
Chapter 3 

INTEGER PROGRAMMING 

Robert Bosch 
Oberlin College 
Oberlin OH, USA 

Michael Trick 
Carnegie Mellon University 
Pittsburgh PA, USA 

3.1 INTRODUCTION 
Over the last 20 years, the combination of faster computers, more reliable 

data, and improved algorithms has resulted in the near-routine solution of many 
integer programs of practical interest. Integer programming models are used 
in a wide variety of apphcations, including scheduling, resource assignment, 
planning, supply chain design, auction design, and many, many others. In this 
tutorial, we outline some of the major themes involved in creating and solving 
integer programming models. 

The foundation of much of analytical decision making is linear program­
ming. In a linear program, there are variables, constraints, and an objective 
function. The variables, or decisions, take on numerical values. Constraints are 
used to limit the values to a feasible region. These constraints must be linear 
in the decision variables. The objective function then defines which particu­
lar assignment of feasible values to the variables is optimal: it is the one that 
maximizes (or minimizes, depending on the type of the objective) the objec­
tive function. The objective function must also be linear in the variables. See 
Chapter 2 for more details about Linear Programming. 

Linear programs can model many problems of practical interest, and modem 
linear programming optimization codes can find optimal solutions to problems 
with hundreds of thousands of constraints and variables. It is this combina­
tion of modeling strength and solvabiHty that makes Hnear programming so 
important. 



70 BOSCH AND TRICK 

Integer programming adds additional constraints to linear programming. An 
integer program begins with a linear program, and adds the requirement that 
some or all of the variables take on integer values. This seemingly innocu­
ous change greatly increases the number of problems that can be modeled, 
but also makes the models more difficult to solve. In fact, one frustrating as­
pect of integer programming is that two seemingly similar formulations for the 
same problem can lead to radically different computational experience: one 
formulation may quickly lead to optimal solutions, while the other may take 
an excessively long time to solve. 

There are many keys to successfully developing and solving integer pro­
gramming models. We consider the following aspects: 

• be creative in formulations, 

• find integer programming formulations with a strong relaxation, 

• avoid symmetry, 

• consider formulations with many constraints, 

• consider formulations with many variables, 

• modify branch-and-bound search parameters. 

To fix ideas, we will introduce a particular integer programming model, 
and show how the main integer programming algorithm, branch-and-bound, 
operates on that model. We will then use this model to illustrate the key ideas 
to successful integer programming. 

3.1.1 Facility Location 

We consider a facihty location problem. A chemical company owns four 
factories that manufacture a certain chemical in raw form. The company would 
like to get in the business of refining the chemical. It is interested in building 
refining facilities, and it has identified three possible sites. Table 3.1 contains 
variable costs, fixed costs, and weekly capacities for the three possible refining 
facility sites, and weekly production amounts for each factory. The variable 
costs are in dollars per week and include transportation costs. The fixed costs 
are in dollars per year. The production amounts and capacities are in tons per 
week. 

The decision maker who faces this problem must answer two very different 
types of questions: questions that require numerical answers (for example, 
how many tons of chemical should factory / send to the site-y refining facility 
each week?) and questions that require yes-no answers (for example, should 
the site-y facility be constructed?). While we can easily model the first type 
of question by using continuous decision variables (by letting Xij equal the 



INTEGER PROGRAMMING 71 

Table 3.1. Facility location problem. 

Variable cost 

Fixed cost 
Capacity 

factory 1 
factory 2 
factory 3 
factory 4 

1 

25 
15 
20 
25 

500 000 
1500 

S i t e 
2 

20 
25 
15 
15 

500000 
1500 

3 

15 
20 
25 
15 

500000 
1500 

Production 

1000 
1000 
500 
500 

number of tons of chemical sent from factory / to site j each week), we cannot 
do this with the second. We need to use integer variables. If we let yj equal 1 
if the site-y refining facihty is constructed and 0 if it is not, we quickly arrive 
at an IP formulation of the problem: 

minimize 52 • 25xii + 52 • 20xi2 + 52 • 15xi3 
+ 52 . 15x21 + 52 • 25x22 + 52 • 20x23 
+ 52 • 20x31 + 52 • 15x32 + 52 • 25x33 
+ 52 • 25x41 + 52 • 15x42 + 52 • 15x43 
+ 500000^1 + 500 000^2 +500 000>'3 

subject to 1̂1 + x\2 + Xi3 = 1000 
X2\ +X22 +JC23 = 1000 
•̂ 31 +-^32+ -̂ 33 = 500 
X41 + X42 + X43 = 500 

•̂ 11 +-^21 +-^31 +M\ < 1500)^1 
x\2 + X22 + X32 + X42 < 1500_y2 
•̂ 13 + -̂ 23 + -̂ 33 + -̂ 43 < 1500^3 

Xij > 0 for all / and j 

>^y€{0, 1} for all 7 

The objective is to minimize the yearly cost, the sum of the variable costs 
(which are measured in dollars per week) and the fixed costs (which are mea­
sured in dollars per year). The first set of constraints ensures that each factory's 
weekly chemical production is sent somewhere for refining. Since factory 1 
produces 1000 tons of chemical per week, factory 1 must ship a total of 1000 
tons of chemical to the various refining facilities each week. The second set 
of constraints guarantees two things: (1) if a facihty is open, it will operate 
at or below its capacity, and (2) if a facility is not open, it will not operate 
at all. If the site-1 facility is open (yi = 1) then the factories can send it up 
to 1500^1 = 1500 • 1 = 1500 tons of chemical per week. If it is not open 



72 BOSCH AND TRICK 

(_yj =: 0), then the factories can send it up to 1500};i = 1500 0 = 0 tons per 
week. 

This introductory example demonstrates the need for integer variables. It 
also shows that with integer variables, one can model simple logical require­
ments (if a facility is open, it can refine up to a certain amount of chemical; 
if not, it cannot do any refining at all). It turns out that with integer variables, 
one can model a whole host of logical requirements. One can also model fixed 
costs, sequencing and scheduling requirements, and many other problem as­
pects. 

3.1.2 Solving the Facility Location IP 
Given an integer program (IP), there is an associated Hnear program (LR) 

called the linear relaxation. It is formed by dropping (relaxing) the integrality 
restrictions. Since (LR) is less constrained than (IP), the following are imme­
diate: 

• If (IP) is a minimization problem, the optimal objective value of (LR) is 
less than or equal to the optimal objective value of (IP). 

If (IP) is a maximization problem, the optimal objective value of (LR) is 
greater than or equal to the optimal objective value of (IP), 

If (LR) is infeasible, then so is (IP). 

If all the variables in an optimal solution of (LR) are integer-valued, then 
that solution is optimal for (IP) too. 

• If the objective function coefficients are integer-valued, then for mini­
mization problems, the optimal objective value of (IP) is greater than 
or equal to the ceiling of the optimal objective value of (LR). For max­
imization problems, the optimal objective value of (IP) is less than or 
equal to the floor of the optimal objective value of (LR). 

In summary, solving (LR) can be quite useful: it provides a bound on the 
optimal value of (IP), and may (if we are lucky) give an optimal solution to 
(IP). 

For the remainder of this section, we will let (IP) stand for the Facility Lo­
cation integer program and (LR) for its linear programming relaxation. When 



INTEGER PROGRAMMING 73 

we solve (LR), we obtain 

Objective 
•^11 X.\2 Xi3 

X2\ X22 -^23 

•̂ 31 -^32 -^33 

X41 X^2 -^43 

y \ yi 3̂ 3 

3340000 
• • 1000 

1000 • • 
• 500 • 
• 500 • 
2 2 2 
3 3 3 

This solution has factory 1 send all 1000 tons of its chemical to site 3, factory 
2 send all 1000 tons of its chemical to site 1, factory 3 send all 500 tons to site 
2, and factory 4 send all 500 tons to site 2. It constructs two-thirds of a refining 
facility at each site. Although it costs only 3340 000 dollars per year, it cannot 
be implemented; all three of its integer variables take on fractional values. 

It is tempting to try to produce a feasible solution by rounding. Here, if we 
round y\, yi, and ^3 from 2/3 to 1, we get lucky (this is certainly not always the 
case!) and get an integer feasible solution. Although we can state that this is a 
good solution—its objective value of 3840000 is within 15% of the objective 
value of (LR) and hence within 15% of optimal—we cannot be sure that it is 
optimal. 

So how can we find an optimal solution to (IP)? Examining the optimal 
solution to (LR), we see that >'], yi, and _y3 are fractional. We want to force y\, 
yi, and y2, to be integer valued. We start by branching on _yi, creating two new 
integer programming problems. In one, we add the constraint y\ = 0. In the 
other, we will add the constraint '̂i = 1. Note that any optimal solution to (IP) 
must be feasible for one of the two subproblems. 

After we solve the hnear programming relaxations of the two subproblems, 
we can display what we know in a tree, as shown in Figure 3.1. 

Note that the optimal solution to the left subproblem's LP relaxation is in­
teger valued. It is therefore an optimal solution to the left subproblem. Since 
there is no point in doing anything more with the left subproblem, we mark it 
with an "x" and focus our attention on the right subproblem. 

Both y2 and y^ are fractional in the optimal solution to the right subprob­
lem's LP relaxation. We want to force both variables to be integer valued. Al­
though we could branch on either variable, we will branch on ^2- That is, we 
will create two more subproblems, one with y2 = 0 and the other with j2 = 1 • 
After we solve the LP relaxations, we can update our tree, as in Figure 3.2. 

Note that we can immediately "x out" the left subproblem; the optimal 
solution to its LP relaxation is integer valued. In addition, by employing a 
bounding argument, we can also x out the right subproblem. The argument 
goes like this: Since the objective value of its LP relaxation (3636666|) is 
greater than the objective value of our newly found integer feasible solution 



74 BOSCH AND TRICK 

j ] = 0 

1 3340000 

1 • -1000 
1000 • • 

• 500 • 

• 500 • 
2 2 2 
3 3 3 > ' 1 = 1 

3730000 

• 1000 

500 500 

500 • 

500 • 

1 1 

3470000 

1000 • 

500 • 

• 500 

1 \ 

1000 

2 

3 1 

Figure 3.1. Intermediate branch and bound tree. 

(3470000), the optimal value of the right subproblem must be higher than 
(worse than) the objective value of our newly found integer feasible solution. 
So there is no point in expending any more effort on the right subproblem. 

Since there are no active subproblems (subproblems that require branching), 
we are done. We have found an optimal solution to (IP). The optimal solution 
has factories 2 and 3 use the site-1 refining facility and factories 1 and 4 use the 
site-3 facility. The site-1 and site-3 facihties are constructed. The site-2 facility 
is not. The optimal solution costs 3470000 dollars per year, 370000 dollars 
per year less than the solution obtained by rounding the solution to (LR). 

This method is called branch and bound, and is the most common method 
for finding solutions to integer programming formulations. 

3.1.3 Difficulties with Integer Programs 
While we were able to get the optimal solution to the example integer pro­

gram relatively quickly, it is not always the case that branch and bound quickly 
solves integer programs. In particular, it is possible that the bounding aspects 
of branch and bound are not invoked, and the branch and bound algorithm can 
then generate a huge number of subproblems. In the worst case, a problem 
with n binary variables (variables that have to take on the value 0 or 1) can 
have 2^ subproblems. This exponential growth is inherent in any algorithm for 
integer programming, unless P = NP (see Chapter 11 for more details), due to 
the range of problems that can be formulated within integer programming. 



INTEGER PROGRAMMING 75 

Ji=0 

3340000 

• -1000 

1000 • • 

• 500 • 

• 500 • 
2 2 2 
3 3 3 y,=l 

3730000 

• 1000 

500 500 

500 • 

500 • 

1 1 ^2=0 

3470000 

• • 1000 

1000 • • 

500 • • 

• 500 • 

1 ^ 2 
'• 3 3 

} ^ 2 = 1 

3470000 

1000 

500 

1 

1000 

500 
1 

3636 666f 

1000 
500 500 

I 

500 • 

500 • 

1 1 

Figure 3,2. Final branch and bound tree. 

Despite the possibility of extreme computation time, there are a number 
of techniques that have been developed to increase the likelihood of finding 
optimal solutions quickly. After we discuss creativity in formulations, we will 
discuss some of these techniques. 

3.2 BE CREATIVE IN FORMULATIONS 
At first, it may seem that integer programming does not offer much over lin­

ear programming: both require linear objectives and constraints, and both have 
numerical variables. Can requiring some of the variables to take on integer 
values significantly expand the capabiHty of the models? Absolutely: integer 
programming models go far beyond the power of Hnear programming models. 
The key is the creative use of integrality to model a wide range of common 



76 BOSCH AND TRICK 

structures in models. Here we outline some of the major uses of integer vari­
ables. 

3.2.1 Integer Quantities 
The most obvious use of integer variables is when an integer quantity is 

required. For instance, in a production model involving television sets, an inte­
gral number of television sets might be required. Or, in a personnel assignment 
problem, an integer number of workers might be assigned to a shift. 

This use of integer variables is the most obvious, and the most over-used. 
For many applications, the added ''accuracy" in requiring integer variables is 
far outweighed by the greater difficulty in finding the optimal solution. For 
instance, in the production example, if the number of televisions produced is 
in the hundreds (say the fractional optimal solution is 202.7) then having a plan 
with the rounded off value (203 in this example) is likely to be appropriate in 
practice. The uncertainty of the data almost certainly means that no production 
plan is accurate to four figures! Similarly, if the personnel assignment problem 
is for a large enterprise over a year, and the linear programming model suggests 
154.5 people are required, it is probably not worthwhile to invoke an integer 
programming model in order to handle the fractional parts. 

However, there are times when integer quantities are required. A production 
system that can produce either two or three aircraft carriers and a personnel 
assignment problem for small teams of five or six people are examples. In 
these cases, the addition of the integrality constraint can mean the difference 
between useful models and irrelevant models. 

3.2.2 Binary Decisions 
Perhaps the most used type of integer variable is the binary variable: an 

integer variable restricted to take on the values 0 or 1. We will see a number of 
uses of these variables. Our first example is in modeling binary decisions. 

Many practical decisions can be seen as ''yes" or ''no" decisions: Should we 
construct a chemical refining facifity in site j (as in the introduction)? Should 
we invest in project B? Should we start producing new product Y? For many 
of these decisions, a binary integer programming model is appropriate. In 
such a model, each decision is modeled with a binary variable: setting the 
variable equal to 1 corresponds to making the "yes" decision, while setting it 
to 0 corresponds to going with the "no" decision. Constraints are then formed 
to correspond to the effects of the decision. 

As an example, suppose we need to choose among projects A, B, C, and 
D. Each project has a capital requirement ($1 milHon, $2.5 million, $4 milhon, 
and $5 million respectively) and an expected return (say, $3 million, $6 million, 



INTEGER PROGRAMMING 11 

$13 million, and $16 million). If we have $7 million to invest, which projects 
should we take on in order to maximize our expected return? 

We can formulate this problem with binary variables XA, A:B, XQ, and XD 
representing the decision to take on the corresponding project. The effect of 
taking on a project is to use up some of the funds we have available to invest. 
Therefore, we have a constraint: 

JCA + 2.5.̂ 3 + 4xc + 5XD < 7 

Our objective is to maximize the expected profit: 

Maximize 3xi + 6x2 + 13^3 + 15x4 

In this case, binary variables let us make the yes-no decision on whether to 
invest in each fund, with a constraint ensuring that our overall decisions are 
consistent with our budget. Without integer variables, the solution to our model 
would have fractional parts of projects, which may not be in keeping with the 
needs of the model. 

3.2.3 Fixed Charge Requirements 
In many production applications, the cost of producing x of an item is 

roughly linear except for the special case of producing no items. In that case, 
there are additional savings since no equipment or other items need be pro­
cured for the production. This leads to o. fixed charge structure. The cost for 
producing x of an item is 

• 0, ifx = 0 

• C] + C2X, if X > 0 for constants c\, C2 

This type of cost structure is impossible to embed in a linear program. With 
integer programming, however, we can introduce a new binary variable y. The 
value _y = 1 is interpreted as having non-zero production, while >' = 0 means 
no production. The objective function for these variables then becomes 

c\y + C2X 

which is appropriately linear in the variables. It is necessary, however, to add 
constraints that link the x and y variables. Otherwise, the solution might be 
y = Q and x = 10, which we do not want. If there is an upper bound M on 
how large x can be (perhaps derived from other constraints), then the constraint 

X < My 

correctly links the two variables. If _y = 0 then x must equal 0; if >' = 1 then x 
can take on any value. Technically, it is possible to have the values x = 0 and 



78 BOSCH AND TRICK 

y = \ with this formulation, but as long as this is modeling a fixed cost (rather 
than a fixed profit), this will not be an optimal (cost minimizing) solution. 

This use of "M" values is common in integer programming, and the result is 
called a "Big-M model". Big-M models are often difficult to solve, for reasons 
we will see. 

We saw this fixed-charge modeling approach in our initial facility location 
example. There, the y variables corresponded to opening a refining facility 
(incurring a fixed cost). The x variables correspond to assigning a factory 
to the refining facility, and there was an upper bound on the volume of raw 
material a refinery could handle. 

3.2.4 Logical Constraints 
Binary variables can also be used to model complicated logical constraints, 

a capability not available in linear programming. In a facility location problem 
with binary variables y\, yi, y^, y^, and ys corresponding to the decisions to 
open warehouses at locations 1, 2, 3, 4 and 5 respectively, complicated rela­
tionships between the warehouses can be modeled with linear functions of the 
y variables. Here are a few examples: 

• At most one of locations 1 and 2 can be opened: y\+ yi <\. 

• Location 3 can only be opened if location 1 is _y3 < >'i. 

• Location 4 cannot be opened if locations 2 or 3 are such that y^ + yi S^ 
or>'4 + >'3 < 1-

• If location 1 is open, either locations 2 or 5 must be y2 + y5>y\-

Much more complicated logical constraints can be formulated with the addi­
tion of new binary variables. Consider a constraint of the form: ?>x\ +Ax2 < 10 
OR Ax\ -f 2x2 > 12. As written, this is not a linear constraint. However, if we 
let M be the largest either \'ix\ +4jC2| or |4x] -f 2x21 can be, then we can define 
a new binary variable z which is 1 only if the first constraint is satisfied and 0 
only if the second constraint is satisfied. Then we get the constraints 

3x1 -h 4x2 < 10 -h (M - 10)(1 - z) 

4x] -f- 2x2 > 12 - (M -f \2)z 

When z = 1, we obtain 

3x] 4-4x2 < 10 

4x] + 2x2 > -M 

When z = 0, we obtain 

3xi -f- 4x2 < M 

4xi -f-2x2 > 12 



INTEGER PROGRAMMING 79 

This correctly models the original nonlinear constraint. 
As we can see, logical requirements often lead to Big-M-type formulations. 

3.2.5 Sequencing Problems 
Many problems in sequencing and scheduling require the modeling of the 

order in which items appear in the sequence. For instance, suppose we have a 
model in which there are items, where each item / has a processing time on a 
machine pt. If the machine can only handle one item at a time and we let ti 
be a (continuous) variable representing the start time of item / on the machine, 
then we can ensure that items / and j are not on the machine at the same time 
with the constraints 

tj > ti + Pi IF tj > ti 

ti > tj + pj IF tj < ti 

This can be handled with a new binary variable j/y which is 1 if ti < tj and 0 
otherwise. This gives the constraints 

tj >ti+pi-Mil -y) 

ti > tj + Pj - My 

for sufficiently large M. If j is 1 then the second constraint is automatically 
satisfied (so only the first is relevant) while the reverse happens for y = 0. 

3.3 FIND FORMULATIONS WITH STRONG 
RELAXATIONS 

As the previous section made clear, integer programming formulations can 
be used for many problems of practical interest. In fact, for many problems, 
there are many alternative integer programming formulations. Finding a ''good" 
formulation is key to the successful use of integer programming. The defini­
tion of a good formulation is primarily computational: a good formulation is 
one for which branch and bound (or another integer programming algorithm) 
will find and prove the optimal solution quickly. Despite this empirical aspect 
of the definition, there are some guidelines to help in the search for good for­
mulations. The key to success is to find formulations whose linear relaxation 
is not too different from the underlying integer program. 

We saw in our first example that solving hnear relaxations was key to the 
basic integer programming algorithm. If the solution to the initial hnear relax­
ation is integer, then no branching need be done and integer programming is 
no harder than linear programming. Unfortunately, finding formulations with 
this property is very hard to do. But some formulations can be better than other 
formulations in this regard. 



80 BOSCH AND TRICK 

Let us modify our facility location problem by requiring that every factory 
be assigned to exactly one refinery (incidentally, the optimal solution to our 
original formulation happened to meet this requirement). Now, instead of hav­
ing Xij be the tons sent from factory / to refinery j , we define X/j to be 1 if 
factory / is serviced by refinery j . Our formulation becomes 

Minimize 1000 • 52 • 25xii + 1000 • 52 • 20xi2 + 1000 • 52 • \5xu 
+ 1000 • 52 • 15x21 + 1000 • 52 • 25x22 + 1000 • 52 • 20x23 
+ 500 • 52 • 20x31 + 500 • 52 • 15x32 + 500 • 52 • 25x33 
+ 500 • 52 • 25x41 + 500 • 52 • 15x42 + 500 • 52 • 15x43 
+ 500000^1 + 500000);2 + 500000};3 

Subjectto x i i+xi2 + xi3 = l 
Xl\ + X22 + ^23 = 1 
•̂ 31 +-^32+-^33 = 1 
X41 + X42 + X43 = 1 

1000x11 + 1000x21 +500x31 +500x41 < 1500>'i 
1000x12 + 1000x22 + 500x32 + 500x42 < \5my2 
1000X13 + 1000X23 + 500X33 + 500X43 < 1500^3 

Xij €{0,1} for all / and j 

>',€{0, 1} for ally. 

Let us call this formulation the base formulation. This is a correct formulation 
to our problem. There are alternative formulations, however. Suppose we add 
to the base formulation the set of constraints 

Xij < yj for all / and j 

Call the resulting formulation the expanded formulation. Note that it too is 
an appropriate formulation for our problem. At the simplest level, it appears 
that we have simply made the formulation larger: there are more constraints so 
the linear programs solved within branch-and-bound will likely take longer to 
solve. Is there any advantage to the expanded formulation? 

The key is to look at non-integer solutions to linear relaxations of the two 
formulations: we know the two formulations have the same integer solutions 
(since they are formulations of the same problem), but they can differ in non-
integer solutions. Consider the solution xi3 = 1,X2] = l,-^32 = l,-^42 = 
1, >'! = 2/3, y2 = 2/3, _y3 = 2/3. This solution is feasible to the Hnear relax­
ation of the base formulation but is not feasible to the linear relaxation of the 
expanded formulation. If the branch-and-bound algorithm works on the base 
formulation, it may have to consider this solution; with the expanded formula­
tion, this solution can never be examined. If there are fewer fractional solutions 
to explore (technically, fractional extreme point solutions), branch and bound 
will typically terminate more quickly. 



INTEGER PROGRAMMING 81 

Since we have added constraints to get the expanded formulation, there is 
no non-integer solution to the hnear relaxation of the expanded formulation 
that is not also feasible for the linear relaxation of the base formulation. We 
say that the expanded formulation is tighter than the base formulation. 

In general, tighter formulations are to be preferred for integer programming 
formulations even if the resulting formulations are larger. Of course, there 
are exceptions: if the size of the formulation is much larger, the gain from 
the tighter formulation may not be sufficient to offset the increased linear pro­
gramming times. Such cases are definitely the exception, however: almost 
invariably, tighter formulations are better formulations. For this particular in­
stance, the Expanded Formulation happens to provide an integer solution with­
out branching. 

There has been a tremendous amount of work done on finding tighter formu­
lations for different integer programming models. For many types of problems, 
classes of constraints (or cuts) to be added are known. These constraints can 
be added in one of two ways: they can be included in the original formulation 
or they can be added as needed to remove fractional values. The latter case 
leads to a branch and cut approach, which is the subject of Section 3.6. 

A cut relative to a formulation has to satisfy two properties: first, every fea­
sible integer solution must also satisfy the cut; second, some fractional solution 
that is feasible to the linear relaxation of the formulation must not satisfy the 
cut. For instance, consider the single constraint 

3;ci + 5JC2 + 8;c3 + 10x4 < 16 

where the Xi are binary variables. Then the constraint x^ -\- X4 < 1 is a cut 
(every integer solution satisfies it and, for instance x = (0, 0, .5, 1) does not) 
but X] + ^2 + -̂ 3 + ^4 < 4 is not a cut (no fractional solutions removed) nor is 
-̂ 1 + ^2 + ^3 £ 2 (which incorrectly removes ;c = (1, 1, 1, 0). 

Given a formulation, finding cuts to add to it to strengthen the formulation 
is not a routine task. It can take deep understanding, and a bit of luck, to find 
improving constraints. 

One generally useful approach is called the Chvatal (or Gomory-Chvatal) 
procedure. Here is how the procedure works for ' '<" constraints where all the 
variables are non-negative integers: 

1 Take one or more constraints, multiply each by a non-negative constant 
(the constant can be different for different constraints). Add the resulting 
constraints into a single constraint. 

2 Round down each coefficient on the left-hand side of the constraint. 

3 Round down the right-hand side of the constraint. 



82 BOSCH AND TRICK 

The result is a constraint that does not cut off any feasible integer solutions. 
It may be a cut if the effect of rounding down the right-hand side of the con­
straint is more than the effect of rounding down the coefficients. 

This is best seen through an example. Taking the constraint above, let us 
take the two constraints 

2>xx + 5;c2 + 8;c3 + 10;c4 < 16 x^<\ 

If we multiply each constraint by 1/9 and add them we obtain 

3/9JC1 + 5/9x2 + 9/9JC3 + \0/9x^ < 17/9 

Now, round down the left-hand coefficients (this is valid since the x variables 
are non-negative and it is a "<" constraint): 

^3+^4 < 17/9 

Finally, round down the right-hand side (this is vahd since the x variables are 
integer) to obtain 

^3 + ^4 :£ 1 

which turns out to be a cut. Notice that the three steps have differing effects 
on feasibihty. The first step, since it is just taking a linear combination of con­
straints, neither adds nor removes feasible values; the second step weakens the 
constraint, and may add additional fractional values; the third step strengthens 
the constraint, ideally removing fractional values. 

This approach is particularly useful when the constants are chosen so that no 
rounding down is done in the second step. For instance, consider the following 
set of constraints (where the xt are binary variables): 

•̂ 1 + -̂ 2 :̂  1 ^2 + -̂ 3 :̂  1 x\ -^ X3 < I 

These types of constraints often appear in formulations where there are lists 
of mutually exclusive variables. Here, we can multiply each constraint by 1/2 
and add them to obtain 

^1 + 2̂ + 3̂ < 3/2 

There is no rounding down on the left-hand side, so we can move on to round­
ing down the right-hand side to obtain 

^1 +^2 +-^3 < 1 

which, for instance, cuts off the solution x = (1/2, 1/2, 1/2). 
In cases where no rounding down is needed on the left-hand side but there 

is rounding down on the right-hand side, the result has to be a cut (relative 
to the included constraints). Conversely, if no rounding down is done on the 
right-hand side, the result cannot be a cut. 



INTEGER PROGRAMMING 83 

In the formulation section, we mentioned that "Big-M" formulations often 
lead to poor formulations. This is because the linear relaxation of such a for­
mulation often allows for many fractional values. For instance, consider the 
constraint (all variables are binary) 

xi +A;2 + X3 < 1000}; 

Such constraints often occur in facility location and related problems. This 
constraint correctly models a requirement that the x variables can be 1 only 
if y is also 1, but does so in a very weak way. Even if the x values of the 
linear relaxation are integer, y can take on a very small value (instead of the 
required 1). Here, even forx = (1,1,1), y need only be 3/1000 to make the 
constraint feasible. This typically leads to very bad branch-and-bound trees: 
the linear relaxation gives little guidance as to the "true" values of the variables. 

The following constraint would be better: 

•̂ 1 + ^2 + ^3 < 'iy 

which forces _y to take on larger values. This is the concept of making the M 
in Big-M as small as possible. Better still would be the three constraints 

^1 < ^̂  X2<y X2 <y 

which force y to be integer as soon as the x values are. 
Finding improved formulations is a key concept to the successful use of in­

teger programming. Such formulations typically revolve around the strength 
of the linear relaxation: does the relaxation well-represent the underlying inte­
ger program? Finding classes of cuts can improve formulations. Finding such 
classes can be difficult, but without good formulations, integer programming 
models are unlikely to be successful except for very small instances. 

3.4 AVOID SYMMETRY 
Symmetry often causes integer programming models to fail. Branch-and-

bound can become an extremely inefficient algorithm when the model being 
solved displays many symmetries. 

Consider again our facility location model. Suppose instead of having just 
one refinery at a site, we were permitted to have up to three refineries at a 
site. We could modify our model by having variables yj, Zj and Wj for each 
site (representing the three refineries). In this formulation, the cost and other 
coefficients for yj are the same as for Zj and Wj. The formulation is straight­
forward, but branch and bound does very poorly on the result. 

The reason for this is symmetry: for every solution in the branch-and-bound 
tree with a given y, z, and w, there is an equivalent solution with z taking on y's 
values, w taking on z's and _y taking on w. This greatly increases the number 



84 BOSCH AND TRICK 

of solutions that the branch-and-bound algorithm must consider in order to find 
and prove the optimality of a solution. 

It is very important to remove as many symmetries in a formulation as pos­
sible. Depending on the problem and the symmetry, this removal can be done 
by adding constraints, fixing variables, or modifying the formulation. 

For our facihty location problem, the easiest thing to do is to add the con­
straints 

yj ^ Zj > Wj for all j 

Now, at a refinery site, Zj can be non-zero only if yj is non-zero, and Wj is 
non-zero only if both yj and Zj are. This partially breaks the symmetry of this 
formulation, though other symmetries (particularly in the x variables) remain. 

This formulation can be modified in another way by redefining the variables. 
Instead of using binary variables, let yj be the number of refineries put in 
location j . This removes all of the symmetries at the cost of a weaker linear 
relaxation (since some of the strengthenings we have explored require binary 
variables). 

Finally, to illustrate the use of variable fixing, consider the problem of col­
oring a graph with K colors: we are given a graph with node set V and edge 
set E and wish to determine if we can assign a value v{i) to each node / such 
that v(i) e {I,,.., K} and vii) # v(j) for all (/, ; ) e E. 

We can formulate this problem as an integer programming by defining a 
binary variable xtk to be 1 if / is given color k and 0 otherwise. This leads to 
the constraints 

Y j Xik = 1 for all / (every node gets a color) 
k 

Xik + Xjk = 1 for all k, (i, j) e E (no adjacent get the same) 

Xik € {0. 1) for all /, k 

The graph coloring problem is equivalent to determining if the above set of 
constraints is feasible. This can be done by using branch-and-bound with an 
arbitrary objective value. 

Unfortunately, this formulation is highly symmetric. For any coloring of 
graph, there is an equivalent coloring that arises by permuting the coloring 
(that is, permuting the set { 1 , . . . , A:} in this formulation). This makes branch 
and bound very ineffective for this formulation. Note also that the formulation 
is very weak, since setting xik = 1//: for all i,k is a feasible solution to the 
linear relaxation no matter what E is. 

We can strengthen this formulation by breaking the symmetry through vari­
able fixing. Consider a clique (set of mutually adjacent vertices) of the graph. 
Each member of the clique has to get a different color. We can break the 
symmetry by finding a large (ideally maximum sized) cHque in the graph and 



INTEGER PROGRAMMING 85 

setting the colors of the cHque arbitrarily, but fixed. So if the clique has size 
kc, we would assign the colors 1 , . . . , ^̂  to members of the clique (adding in 
constraints forcing the corresponding x values to be 1). This greatly reduces 
the symmetry, since now only permutations among the colors kc + \,..., K 
are valid. This also removes the xik = l/k solution from consideration. 

3.5 CONSIDER FORMULATIONS WITH MANY 
CONSTRAINTS 

Given the importance of the strength of the linear relaxation, the search for 
improved formulations often leads to sets of constraints that are too large to 
include in the formulation. For example, consider a single constraint with non-
negative coefficients: 

a]X] + a2X2 + fl3^3 H h «n-^n < b 

where the x/ are binary variables. Consider a subset S of the variables such 
that Ylies ^' ^ b- T^^ constraint 

i€S 

is valid (it is not violated by any feasible integer solution) and cuts off frac­
tional solutions as long as S is minimal. These constraints are called cover 
constraints. We would then like to include this set of constraints in our formu­
lation. 

Unfortunately, the number of such constraints can be very large. In general, 
it is exponential in n, making it impractical to include the constraints in the 
formulation. But the relaxation is much tighter with the constraints. 

To handle this problem, we can choose to generate only those constraints 
that are needed. In our search for an optimal integer solution, many of the 
constraints are not needed. If we can generate the constraints as we need them, 
we can get the strength of the improved relaxation without the huge number of 
constraints. 

Suppose our instance is 

Maximize 9x] 4- 14̂ :2 + lOxj + 32^4 

Subject to 3x] -f 5x2 + 8x3 -f IOX4 < 16 

Xi €{0,1} 

The optimal solution to the linear relaxation is x* = (1,0.6, 0, 1) with objec­
tive 49.4. Now consider the set 5 = (xj, X2, X4). The constraint 

.̂ 1 + X2 + X4 < 2 



86 BOSCH AND TRICK 

is a cut that x* violates. If we add that constraint to our problem, we get a 
tighter formulation. Solving this model gives solution ^ = (1, 0, 0.375, 1) and 
objective 48.5. The constraint 

3̂ + 4̂ :̂  1 

is a vaHd cover constraint that cuts off this solution. Adding this constraint 
and solving gives solution x = (0, 1, 0, 1) with objective 46. This is the op­
timal solution to the original integer program, which we have found only by 
generating cover inequalities. 

In this case, the cover inequalities were easy to see, but this process can 
be formalized. A reasonable heuristic for identifying violated cover inequali­
ties would be to order the variables by decreasing a/x* then add the variables 
to the cover S until X]/G5 ^i ^ ^' ^^^^ heuristic is not guaranteed to find 
violated cover inequalities (for that, a knapsack optimization problem can be 
formulated and solved) but even this simple heuristic can create much stronger 
formulations without adding too many constraints. 

This idea is formalized in the branch-and-cut approach to integer program­
ming. In this approach, a formulation has two parts: the explicit constraints 
(denoted Ax < b) and the implicit constraints {A'x < b'). Denote the ob­
jective function as Maximize ex. Here we will assume that all x are integral 
variables, but this can be easily generalized. 

Step L Solve the linear program Maximize ex subject io Ax <b to get optimal 
relaxation solution x*. 
Step 2. If X* integer, then stop, x* is optimal. 
Step 3. Try to find a constraint a'x < b' from the implicit constraints such that 
a'x^ > b. If found, add a'x < b to the Ax < b constraint set and go to step 1. 
Otherwise, do branch-and-bound on the current formulation. 

In order to create a branch-and-cut model, there are two aspects: the defini­
tion of the implicit constraints, and the definition of the approach in Step 3 to 
find violated inequahties. The problem in Step 3 is referred to as the separation 
problem and is at the heart of the approach. For many sets of constraints, no 
good separation algorithm is known. Note, however, that the separation prob­
lem might be solved heuristically: it may miss opportunities for separation and 
therefore invoke branch-and-bound too often. Even in this case, it often hap­
pens that the improved formulations are sufficiently tight to greatly decrease 
the time needed for branch-and-bound. 

This basic algorithm can be improved by carrying out cut generation within 
the branch and bound tree. It may be that by fixing variables, different con­
straints become violated and those can be added to the subproblems. 



INTEGER PROGRAMMING 87 

3.6 CONSIDER FORMULATIONS WITH MANY 
VARIABLES 

Just as improved formulations can result from adding many constraints, 
adding many variables can lead to very good formulations. Let us begin with 
our graph coloring example. Recall that we are given a graph with vertices 
V and edges E and want to assign a value v{i) to each node / such that 
v{i) ^ v{j) for all (/, y) e E. Our objective is to use the minimum num­
ber of different values (before, we had a fixed number of colors to use: in this 
section we will use the optimization version rather than the feasibility version 
of this problem). 

Previously, we described a model using binary variables xi^ denoting whether 
node / gets color k or note. As an alternative model, let us concentrate on the 
set of nodes that gets the same color. Such a set must be an independent set (a 
set of mutually non-adjacent nodes) of the graph. Suppose we fisted all inde­
pendent sets of the graph: 5i, ^ 2 , . . . , 5^. Then we can define binary variables 
Jb J25. . . , Jm with the interpretation that yj = 1 means that independent set 
Sj is part of the coloring, and yj = 0 means that independent set Sj is not part 
of the coloring. Now our formulation becomes 

Minimize T j ^ j 

j 

Subject to V" j j = 1 for all / e V 
j'JeSj 

yj e {0, Ijforall j € { l , . . . ,m} 

The constraint states that every node must be in some independent set of the 
coloring. 

This formulation is a much better formulation that our xi^ formulation. This 
formulation does not have the symmetry problems of the previous formulation 
and results in a much tighter linear relaxation. Unfortunately, the formulation 
is impractical for most graphs because the number of independent sets is ex­
ponential in the number of nodes, leading to an impossibly large formulation. 

Just as we could handle an exponential number of constraints by generating 
them as needed, we can also handle an exponential number of variables by 
variable generation: the creation of variables only as they are needed. In order 
to understand how to do this, we will have to understand some key concepts 
from linear programming. 



88 BOSCH AND TRICK 

Consider a linear program, where the variables are indexed by j and the 
constraints indexed by /: 

Maximize /^^CjXj 
j 

Subject to ŷ <3!/7-̂ /7 < bi for all / 
j 

Xj > 0 for all j 

When this linear program is solved, the result is the optimal solution x*. In 
addition, however, there is a value called the dual value, denoted jr,, associated 
with each constraint. This value gives the marginal change in the objective 
value as the right-hand side for the corresponding constraint is changed. So if 
the right-hand side of constraint / changes to Z?, + A, then the objective will 
change by 7r,A (there are some technical details ignored here involving how 
large A can be for this to be a valid calculation: since we are only concerned 
with marginal calculations, we can ignore these details). 

Now, suppose there is a new variable Xn+\, not included in the original for­
mulation. Suppose it could be added to the formulation with corresponding 
objective coefficient c„+i and coefficients a/,„+i. Would adding the variable 
to the formulation result in an improved formulation? The answer is certainly 
"no" in the case when 

i 

In this case, the value gained from the objective is insufficient to offset the 
cost charged marginally by the effect on the constraints. We need Cn+\ — 
J2i <^i,n+i^i > 0 in order to possibly improve on our solution. 

This leads to the idea of variable generation. Suppose you have a formula­
tion with a huge number of variables. Rather than solve this huge formulation, 
begin with a smaller number of variables. Solve the linear relaxation and get 
dual values n. Using TT, determine if there is one (or more) variables whose in­
clusion might improve the solution. If not, then the linear relaxation is solved. 
Otherwise, add one or more such variables to the formulation and repeat. 

Once the linear relaxation is solved, if the solution is integer, then it is op­
timal. Otherwise, branch and bound is invoked, with the variable generation 
continuing in the subproblems. 

Key to this approach is the algorithm for generating the variables. For a 
huge number of variables it is not enough to check all of them: that would 
be too time consuming. Instead, some sort of optimization problem must be 
defined whose solution is an improving variable. We illustrate this for our 
graph coloring problem. 



INTEGER PROGRAMMING 89 

Suppose we begin with a limited set of independent sets and solve our re­
laxation over them. This leads to a dual value 7ti for each node. For any other 
independent set 5, if X]/€5 ̂ / > 1. then S corresponds to an improving vari­
able. We can write this problem using binary variables zt corresponding to 
whether / is in S or not: 

Maximize Y^^/^/ 

Subject to Zi + Z; < 1 for all (/, y) e E 

Zi e {0,1} for all/ 

This problem is called the maximum weighted independent set (MWIS) prob­
lem, and, while the problem is formally hard, effective methods have been 
found for solving it for problems of reasonable size. 

This gives a variable generation approach to graph coloring: begin with a 
small number of independent sets, then solve the MWIS problem, adding in 
independent sets until no independent set improves the current solution. If the 
variables are integer, then we have the optimal coloring. Otherwise we need to 
branch. 

Branching in this approach needs special care. We need to branch in such a 
way that our subproblem is not affected by our branching. Here, if we simply 
branch on the yj variables (so have one branch with yj = 1 and another with 
yj = 0), we end up not being able to use the MWIS model as a subproblem. 
In the case where yj = 0 we need to find an improving set, except that Sj 
does not count as improving. This means we need to find the second most 
improving set. As more branching goes on, we may need to find the third most 
improving, the fourth most improving, and so on. To handle this, specialized 
branching routines are needed (involving identifying nodes that, on one side of 
the branch, must be the same color and, on the other side of the branch, cannot 
be the same color). 

Variable generation together with appropriate branching rules and variable 
generation at the subproblems is a method known as branch and price. This 
approach has been very successful in attacking a variety of very difficult prob­
lems over the last few years. 

To summarize, models with a huge number of variables can provide very 
tight formulations. To handle such models, it is necessary to have a variable 
generation routine to find improving variables, and it may be necessary to mod­
ify the branching method in order to keep the subproblems consistent with that 
routine. Unlike constraint generation approaches, heuristic variable generation 
routines are not enough to ensure optimality: at some point it is necessary to 
prove conclusively that the right variables are included. Furthermore, these 
variable generation routines must be applied at each node in the branch-and-
bound tree if that node is to be crossed out from further analysis. 



90 BOSCH AND TRICK 

3.7 MODIFY BRANCH-AND-BOUND PARAMETERS 

Integer programs are solved with computer programs. There are a number 
of computer programs available to solve integer programs. These range from 
basic spreadsheet-oriented systems to open-source research codes to sophis­
ticated commercial applications. To a greater or lesser extent, each of these 
codes offers parameters and choices that can have a significant affect on the 
solvability of integer programming models. For most of these parameters, the 
only way to determine the best choice for a particular model is experimenta­
tion: any choice that is uniformly dominated by another choice would not be 
included in the software. 

Here are some common, key choices and parameters, along with some com­
ments on each. 

3.7.1 Description of Problem 

The first issue to be handled is to determine how to describe the integer 
program to the optimization routine(s). Integer programs can be described 
as spreadsheets, computer programs, matrix descriptors, and higher-level lan­
guages. Each has advantages and disadvantages with regards to such issues as 
ease-of-use, solution power, flexibility and so on. For instance, implementing 
a branch-and-price approach is difficult if the underlying solver is a spread­
sheet program. Using ''callable hbraries" that give access to the underlying 
optimization routines can be very powerful, but can be time-consuming to de­
velop. 

Overall, the interface to the software will be defined by the software. It is 
generally useful to be able to access the software in multiple ways (callable 
libraries, high level languages, command line interfaces) in order to have full 
flexibihty in solving. 

3.7.2 Linear Programming Solver 

Integer programming relies heavily on the underlying linear programming 
solver. Thousands or tens of thousands of linear programs might be solved in 
the course of branch-and-bound. Clearly a faster linear programming code can 
result in faster integer programming solutions. Some possibihties that might 
be offered are primal simplex, dual simplex, or various interior point methods. 
The choice of solver depends on the problem size and structure (for instance, 
interior point methods are often best for very large, block-structured models) 
and can differ for the initial linear relaxation (when the solution must be found 
''from scratch") and subproblem linear relaxations (when the algorithm can 
use previous solutions as a starting basis). The choice of algorithm can also be 
affected by whether constraint and/or variable generation are being used. 



INTEGER PROGRAMMING 91 

3.73 Choice of Branching Variable 

In our description of branch-and-bound, we allowed branching on any frac­
tional variable. When there are multiple fractional variables, the choice of 
variable can have a big effect on the computation time. As a general guideline, 
more 'Important" variables should be branched on first. In a facility location 
problem, the decisions on opening a facility are generally more important than 
the assignment of a customer to that facility, so those would be better choices 
for branching when a choice must be made. 

3.7.4 Choice of Subproblem to Solve 

Once multiple subproblems have been generated, it is necessary to choose 
which subproblem to solve next. Typical choices are depth-first search, breadth-
first search, or best-bound search. Depth-first search continues fixing variables 
for a single problem until integrahty or infeasibility results. This can lead 
quickly to an integer solution, but the solution might not be very good. Best-
bound search works with subproblems whose linear relaxation is as large (for 
maximization) as possible, with the idea that subproblems with good linear 
relaxations may have good integer solutions. 

3.7.5 Direction of Branching 

When a subproblem and a branching variable have been chosen, there are 
multiple subproblems created corresponding to the values the variable can take 
on. The ordering of the values can affect how quickly good solutions can be 
found. Some choices here are a fixed ordering or the use of estimates of the 
resulting linear relaxation value. With fixed ordering, it is generally good to 
first try the more restrictive of the choices (if there is a difference). 

3.7.6 Tolerances 

It is important to note that while integer programming problems are pri­
marily combinatorial, the branch-and-bound approach uses numerical linear 
programming algorithms. These methods require a number of parameters giv­
ing allowable tolerances. For instance, if ;c/ = 0.998 should Xj be treated as 
the value 1 or should the algorithm branch on Xj ? While it is tempting to give 
overly big values (to allow for faster convergence) or small values (to be ''more 
accurate"), either extreme can lead to problems. While for many problems, the 
default values from a quality code are sufficient, these values can be the source 
of difficulties for some problems. 



92 BOSCH AND TRICK 

3.8 TRICKS OF THE TRADE 

After reading this tutorial, all of which is about ''tricks of the trade", it is 
easy to throw one's hands up and give up on integer programming! There are 
so many choices, so many pitfalls, and so much chance that the combinatorial 
explosion will make solving problems impossible. Despite this complexity, 
integer programming is used routinely to solve problems of practical interest. 
There are a few key steps to make your integer programming implementation 
go well. 

• Use state-of-the-art software. It is tempting to use software because it is 
easy, or available, or cheap. For integer programming, however, not hav­
ing the most current software embedding the latest techniques can doom 
your project to failure. Not all such software is commercial. The COIN-
OR project is an open-source effort to create high-quahty optimization 
codes. 

• Use a modehng language. A modeling language, such as OPL, Mosel, 
AMPL, or other language can greatly reduce development time, and al­
lows for easy experimentation of alternatives. Callable Hbraries can give 
more power to the user, but should be reserved for ''final implementa­
tions", once the model and solution approached are known. 

• If an integer programming model does not solve in a reasonable amount 
of time, look at the formulation first, not the solution parameters. The 
default settings of current software are generally pretty good. The prob­
lem with most integer programming formulations is the formulation, not 
the choice of branching rule, for example. 

• Solve some small instances and look at the solutions to the Hnear re­
laxations. Often constraints to add to improve a formulation are quite 
obvious from a few small examples. 

• Decide whether you need "optimal" solutions. If you are consistently 
getting within 0.1 % of optimal, without proving optimality, perhaps you 
should declare success and go with the solutions you have, rather than 
trying to hunt down that final gap. 

• Try radically different formulations. Often, there is another formulation 
with completely different variables, objective, and constraints that will 
have a much different computational experience. 

3.9 CONCLUSIONS 

Integer programming models represent a powerful approach to solving hard 
problems. The bounds generated from linear relaxations are often sufficient 



INTEGER PROGRAMMING 93 

to greatly cut down on the search tree for these problems. Key to successful 
integer programming is the creation of good formulations. A good formulation 
is one where the linear relaxation closely resembles the underlying integer pro­
gram. Improved formulations can be developed in a number of ways, including 
finding formulations with tight relaxations, avoiding symmetry, and creating 
and solving formulations that have an exponential number of variables or con­
straints. It is through the judicious combination of these approaches, combined 
with fast integer programming computer codes that the practical use of integer 
programming has greatly expanded in the last 20 years. 

SOURCES OF ADDITIONAL INFORMATION 
Integer programming has existed for more than 50 years and has developed 

a huge literature. This bibliography therefore makes no effort to be compre­
hensive, but rather provides initial pointers for further investigation. 

General Integer Programming There are a number of excellent recent mono­
graphs on integer programming. The classic is Nemhauser and Wolsey 
(1988). A book updating much of the material is Wolsey (1998). Schri-
jver (1998) is an outstanding reference book, covering the theoretical 
underpinnings of integer programming. 

Integer Programming Formulations There are relatively few books on for­
mulating problems. An exception is Williams (1999). In addition, most 
operations research textbooks offer examples and exercises on formu­
lations, though many of the examples are not of realistic size. Some 
choices are Winston (1997), Taha (2002), and HilHer and Lieberman 
(2002). 

Branch and Bound Branch and bound traces back to the 1960s and the work 
of Land and Doig (1960). Most basic textbooks (see above) give an 
outline of the method (at the level given in this tutorial). 

Branch and Cut The cutting plane approach dates back to the late 1950s and 
the work of Gomory (1958), whose cutting planes are applicable to any 
integer program. Juenger et al. (1995) provides a survey of the use of 
cutting plane algorithms for specialized problem classes. 

As a computational technique, the work of Crowder et al. (1983) showed 
how cuts could greatly improve basic branch-and-bound. 

For an example of the success of such approaches for solving extremely 
large optimization problems, see Applegate et al. (1998). 

Branch and Price Bamhart et al. (1998) is an excellent survey of this ap­
proach. 



94 BOSCH AND TRICK 

Implementations There are a number of very good implementations that al­
low the optimization of realistic integer programs. Some of these are 
commercial, like the CPLEX implementation of ILOG, Inc. (CPLEX, 
2004). Bixby et al. (1999) gives a detailed description of the advances 
that this software has made. 

Another commercial product is Xpress-MP from Dash, with the text­
book by Gueret et al. (2002) providing a very nice set of examples and 
applications. 

COIN-OR (2004) provides an open-source initiative for optimization. 
Other approaches are described by Ralphs and Ladanyi (1999) and by 
Cordieretal. (1999). 

References 
Applegate, D., Bixby, R., Chvatal, V. and Cook, W., 1998, On the solution of 

traveling salesman problems, in: Proc. Int. Congress of Mathematicians, 
Doc. Math. J. DMV, Vol. 645. 

Bamhart, C, Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P. and 
Vance, P. H., 1998, Branch-and-price: column generation for huge integer 
programs, Oper. Res. 46:316. 

Bixby, R. E., Fenelon, M., Gu, Z., Rothberg, E. and Wunderling, R., 1999, 
MIP: Theory and Practice—Closing the Gap, Proc. 19th IF IP TC7 Conf. 
on System Modelling, Kluwer, Dordrecht, pp. 19-50. 

Common Optimization INterface for Operations Research (COIN), 2004, at 
http://www.coin-or.org 

Cordier, C, Marchand, H., Laundy, R. and Wolsey, L. A., 1999, bc-opt: a 
branch-and-cut code for mixed integer programs. Math. Program. 86:335. 

Crowder, H., Johnson, E. L. and Padberg, M. W., 1983, Solving large scale 
zero-one linear programming problems, Oper Res. 31:803-834. 

Gomory, R. E., 1958, Outline of an algorithm for integer solutions to linear 
programs. Bulletin AMS 64:275-278. 

Gueret, C , Prins, C. and Sevaux, M., 2002, Applications of Optimization with 
Xpress-MP, S. Heipcke, transl.. Dash Optimization, Blisworth, UK. 

Hillier, F. S. and Lieberman, G. J., 2002, Introduction to Operations Research, 
McGraw-Hill, New York. 

ILOG CPLEX 9.0 Reference Manual, 2004, ILOG. 
Juenger, M., Reinelt, G. and Thienel, S., 1995, Practical Problem Solving with 

Cutting Plane Algorithms in Combinatorial Optimization, DIM ACS Se­
ries in Discrete Mathematics and Theoretical Computer Science, Vol. I l l , 
American Mathematical Society, Providence, RI. 

Land, A. H. and Doig, A. G., 1960, An Automatic Method for Solving Discrete 
Programming Problems, Econometrica 28:83-97. 



INTEGER PROGRAMMING 95 

Nemhauser, G. L. and Wolsey, L. A., 1998, Integer and Combinatorial Opti­
mization, Wiley, New York. 

Ralphs, T. K. and Ladanyi, L., 1999, SYMPHONY: A Parallel Framework for 
Branch and Cut, White paper, Rice University. 

Schrijver, A., 1998, Theory of Linear and Integer Programming, Wiley, New 
York. 

Taha, H. A., 2002, Operations Research: An Introduction, Prentice-Hall, New 
York. 

WilHams, H. R, 1999, Model Building in Mathematical Programming, Wiley, 
New York. 

Winston, W,, 1997, Operations Research: Applications and Algorithms, Thom­
son, New York. 

Wolsey, L. A., 1998, Integer Programming, Wiley, New York. 
XPRESS-MP Extended Modeling and Optimisation Subroutine Library, Ref­

erence Manual, 2004, Dash Optimization, BHsworth, UK. 




