost. The Chong and Lam algorithm is thus withina factor of O(log logn) of the optimum time bound. However, its total work bound ofO(m logn log logn) is further from the optimum O(m) bound.Randomization gave a di�erent approach to the connected components problem. Karger,Nisan and Parnas [109] used random walks to �nd connected components in O(logn) time206

13.1. REDUCING WORK 207using (m+ n1+�)= logn processors for any constant �. The algorithm is therefore optimumon dense graphs. Halperin and Zwick [88] used this technique in an optimum algorithmwhich runs in O(logn) time using (m+ n)= logn processors.A remaining open question is to �nd a minimum spanning tree algorithm with the sametime and total work bounds. Cole and Vishkin [38] give an algorithm running on a CRCWPRAM that requires O(logn) time on O((n+m) log logn= logn) processors. Cole, Klein,and Tarjan [37], have adapted the randomized minimum spanning tree algorithm presentedabove to run in parallel. The parallel algorithm does linear expected work and runs inO(logn 2log� n) expected time on a CRCW PRAM. Here, we give sampling algorithms forexclusive-write models.As a �rst step, we reduce the amount of work performed by the algorithm of Chong andLam from O(m logn log logn) to O(m+n(log n log logn)2) without a�ecting the time boundin the CREW model, thus producing an algorithm which is work-optimum on su�cientlydense graphs. Then we show how the same approach can be applied to an algorithm whichhas an optimum time bound but is very ine�cient in terms of work, producing an EREWalgorithm which is optimum in terms of both work and time bounds on dense graphs.Use of the sampling paradigm requires a veri�cation algorithm. Alon and Schieber [8]give a CREW algorithm for verifying minimum spanning trees. Using n log� n= logn pro-cessors and O(logn) time, they build a data structure which can a single processors can useto verify a single edge in O(1) time.13.1 Reducing WorkWe begin with the O(logn log logn) time algorithm of Chong and Lam, which is ine�cientbecause it performs
(m logn log log n) work. We improve the e�ciency of the algorithmby applying our sampling techniques. Assume we have p � n log� n processors. Chooseeach graph edge with probability p=m. We will select O(p) edges w.h.p. We can thereforeuse p processors to compute their minimum spanning tree F in O(logn log log n) time usingthe Chong-Lam algorithm. We now preprocess F using the veri�cation algorithm of [8].By assigning each processor to do the work of log log n \virtual" processors, we can usen log� n= logn log log n processors and run in O(logn log log n) time to get a structure thatlets us verify a single graph edge against F in O(1) time. We now assign m=p edges toeach of our p processors and let each processor verify its edges against the data structure.

208 CHAPTER 13. EREW MINIMUM SPANNING TREE ALGORITHMSThis takes O(m=p) time. Theorem 11.2.4 now proves that the expected number of F -lightedges is O(nm=p). The minimum spanning tree of this set of edges can be computed inO(logn log logn) time using O(nm=p) processors. If we set p = m= logn log logn, the foursteps of our approach require O(logn log log n) time and, respectively, O(m= logn log logn),O(n log� n= logn log logn), O(m= logn log logn), and O(n logn log logn) processors. We de-duce the following:Lemma 13.1.1 The minimum spanning tree of a graph can be computed in O(logn log logn)time with high probability using m= logn log logn + n logn log log n CREW processors.This algorithm therefore performs optimum work on all graphs with
(n(logn log logn)2)edges, and still has the same time bound as before.13.2 Reducing Work and TimeWe can apply the same approach as above to a fast but workaholic minimum spanning treealgorithm. In the next section, we give an m1+�-processor O(logn)-time EREW algorithmfor constructing minimum spanning trees and an m= logn + n1+�-processor O(logn)-timeEREW algorithm for verifying them. Combining these two algorithms with sampling yieldsan algorithm which is optimum on dense graphs.Lemma 13.2.1 Using m= logn + n1+� processors, where � is any constant, a minimumspanning tree can be computed with high probability in O(logn) time.Proof: We set � = �=3. If m < n1+�, apply the m1+� processor algorithm (to follow) us-ing only n(1+�)2 � n1+� processors. Otherwise, sample each edge with probability n1+�=m,producing a subgraph which has O(n1+�) edges with high probability. Apply the m1+�processor algorithm to this subgraph (using less than n1+� processors) and perform veri�-cation against the result forest F using m= logn processors as in the previous section. ByLemma 2.2.1, O(n(m=n1+�)) = O(m=n�) edges are F -light (w.h.p.); since m < n2 this is infact O(m1��=2) edges. Therefore m= logn processors su�ce to �nd the minimum spanningtree of these edges (and thus of the original graph) in O(logn) time using the followingalgorithm.

13.3. FAST ALGORITHMS FOR DENSE GRAPHS 20913.3 Fast Algorithms for Dense GraphsWe now �ll in the details of the previous section by presenting an m1+�-processor O(logn)-time EREW algorithm for construction minimum spanning trees and an m+n1+�-processorO(logn)-time EREW algorithm for verifying them. This section is of technical interest onlyand can be skipped with no loss of continuity.13.3.1 ConstructionWe now present the ine�cient minimum spanning tree algorithm which is used as the basisof the above lemma. Our algorithm is a variant of a simple m2 reduction from minimumspanning trees to connected components. This simple algorithm is based on the cycle andcut properties from Section 2.1.3, which show that an edge is in the minimum spanningtree if and only if its endpoints are not connected by the set of all edges smaller than itself.Once we sort all the edges (which can be done in O(logn) time using any optimum sortingalgorithm) we can for each edge e apply the connected components algorithm of [88] to theset of edges smaller than e. This will immediately tell us whether e is in the minimumspanning tree. Doing this simultaneously for each edge requires O(logn) time and O(m2)processors.We now show how the processor cost can be reduced to m1+�. Assume we have sortedthe edges and numbered them e1; : : : ; em in increasing order. Partition the edges into kcontiguous blocks of m=k edges. Edge ei belongs to the block numbered dik=me. Let Gr bethe graph induced by the edges in blocks 1 through r. If ei is in block r+1 and Gr connectsthe endpoints of ei, then ei Gr-heavy and thus is not in the minimum spanning tree. If(using [88]) we compute connected components for each of the k graphs Gr in parallel, usingkm processors and O(logn) time, then we can discard all these non-minimum spanning treeedges.We next construct a family of graphs G0r for each r. The vertices of G0r are the connectedcomponents of Gr�1, which have just been computed. The edges of G0r correspond to theedges in block r which were not deleted in the previous step. Each such edge e will byconstruction have its endpoints in two di�erent connected components of Gr�1; we use acorresponding edge in G0r to connect the two components containing the endpoints of e. Toensure that there are fewer vertices than edges, we also delete from G0r any vertex with noincident edge.

210 CHAPTER 13. EREW MINIMUM SPANNING TREE ALGORITHMSWe now come to the point of this construction: the edges in the minimum spanningtree of G are simply the edges in the minimum spanning trees of all the graphs G0r. To seethis, note that an edge e is in the minimum spanning tree of G0r whenever it is not spannedby the edges smaller than itself in G0r. Since we already know that any edge in G0r is notspanned by the edges in preceding blocks, this is equivalent to saying that e is not spannedby all the edges smaller than itself in the original graph G, so e is in the minimum spanningtree of G. We can therefore �nd the minimum spanning tree of G by recursively �nding theminimum spanning trees of all the graphs G0r. However, each graph G0r has at most m=kedges, namely those from block r. We have also ensured that the graphs we are consideringhave fewer vertices than edges. This gives a recurrence for the time T and processor boundsP on the recursive algorithm:T (m) = O(logn) + T (m=k)P (m) = max(km; kP (m=k))These recurrences easily solve to T (m) = O(logn logkm) and P (m) = O(km). In particular,if we �x k = m�, we deduce that an minimum spanning tree can be constructed in O(logn)time with high probability using O(m1+�) processors for any constant �.13.3.2 Veri�cationHere we give the (m+n1+�)-processor O(logn)-time veri�cation algorithm used previously.We �rst de�ne a data structure for veri�cation. This data structure was previously devel-oped by both Chazelle [27] and Alon and Schieber [8]. Both these papers actually used amore complex version of this structure to solve a more general problem.De�nition 13.3.1 The Cartesian tree B(F) for a forest F is a tree whose nodes are theedges and vertices of the original forest. It is de�ned as follows:� The Cartesian tree of a vertex is that vertex.� Given a tree T , let e be the edge of greatest weight in it. Removing e from T producestwo trees T1 and T2. Then B(T) has root e, and subtrees B(T1) and B(T2).� The Cartesian tree of a forest has root ?, which for simplicity we shall treat as anedge of in�nite weight, and its children are the Cartesian trees of its trees.

13.3. FAST ALGORITHMS FOR DENSE GRAPHS 211The leaves of B(F) are the vertices of F , and its internal nodes are the edges of F (and ?).De�nition 13.3.2 For vertices u and v of F , B(F; u; v) is the least common ancestor of uand v in B(F).Fact 13.3.3 B(F; u; v) is the heaviest edge on the (unique) path in F from u to v if a pathexists, and ? otherwise.It follows that once the Cartesian tree for a forest F is built, we can verify an edge againstit by performing a single least common ancestors computation. Schieber and Vishkin [174]present an algorithm that uses n EREW processors to preprocess a tree in O(logn) timesuch that m EREW processors can process m least common ancestor queries in O(logn)time. Therefore, all we need for our veri�cation algorithm is build the Cartesian tree. It iseasy to modify the algorithm of Section 13.2 to construct the Cartesian tree of a minimumspanning tree while it is constructing the minimum spanning tree. Recall that we partitionedthe sorted list of edges into blocks and then recursively solved a minimum spanning treeproblem in each block. Assuming the we also found the Cartesian trees in each block, wecan combine them into the full Cartesian tree. Simply note that a leaf in the Cartesian treeof block r corresponds to a vertex in Gr, which in turn corresponds to a single connectedcomponent in block r� 1, which has a Cartesian tree associated with it. Thus we point theroot of a Cartesian tree of a connected component in block r � 1 at the parent of the leafcorresponding to it in block r.

Appendix AProbability Distributions andSampling TheoremsHere, we discuss the various probability distributions and tools used in this work.A.1 Probability DistributionsIn this work we have used several standard probability distributions. We summarize theirproperties here; they can be found in any standard probability text such as [57].The binomial distribution B(n; p) counts the number of successes X in n independenttrials with success probability p. Pr[X = k] = �nk�pk(1� p)n�k and E[X] = np.The negative binomial distribution B�(k; p) counts the number of independent trialsX with success probability p must be performed to encounter k successes. Pr[X = n] =� nk�1�pk(1� p)n�k+1 and E[X] = k=p.The geometric distribution with parameter p is B�(1; p), thus Pr[X = k] = p(1 � p)kand E[X] = 1=p.The exponential distribution with rate w is a continuous distribution corresponding tothe discrete geometric distribution. Pr[X > t] = e�wt and E[X] = 1=w.The Poisson distribution P (u; k) with parameter u counts the number of events Xoccurring in a Poisson process: Pr[X = k] = e�uuk=k! and E[X] = u. The time betweenevents of a Poisson process with rate w is an exponential variable with rate w.The Gaussian distribution has probability density function e�x2=2=p2�. It has mean 0and variance 1. 212

A.2. THE CHERNOFF BOUND 213A.2 The Cherno� BoundProofs of this lemma can be found in [9, Page 232], [30], [151], and [167, Page 54].Lemma A.2.1 (Cherno� [30]) Let X be a sum of Bernoulli random variables on n inde-pendent trials with success probabilities p1; : : : ; pn and expected number of successes � = np.Then, for � � 1, Pr[jX � �j > ��] � e��2�=2:The lemma also applies to sums PXi of arbitrarily distributed independent randomvariables Xi so long as the maximum value attained by any Xi is one.A.3 Nonuniform Random SelectionIn this section, we describe a strongly polynomial implementation of procedure Random-Select.The input to Random-Select is an array W of length n. This cumulative weight array isconstructed from n weights wi by setting Wk =Pi�kwi. Procedure Random-Select imple-ments the goal of choosing an index i at random with probability proportional to weight wi.This problem of nonuniform selection is not new. It has been known for some time [130]that the fastest possible algorithm for random selection has expected running time propor-tional to the entropy; this section essentially uses similar techniques to get high probabilityamortized bounds.Let M = Wn be the sum of all weights. If the edge weights wi (and thus the totalweight M) are polynomial in n, then it is simple to implement Procedure Random-Selectin O(logn) time: simply generate a uniformly distributed (logM)-bit number k in the range[0;M] (all logs are base 2), and return the value i such that Wi�1 � k < Wi. This can bedone even in the model where only a single random bit, rather than an O(logn)-bit randomnumber, can be generated in unit time.When the weights are arbitrary integers that sum to M , the time needed for an exactimplementation is
(logM). However, we can modify the algorithm to introduce a negligibleerror and run in O(logn) time. Suppose we know that only t calls to random-select willbe made during the running of our algorithm. To select an edge from the cumulativedistribution, even if the sum of the edge weights is superpolynomial in n, we let N = tn4,generate s uniformly at random from [0; N], and choose the edge i such that Wi�1 <Wms=N < Wi. The edge that we choose di�ers from the one that we would have chosen

214 APPENDIX A. PROBABILITY DISTRIBUTIONS AND SAMPLING THEOREMSusing exact arithmetic only if Wms=N and Wm(s+1)=N specify di�erent indices. But therecan only be at most n such values in the \boundaries" of di�erent indices, so there are atmost n values that we could chose for s that would cause an error. Thus the probability thatwe make an error with one selection is less than n=N = O(1=tn3) and the probability thatwe make any errors is O(1=n3). This approach reects what is typically done in practice|we simply use the random number generator available in a system call, perform rounding,and ignore the possible loss of precision that results.A drawback of this approach in theory is that even if a particular input to Random-Selecthas only two choices, we still need to use
(log t) bits to generate a selection. Using thisapproach adds an extra log n factor to the running time of Random-Select on constant sizeinputs (which arise at the leaves of the recursion tree of our algorithm) and thus increasesthe running time of Recursive-Contract.A better approach is the following. Intuitively, we generate the logM random bitsneeded to select uniformly from the range [0;M], but stop generating bits when all possibleoutcomes of the remaining bits yield the same selection. Given the length n input, partitionthe range [0;M] into 2n equal sized intervals of length M=2n. Use 1+ log n random bits toselect one of the intervals uniformly at random|this requires O(logn) time spent in binarysearch among the cumulative weights. If this interval does not contain any of the cumulativeweight values Wi (which happens with probability 1=2, since at most n of the 2n intervalscan contain one of the cumulative weight values), then we have unambiguously selected aparticular index because the values of the remaining bits in the (logM)-bit random numberare irrelevant. If the interval contains one or more of the cumulative values, then dividethis one interval into 2n equal sized subintervals and again use 1 + log n bits to selectone subinterval. If the subinterval contains a cumulative weight value, then we subdivideagain. Repeat this process until an index is unambiguously selected. Each subdivisionrequires O(logn) time and O(logn) random bits, and successfully identi�es an index withprobability 1=2.Lemma A.3.1 On an input of size n, the expected time taken by Random-Select is O(logn).The probability the Random-Select takes more than t logn time to �nish is O(2�t).Proof: Each binary search to select a subinterval requires O(logn) time. Call an intervalsearch a success if it selects a unique index, and a failure if it must further subdivide aninterval. The probability of a success is then 1=2. The total number of interval searches is

A.3. NONUNIFORM RANDOM SELECTION 215therefore determined by how many failures occur before a success. Since each search failswith probability 1=2, the probability that t failures occur before a success is O(2�t) and theexpected number of failures preceding the �rst success is 2.Lemma A.3.2 Suppose that t calls are made to Random-Select on inputs of size n. Thenwith probability 1� e�
(t), the amortized time for each call is O(logn).Proof: Each interval search in a call requires O(logn) time. It therefore su�ces to provethat the amortized number of interval searches used is O(1), i.e. that the total number isO(t). We use the de�nitions of success and failure from the previous lemma. We know thenumber of successes over the t calls to Random-Select is t, since each success results in thetermination of one call. The total number of searches is therefore determined how manytrials occur before the tth success. This number is simply the negative binomial distribution(Section A.1) for the tth success with probability 1=2. Since the chances of success andfailure are equal, we expect to see roughly the same number of successes as failures, namelyt, for a total of 2t trials. The Cherno� bound (cf. [151, page 427]) proves the probabilitythat the number of trials exceeds 3t is exponentially small in t.Lemma A.3.3 If n calls are made to Random-Select and each input is of size nO(1), thenwith high probability in n the amortized time for Random-Select on an input of size s isO(log s).Proof: Let the ith input have size ni and let ti = dlognie. From above, we know that theexpected time to run Random-Select on input i is O(ti). We need to show that the totaltime to run Random-Select on all the problems is O(P ti) with high probability. Note thatthe largest value of ti is O(logn).Call the ith call to Random-Select typical if there are more than 5 logn calls with thesame value ti, and atypical otherwise. Since the largest value of ti is O(logn), there can beonly O(log2 n) atypical calls. For atypical call i, by Lemma A.3.1 and since ti = O(logn),we know that the time for call i is O(log2 n) with high probability. Thus the time spent inall the atypical calls is O(log4 n) with high probability. By Lemma A.3.2, if i is a typicalcall then its amortized cost is O(ti) with high probability in n. Therefore, the total timespent on all calls is O(log4 n +P ti), which is O(n +P ti). Since there are n calls made,the amortized cost for call i is then 1 + ti = O(logni).

216 APPENDIX A. PROBABILITY DISTRIBUTIONS AND SAMPLING THEOREMSNow suppose that instead of using 2t intervals per phase on a problem of size t, we uset2 intervals. This still requires O(log t) random bits, but now that probability that we failto isolate a particular element drops to 1=t. Thus on problems of size greater than nO(1),with high probability in n only one phase of the algorithm will be required. Combining thiswith lemma proves the following:Theorem A.3.4 Given n calls to random select, with high probability in n each call of sizet will take O(log t) amortized time.We have therefore shown how to implement random-select in O(log t) amortized timeon size t inputs, assuming a simple condition on the inputs. To see that this condition is metin the Recursive Contraction Algorithm, note that we perform
(n) calls to Random-Select(for example, the ones in the two calls to Contract at the top level of the recursion). Thisconcludes the proof of the time bound of the Recursive Contraction Algorithm.Note that while the analysis of this section is necessary to prove the desired time boundof Recursive-Contract, it is unlikely that it would be necessary to actually implement theprocedure Random-Select in practice. The system supplied random number generator androunding will probably su�ce.A.4 Generating Exponential VariatesAt certain points we made use of the exponential distribution with parameter w which hasprobability distribution Pr[X > t] = e�wt. Perhaps the simplest way to generate a variableX with probability density function e�wt is to generate a variable U uniformly distributedin the [0; 1] interval, and then to set X = �(lnU)=w [128, Page 128]. Two obstacles arisein practice. One is that we cannot sample uniformly from [0; 1]. Another is that we cannotcompute logarithms exactly, but must instead rely on some form of approximation.Note, however, that our use of the exponential distribution has been limited. Speci�cally,the only thing we ever did with the exponential variables as compare them. We showthat using O(logn) random bits and polylogarithmic time per variate, we can generateapproximately exponential variables such that all comparisons turn out the same with highprobability. Suppose �rst that we can compute logarithms exactly, but can only generaterandom bits.We begin with the following model. Suppose that we could generate exponential variatesexactly, but that an adversary changed them by a factor of (1��) before we looked at them.

A.4. GENERATING EXPONENTIAL VARIATES 217We show that with probability O(�), this does not a�ect the results of any comparisons. Thiswill show that we need determine only the O(logn) most-signi�cant bits of our exponentialvariates, since the error introduced by rounding to this many bits will be O(1=nd). To proveour claim, we instead show that with probability 1�O(�), no two exponential variates havea ratio of values in the range (1� 4�). It follows that changing the two variates' values by afactor of (1� �) does not make the larger of the two become the smaller, so all comparisonsbetween the variates yield the same result as before they were changed.To prove the theorem, we consider two exponential variates: X distributed with param-eter w, and Y distributed with parameter v. The probability density function for X is thenPr[t � X � dt] = we�wt dt, while the cumulative distribution for Y is Pr[Y � s] = e�vs.Therefore, Pr[Y 2 (1� �)X] = Z 10 (we�wt dt) Pr[Y 2 (1� �)t]= Z 10 (we�wt dt)(e�(1��)vt� e(1+�)vt)= w Z 10 (e�(w+(1��v))t� e(w+(1+�)v)t) dt= ww+ (1 + �)v � ww + (1 + �)v= 11+ (1 + �)r � 11 + (1 + �)r (r = v=w)= 2�r(1� �2) + 2 + 1=r� �We have therefore shown that it su�ces to generate (1 � �)-approximations to expo-nentially distributed variates. This in turn reduces to generating (1� �)-approximations toexponential variables with parameter 1, since an exponential variate with parameter w canbe produced by generating a sample X from the exponential distribution with parameter1 and then using X=w as the values; scaling by w does not change the relative error in theapproximation.We sketch two schemes for generating an exponential variate (see also [128]). One is togenerate a variate U uniformly distributed in the range [0; 1] and then to set X = � lnU .This introduces the new problem of approximating the logarithm. However, since we needonly the O(logn) most signi�cant bits of the result, we can compute them using the �rstO(logn) bits in the Taylor expansion of the logarithm function (furthermore, it su�ces touse only the O(logn) most signi�cant bits of U , so we need only O(logn) random bits).

218 APPENDIX A. PROBABILITY DISTRIBUTIONS AND SAMPLING THEOREMSAnother approach due to Von Neumann [158] avoids all use of logarithms. Generatenumbers Yi from the uniform distribution until for some n we have Yn � Yn+1. If n iseven, we count the whole attempt as a failure and try again. Eventually, after X failures,we will have a success (n will be odd). At this point, we return the value X + Y1. Itis perhaps surprising that this results in an exponentially distributed value. It is morestraightforward to show that the number of draws from the uniform distribution before we�nish is geometrically distributed with mean roughly 6; thus if a large number of exponentialvariates is called for, the probability is high that the amortized number of uniform drawsper exponential variate is less than 7. Finally, we note that it is su�cient to generateonly O(logn) bits for each sample from the uniform distribution; this approximates theactual uniform distribution to within (1 + �) and therefore approximates the exponentialdistribution to the same degree of accuracy.Lemma A.4.1 In O(logm) time per variate, with high probability it is possible to generateapproximately exponentially distributed variates such that all comparisons are the same asfor exact exponential distributions.

Bibliography[1] Aggarwal, A., and Anderson, R. J. A random NC algorithm for depth �rstsearch. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing(1987), ACM Press, pp. 325{334.[2] Aggarwal, A., Klein, P., and Ravi, R. When trees collide: An approximationalgorithm for the generalized steiner network problem. In Proceedings of the 23rd ACMSymposium on Theory of Computing (May 1991), ACM, ACM Press, pp. 134{144.[3] Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. Network Flows: Theory,Algorithms, and Applications. Prentice Hall, 1993.[4] Ajtai, M., Koml�os, J., and Szemer�edi, E. Deterministic simulation in logspace.In Proceedings of the 19th ACM Symposium on Theory of Computing (1987), ACM,ACM Press, pp. 132{140.[5] Alizadeh, F. Interior point methods in semide�nite programming with applicationsto combinatorial optimization. In Proceedings of the 2nd MPS Conference on IntegerProgramming and Combinatorial Optimization (Carnegie-Mellon University, 1992).To appear in SIAM Journal on Optimization.[6] Alon, N. Personal communication, Aug. 1994.[7] Alon, N., and Kahale, N. A spectral technique for coloring random 3-colorablegraphs. In Proceedings of the 26th ACM Symposium on Theory of Computing (May1994), ACM, ACM Press, pp. 346{355.[8] Alon, N., and Schieber, B. Optimal preprocessing for answering online productqueries. Tech. rep., Tel Aviv University, 1987.219

220 BIBLIOGRAPHY[9] Alon, N., and Spencer, J. H. The Probabilistic Method. John Wiley & Sons, Inc.,New York, NY, 1992.[10] Applegate, D. AT&T Bell Labs, 1992. Personal Communication.[11] Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M. Proof veri-�cation and hardness of approximation problems. In Proceedings of the 33rd AnnualSymposium on the Foundations of Computer Science (Oct. 1992), IEEE, IEEE Com-puter Society Press, pp. 14{23.[12] Awerbuch, B., and Shiloach, Y. New connectivity and MSF algorithms forshu�e-exchange network and PRAM. IEEE Transactions on Computers 36, 10 (Oct.1987), 1258{1263.[13] Bellare, M., Goldreich, O., and Goldwasser, S. Randomness in interactiveproofs. Computational Complexity 3 (1993), 319{354. Abstract in FOCS 1990.[14] Bellare, M., and Sudan, M. Improved non-approximability results. In Proceedingsof the 26th ACM Symposium on Theory of Computing (May 1994), ACM, ACM Press,pp. 184{193.[15] Bencz�ur, A. A. Augmenting undirected connectivity in RNC and in randomized~O(n3) time. In Proceedings of the 26th ACM Symposium on Theory of Computing(May 1994), ACM, ACM Press, pp. 658{667.[16] Berge, C. Graphs and Hypergraphs. North-Holland, Amsterdam, 1973.[17] Blum, A. New approximation algorithms for graph coloring. Journal of the ACM41, 3 (May 1994), 470{516.[18] Bollob�as, B. Random Graphs. Harcourt Brace Janovich, 1985.[19] Bollob�as, B., and Thomason, A. G. Random graphs of small order. In RandomGraphs, M. Karnoski and Z. Palka, Eds., no. 33 in Annals of Discrete Mathematics.Elsevier Science Publishing Company, 1987, pp. 47{97.[20] Boppana, R. B., and Halldorsson, M. M. Approximating maximum independentsets by excluding subgraphs. BIT 32 (1992), 180{196.

BIBLIOGRAPHY 221[21] Bor�uvka, O. O jist�em probl�emu minim�aln�im. Pr�aca Moravsk�e P�r�irodov�edeck�eSpol�cnosti 3 (1926), 37{58.[22] Botafogo, R. A. Cluster analysis for hypertext systems. In Proceedings of the16th Annual International ACM SIGIR Conference on Research and Development inInformation Retrieval (June 1993), pp. 116{125.[23] Briggs, P., Cooper, K. D., Kennedy, K., and Torczon, L. Coloring heuristicsfor register allocation. In Proceedings of the SIGPLAN 89 Conference on ProgrammingLanguage Design and Implementation (1989), pp. 275{274.[24] Chaitin, G. J. Register allocation and spilling via graph coloring. In Proceedings ofthe SIGPLAN 89 Conference on Programming Language Design and Implementation(1982), pp. 98{101.[25] Chaitin, G. J., Auslander, M. A., Chandra, A. K., Cocke, J., Hopkins,M. E., and Markstein, P. W. Register allocation via coloring. Computer Lan-guages 6 (1981), 47{57.[26] Chaterjee, S., Apr. 1994. Personal communication.[27] Chazelle, B. Computing on a free tree via complexity preserving mappings. Algo-rithmica 2 (1987), 337{361.[28] Cheriyan, J., and Hagerup, T. A randomized maximum-ow algorithm. InProceedings of the 30th Annual Symposium on the Foundations of Computer Science(1989), IEEE, IEEE Computer Society Press, pp. 118{123.[29] Cheriyan, J., Kao, M. Y., and Thurimella, R. Scan-�rst search and sparsecerti�cates: An improved parallel algorithm for k-vertex connectivity. SIAM Journalon Computing 22, 1 (Feb. 1993), 157{174.[30] Chernoff, H. A measure of the asymptotic e�ciency for tests of a hypothesis basedon the sum of observations. Annals of Mathematical Statistics 23 (1952), 493{509.[31] Chong, K. W., and Lam, T. W. Connected components in O(logn log logn) timeon the EREW PRAM. In Proceedings of the 4th Annual ACM-SIAM Symposium onDiscrete Algorithms (Jan. 1993), ACM-SIAM, pp. 11{20.

222 BIBLIOGRAPHY[32] Chor, B., and Goldreich, O. On the power of two-point sampling. Journal ofComplexity 5 (1989), 96{106.[33] Chow, F. C., and Hennessy, J. L. The priority based coloring approach to registerallocation. Transactions on Programming Languages and Systems 12, 4 (Oct. 1990),501{536.[34] Clarkson, K. L., and Shor, P. W. Applications of random sampling in compu-tational geometry, II. Discrete and Computational Geometry 4, 5 (1987), 387{421.[35] Cohen, A., and Wigderson, A. Dispersers, deterministic ampli�cation, and weakrandom sources. In Proceedings of the 30th Annual Symposium on the Foundations ofComputer Science (1989), IEEE, IEEE Computer Society Press, pp. 14{19.[36] Colbourn, C. J. The Combinatorics of Network Reliability, vol. 4 of The Interna-tional Series of Monographs on Computer Science. Oxford University Press, 1987.[37] Cole, R., Klein, P. N., and Tarjan, R. E. A linear-work parallel algorithmfor �nding minimum spanning trees. In Proceedings of the 6th Annual ACM-SIAMSymposium on Parallel Algorithms and Architectures (1994), pp. 11{16.[38] Cole, R., and Vishkin, U. Approximate and exact parallel scheduling with appli-cations to list, tree and graph problems. In Proceedings of the 27th Annual Symposiumon Foundations of Computer Science (1986), IEEE Computer Society Press.[39] Cook, S., Dwork, C., and Reischuk, R. Upper and lower bounds for parallelrandom access machines without simultaneous writes. SIAM Journal on Computing(Feb. 1986).[40] Coppersmith, D. IBM T. J. Watson Laboratories, Mar. 1994. Personal Communi-cation.[41] Cormen, T. H., Leiserson, C. E., and Rivest, R. L. Introduction to Algorithms.MIT Press, Cambridge, MA, 1990.[42] Dahlhaus, E., Johnson, D. S., Papadimitriou, C. H., Seymour, P. D., andYannakakis, M. The complexity of multiway cuts. In Proceedings of the 24th ACMSymposium on Theory of Computing (May 1992), ACM, ACM Press, pp. 241{251.

BIBLIOGRAPHY 223[43] Dantzig, G. B., Fulkerson, D. R., and Johnson, S. M. Solution of a large-scaletraveling salesman problem. Operations Research 2 (1954), 393{410.[44] Dinitz, E. A., Karzanov, A. V., and Lomonosov, M. V. On the structure ofa family of minimal weighted cuts in a graph. In Studies in Discrete Optimization,A. A. Fridman, Ed. Nauka Publ., 1976, pp. 290{306.[45] Dixon, B., Rauch, M., and Tarjan, R. E. Veri�cation and sensitivity analysis ofminimum spanning trees in linear time. SIAM Journal on Computing 21, 6 (1992),1184{1192.[46] Dyer, M. E., Frieze, A. M., and Kannan, R. A random polynomial timealgorithm for approximating the volume of convex bodies. Journal of the ACM 38(1991), 1{17.[47] Edmonds, J. Minimum partition of a matroid into independents subsets. Journal ofResearch of the National Bureau of Standards 69 (1965), 67{72.[48] Edmonds, J. Matroids and the greedy algorithm. Mathematical Programming 1(1971), 126{136.[49] Edmonds, J., and Karp, R. M. Theoretical improvements in algorithmic e�ciencyfor network ow problems. Journal of the ACM 19 (1972), 248{264.[50] Elias, P., Feinstein, A., and Shannon, C. E. Note on maximum ow through anetwork. IRE Transactions on Information Theory IT-2 (1956), 117{199.[51] Eppstein, D., Galil, Z., Italiano, G. F., and Nissenzweig, A. Sparsi�cation|a technique for speeding up dynamic graph algorithms. In Proceedings of the 33rdAnnual Symposium on the Foundations of Computer Science (Oct. 1992), IEEE, IEEEComputer Society Press, pp. 60{69.[52] Erd�os, P., and R�enyi, A. On random graphs I. Publ. Math. Debrecen 6 (1959),290{297.[53] Eswaran, K. P., and Tarjan, R. E. Augmentation problems. SIAM Journal onComputing 5 (1976), 653{665.

224 BIBLIOGRAPHY[54] Feder, T., and Mihail, M. Balanced matroids. In Proceedings of the 24th ACMSymposium on Theory of Computing (May 1992), ACM, ACM Press, pp. 26{38.[55] Feder, T., and Motwani, R. Clique partitions, graph compression and speeding-up algorithms. In Proceedings of the 23rd ACM Symposium on Theory of Computing(May 1991), ACM, ACM Press, pp. 123{133. To appear in Journal of Computer andSystem Sciences.[56] Feige, U., Goldwasser, S., Lov�asz, L., Safra, S., and Szegedy, M. Approx-imating clique is almost NP-complete. In Proceedings of the 32nd Annual Symposiumon the Foundations of Computer Science (Oct. 1991), IEEE, IEEE Computer SocietyPress, pp. 2{12.[57] Feller, W. An Introduction to Probability Theory and its Applications, 3 ed., vol. 1.John Wiley & Sons, 1968.[58] Floyd, R. W., and Rivest, R. L. Expected time bounds for selection. Communi-cations of the ACM 18, 3 (1975), 165{172.[59] Ford, Jr., L. R., and Fulkerson, D. R. Maximal ow through a network.Canadian Journal of Mathematics 8 (1956), 399{404.[60] Ford, Jr., L. R., and Fulkerson, D. R. Flows in Networks. Princeton UniversityPress, Princeton, New Jersey, 1962.[61] Frankl, P., and Rodl, V. Forbidden intersections. Transactions of the AmericanMathematical Society 300 (1994), 259{286.[62] Fredman, M., and Willard, D. E. Trans-dichotomous algorithms for minimumspanning trees and shortest paths. In Proceedings of the 31st Annual Symposium onthe Foundations of Computer Science (Oct. 1990), IEEE, IEEE Computer SocietyPress, pp. 719{725.[63] Frieze, A., and Jerrum, M. Improved approximation algorithms for MAX k-CUTand MAX BISECTION. Manuscript., June 1994.[64] F�urer, M. Improved hardness results for approximating the chromatic number.Private Communication, 1994.

BIBLIOGRAPHY 225[65] Gabber, O., and Galil, Z. Explicit construction of linear-sized superconcentrators.Journal of Computer and System Sciences 22 (1981), 407{420.[66] Gabow, H. N. Applications of a poset representation to edge connectivity andgraph rigidity. In Proceedings of the 32nd Annual Symposium on the Foundations ofComputer Science (Oct. 1991), IEEE Computer Society Press, pp. 812{821.[67] Gabow, H. N. A matroid approach to �nding edge connectivity and packing ar-borescences. In Proceedings of the 23rd ACM Symposium on Theory of Computing(May 1991), ACM, ACM Press, pp. 112{122. To appear in Journal of Computer andSystem Sciences.[68] Gabow, H. N. A framework for cost-scaling algorithms for submodular ow prob-lems. In Proceedings of the 34th Annual Symposium on the Foundations of ComputerScience (Nov. 1993), IEEE, IEEE Computer Society Press, pp. 449{458.[69] Gabow, H. N., Galil, Z., and Spencer, T. H. E�cient implementation of graphalgorithms using contraction. In Proceedings of the 25th Annual Symposium on theFoundations of Computer Science (Los Alamitos, CA, 1984), IEEE, IEEE ComputerSociety Press, pp. 347{357.[70] Gabow, H. N., Galil, Z., Spencer, T. H., and Tarjan, R. E. E�cient algo-rithms for �nding minimum spanning tree in undirected and directed graphs. Com-binatorica 6 (1986), 109{122.[71] Gabow, H. N., Goemans, M. X., and Williamson, D. P. An e�cient ap-proximation algorithm for the survivable network design problem. In Proceedings ofthe Third MPS Conference on Integer Programming and Combinatorial Optimization(1993), pp. 57{74.[72] Gabow, H. N., and Westermann, H. H. Forests, frames, and games: Algorithmsfor matroid sums and applications. Algorithmica 7 (1992), 465{497.[73] Galil, Z., and Pan, V. Improved processor bounds for combinatorial problems inRNC. Combinatorica 8 (1988), 189{200.[74] Garey, M. R., and Johnson, D. S. Computers and Intractability: A Guide to theTheory of NP-Completeness. W. H. Freeman and Company, San Francisco, 1979.

226 BIBLIOGRAPHY[75] Goemans, M. X., Goldberg, A., Plotkin, S., Shmoys, D., Tardos, �E., andWilliamson, D. Improved approximation algorithms for network design problems.In Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms(Jan. 1994), ACM-SIAM, pp. 223{232.[76] Goemans, M. X., Tardos, �E., and Williamson, D. P., 1994. Personal Commu-nication.[77] Goemans, M. X., and Williamson, D. P. :878-approximation algorithms forMAX CUT and MAX 2SAT. In Proceedings of the 26th ACM Symposium on Theoryof Computing (May 1994), ACM, ACM Press, pp. 422{431.[78] Goldberg, A. V., and Tarjan, R. E. A new approach to the maximum owproblem. Journal of the ACM 35 (1988), 921{940.[79] Goldschlager, L. M., Shaw, R. A., and Staples, J. The maximum ow problemis logspace complete for P. Theoretical Computer Science 21 (1982), 105{111.[80] Goldschmidt, O., and Hochbaum, D. Polynomial algorithm for the k-cut prob-lem. In Proceedings of the 29th Annual Symposium on the Foundations of ComputerScience (1988), IEEE Computer Society Press, pp. 444{451.[81] Golub, G. H., and Loan, C. F. V. Matrix Computations. Johns Hopkins Univer-sity Press, Baltimore, MD, 1983.[82] Gomory, R. E., and Hu, T. C. Multi-terminal network ows. Journal of theSociety of Industrial and Applied Mathematics 9, 4 (Dec. 1961), 551{570.[83] Graham, R. L., and Hell, P. On the history of the minimum spanning treeproblem. Annals of the History of Computing 7 (1985), 43{57.[84] Graham, R. L., Knuth, D. E., and Patashnik, O. Concrete Mathematics.Addison-Wesley, 1989.[85] Gr�otschel, M., Lov�asz, L., and Schrijver, A. The ellipsoid method and itsconsequences in combinatorial optimization. Combinatorica 1 (1981), 169{197.[86] Gr�otschel, M., Lov�asz, L., and Schrijver, A. Geometric Algorithms and Com-binatorial Optimization, vol. 2 of Algorithms and Combinatorics. Springer-Verlag,1988.

BIBLIOGRAPHY 227[87] Halld�orsson, M. M. A still better performance guarantee for approximate graphcoloring. Information Processing Letters 45 (1993), 19{23.[88] Halperin, S., and Zwick, U. An optimal randomized logarithmic time connectiv-ity algorithm for the EREW PRAM. In Proceedings of the 6th Annual ACM-SIAMSymposium on Parallel Algorithms and Architectures (1994), pp. 1{10.[89] Hao, J., and Orlin, J. B. A faster algorithm for �nding the minimum cut in agraph. In Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algo-rithms (Jan. 1992), ACM-SIAM, pp. 165{174.[90] Hastad, J. Improved lower bounds for small depth circuits. In Proceedings of the18th Annual ACM Symposium on Theory of Computing (1986), ACM Press, pp. 6{20.[91] Hoare, C. A. R. Quicksort. Computer Journal 5, 1 (1962), 10{15.[92] Impagliazzo, R., and Zuckerman, D. How to recycle random bits. In Proceed-ings of the 30th Annual Symposium on the Foundations of Computer Science (1989),pp. 222{227.[93] Israeli, A., and Shiloach, Y. An improved parallel algorithm for maximal match-ing. Information Processing Letters 22 (1986), 57{60.[94] Jerrum, M., and Sinclair, A. Approximating the permanent. SIAM J. Comput.18, 6 (1989).[95] Johnson, D. B., and Metaxas, P. A parallel algorithm for computing minimumspanning trees. In Proceedings of the 4th Annual ACM-SIAM Symposium on ParallelAlgorithms and Architectures (June 1992), pp. 363{372.[96] Johnson, D. S. Approximation algorithms for combinatorial problems. Journal ofComputer and System Sciences 9 (1974), 256{278.[97] Johnson, D. S. Worst case behavior of graph coloring algorithms. In Proceedingsof the 5th Southeastern Conference on Combinatorics, Graph Theory and Computing,no. X in Congressus Numerantium. 1974, pp. 513{527.[98] Johnson, D. S. The NP-completeness column: An ongoing guide. Journal of Algo-rithms 8, 2 (1987), 285{303.

228 BIBLIOGRAPHY[99] Kannan, R. Markov chains and polynomial time algorithms. In Proceedings of the35th Annual Symposium on the Foundations of Computer Science (Nov. 1994), IEEE,IEEE Computer Society Press, pp. 656{671.[100] Kao, M.-Y., and Klein, P. N. Towards overcoming the transitive-closure bottle-neck: E�cient parallel algorithms for planar digraphs. In Proceedings of the 22nd ACMSymposium on Theory of Computing (May 1990), ACM, ACM Press, pp. 181{192.[101] Karger, D. R. Approximating, verifying, and constructing minimum spanningforests. Manuscript., 1992.[102] Karger, D. R. Global min-cuts in RNC and other rami�cations of a simple mincutalgorithm. In Proceedings of the 4th Annual ACM-SIAM Symposium on DiscreteAlgorithms (Jan. 1993), ACM-SIAM, pp. 21{30.[103] Karger, D. R. Random sampling in matroids, with applications to graph connec-tivity and minimum spanning trees. In Proceedings of the 34th Annual Symposium onthe Foundations of Computer Science (Nov. 1993), IEEE, IEEE Computer SocietyPress, pp. 84{93.[104] Karger, D. R. Random sampling in cut, ow, and network design problems. InProceedings of the 26th ACM Symposium on Theory of Computing (May 1994), ACM,ACM Press, pp. 648{657.[105] Karger, D. R. Using randomized sparsi�cation to approximate minimum cuts. InProceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms (Jan.1994), ACM-SIAM, pp. 424{432.[106] Karger, D. R., Klein, P. N., and Tarjan, R. E. A randomized linear-timealgorithm to �nd minimum spanning trees. Journal of the ACM (1994). To appear.[107] Karger, D. R., and Motwani, R. Derandomization through approximation: AnNC algorithm for minimum cuts. In Proceedings of the 25th ACM Symposium onTheory of Computing (May 1993), ACM, ACM Press, pp. 497{506. Also appeared asStanford Univeristy technical report STAN-CS-93-1471.[108] Karger, D. R., Motwani, R., and Sudan, M. Approximate graph coloringby semide�nite programming. In Proceedings of the 35th Annual Symposium on the

BIBLIOGRAPHY 229Foundations of Computer Science (Nov. 1994), IEEE, IEEE Computer Society Press,pp. 2{13.[109] Karger, D. R., Nisan, N., and Parnas, M. Fast connected components algo-rithms for the EREW PRAM. In Proceedings of the 4th Annual ACM-SIAM Sympo-sium on Parallel Algorithms and Architectures (June 1992), pp. 562{572.[110] Karger, D. R., and Stein, C. An ~O(n2) algorithm for minimum cuts. In Proceed-ings of the 25th ACM Symposium on Theory of Computing (May 1993), ACM, ACMPress, pp. 757{765.[111] Karp, R. M. Probabilistic recurrence relations. In Proceedings of the 23rd ACMSymposium on Theory of Computing (May 1991), ACM, ACM Press, pp. 190{197.[112] Karp, R. M., Luby, M., and Madras, N. Monte-carlo approximation algorithmsfor enumeration problems. Journal of Algorithms 10, 3 (Sept. 1989), 429{448.[113] Karp, R. M., and Luby, M. G. Monte carlo algorithms for planar multiterminalnetwork reliability problems. Journal of Complexity 1 (1985), 45{64.[114] Karp, R. M., and Ramachandran, V. Parallel algorithms for shared memorymachines. In Handbook of Theoretical Computer Science, J. van Leeuwen, Ed., vol. A.MIT Press, Cambridge, MA, 1990, pp. 869{932.[115] Karp, R. M., Upfal, E., and Wigderson, A. Constructing a perfect matchingis in random NC. Combinatorica 6, 1 (1986), 35{48.[116] Karzanov, A. V., and Timofeev, E. A. E�cient algorithm for �nding all minimaledge cuts of a non-oriented graph. Cybernetics 22 (1986), 156{162.[117] Khanna, S., Linial, N., and Safra, S. On the hardness of approximating thechromatic number. In Proceedings 2nd Israeli Symposium on Theory and ComputingSystems (1992), pp. 250{260.[118] Khuller, S., and Schieber, B. E�cient parallel algorithms for testing connectivityand �nding disjoint s-t paths in graphs. SIAM Journal on Computing 20, 2 (Apr.1991), 352{375.

230 BIBLIOGRAPHY[119] Khuller, S., and Vishkin, U. Biconnectivity approximations and graph carvings.Journal of the ACM 41, 2 (Mar. 1994), 214{235. A preliminary version appeared inSTOC 92.[120] King, V. A simpler algorithm for verifying minimum spanning trees. Manuscript.,1993.[121] King, V., Rao, S., and Tarjan, R. E. A faster deterministic maximum owalgorithm. In Proceedings of the 3rd Annual ACM-SIAM Symposium on DiscreteAlgorithms (Jan. 1992), ACM-SIAM, pp. 157{164.[122] Klein, P., Plotkin, S. A., Stein, C., and Tardos, �E. Faster approximationalgorithms for the unit capacity concurrent ow problem with applications to routingand �nding sparse cuts. SIAM Journal on Computing 23, 3 (1994), 466{487. Apreliminary version appeared in STOC 90.[123] Klein, P. N., Stein, C., and Tardos, �E. Leighton-Rao might be practical: Fasterapproximation algorithms for concurrent ow with uniform capacities. In Proceedingsof the 22nd ACM Symposium on Theory of Computing (May 1990), ACM, ACM Press,pp. 310{321.[124] Klein, P. N., and Tarjan, R. E. A randomized linear-time algorithm for �ndingminimum spanning trees. In Proceedings of the 26th ACM Symposium on Theory ofComputing (May 1994), ACM, ACM Press, pp. 9{15.[125] Kneser, M. Aufgabe 300. Jber. Deutsch. Math.-Verein. 58 (1955).[126] Knuth, D. E. Fundamental Algorithms, 2nd ed., vol. 1 of The Art of ComputerProgramming. Addison-Wesley Publishing Company, 1973.[127] Knuth, D. E. Matroid partitioning. Tech. Rep. STAN-CS-73-342, Stanford Univer-sity, 1973.[128] Knuth, D. E. Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of ComputerProgramming. Addison-Wesley Publishing Company, 1981.[129] Knuth, D. E. The sandwich theorem. The Electronic Journal of Combinatorics 1(1994), 1{48.

BIBLIOGRAPHY 231[130] Knuth, D. E., and Yao, A. C. The complexity of nonuniform random numbergeneration. In Algorithms and Complexity: New Directions and Recent Results, J. F.Traub, Ed. Academic Press, 1976, pp. 357{428.[131] Komlos, J. Linear veri�cation for spanning trees. Combinatorica 5, 1 (1985), 57{65.[132] Korte, B. H., Lov�asz, L., and Schrader, R. Greedoids. Springer-Verlag, Berlin,1991.[133] Kruskal, Jr., J. B. On the shortest spanning subtree of a graph and the travelingsalesman problem. Proceedings of the American Mathematical Society 7, 1 (1956),48{50.[134] Lawler, E. L. Combinatorial Optimization: Networks and Matroids. Holt, Rein-hardt and Winston, 1976.[135] Lawler, E. L., Lenstra, J. K., Kan, A. H. G. R., and Shmoys, D. B., Eds.The Traveling Salesman Problem. John Wiley & Sons, 1985.[136] Lee, J., and Ryan, J. Matroid applications and algorithms. ORSA Journal onComputing 4, 1 (1992), 70{96.[137] Leighton, T., and Rao, S. An approximate max-ow min-cut theorem for uniformmulticommodity ow problems with applications to approximation algorithms. InProceedings of the 29th Annual Symposium on the Foundations of Computer Science(Oct. 1988), IEEE, IEEE Computer Society Press, pp. 422{431.[138] Lomonosov, M. V. Bernoulli scheme with closure. Problems of Information Trans-mission 10 (1974), 73{81.[139] Lomonosov, M. V. On monte carlo estimates in network reliability. Probability inthe Engineering and Informational Sciences (1994). To appear.[140] Lomonosov, M. V., and Polesskii, V. P. Lower bound of network reliability.Problems of Information Transmission 7 (1971), 118{123.[141] Lov�asz, L. On the ratio of optimal integral and fractional covers. Discrete Mathe-matics 13 (1975), 383{390.

232 BIBLIOGRAPHY[142] Lov�asz, L. On the shannon capacity of a graph. IEEE Transactions on InformationTheory IT-25 (1979), 1{7.[143] Lov�asz, L., Mar. 1994. Personal Communication.[144] Luby, M. G. A simple parallel algorithm for the maximal independent set problem.SIAM Journal on Computing 15 (1986), 1036{1053.[145] Luby, M. G., Naor, J., and Naor, M. On removing randomness from a parallelalgorithm for minimum cuts. Tech. Rep. TR-093-007, International Computer ScienceInstitute, Feb. 1993.[146] Lund, C., and Yannakakis, M. On the hardness of approximating minimizationproblems. In Proceedings of the 25th ACM Symposium on Theory of Computing (May1993), ACM, ACM Press, pp. 286{293.[147] Matula, D. W. Determining edge connectivity in O(nm). In Proceedings of the 28thAnnual Symposium on the Foundations of Computer Science (1987), IEEE, IEEEComputer Society Press, pp. 249{251.[148] Matula, D. W. A linear time 2+� approximation algorithm for edge connectivity. InProceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms (Jan.1993), ACM-SIAM, pp. 500{504.[149] Milner, E. C. A combinatorial theorem on systems of sets. Journal of the LondonMathematical Society 43 (1968), 204{206.[150] Motwani, R., and Naor, J. On exact and approximate cut covers of graphs.Manuscript., 1993.[151] Mulmuley, K. Computational Geometry. Prentice Hall, 1994.[152] Mulmuley, K., Vazirani, U. V., and Vazirani, V. V. Matching is as easy asmatrix inversion. Combinatorica 7, 1 (1987), 105{113.[153] Nagamochi, H., and Ibaraki, T. On max-ow min-cut and integral ow propertiesfor multicommodity ows in directed networks. Information Processing Letters 31(1989), 279{285.

BIBLIOGRAPHY 233[154] Nagamochi, H., and Ibaraki, T. Computing edge connectivity in multigraphs andcapacitated graphs. SIAM Journal of Discrete Mathematics 5, 1 (Feb. 1992), 54{66.[155] Nagamochi, H., and Ibaraki, T. Linear time algorithms for �nding k-edge con-nected and k-node connected spanning subgraphs. Algorithmica 7 (1992), 583{596.[156] Naor, D., and Vazirani, V. V. Representing and enumerating edge connectivitycuts in RNC. In Proceedings of the 2nd Workshop on Algorithms and Data Structures(Aug. 1991), F. Dehne, J. R. Sack, and N. Santoro, Eds., vol. 519 of Lecture Notes inComputer Science, Springer-Verlag, pp. 273{285.[157] Nash-Williams, C. S. J. A. Well-balanced orientations of �nite graphs and unob-trusive odd-vertex-pairings. In Recent Progress in Combinatorics, W. T. Tutte, Ed.Academic Press, 1969, pp. 133{149.[158] Neumann, J. V. Various techniques used in connection with random digits. NationalBureau of Standards, Applied Math Series 12 (1951), 36{38.[159] Nisan, N., Szemeredi, E., and Wigderson, A. Undirected connectivity inO(log1:5 n) space. In Proceedings of the 33rd Annual Symposium on the Foundationsof Computer Science (Oct. 1992), IEEE, IEEE Computer Society Press, pp. 24{29.[160] Noga Alon, N. K., and Szegedy, M. Personal communication, Aug. 1994.[161] Padberg, M., and Rinaldi, G. An e�cient algorithm for the minimum capacitycut problem. Mathematical Programming 47 (1990), 19{39.[162] Phillips, S., and Westbrook, J. Online load balancing and network ow. InProceedings of the 24th ACM Symposium on Theory of Computing (May 1992), ACM,ACM Press, pp. 402{411.[163] Picard, J., and Queyranne, M. Selected applications of minimum cuts in net-works. I.N.F.O.R: Canadian Journal of Operations Research and Information Pro-cessing 20 (Nov. 1982), 394{422.[164] Podderyugin, V. D. An algorithm for �nding the edge connectivity of graphs. Vopr.Kibern. 2, 136 (1973).

234 BIBLIOGRAPHY[165] Polesskii, V. P. Bounds on the connectedness probability of a random graph.Information Processing Letters 26 (1990), 90{98.[166] Provan, J. S., and Ball, M. O. The complexity of counting cuts and of computingthe probability that a network remains connected. SIAM Journal on Computing 12,4 (1983), 777{788.[167] Raghavan, P. Lecture notes on randomized algorithms. Research Report RC 15340(#68237), Computer Science/Mathematics IBM Research Division, T. J. Watson Re-search Center, Yorktown Heights, NY, 1990.[168] Raghavan, P., and Thompson, C. Probabilistic construction of deterministicalgorithms: Approximate packing integer programs. Journal of Computer and SystemSciences 37, 2 (Oct. 1988), 130{43.[169] Ramachandran, V. Flow value, minimum cuts and maximum ows. Manuscript.,1987.[170] Ramanathan, A., and Colbourn, C. Counting almost minimum cutsets withreliability applications. Mathematical Programming 39, 3 (Dec. 1987), 253{61.[171] Recski, A. Matroid Theory and its Applications In Electric Network Theory and inStatics. No. 6 in Algorithms and Combinatorics. Springer-Verlag, 1989.[172] Reif, J. H., and Spirakis, P. Random matroids. In Proceedings of the 12th ACMSymposium on Theory of Computing (1980), pp. 385{397.[173] R�enyi, A. Probability Theory. Elsevier, New York, 1970.[174] Schieber, B., and Vishkin, U. On �nding lowest common ancestors: Simpli�cationand parallelization. SIAM Journal on Computing 17 (Dec. 1988), 1253{1262.[175] Shiloach, Y., and Vishkin, U. An O(logn) parallel connectivity algorithm. Jour-nal of Algorithms 3 (1982), 57{67.[176] Shrijver, A. Theory of Linear and Integer Programming. Wiley-Interscience Seriesin Discrete Mathematics. John Wiley & Sons, 1986.[177] Sleator, D. D., and Tarjan, R. E. A data structure for dynamic trees. Journalof Computer and System Sciences 26 (1983), 362{391.

BIBLIOGRAPHY 235[178] Szegedy, M. AT&T Bell Laboratories, Mar. 1994. Personal Communication.[179] Szegedy, M. A note on the � number of lov�asz and the generalized delsarte bound. InProceedings of the 35th Annual Symposium on the Foundations of Computer Science(Nov. 1994), IEEE, IEEE Computer Society Press, pp. 36{39.[180] Tarjan, R. E. Applications of path compression on balanced trees. Journal of theACM 26, 4 (Oct. 1979), 690{715.[181] Tarjan, R. E. Data Structures and Network Algorithms, vol. 44 of CBMS-NSF Re-gional Conference Series in Applied Mathematics. Society for Industrial and AppliedMathematics, 1983.[182] Valiant, L. The complexity of enumeration and reliability problems. SIAM Journalon Computing 8 (1979), 410{421.[183] Van Der Waerden, B. L. Moderne Algebra. Springer, 1937.[184] van Emde Boas, P. Machine models and simulations. In Handbook of TheoreticalComputer Science, J. van Leeuwen, Ed., vol. A. MIT Press, Cambridge, MA, 1990,ch. 2, pp. 3{66.[185] Vazirani, V. V., and Yannakakis, M. Suboptimal cuts: Their enumeration,weight, and number. In Automata, Languages and Programming. 19th InternationalColloquim Proceedings (July 1992), vol. 623 of Lecture Notes in Computer Science,Springer-Verlag, pp. 366{377.[186] Welsh, D. J. A. Matroid Theory. London Mathematical Society Monographs.Academic Press, 1976.[187] Whitney, H. On the abstract properties of linear independence. American Journalof Mathematics 57 (1935), 509{533.[188] Wigderson, A. Improving the performance guarantee for approximate graph color-ing. Journal of the ACM 30 (1983), 729{735.[189] Williamson, D., Goemans, M. X., Mihail, M., and Vazirani, V. V. A primal-dual approximation algorithm for generalized steiner problems. In Proceedings of

236 BIBLIOGRAPHYthe 25th ACM Symposium on Theory of Computing (May 1993), ACM, ACM Press,pp. 708{717.[190] Winter, P. Generalized steiner problem in outerplanar networks. Networks (1987),129{167.[191] Wood, D. C. A technique for coloring a graph applicable to large-scale optimizationproblems. Computer Journal 12 (1969), 317.

