
ar
X

iv
:0

91
1.

12
03

v1
  [

m
at

h.
PR

] 
 6

 N
ov

 2
00

9

LAW OF THE ABSORPTION TIME OF POSITIVE SELF-SIMILAR

MARKOV PROCESSES

P. PATIE

Abstract. Let X be a positive self-similar Markov process with 0 as an absorbing state.
The purpose of this paper is to describe the law of the absorption time, say T0, which might
occurs continuously or by a jump. We start by showing that the distribution function of T0

can be expressed in terms of an increasing invariant function for a specific transient Ornstein-
Uhlenbeck process associated to X. Furthermore, specializing on the spectrally negative case,
we suggest an original methodology to get a power series or an integral representation of this
invariant function. Then, by means of probabilistic arguments, we deduce some interesting
analytical properties satisfied by these functions, which include, for instance, several types of
hypergeometric functions. We end the paper by detailing some known and new examples.
In particular, we offer an alternative proof of the recent result obtained by Bernyk et al. [2]
regarding the law of the maximum of regular spectrally positive stable processes.

1. Introduction

Let X = ((Xt)t≥0, (Qx)x>0) be a self-similar Hunt process with values in [0,∞). It means
that X is a right-continuous strong Markov process with quasi-left continuous trajectories and
there exists α > 0 such that X enjoys the following self-similarity property: for each c > 0 and
x ≥ 0,

the law of the process (c−1Xcαt)t≥0,under Qx, is Qx/c.

α is called the index of self-similarity. This class of processes has been introduced and studied
by Lamperti [24]. During the last two decades, they have been intensively studied, to name just
a few, we mention the works [43], [15], [7], [11], [40], [17] and [37]. Furthermore, we recall that
Lamperti’s main motivation was the fact that self-similar Markov processes arise as the limit
of properly normalized stochastic processes. It is then not very surprising that these processes
appear in different settings, such as, for instance, coagulation-fragmentation processes [5], and
continuous state branching processes with immigration [35]. We also mention that, recently, in
the SLE context, Alberts and Sheffield [1] describe a measure-valued function supported on the
intersection of a chordal SLE(κ) curve with R, 4 < κ < 8, in terms of the law of the absorption
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pergeometric functions

2000 Mathematical Subject Classification: 60E07, 60G18, 60G51, 33E30.
I would like thank Paul Lescot for the interesting discussions on scale-invariant solutions and for bringing

the reference [30] to my attention. This research was partially supported by Swiss National Fund grant N.
2000021 − 121901.

1

http://arxiv.org/abs/0911.1203v1


time T0 of some Bessel processes. Next, Lamperti [24] states the following zero-one laws: if

T0 = inf{s > 0;Xs = 0}
then, for all x > 0, either Qx(T0 < ∞) = 1 or Qx(T0 < ∞) = 0. In this paper, our purpose
is to describe the distribution function of T0 in the former case. Unfortunately, beside some
isolated cases the distribution of T0 is not attainable. We mention the papers [14], [19] and [35]
where such examples can be found and refer to the survey paper [8] for a description of these
cases. Besides, two notable exceptions might be worth mentioning: when X is a Bessel process
of negative index and when X is a regular spectrally negative Lévy process killed upon entering
the negative half-line. In the former case, several proofs can be found in the literature, see for
instance the excellent monograph of Yor [45] and the more recent survey papers of Matsumoto
and Yor [26] and [27]. However, most of the proofs rely on the knowledge of the semigroup of
Bessel processes. For the second case, Bernyk et al. [2] derive a representation of the distribution
of T0 by inverting, in a non trivial way, the known expression of the Wiener-Hopf factorization of
regular stable one-sided Lévy processes. Our approach will differ from these two cases. Indeed,
in general, we do not have access neither to the semigroup of X nor to the Laplace transform
of T0. We shall first show that the distribution function of T0 can be described as an invariant
function for a specific Ornstein-Uhlenbeck process associated to X. Then, specializing on the
case when X has only negative jumps, we suggest a methodology, relying merely on probabilistic
arguments, to represent this invariant function as a power series. It turns out that finding the
distribution function of T0 boils down to compute merely an exponential moment for the first
passage time above for X.

We now take X to be realized as the coordinate process Xt(ω) = ω(t) on the Skohorod space
Ω of càdlàg functions from [0,∞[ to itself. We assume that 0 is an absorbing state for X, so
that each of the laws Qx governing X is carried by {ω ∈ Ω : ω(t) = 0, ∀t ≥ T0(ω)}. The natural
filtration on Ω is (Ft)t≥0, and F∞ =

⋃
t≥0 Ft. Lamperti proved that for each fixed α > 0, there

is a bijective correspondence between [0,∞)-valued self-similar Markov processes with index α
and real-valued Levy processes, i.e. processes with stationary and independent increments. More
specifically, by introducing the additive functional

Σt = inf{s > 0; As =

∫ s

0
X−α
r dr > t}, t ≥ 0,

Lamperti [24] showed that the process ξ = (ξt)t≥0, defined by

ξt = log (XΣt) , t ≥ 0,(1.1)

is a Lévy process. Observe that the additive functional (At)t≥0 is then determined by

At = inf{s > 0; Σs =

∫ s

0
eαξrdr > t}, t ≥ 0.

We write P for the law of the Lévy process with ξ0 = 0. Moreover, let Ψ be the characteristic
exponent of ξ. It is well known, see [3] and [22] for background on Lévy processes, that it admits
the following Lévy-Khintchine representation, for any u ∈ iR, the imaginary line,

Ψ(u) = b̄u+
σ

2
u2 +

∫

R

(eur − 1 − urI{|r|<1})ν(dr) − q(1.2)

where the parameters q ≥ 0, b̄ ∈ R, σ ≥ 0 and the measure ν which satisfies the integrability
condition

∫
R
(1∧r2)ν(dr) < +∞ uniquely determined the law of ξ1. We shall refer to ξ (resp. Ψ)
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as the underlying Lévy process (resp. characteristic exponent) of X. Furthermore, in the case
Qx(T0 <∞) = 1, Lamperti [24] explained that, either q > 0 and the absorption time occurs by
a jump, i.e.

Qx(XT0− > 0, T0 <∞) = 1, ∀x > 0,

or ξ drifts to −∞ and T0 occurs continuously, i.e.

Qx(XT0− = 0, T0 <∞) = 1, ∀x > 0.

By means of the strong law of large numbers for Lévy processes we gather these two possibilities
in the following.

H0. Either q > 0 or limt→∞ ξt = −∞ a.s. and q = 0.

We emphasize that throughout the paper this condition does not hold necessarily, that is we
may also consider the case when Qx(T0 <∞) = 0, x > 0.

The remaining part of the paper is organized as follows. In the next Section, we show that
the distribution function of T0 can be expressed in terms of an increasing invariant function
for a transient Ornstein-Uhlenbeck process associated to X. We also recall several connections
between the law of T0 and some other important positive random variables. In Section 3,
specializing on the case when X has only negative jumps, we derive a power series and an
integral representation of the distribution of T0. The proof and several consequences of this
result are also presented in this part. Finally, in the last Section, we detail some known and
new examples. We also mention that some of the results stated in Theorem 3.2 below were
announced without proofs in the note [38].

2. A general result and some interesting connections

Throughout this Section, we assume that H0 holds. We define the Ornstein-Uhlenbeck process
U = (Ut)t≥0 associated to X by

(2.1) Ut = eα̃tX(1−e−t), t ≥ 0,

where α̃ = α−1. Next, we introduce the stopping time

(2.2) H0 = inf{s > 0; Us = 0}
and the function

1 − P (x) = Qx(H0 <∞), x > 0.

We are now ready to state the following.

Theorem 2.1. For any x > 0 and t > 0, we have

P (xt−α̃) = Qx(T0 ≥ t)(2.3)

and P is increasing on R+ with limx→∞ P (x) = 1 and P (0) = 0.

Proof. First, a simple time change yields the following identity in distribution

H0
(d)
= − log(1 − T0 ∧ 1).
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Thus, we deduce that

1 − P (x) = Qx(H0 <∞)

= Qx(T0 < 1).

Then, invoking the self-similarity property of X we obtain the identity

Qx(T0 ≥ t) = Qxt−α̃(T0 ≥ 1)

from which we deduce the identity (2.3) and the properties stated on P . �

We proceed by providing an heuristic analytical argument explaining the identity (2.3). We
need to introduce the notation

Q(t, x) = Qx(T0 ≥ t), x, t > 0,

and to state the following result which is found in [24, Theorem 6.1].

Proposition 2.2. Let f : R+ → R be such that f(x), xf ′(x) and x2f ′′(x) are continuous func-
tions on R+, then f belongs to the domain, D(L), of the characteristic operator L of (X,Q)
which is given, for any x > 0, by

Lf(x) = x−α
(σ

2
x2f ′′(x) + bxf ′(x)(2.4)

+

∫ ∞

0
f(rx) − f(x) − xf ′(x) log(r)I{| log(r)|≤1}ν(d log(r)) − qf(x)

)
.

Moreover, if H0 holds, then f ∈ D(L) if and only if f(0) = 0.

Note that the process U defined in (2.1) is a transient Hunt process on [0,∞) and its infini-
tesimal generator, denoted by A, has the following form, see e.g. Carmona et al. [14],

Af(x) = Lf(x) + α̃xf ′(x), x > 0,

for a function f ∈ D(L). Next, let us assume that the mapping (t, x) 7→ Q(t, x) defined on
R+ × R+ is smooth enough and thus can be expressed as the solution to the following initial
boundary value problem






∂
∂tQ(t, x) = LQ(t, x) on (t, x) ∈ (0,∞) × (0,∞),

Q(t, 0) = 0, t > 0,

Q(0, x) = 1, x > 0.

(2.5)

As above, from the self-similarity property of X, one gets that

Q(t, x) = Q(1, xt−α̃) = Q(x−αt, 1), t, x > 0.

Thus, one may set

P (xt−α̃) = Q(1, xt−α̃), x, t > 0.

Next, observing that

∂

∂t
Q(t, x) = −α̃xt−α̃−1P ′(xt−α̃) and

∂

∂x
Q(t, x) = t−α̃P ′(xt−α̃),

one gets

∂

∂t
Q(t, x) = −α̃xt−1 ∂

∂x
Q(t, x)
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and the problem (2.5) is equivalent to





LQ(t, x) + α̃xt−1 ∂
∂xQ(t, x) = 0 on (t, x) ∈ (0,∞) × (0,∞),

Q(t, 0) = 0, t > 0,

Q(0, x) = 1, x > 0.

Note that the linear operator L acts on the space variable only. Hence, one may fix t = 1 and
solve






AP (x) = 0 on x ∈ (0,∞),

P (0) = 0,

P (∞) = 1.

Therefore, we have transformed a parabolic integro-differential initial-boundary value problem
into an integro-differential equation with boundary conditions. Actually, such a transformation is
well-known for some specific partial differential equations. Indeed, by using a linear combination
of the one-parameter groups of scaling symmetries of the heat equation, one obtains as reduced
equation the Weber’s differential equation, see [30] for more details. The solutions in such a case
are called the scale-invariant solutions.

2.1. Connection between T0 and some random variables. In this part, we establish or
recall some connections between the law of the positive random variable T0 and the law of some
interesting random variables. To this end, we introduce the following notation, which might be
justified again by means of the self-similarity property of X,

(2.6) S(tx−α) = P (xt−α̃) = Qx(T0 ≥ t), t, x > 0,

where we recall that α̃ = α−1.

2.1.1. Law of the maximum of stable Lévy processes. Let Z be an α-stable Lévy process, with
0 < α < 2 and we exclude the case when Z is a subordinator. Then, let us denote by X
the process Z killed upon entering the negative half-line. X is then a positive self-similar
Feller process and the characteristic triplet of the underlying Lévy process has been computed
by Caballero and Chaumont [12], see also [13] and [23], for an expression of its characteristic

exponent in terms of the Pochhammer symbol. Next, we denote by Ẑ the dual of Z, i.e. Ẑ = −Z
which is also an α-stable Lévy process. Then, by means of the translation invariance of Lévy
processes, we deduce readily the following identities

Qx (T0 ≤ t) = Px

(
inf

0<s≤t
Zs ≤ 0

)

= P

(
max
0<s≤t

Ẑs ≥ x

)

which can be written as follows

(2.7) P

(
max
0≤s≤t

Ẑs ≥ x

)
= P (xt−α), x, t > 0.

As a Lévy process, it is well known that the law of the maximum process of stable processes can
be described in terms of the Wiener-Hopf factors which corresponds to its Laplace transform
in time and space. The methodology we will develop requires merely to inverse the Laplace
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transform in space to obtain the law of the maximum process. We refer to Section 4.2 for more
details on this case.

2.1.2. Exponential functional of Lévy processes. Let us recall the notation

Σt =

∫ t

0
eαξsds, t ≥ 0.

It is plain, from the Lamperti transformation (1.1), that, in the case q = 0 and E[ξ1] < 0, one
gets the identity in distribution

(T0,Qx)
(d)
= (xαΣ∞,P).

Moreover, when q > 0, one has

(T0,Qx)
(d)
= (xαΣeq ,P)

where eq is an independent exponential random variable of parameter q. Hence, we have for any
t > 0 and q ≥ 0,

(2.8) P(Σeq ≥ t) = S(t)

where we understand that e0 = ∞. As pointed out by several authors, see Carmona et al. [14],
Rivero [40], and, Maulik and Zwart [28], the study of the exponential functional is also motivated
by its connection to some interesting random affine equations. Indeed, from the strong Markov
property for Lévy processes, which entails that for any finite stopping time T in the filtration
(FΣt , t ≥ 0), the process (ξt+T − ξT , t ≥ 0) is independent of FΣT

and has the same distribution
than ξ, we deduce readily that the random variable Σeq is solution to the random affine equation

Σeq

(d)
=

∫ 1

0
e−ξsds+ e−ξ1Σ′

eq
(2.9)

where, on the right-hand side, Σ′
eq

is taken independent of (
∫ 1
0 e

−ξsds, e−ξ1). This type of random

equations has been deeply studied by Kesten [21] and Goldie [20]. Relying on Kesten’s results,
Rivero [40] shows that there exists a constant C > 0 such that one has the following asymptotic
behavior

(2.10) S(t) ∼ Ct−α̃θ as t→ ∞

(f(x) ∼ g(x) as x → a means that limx→a
f(x)
g(x) = 1 for any a ∈ [0,∞]) whenever the Lévy

process satisfies this set of conditions

(1) ξ is not arithmetic (i.e. its state space is not a subgroup of rZ for some r > 0),
(2) there exists θ > 0 such that E[eθξ1I{1<eq}] = 1,

(3)
∫
x>1 xe

θxν(dx) <∞.

We refer to Theorem 3.2 and Proposition 3.5 for several characterizations of the Kesten’s constant
C in the case ξ is a spectrally negative Lévy process. We end up this part by recalling that
the exponential functional of Lévy processes appears to be a key object in several fields. In
particular, in mathematical finance, the law of Σeq

allows us to derive the Laplace transform in
time of the price of the so-called Asian options, see [18] for the Brownian motion case and [33]
for more general Lévy processes.
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2.1.3. Entrance law and stationary measures. Let us denote by X̂ the dual of X with respect
to the reference measure xα−1dx. Bertoin and Yor [6] showed that X̂ is a positive self-similar

Markov process with underlying Lévy process ξ̂ = −ξ, the dual of ξ with respect to the Lebesgue
measure. Moreover, assuming that ξ is not arithmetic and ∞ < E[ξ1] < 0, they show that X̂
admits an entrance law at 0, i.e. the family of probability measure (Qx)x>0 converges, as x→ 0,
in the sense of finite-dimensional distribution, to a probability measure, denoted by Q0+ . In
particular, they obtain the following identity, for any bounded borelian function f ,

E0+ [f(X̂α
1 )] =

1

α|E[ξ1]|
E[f(Σ−1

∞ )Σ−1
∞ ].

Hence, we obtain for any x > 0

Q0+(X̂1 ∈ dx) =
1

|E[ξ1]|x
S(dx−α).

We also mention that in [34], it is shown that the measure Q0+(X̂1 ∈ dx) is the stationary
measure of the Ornstein-Uhlenbeck process defined by

Û
(1)
t = e−tX̂et , t ≥ 0.

Finally, we define, under P, the process Y = (Yt)t≥0, by

Yt = eαξt
(
Y0 +

∫ t

0
e−αξsds

)
, t ≥ 0.

This generalization of the Ornstein-Uhlenbeck process is a specific instance of the continuous
analogue of random recurrence equations, as shown by de Haan and Karandikar [16]. Carmona et
al. [14] showed that Y is a homogeneous Markov process with respect to the filtration generated
by ξ. Moreover, they showed, from the stationarity and the independency of the increments of
ξ, that, for any fixed t ≥ 0,

Yt
(d)
= Y0e

αξt +

∫ t

0
eαξsds.

Then, if E[ξ1] < 0, they deduced that Yt
(d)→ Σ∞ as t → ∞. Hence if V0

(d)
= Σ∞, the process Y

is stationary with stationary measure the law of Σ∞.

3. The spectrally negative case

In this Section we consider the case when ξ is a spectrally negative Lévy process, i.e. ν(0,∞) ≡ 0
in (1.2) and we exclude the cases when ξ is degenerate, that is when ξ is the negative of a
subordinator or a pure drift process. In this setting, it is well-known that the characteristic
exponent Ψ admits an analytical continuation to the lower half-plane. Thus, we write simply
ψ(u) = Ψ(−iu), u ≥ 0, when q = 0 and ψ(u) = ψ(u)−q otherwise. It means that, for any u ≥ 0,
we have

ψ(u) = b̄u+
σ

2
u2 +

∫ 0

−∞
(eur − 1 − urI{|r|<1})ν(dr).(3.1)

Let us now recall some basic properties of the Laplace exponent ψ, which can be found for
instance in Bingham [10]. First, it is plain that limu→∞ ψ(u) = +∞ and by monotone con-

vergence, one gets E[ξ1] = b̄ +
∫ −1
−∞ rν(dr) ∈ [−∞,∞). Thus, by means of the strong law of
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large numbers for Lévy processes, the condition limt→∞ = −∞ a.s. in H0 is equivalent to the
requirement E[ξ1] < 0.

Moreover, the asymptotic behavior of ψ depends on its coefficients. Indeed, if σ = 0 and∫ 0
−∞ 1 ∧ |r|ν(dr) < ∞, that is the Lévy process ξ has paths of bounded variation, then, as we

have excluded the degenerate cases, we have, see [3, Corollary VII.5], writing b = b̄−
∫ 0
−1 rν(dr),

(3.2) lim
u→∞

ψ(u)

u
= b > 0.

For the other cases, we have

(3.3) lim
u→∞

ψ(u)

u
= +∞.

Differentiating ψ again, one observes that ψ is convex. Note that 0 is always a root of the
equation ψ(u) = 0. However, in the case E[ξ1] < 0, this equation admits another positive root,
which we denote by θ. This yields the so-called Cramér condition

E[eθξ1 ] = 1.

Moreover, for any E[ξ1] ∈ [−∞,∞), the function u 7→ ψ(u) is continuous and increasing on
[max(θ, 0),∞). Thus, it has a well-defined inverse function φ : [0,∞) → [max(θ, 0),∞) which is
also continuous and increasing. Finally, we set the following notation, for any u ≥ 0,

ψθ(u) = ψ(u+ θ),

ψφ(q)(u) = ψ(u+ φ(q)).

Recalling that ψ(θ) = 0 and observing that ψ(φ(q)) = 0, the mappings ψθ, ψφ(q) are plainly

Laplace exponents of conservative Lévy processes. We also point out that ψ′
θ(0

+) = ψ′(θ+) > 0

and ψ
′
φ(q)(0

+) = ψ′(φ(q)) = 1
φ′(q) > 0. We denote the totality of all functions ψ of the form (3.1)

with the additional condition that ψ′(0+) ≥ 0 by LK+. Note, from the stability of infinitely
divisible distributions under convolution and convolution powers to positive real numbers, that
LK+ forms a convex cone in the space of positive valued functions defined on [0,∞).
We proceed by introducing a few further notation. First, let ψ ∈ LK+ and set a0 = 1 and for
any n = 1, 2, . . .,

an(ψ;α) =

(
n∏

k=1

ψ(αk)

)−1

.

In [37], the author introduces the following power series

(3.4) Iψ(z) =

∞∑

n=0

an(ψ;α)zn

and shows by means of classical criteria that the mapping z 7→ Iψ(z) is an entire function.
We refer to [37] for interesting analytical properties enjoyed by these power series and also for
connections with well-know special functions, such as, for instance, the modified Bessel functions
and several generalizations of the Mittag-Leffler function. The author also proves that for any
r > 0, the mapping x 7→ Iψ(xα) is an 1-eigenfunction for X and

Ex
[
e−Ta

]
=

Iψ(xα)

Iψ(aα)
, 0 ≤ x ≤ a,
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where Ta = inf{s > 0; Xs = a}. Next, let Gκ be a Gamma random variable independent of

X, with parameter κ > 0. Its density is given by g(dy) = e−yyκ−1

Γ(κ) dy, y > 0, with Γ the Euler

gamma function. Then, in [34], the author suggested the following generalization

Iψ(κ; z) = E [Iψ (Gκz)](3.5)

=
1

Γ(κ)

∫ ∞

0
e−ttκ−1Iψ (tz) dt.

By means of the integral representation of the Gamma function Γ(ρ) =
∫∞
0 e−ssρ−1ds,Re(ρ) > 0,

and an argument of dominated convergence, one obtains the following power series representation

(3.6) Iψ(ρ; z) =
1

Γ(ρ)

∞∑

n=0

an(ψ;α)Γ(ρ + n)zn

which is easily seen to be valid for any |z| < R = limu→∞
ψ(αu)
u > 0. Moreover, for any |z| < R,

the mapping ρ 7→ Iψ(ρ; z) is a meromorphic function defined for all complex numbers ρ except
at the poles of the Gamma function, that is at the points ρ = 0,−1, . . . However, they are
removable singularities. Indeed, for any |z| < R and any integer N ∈ N, one has, by means of
the recurrence relation Γ(z + 1) = zΓ(z), Iψ(0; z) = 1 and

Iψ(−N ; z) =

N∑

n=0

(−1)n
Γ(N + 1)

Γ(N + 1 − n)
an(ψ;α)zn.

Thus, by uniqueness of the analytical extension for any |z| < R, Iψ(ρ; z) is an entire function
in ρ. Note also that for ρ = 0,−1, . . ., as a polynomial, Iψ(−ρ; z) is an entire function in z. We
point out that when ψ is the Laplace exponent of a standard Brownian motion with a positive
drift, (Iψ(−N ; eiπz))N∈N is expressed in terms of the sequence of Laguerre polynomials. In the
following, we summarize the above results and provide an analytical continuation of Iψ(ρ; z) in
the case R = αb, that is when ξ is with paths of bounded variation.

Proposition 3.1. (1) If limu→∞
ψ(u)
u = ∞, then Iψ(ρ; z) is an entire function in both ar-

guments z and ρ.

(2) If limu→∞
ψ(u)
u = b > 0, then Iψ(ρ; z) is analytic in the disc |z| < αb and for any fixed

ρ = 0,−1, . . ., Iψ(ρ; z), as a polynomial, is an entire function.
For any ρ 6= 0,−1, . . ., Iψ(ρ; z) admits an analytical continuation in the entire complex

plane cut along the positive real axis given by

(3.7) Iψ(ρ; z) =
1

2iπΓ(ρ)

∫ i∞

−i∞
as(ϕ;α)Γ(s + ρ)Γ(−s)

(
− z

α

)s
ds, | arg(−z)| < π,

where the contour is indented to ensure that all poles (resp. nonnegative poles) of Γ(ρ+s)
(resp. Γ(−s)) lie to the left (resp. right) of the intended imaginary axis and for any
Re(s) > −1

as(ϕ;α) =

∞∏

k=1

ϕ(α(k + s+ 1))

ϕ(αk)

with ϕ(s) = b − v̂(s) and v̂(s) =
∫∞
0 e−srν(−∞,−r)dr is the Laplace transform of the

tail of the Lévy measure ν. Moreover, for any ρ ∈ C, Iψ(ρ; z) admits, in the half-plane
9



Re(z) < αb
2 , the following power series representation

(3.8) Iψ(ρ; z) =
(
1 − z

αb

)−ρ ∞∑

n=0

Iψ(−n;αb)
Γ(ρ+ n)

n!Γ(ρ)

(
z

z − αb

)n
.

Finally, for any fixed Re(z) < αb
2 , Iψ(ρ; z) is an entire function in the argument ρ.

Proof. The first item and the first part of the second one follow from the discussion preceding

the Proposition. Thus, let us assume that limu→∞
ψ(u)
u = b > 0 and ρ 6= 0,−1, . . . Since

ψ ∈ LK+, ψ is well-defined and analytic in the positive right half-plane and ψ(u) > 0 for any
u > 0. Our first aim is to extend the coefficients an(ψ;α) to a function of the complex variable.
For the paths of the Lévy process ξ is of bounded variation, its Laplace exponent ψ has the
following form, see [3, Sec. VII.3],

ψ(u) = u(b− v̂(u)).

Thus, for any n ≥ 0, we have

an(ψ;α) =
1

Γ(n+ 1)αn
an(ϕ;α)

with an(ϕ;α)−1 =
∏n
k=1 ϕ(αk) and a0(ϕ;α) = 1. It is plain that the mapping v̂ is analytic in

F0 = {s ∈ C; Re(s) > 0} and v̂(u) is decreasing on R+ with 0 < v̂(0) < αb since ψ ∈ LK+.
Then, we may write

as(ψ;α) =
1

Γ(s+ 1)αs
as(ϕ;α)

=
1

Γ(s+ 1)αs

∞∏

k=1

ϕ(α(k + s+ 1))

ϕ(αk)

where the infinite product is easily seen to be absolutely convergent for any Re(s) > 0 by taking
the logarithm and noting that |v̂(s)| ≤ v̂(Re(s)). Moreover, as(ϕ;α) satisfies the functional
equation

as+1(ϕ;α) =
1

ϕ(α(s + 1))
as(ϕ;α)

which shows that as(ϕ;α) is analytic in the half-plane F−1 = {s ∈ C; Re(s) > −1}. Con-
sequently, as(ϕ;α) is bounded on any closed subset of F−1. Then, we set G(s) = Γ(s +
ρ)Γ(−s)as(ϕ;α) and define

ILR
= − 1

2iπΓ(ρ)

∫

LR

G(s)
(
− z

α

)s
ds

where the integral is take in a clockwise direction round the contour LR, consisting of a large
semi-circle, of center the origin and radius R, lying to the right of the imaginary axis. This
contour is intended to ensure that all poles (resp. nonnegative poles) of Γ(ρ+ s) (resp. Γ(−s))
lie to the left (resp. right) of the intended imaginary axis. This contour is always possible since
we have assumed that ρ 6= 0,−1, . . . We can split ILR

up into two integrals, IAiR
along the

imaginary axis and, writing s = Reiθ,

ICR
= − 1

2πi

∫ π/2

−π/2
G(Reiθ)

(
− z

α

)Reiθ

Reiθdθ.

10



Recalling the following well-known asymptotic formulae, see e.g. [31, Section 2.4], as |s| → ∞,

Γ(s+ ρ) ∼
√

2πe−Re
iθ

RRe
iθ+ρ− 1

2 eiθ(Re
iθ+ρ− 1

2
), |θ| < π,

Γ(−s) ∼ e−πR| sin θ|eRe
iθ

R−Reiθ− 1
2 eiθ(−Re

iθ− 1
2
), |θ| < π

and
∣∣∣
(
− z

α

)s∣∣∣ ∼ |αz|R cos θe−R sin θ arg(−z),

we deduce that as |s| → ∞

(3.9)
∣∣∣G(s)

(
− z

α

)s∣∣∣ ∼ aRRe(ρ)−1|αz|R cos θ

{
e−R| sin θ|(π+arg(−z)), 0 < θ ≤ π/2

e−R| sin θ|(π−arg(−z)), −π/2 ≤ θ < 0,

where a is a positive constant. On the one hand, along the path AiR we have θ = ±π
2 and thus

as |z| → ∞
∣∣∣G(s)

(
− z

α

)s∣∣∣ ∼ aRRe(ρ)−1e±
π
2
ℑ(ρ)

{
e−R(π+arg(−z)) θ = π/2

e−R(π−arg(−z)) θ = −π/2.

For the integral (3.7) to converge absolutely therefore requires that | arg(−z)| < π. On the other
hand, the asymptotic estimate (3.9) gives that as R→ ∞

ICR
→ 0 if |z| < 1 and | arg(−z)| < π.

Thus, as R→ ∞,

ILR
→ − 1

2iπ

∫ i∞

−i∞
G(s)

(
− z

α

)s
ds.

Finally, evaluating ILR
by the Cauchy integral theorem and letting R→ ∞ , we get

1

2iπ

∫ i∞

−i∞
G(s)

(
− z

α

)s
ds =

1

Γ(ρ)

∞∑

n=0

an(ψ;α)Γ(ρ + n)zn, |z| < 1 and | arg(−z)| < π.

Therefore, the integral (3.7) offers an analytical continuation of the mapping z 7→ I(ρ; z) in
the entire complex plane cut along the positive real axis. Moreover, we deduce from such an
analytical extension that the power series (3.6) has an unique singularity on the circle |z| = αb
located at the point z = αb > 0. Now, following a device developed for hypergeometric series,
see e.g. [29], we introduce the function H defined for some a ∈ C by

Hψ,a(ρ; z) = (1 − z)−ρ Iψ
(
ρ;
aαbz

z − 1

)
.

Note that

(3.10) Iψ(ρ; az) =
(
1 − z

αb

)−ρ
Hψ,a

(
ρ;

z

z − αb

)
.

Thus, denoting by (bn)n≥0 the coefficients of the power series Hψ,a(ρ; z), we have b0 = a0 and by
means of residues calculus, with C a circle around 0 of small radius and with positive orientation,

11



we have for n ≥ 1

bn =
1

2πi

∫

C

Hψ,a(ρ; z)

zn+1
dz

= (−1)n
1

2πi

∫

C

(1 − z)−ρ Iψ
(
ρ;
aαbz

z − 1

)
dz

zn+1
dv

=
1

Γ(ρ)

n∑

k=0

(−aαb)kak(ψ;α)
Γ(ρ+ n)

Γ(n − k + 1)
.

Thus, one gets

(1 − z)−ρIψ
(
ρ;
aαbz

z − 1

)
=

∞∑

n=0

Iψ(−n; aαb)
(ρ)n
n!

zn.

From Weierstrass’s double series theorem, the above identity is true if |z| < 1
1+|a| . Moreover,

the function on the left-hand side has a singularity at z = 1 and z = 1
1−a . Thus, the series on

the right-hand side is convergent if |z| < 1 and |z(1 − a)| < 1. By choosing a = 1, we conclude
by observing that the series on the right-hand side of (3.10) is convergent for Re(z) < αb

2 . �

Next, we introduce the following notation, for any z ∈ C,

Oψ(z) = Iψ(eiπz)

=

∞∑

n=0

(−1)nan(ψ;α)zn,

and, similarly, for any ρ ∈ C,

Oψ(ρ; z) = Iψ(ρ; eiπz), | arg(z)| < π.

Finally, in order to present our next result in a compact form, when H0 holds, we write

(3.11) γ =

{
φ(q) if q > 0,

θ otherwise,

and, for any u ≥ 0,

(3.12) ψγ(u) =

{
ψφ(q)(u) if q > 0,

ψθ(u) otherwise.

We are now ready to state the main result of this part.

Theorem 3.2. Assume that H0 holds and recall that S(tx−α) = P (xt−α̃) = Qx(T0 ≥ t), x, t > 0.
Then, there exists a constant Cγ > 0 such that

Oψγ (α̃γ;x) ∼ x−α̃γ

Cγ
as x→ ∞(3.13)

and

S(t) = Cγt
−α̃γOψγ (α̃γ; t−1), t > 0.(3.14)

Moreover, the law of T0 under Q1 is absolutely continuous with a density, denoted by s, given
by

s(t) = α̃γCγt
−α̃γ−1Oψγ (1 + α̃γ; t−1), t > 0.

12



More generally, for any integer m, writing s(m) = dm

dtm s, we have, for any t > 0,

s(m)(t) = (−1)m
Γ(m+ 1 + α̃γ)

Γ(α̃γ)
Cγt

−α̃γ−1−mOψγ (m+ 1 + α̃γ; t−1).

We postpone the proof of the Theorem until the Section 3.1 and offer instead a few conse-
quences of this result. First, we deduce readily from the above Theorem the following asymptotic
behaviors for large values.

Corollary 3.3. With the notation used and introduced in Theorem 3.2, we have

S(t) ∼ Cγt
−α̃γ as t→ ∞(3.15)

and, for any m = 0, 1 . . .,

s(m)(t) ∼ (−1)mCγ
Γ(m+ 1 + α̃γ)

Γ(α̃γ)
t−α̃γ−1−m as t→ ∞.(3.16)

In the case limu→∞
ψ(u)
u = ∞, by easily checking that the mapping x 7→ Iψ(ρ;x) is increasing

on R+, for any Re(ρ) > 0, one deduces, again from the above Theorem the following.

Corollary 3.4. Let us assume that limu→∞
ψ(u)
u = ∞. With the notation used and introduced

in Theorem 3.2, the entire function z 7→ Oψγ (α̃γ; z) has no real zeros.

Next, we observe that the function P ∈ D(A), hence P (xt−α̃), x, t > 0, is solution to the
initial boundary value problem (2.5). We do not aim to pursue in this direction, nevertheless
let us point out that the uniqueness of the solution can be proved by invoking an argument
involving the Martin boundary associated to the process X. Further details are provided in
[39]. Next, let us recall that in [37], the expression of the Laplace transform of T0, in the case
E[ξ1] < 0, q = 0 and θ < α, is given, for any r, x ≥ 0, as follows

Ex
[
e−rT0

]
= Nψ,θ(rx

α)(3.17)

where
Nψ,θ(r) = Iψ (r) − C(θ)rα̃θIψθ

(r)

and the positive constant C(θ) is characterized by

Iψ (r) ∼ C(θ)rα̃θIψθ
(r) as r → ∞.

Thus, Theorem 3.2 offers a formula for the inversion of this Laplace transform. More specifically,
one has

Nψ,θ(rx
α) = x−α

∫ ∞

0
e−rts(tx−α)dt.

From the expression of s, it appears that a term-by-term inversion does not seem trivial.
Moreover, as we have excluded the case when −ξ is a subordinator, it is not difficult to

verify that the Lévy processes we consider in this Section satisfy the conditions listed below
(2.10). Hence, from (2.10) and (3.15), we get that the asymptotic behavior (3.13) offers a
characterization of the Kesten’s constant. In what follows, we provide some representations of
this normalizing constant in terms of the Laplace exponent. To this end, let us observe, in the

case limu→∞
ψγ(u)
u = ∞, as 0 < ψ′

γ(0
+) <∞, we have, for any u > 0

ψγ(αu) = b̂αu+
σ

2
(αu)2 +

∫ 0

−∞
(eαur − 1 − αur)eγrν(dr)

= (αu)2ϕ̄γ(αu)
13



where b̂ = b̄+ σγ +
∫ 0
−∞

(
eγr − I{|r|<1}

)
rν(dr) and

ϕ̄γ(αu) =
b̂

αu
+
σ

2
+

∫ ∞

0
e−αur

∫ −r

−∞

∫ −s

−∞
eγvν(dv)dsdr.

Thus, as above, one may define the function

as(ψγ ;α) =
1

α2Γ2(s+ 1)
as(ϕ̄γ ;α)

=
1

α2Γ2(s+ 1)

∞∏

k=1

ϕ̄γ(α(k + s+ 1))

ϕ̄γ(αk)

and observe the identity

as+1(ϕ̄γ ;α) =
1

ϕ̄γ(α(s + 1))
as(ϕ̄γ ;α)

with a0(ϕ̄γ ;α) = 1. Hence as(ϕ̄γ ;α) is a meromorphic function in F−γ = {s ∈ C; Re(s) > −γ−1}
with simple poles at the points sk = −k − 1 for k = 0, 1, . . . and sk > −γ − 1.

Proposition 3.5. If limu→∞
ψ(u)
u = b then

Cγ = αα̃γa−α̃γ(ϕγ ;α).

Otherwise, we have, writing ψ(αu) = αuϕ(αu),

Cγ =






ψ′
γ(0

+) if α̃γ = 1

αnψ′
γ(0

+) (
∏n
k=1 ϕ(αk))−1 if α̃γ = n+ 1, n = 1, 2 . . .

α2α̃γ

Γ(1−α̃γ)a−α̃γ(ϕ̄γ ;α) otherwise.

Finally, if q = 0 and 0 < θ < α. Then, the constant Cθ is such that

Iψ (r) ∼ Γ(1 − α̃θ)Cθr
α̃θIψθ

(r) as r → ∞.

Proof. Let us start by pointing out that it is not difficult to check that we have, in all cases,

Cγ > 0. Moreover, let us first assume that limu→∞
ψ(u)
u = b. From Proposition 3.1, we have

Oψγ (α̃γ; z) =
1

2iπΓ(α̃γ)

∫ i∞

−i∞
as(ϕγ ;α)Γ(s + α̃γ)Γ(−s)

( z
α

)s
ds, | arg(z)| < π.

Hence, upon displacement of the path to the left in order to include the first pole of Γ(s+ α̃γ)
we obtain, from Theorem 3.2 and a residue computation, that

Oψγ (α̃γ; z) = αα̃γa−α̃γ(ϕγ ;α)z−α̃γ + o(z−α̃γ)

which gives the characterization of Cγ in this case.
For the other case, one may follow a similar line of reasoning than in the proof of Proposition

3.1 to obtain, writing Ḡ(s) =
as(ϕ̄γ ;α)
Γ(s+1) Γ(s+ α̃γ)Γ(−s), the following identity

Oψγ (α̃γ; z) =
1

2iπΓ(α̃γ)

∫ i∞

−i∞
Ḡ(s)

( z
α2

)s
ds
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which is now valid in the sector | arg(z)| < π/2. As above, after a displacement of the path to
the left in order to include the first pole of Γ(s+ α̃γ) we obtain, from Theorem 3.2 and a residue
computation, that

Oψγ (α̃γ; z) =
1

Γ(α̃γ)




[α̃γ]∑

k=1

Γ(k)Resj=−kaj(ϕ̄γ ;α)

Γ(1 − k)

( z
α2

)−k
+ Ress=−α̃γḠ(s)

( z
α2

)−s


+ o(z−α̃γ)

where the sum is 0 if [α̃γ], the integer part of α̃γ, is lower than 1. Since as(ϕ̂γ , α) has a simple
pole at j = −1, . . . ,−[α̃γ], the terms in the sum vanishes. Hence, if α̃γ is not an integer Ḡ(s)
has a simple pole at −α̃γ and the expression of Cγ follows readily in this case. If α̃γ = n + 1,
then Ḡ(s) has a double pole at −(n+ 1) and using the recurrence relations of both the gamma
function and as(ϕ̄γ ;α), we deduce that

Ress=−(n+1)Ḡ(s) = lim
s→−n−1

d

ds

(
(s+ n+ 1)2Ḡ(s)

)

= lim
s→−n−1

d

ds

(

α−n−2
n∏

k=1

ϕγ(α(s + k))ψγ(α(s + n+ 1))as+n+1(ϕ̄γ ;α)

)

= α−n−2Γ(n+ 1)ψ′
γ(0

+)

n∏

k=1

ϕ(αk)

and the result follows. The second part of the Proposition is proved as follows. Let us write
F̂ (r) = E1

[
1 − e−rT0

]
. Then, from (3.17), one deduces easily that

F̂ (r) ∼ C(θ)rα̃θ as r → 0,

which is equivalent, according to Bingham et al. [9, Corollary 8.1.7], to

S(t) ∼ C(θ)

Γ(1 − α̃θ)
t−α̃θ as t→ ∞

which completes the proof. �

Note that the constant Cθ also appears in the study of the rates of convergence of transient
diffusions in spectrally negative Lévy potentials. Indeed, Singh [42, Theorem 1] characterized
the rates of convergence of these diffusions hitting times in terms of scaled one-sided stable
distributions. It is easily verified that his scaling factors can be expressed in terms of Cθ. Thus,
Theorem 3.2 and Proposition 3.5 offer some explicit representations of these factors in terms of
the Laplace exponent of the Lévy potential.

3.1. Proof of Theorem 3.2. According to Theorem 2.1, our aim is to derive an expression for
the function P (x) = 1 − Qx(H0 < ∞), x > 0. We split the proof into two main stages. First,
we show how to construct some time-space invariant functions for the semigroup of X when X
does not reach 0 a.s., i.e. X is associated via the Lamperti mapping with a ψ ∈ LK+. Then, we
develop some devices for relating the previous result to the construction of the invariant function
for the Ornstein-Uhlenbeck process defined in (2.1). To achieve this, we will consider separately
the cases q > 0, and, q = 0 and E[ξ1] < 0.

We use the notation introduced in the Theorem 3.2 and take first X with underlying Lévy
exponent ψγ . We denote its law (resp. its expectation operator) by Q(γ) (resp. E(γ)). We
recall that ψγ ∈ LK+ and hence the condition H0 does not hold. Next, we simply write
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Q(γ) = (Q
(γ)
t )t≥0 for the semigroup of X, i.e. for any bounded Borelian function g and t, x > 0,

one has

Qγt g(x) = E(γ)
x [g(Xt)] .

From [6], we have that Qγ is a Feller semigroup. Then, we say, for any r ∈ R, that a function I
is r-invariant for Qγ if

e−rtQγt I(x) = I(x), x > 0.

We start with the following Lemma which is a slight generalization of [37, Theorem 1].

Lemma 3.6. For any x > 0, the mapping x 7→ Oψγ (xα) is an −1-eigenfunction for X, i.e.,
with the obvious notation, we have

LγOψγ (xα) + Oψγ (xα) = 0.

Hence, for any r > 0, the mapping x 7→ Oψγ (rxα) is −r-invariant for Qγ .

Proof. First, recalling that the mapping z 7→ Oψγ (z) is an entire function, it is plain, from

Proposition 2.2, that the function Oψγ (xα) ∈ D(L). Next, note that, for any β > 0, xβ ∈ D(Lγ)
and

Lγxβ = xβ−αψγ(β).(3.18)

Then, for any positive integer N , writing ON
ψγ

(xα) =
∑N

n=0(−1)nan(ψγ ;α)xαn and using suc-

cessively the linearity of the operator L and (3.18), we get, for any x > 0,

LγON
ψγ

(xα) =

N∑

n=1

an(ψγ ;α)(−1)nLγxαn

= −
N−1∑

n=0

an(ψγ ;α)(−1)nxαn.

The series being absolutely continuous, the right-hand side of the previous identity convergences
as N → ∞. Hence, by dominated convergence, we get

LγOψγ (xα) = −Oψγ (xα), x > 0,

which completes the proof of the first statement. Then, on the one hand, observe from the
self-similarity property of X, that, for any r > 0, the mapping x 7→ f(x) = Oψγ (rxα) is an
−r-eigenfunction. On the other hand, we have, for any r, t, x > 0,

(3.19)
d

dt
ertQγt f(x) = rertQγt f(x) + ert

d

dt
Qγt f(x).

Since Qγ is a Feller semigroup, Qγ0f(x) = f(x) and

d

dt
Qγt f(x) = QγtL

γf(x).

Thus, integrating (3.19) yields

ertQγt f(x) − f(x) = r

∫ t

0
ersQγsf(x)ds+

∫ t

0
ersQγsL

γf(x)ds.

The proof is completed by recalling that Lγf(x) = −rf(x). �
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Following a device developed by the author in [34], we now show how to construct some
specific time-space invariant functions for Qγ in terms of the r-invariant function of X. We
emphasize that this methodology may be applied to any self-similar Markov processes, that
is also for the ones having two-sided jumps. Indeed, the proof of the following result, which
generalizes a device suggested by Shepp [41] in the case of the Brownian motion, relies merely
on the self-similarity property of X. Finally, we write, for any λ ∈ R,

(3.20) ζλ =

{
+∞ if λ ≥ 0,

1
α|λ| otherwise.

We are now ready to state the following result which is a generalization of [34, Theorem 1].

Lemma 3.7. Assume that, for any r < 0, the mapping x 7→ I(rxα) is r-invariant for Qγ and
that I ∈ L1(g(dy)). Then, writing χ = αλ and recalling that Gκ is a Gamma random variable
with parameter κ > 0, independent of F∞, the mapping x 7→ Iκ(x) defined by

(3.21) Iκ(x) = Γ(κ)E [I (χGκx
α)] , x > 0,

satisfies the identity, for any 0 ≤ t < ζλ,

(3.22) (1 + χt)−κQγt

(
d(1+χt)−α̃Iκ

)
(x) = Iκ(x), x > 0,

where d stands for the dilatation operator, i.e. dcf(x) = f(cx).

Proof. Let us assume that I ∈ L1(g(dy)). Then, for any x > 0 and 0 ≤ t < ζλ, we have, from
the definition of Iκ, that

(1 + χt)−κQγt

(
d(1+χt)−α̃Iκ

)
(x) = (1 + χt)−κE(γ)

x

[∫ ∞

0
I
(
χy(1 + χt)−1Xα

t

)
e−yyκ−1dy

]
.

Performing the change of variable z = y(1 + χt)−1 and using successively Fubini theorem and
the invariance property of I, we get

(1 + χt)−κQγt

(
d(1+χt)−α̃Iκ

)
(x) = E(γ)

x

[∫ ∞

0
e−zχtI (χzXα

t ) e−zzκ−1dz

]

=

∫ ∞

0
I (χzxα) e−zzκ−1dz

= Iκ(x)

which completes the proof. �

Next, we introduce the stopping times, T
(λ)
a and H

(λ)
a , defined, for any λ ∈ R and a > 0, by

T (λ)
a = inf{s > 0; Xs = a(1 + αλs)

1
α } ∧ ζλ,

H(λ)
a = inf{s > 0; e−λsXτλ(s) = a}

where τλ(s) = (eαλs − 1)/αλ. Writing (a)+ = max(a, 0), we have

(3.23) eλαH
(λ)
a

(d)
=
(
1 + αλT (λ)

a

)

+

and, in particular, for a = 0, since T
(λ)
0 = T0 ∧ ζλ, we obtain

eλαH
(λ)
0

(d)
= (1 + αλT0)+ .
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In particular, we have H0 = H
(−α̃)
0 with H0 defined in (2.2). Next, for any a > 0, we set

κ+
ψ (a) = inf{κ ∈ R+; Oψ(κ; aα) = 0}
κ−ψ (a) = inf{κ ∈ R+; Iψ(−κ; aα) = 0},

with the usual convention that inf{∅} = ∞, for the smallest positive real zero of the function
Oψ(.; aα) (resp. Iψ(−.; aα)). We are now ready to state the following.

Corollary 3.8. Let 0 ≤ x ≤ a and recall that χ = αλ.

(1) Then, for any λ < 0 and any ρ ∈ C with Re(ρ) < κ+
ψγ

(|χ|α̃a), we have

E(γ)
x

[
(1 + χT (λ)

a )−ρ+

]
=

Oψγ (ρ; |χ|xα)

Oψγ (ρ; |χ|aα)
.

Consequently, for any real κ such that κ < κ+
ψγ

(a), the mapping x 7→ Oψ(κ; |χ|xα) is

positive on R+.
(2) Similarly, for any λ > 0 and any ρ ∈ C with Re(ρ) > κ−ψγ

(χα̃a), we have

E(γ)
x

[
(1 + χT (λ)

a )−ρ
]

=
Iψγ (ρ;χxα)

Iψγ (ρ;χaα)

where we assume that λaα < b if limu→∞
ψγ(u)
u = b.

Proof. Let us first deal with the case λ < 0 and by the self-similarity property of X, we set,
without loss of generality, χ = −1. Moreover, since X is a Feller process on [0,∞), we can start
by fixing x = 0 and a > 0. Then, recalling that Oψγ (0, aα) = 1, we observe that Oψγ (κ; aα)

is positive for any 0 ≤ κ < κ+
ψγ

(a) reals. The existence of such an interval follows from the

fact that the zeros of a non constant holomorphic function are isolated. Thus, by means of the
Dynkin formula combined with Lemmae 3.6 and 3.7, we deduce, for any 0 ≤ κ < κ+

ψγ
(a), that

E
(γ)
0

[
(1 − T (λ)

a )−κ+

]
=

1

Oψγ (κ; aα)
.(3.24)

Next, we recall, from the identity (3.23), that

eκH
(λ)
a

(d)
=
(
1 − T (λ)

a

)−κ
+
.

Since H
(λ)
a is a positive random variable, as a Laplace transform, the left-hand side on the

identity (3.24), is analytic in the half-plane {ρ ∈ C; Re(ρ) < κ+
ψγ

(a)} and positive on R+,

see e.g. [44, Chap. II]. Then, let us assume that there exists a complex number ρ(a) in the
strip 0 ≤ Re(ρ(a)) < κ+

ψγ
(a) such that Oψγ (ρ(a); aα) = 0. However, as the left-hand side of

(3.24) is analytical with respect to the argument κ in this strip, we deduce, by the principle of
analytical continuation, that this is not possible. Moreover, we get that Oψγ (ρ; aα) has no zeros

on {ρ ∈ C : Re(ρ) < κ+
ψγ

(a)} and is positive on {κ ∈ R : κ < κ+
ψγ

(a)}. Finally, let us consider

a real number a1 such that 0 < a1 ≤ a. Clearly, Q
(γ)
0 -a.s. (1 − T

(λ)
a1 )−κ+ ≤ (1 − T

(λ)
a )−κ+ , for any

0 ≤ κ < κ+
ψγ

(a)∧ κ+
ψγ

(a1). Then, we deduce from (3.24), for any 0 ≤ κ < κ+
ψγ

(a)∧ κ+
ψγ

(a1), that

0 <
1

Oψγ (κ; aα1 )
≤ 1

Oψγ (κ; aα)
.
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Thus, it is not difficult to see that κ+
ψγ

(a1) ≥ κ+
ψγ

(a). Therefore, since κ+
ψγ

(x) ≥ κ+
ψγ

(a), for any

0 ≤ x ≤ a, the strong Markov property and the absence of positive jumps of X complete the
proof in the case λ < 0. The case λ > 0 is proved by following a similar reasoning. We point out

that in [34, Corollary 3.2], the restriction λaα < b if limu→∞
ψγ(u)
u = b has been omitted. �

We are now able to proceed to the proof of Theorem 3.2 which we now split into two parts:
the case when T0 occurs continuously, i.e. q = 0 and E[ξ1] < 0 and the case when T0 occurs by
a jump, i.e. q > 0.

3.1.1. Continuous killing. Here, we assume that q = 0 and E[ξ1] < 0. Thus, there exist θ > 0
such that ψ(θ) = 0 and γ = θ. We recall that ψθ(u) = ψ(θ + u) with ψ′

θ(0
+) > 0 and thus

ψθ ∈ LK+.

Lemma 3.9. (1) Let λ < 0. Then, κ+
θ (|χ|α̃a) = κ+

ψθ
(|χ|α̃a) − α̃θ > 0 and for any κ <

κ+
θ (|χ|α̃a) and 0 < x ≤ a, we have

Ex

[
(1 + χT (λ)

a )−κI
{T

(λ)
a <T0∧ζλ}

]
=

xθ

aθ
Oψθ

(κ+ α̃θ;χxα)

Oψθ
(κ+ α̃θ;χaα)

.

In particular, for any 0 < x ≤ a, we have

Qx

[
T (λ)
a < T0 ∧ ζλ

]
=

xθ

aθ
Oψθ

(α̃θ; |χ|xα)
Oψθ

(α̃θ; |χ|aα) .(3.25)

(2) Similarly, for any λ > 0 and 0 < x ≤ a,

Qx

[
T (λ)
a < T0

]
=

xθ

aθ
Iψθ

(α̃θ;χxα)

Iψθ
(α̃θ;χaα)

(3.26)

where we assume again that λaα < b if limu→∞
ψθ(u)
u = b.

Remark 3.10. From (3.25) and (3.26), we observe, for any λ < 0 and 0 < x ≤ a, the following
identity

Qx

[
T (λ)
a < T0 ∧ ζλ

]
= Qeiα̃πx

[
T

(|λ|)
eiα̃πa

< T0

]
.

It would be interesting to prove such a formula directly from the definition of T
(λ)
a .

Proof. Let us first consider λ < 0 and as above we fix χ = −1. We start by using the fact that

the function x 7→ x−θ is excessive for Q
(θ)
t , see e.g. [40]. More precisely, one has, for any t > 0

and for any F a Ft-measurable and bounded random variable,

E(θ)
x [F ] = Ex

[
Xθ
t F, t < T0

]
, x > 0.

Note that this relation also holds for any F∞-stopping time. Moreover, proceeding as in the proof

of Corollary 3.8, one gets that the Mellin transform of the positive random variable (1− T
(λ)
a )+

is well defined for any real κ such that κ ≤ 0. Thus, since X has no positive jumps, one obtains
by means of both Corollary 3.8 and the optional stopping theorem, for any κ ≤ 0,

Ex

[
(1 − T (λ)

a )−κ+ I
{T

(λ)
a <T0}

]
=

xθ

aθ
E(θ)
x

[
(1 − T (λ)

a )
−(κ+α̃θ)
+

]

=
xθ

aθ
Oψθ

(κ+ α̃θ;xα)

Oψθ
(κ+ α̃θ; aα)

.
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We deduce that κ+
θ (|χ|α̃a) > 0 and the proof of the item (1) is completed by letting κ→ 0. The

last statement follows again by adapting the above arguments to the case λ > 0. �

We are now ready to complete the proof of Theorem 3.2 in the case γ = θ. Let us fix λ = −α̃
and observe, from (3.20), that ζ−α̃ = 1, then one gets that

Qx

[
T (−α̃)
a < T0 ∧ 1

]
= Qx [τ−α̃(Ha) < τ−α̃(H0) ∧ 1]

= Qx [Ha < H0]

since the mapping t 7→ τ−α̃(t) is increasing and τ−1
−α̃(1) = ∞. Thus, as X has no positive jumps,

one deduces that

lim
a→∞

Qx

[
T (−α̃)
a < T0

]
= Qx [H0 = ∞]

= P (x).

Hence, as we have learnt from Corollary 3.8 and Lemma 3.9 that the mapping x 7→ Oψθ
(α̃θ;xα)

is positive on R+, there exists a constant Cθ > 0 such that

Oψθ
(α̃θ;xα) ∼ C−1

θ x−θ.

Finally, recalling that limx→∞ P (x) = 1, we obtain that

P (x) = Cθx
θOψθ

(α̃θ;xα).

Hence, we deduce the expression of S by recalling that S(t) = P (t−α̃). Finally, the series
Oψθ

(α̃θ;xα) being absolutely continuous, the expression of the density s is obtained by differ-
entiating terms by terms. Indeed, one has

s(t) = − d

dt
S(t)

= Cθt
−α̃θ−1 1

Γ(α̃θ)

∞∑

n=0

(−1)nan(ψ)(α̃θ + n)Γ(α̃θ + n)t−n

=
Γ(α̃θ + 1)

Γ(α̃θ)
Cθt

−α̃θ−1Oψθ
(1 + α̃θ; aα).

The expression of the successive derivatives are obtained by an induction argument.

3.1.2. Killed by a jump. Throughout this part, we assume that ξ is a spectrally negative Lévy
process killed at some independent exponential time of parameter q > 0. Recall that, for any
u ≥ 0, ψ(u) = ψ(u) − q, φ is such that ψ ◦ φ(u) = u and the mapping ψφ(q)(u) = ψ(u+ φ(q)) ∈
LK+ as ψ

′
φ(q)(0

+) = 1
φ′(q) > 0.

Lemma 3.11. Let λ < 0. Then, κ+
φ(q)

(|χ|α̃a) = κ+
ψφ(q)

(|χ|α̃a) − α̃φ(q) > 0 and for any κ <

κ+
ψφ(q)

(|χ|α̃a) and 0 < x ≤ a, we have

Ex

[
(1 + χT (λ)

a )−κ+ I
{T

(λ)
a <T0}

]
=

xφ(q)

aφ(q)

Oψφ(q)
(κ+ α̃φ(q);χxα)

Oψφ(q)
(κ+ α̃φ(q);χaα)

.
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In particular,

Qx

[
T (λ)
a < T0 ∧ ζλ

]
=

xφ(q)

aφ(q)

Oψ(α̃φ(q);χxα)

Oψ(α̃φ(q);χaα)
.

Similarly, for any λ > 0 and 0 < x ≤ a, we have

Qx

[
T (λ)
a < T0

]
=

xφ(q)

aφ(q)

Iψ(α̃φ(q);χxα)

Iψ(α̃φ(q);χaα)

where we assume that λaα < b if limu→∞
ψφ(q)(u)

u = b.

Remark 3.12. From the Lemma, we also observe, for any λ < 0 and 0 < x ≤ a, the following
identity

Qx

[
T (λ)
a < T0 ∧ ζλ

]
= Qeiα̃πx

[
T

(|λ|)

eiα̃πa
< T0

]
.

Proof. Let us observe from the Lamperti mapping (1.1) that the semigroup, (Qt)t≥0 of X, is
given, for a function f positive and measurable on R+, by

Qtf(x) = E(q)
x

[
e−qAtf(Xt)

]
, t ≥ 0, x > 0,

where E(q) stands for the expectation operator associated to the law of X with underlying
Laplace exponent ψ. This identity could also be derived from the Feynman-Kac formula. Thus,
for any F∞-stopping time T , one has

Ex [f(XT )] = E(q)
x

[
e−qAT f(XT )

]
.

Moreover, as ξ has independent increments, it is plain that the process (e−qt+φ(q)ξt)t≥0 is P(q)-

martingale, where P(q) stands for the law of the Lévy process with Laplace exponent ψ. By time

change, one deduces that the process (X
φ(q)
t e−qAt)t≥0 is a Q1-martingale. Thus, one can define

a new probability measure, which we denote by Q(φ(q)), as follows, for any t > 0 and for any F
a Ft-measurable and bounded random variable,

E(φ(q))
x [F ] = E(q)

x

[
X
φ(q)
t e−qAtF

]
, x > 0.

It is easily seen that the underlying Laplace exponent of X, under Q(φ(q)), is ψφ(q). Hence, one
gets by the absence of positive jumps for X and an application of the optional stopping theorem,
that, for any 0 < x ≤ a and κ ≤ 0,

Ex

[
(1 + χT (λ)

a )−κ+ I
{T

(λ)
a <T0}

]
= E(q)

x

[
e
−qA

T
(λ)
a (1 + χT (λ)

a )−κ+ I
{T

(λ)
a <T0}

]

=
(x
a

)φ(q)
E(φ(q))
x

[
(1 + χT (λ)

a )
−(κ+α̃φ(q))
+

]

=
(x
a

)φ(q) Oψφ(q)
(κ+ α̃φ(q); |χ|xα)

Oψφ(q)
(κ+ α̃φ(q); |χ|aα)

where the last line follows from Corollary 3.8 since ψ
′
φ(q)(0

+) > 0. The first statement is proved.
The second one is obtained by means of the same devices. �

The proof of the Theorem is completed by following a line of reasoning similar to the previous
case.
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4. Some illustrative examples

4.1. The Bessel processes. We consider ξ to be a 2-scaled Brownian motion with drift 2b ∈ R

and killed at some independent exponential time of parameter q > 0, i.e. ψ(u) = 2u2 + 2bu− q

and 2φ(q) =
√

2q + b2 − b. Note that ψφ(q)(u) = 2u2 + (2b + φ(q))u. Its associated self-similar

process X is well known to be a Bessel process of index b killed at a rate q
∫ t
0 X

−2
s ds. Moreover,

we obtain, setting ̺ = b+ 2φ(q),

Oψφ(q)
(ρ;x) =

Γ(̺+ 1)

Γ(ρ)

∞∑

n=0

(−1)n
Γ(ρ+ n)

n!Γ(n+ ̺+ 1)
(x/2)n

= Φ (ρ, ̺+ 1;−x/2)

where Φ stands for the confluent hypergeometric function. We refer to Lebedev [25, Section 9]
for useful properties of this function. Next, using the following asymptotic

Φ (ρ, ̺+ 1;−x) ∼ Γ(̺+ 1)

Γ(̺+ 1 − ρ)
x−ρ as x→ ∞,

we get that Cφ(q) = Γ(̺+1−φ(q))

2φ(q)Γ(̺+1)
. Thus, we obtain, recalling that, for any q > 0, ̺ − φ(q) =

b+ φ(q) > 0,

sφ(q)(t) = φ(q)
Γ(̺+ 1 − φ(q))

2φ(q)Γ(̺+ 1)
t−φ(q)−1Φ

(
1 + φ(q), ̺ + 1;−(2t)−1

)

=
b+ φ(q)

2φ(q)Γ(φ(q))
t−φ(q)−1

∫ 1

0
e−

u
2t (1 − u)̺−φ(q)−1uφ(q)du

which is the expression [45, (5.a) p.105]. Considering now the case q = 0 and b < 0, we obtain
readily that θ = −b and

sθ(t) =
2b

Γ(−b)t
b−1Φ

(
1 − b, 1 − b;−(2t)−1

)

=
2b

Γ(−b)t
b−1e−

1
2t .

Hence, we deduce the well-known identity (T0,Q1)
(d)
= 1

2G−b
where we recall that G−b stands for

a Gamma random variable of parameter −b > 0.

4.2. Law of the maximum of regular spectrally positive stable Lévy processes. Here
X is a regular spectrally negative α-stable, α ∈ (1, 2), Lévy process killed upon entering into the
negative half-line. Caballero and Chaumont [11] characterized the characteristic triplet of the
underlying Lévy process. In [35], the author obtained the expression for its Laplace exponent.
Instead of using this expression, we follow an alternative route. Indeed, in [32], the author
computed the unique increasing invariant function, say Pλ, of the Ornstein-Uhlenbeck process
defined by

Ut = e−λtX(eαλt−1)/αλ, t ≥ 0,
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for λ > 0. The function Pλ, is given, with C a constant to be determined and recalling that
α̃ = 1/α, by

Pλ(x) = Cxα−1
∞∑

n=0

Γ(n+ 1 − α̃)

Γ(αn+ α)
(αλ)nxαn(4.1)

= Cxα−1
2Ψ1

(
(1, 1), (1, 1 − α̃)

(α,α)

∣∣∣∣αλx
α

)
, x ≥ 0,

where 2Ψ1 stands for the Wright hypergeometric function. We mention that Pλ(x) is obtained
from the identity (3.5) with Iψ the so-called q-scale function of a spectrally negative α-stable pro-
cess which was computed by Bertoin [4] in terms of the Mittag-Leffler function. More precisely,
we have

Pλ(x) = C lim
κ→0

Γ(κ)E
[
Iψ
(
G κ

αλ
(αλ)α̃x

)]

with

Iψ (x) = xα−1
∞∑

n=0

xαn

Γ(α(n + 1))
.

From Remark 3.12, we have P (x) = Pα̃(eiα̃πx). Note that P (0) = 0 and using the large
asymptotic of the function 2Ψ1, detailed can be found in [36], we get, as x→ ∞,

2Ψ1

(
(1, 1), (1, 1 − α̃)

(α,α)

∣∣∣∣− xα
)

∼
(

sin(α̃π)

π

)−1

x1−α.

Hence, by setting C = sin(α̃π)
π , we obtain the required condition limx→∞ P (∞) = 1 and

P (x) =
sin(α̃π)

π
xα−1

2Ψ1

(
(1, 1), (1, 1 − α̃)

(α,α)

∣∣∣∣ − xα
)
.

Next, from the identity (2.7), we find that

P

(
max
0≤s≤1

Ẑs ≥ x

)
= P (x)

where Ẑ is a spectrally positive stable process of index α. Thus, by differentiating, one gets the
following expression for the density

p(x) =
sin(α̃π)

π
xα−2

2Ψ1

(
(1, 1), (1, 1 − α̃)

(α,α − 1)

∣∣∣∣ − xα
)
,

which is the expression found by Bernyk et al. [2, Theorem 1].

4.3. The self-similar saw-tooth processes. Finally, we consider the so-called saw-tooth pro-
cess introduced and deeply studied by Carmona et al. [15]. It is a self-similar positive Markov
process of index α = 1 with underlying Lévy process the sum of a drift of parameter b = 1 and
the negative of a compound Poisson process of parameter β > 0 whose jumps are exponentially
distributed with parameter δ + β − 1 > 0, i.e.

ψ(u) = u
u+ δ − 1

u+ δ + β − 1
, u ≥ 0.
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Moreover, in [15], the authors show that

φ(q) =
1

2

(
q − (δ − 1) + φ̄(q)

)
, q ≥ 0,

where φ̄(q) =
√

(q − (δ − 1))2 + 4(δ + β − 1)q. Let us proceed with the case q = 0. Note, for
1 − β < δ < 1, that γ = 1 − δ and

ψ1−δ(u) = u
u+ 1 − δ

u+ β
.

Thus

an(ψ1−δ , 1) =
Γ(n+ 1 + β)Γ(2 − δ)

Γ(1 + β)Γ(n+ 1)Γ(n + 2 − δ)
, a0 = 1,

and for |z| < 1

Oψ1−δ
(ρ; z) =

Γ(2 − δ)

Γ(ρ)Γ(1 + β)

∞∑

n=0

(−1)n
Γ(ρ+ n)Γ(n+ 1 + β)

Γ(n+ 2 − δ)n!
zn

= 2F1 (ρ, 1 + β, 2 − δ;−z)
where 2F1(a, b;x) stands for the hypergeometric function, see Lebedev [25, Section 9] for a
detailed account on this function. Next, recalling the identity

2F1(−n, 1 + β, δ; 1) =
Γ(2 − δ)Γ(n + 1 − δ − β)

Γ(2 − δ + n)Γ(1 − δ − β)
,

we recover from (3.8) the well-known identity

2F1(ρ, 1 + β, 2 − δ; z) = (1 − z)−ρ2F1

(
ρ, 1 − δ − β, δ;

z

z − 1

)
,

which provides an analytical continuation of the hypergeometric function into the half plane
Re(z) < 1

2 . Finally, using the following asymptotic

2F1(ρ, 1 + β, 2 − δ;−x) ∼ Γ(2 − δ)Γ(1 + β − ρ)

Γ(2 − δ − ρ)Γ(1 + β)
x−ρ as x→ ∞,

one obtains

S(t) =
Γ(1 + β)

Γ(2 − δ)Γ(β + δ)
tδ−1

2F1

(
1 − δ, 1 + β, δ;−t−1

)
.

Moreover, after some easy computations, one gets for γ = φ(q), q > 0,

ψ̄φ(q)(u) = u
u+ φ(q)

u+ β + δ + φ(q) − 1
.

Thus, proceeding as above, we obtain

Oψ̄φ(q)
(ρ; z) = 2F1 (ρ, β + δ + φ(q), 1 + φ(q);−z)

and

S(t) =
Γ(β + δ + φ(q))Γ(1 + φ̄(q) − φ(q))

Γ(1 + φ̄(q))Γ(β + δ)
t−φ(q)

2F1

(
φ(q), β + δ + φ(q), 1 + φ̄(q);−t−1

)
.
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[3] J. Bertoin. Lévy Processes. Cambridge University Press, Cambridge, 1996.
[4] J. Bertoin. On the first exit time of a completely asymmetric stable process from a finite interval. Bull.

London Math. Soc., 28:514–520, 1996.
[5] J. Bertoin. Self-similar fragmentations. Ann. Inst. H. Poincaré Probab. Statist., 38(3):319–340, 2002.
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36(1):279–318, 2008.
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