
MODEL REDUCTION USING PROPER ORTHOGONAL

DECOMPOSITION

S. VOLKWEIN

Abstract. In this lecture notes an introduction to model reduction utilizing

proper orthogonal decomposition (POD) is given. The close connection be-
tween POD and singular value decomposition (SVD) of rectangular matrices is
emphasized. As an application POD is used to derive a reduced-order model for

non-linear initial value problems. The strategy is extended to linear-quadratic
optimal control problems governed by ordinary differential equations. The re-
lationship to classical model reduction techniques like balanced truncation is
studied.

1. The POD method in R
m

In this section we introduce the POD method in the Euclidean space R
m and

study the close connection to the SVD of rectangular matrices; see [6]. We also
refer to the monograph [3].

1.1. POD and SVD. Let Y = [y1, . . . , yn] be a real-valued m× n matrix of rank
d ≤ min{m,n} with columns yj ∈ R

m, 1 ≤ j ≤ n. Consequently,

(1.1) ȳ =
1

n

n∑

j=1

yj

can be viewed as the column-averaged mean of the matrix Y .
SVD [10] guarantees the existence of real numbers σ1 ≥ σ2 ≥ . . . ≥ σd > 0 and

orthogonal matrices U ∈ R
m×m with columns {ui}m

i=1 and V ∈ R
n×n with columns

{vi}n
i=1 such that

(1.2) UT Y V =

(
D 0
0 0

)

=: Σ ∈ R
m×n,

where D = diag (σ1, . . . , σd) ∈ R
d×d and the zeros in (1.2) denote matrices of

appropriate dimensions. Moreover the vectors {ui}d
i=1 and {vi}d

i=1 satisfy

(1.3) Y vi = σiui and Y T ui = σivi for i = 1, . . . , d.

They are eigenvectors of Y Y T and Y T Y , respectively, with eigenvalues λi = σ2
i > 0,

i = 1, . . . , d. The vectors {ui}m
i=d+1 and {vi}n

i=d+1 (if d < m respectively d < n)

are eigenvectors of Y Y T and Y T Y with eigenvalue 0.
From (1.2) we deduce that

Y = UΣV T .
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It follows that Y can also be expressed as

(1.4) Y = UdD(V d)T ,

where Ud ∈ R
m×d and V d ∈ R

n×d are given by

Ud
ij = Uij for 1 ≤ i ≤ m, 1 ≤ j ≤ d,

V d
ij = Vij for 1 ≤ i ≤ n, 1 ≤ j ≤ d.

Setting Bd = D(V d)T ∈ R
d×n we can write (1.4) in the form

Y = UdBd with Bd = D(V d)T ∈ R
d×n.

Thus, the column space of Y can be represented in terms of the d linearly in-
dependent columns of Ud. The coefficients in the expansion for the columns yj ,
j = 1, . . . , n, in the basis {ui}d

i=1 are given by the jth-column of Bd. Since U is
orthogonal, we find that

yj =

d∑

i=1

Bd
ijU

d
·,i =

d∑

i=1

(
D(V d)T

)

ij
ui =

d∑

i=1

(
(Ud)T Ud

︸ ︷︷ ︸

=Id∈Rd×d

D(V d)T
)

ij
ui

(1.4)
=

d∑

i=1

(
(Ud)T Y

)

ij
ui =

d∑

i=1

( m∑

k=1

Ud
kiYkj

︸ ︷︷ ︸

=uT
i

yj

)

ui =

d∑

i=1

〈ui, yj〉Rm ui,

where 〈· , ·〉Rm denotes the canonical inner product in R
m. Thus,

(1.5) yj =

d∑

i=1

〈yj , ui〉Rm ui for j = 1, . . . , n

Let us now interprete SVD in terms of POD. One of the central issues of POD
is the reduction of data expressing their essential information by means of a few
basis vectors. The problem of approximating all spatial coordinate vectors yj of Y
simultaneously by a single, normalized vector as well as possible can be expressed
as

(P1) max
u∈Rm

n∑

j=1

∣
∣〈yj , u〉Rm

∣
∣
2

subject to (s.t.) ‖u‖2
Rm = 1,

where ‖u‖Rm =
√

〈u, u〉Rm for u ∈ R
m.

Note that (P1) is a constrained optimization problem that can be solved by
considering first-order necessary optimality conditions. We introduce the function
e : R

m → R by e(u) = 1−‖u‖2
Rm for u ∈ R

m. Then, the equality constraint in (P1)
can be expressed as e(u) = 0. Notice that ∇e(u) = 2uT is linear independent if
u 6= 0 holds. In particular, a solution to (P1) satisfies u 6= 0. Thus, any solution to
(P1) is a regular point. Let L : R

m ×R → R be the Lagrange functional associated
with (P1), i.e.,

L(u, λ) =
n∑

j=1

∣
∣〈yj , u〉Rm

∣
∣
2

+ λ
(
1 − ‖u‖2

Rm

)
for (u, λ) ∈ R

m × R.
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Suppose that u ∈ R
m is a solution to (P1). Since u is regular, there exists a

Lagrange multiplier satisfying the first-order necessary optimality condition

∇L(u, λ)
!
= 0 in R

m × R.

We compute the gradient of L with respect to u:

∂L
∂ui

(u, λ) =
∂

∂ui

(
n∑

j=1

∣
∣
∣
∣

m∑

k=1

Ykjuk

∣
∣
∣
∣

2

+ λ

(

1 −
m∑

k=1

u2
k

))

= 2

n∑

j=1

( m∑

k=1

Ykjuk

)

Yij − 2λui

= 2

m∑

k=1

( n∑

j=1

YijY
T
jk

︸ ︷︷ ︸

=(Y Y T )ik

uk

)

− 2λui.

Thus,

(1.6) ∇uL(u, λ) = 2
(
Y Y T u − λu

) !
= 0 in R

m.

Equation (1.6) yields the eigenvalue problem

(1.7a) Y Y T u = λu in R
m.

Notice that Y Y T ∈ R
m×m is a symmetric matrix satisfying

uT (Y Y T )u = (Y T u)T Y T u = ‖Y T u‖2

Rn ≥ 0 for all u ∈ R
m.

Thus, Y Y T is positive semi-definite. It follows that Y Y T possesses m non-negative
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0 and the corresponding eigenvectors can be
chosen such that they are pairwise orthonormal.

From ∂L
∂λ (u, λ)

!
= 0 in R we infer the constraint

(1.7b) ‖u‖
Rm = 1.

Due to SVD the vector u1 solves (1.7) and

n∑

j=1

∣
∣〈yj , u1〉Rm

∣
∣
2

=

n∑

j=1

〈yj , u1〉Rm〈yj , u1〉Rm =

n∑

j=1

〈
〈yj , u1〉Rmyj , u1

〉

Rm

=

〈 n∑

j=1

〈yj , u1〉Rmyj , u1

〉

Rm

=

〈 n∑

j=1

( m∑

k=1

Ykj(u1)k

)

yj , u1

〉

Rm

=

〈 m∑

k=1

( n∑

j=1

Y·,jY
T
jk(u1)k

)

, u1

〉

Rm

=
〈
Y Y T u1, u1

〉

Rm

= λ1

〈
u1, u1

〉

Rm = λ1 ‖u1‖2
Rm = λ1.

We next prove that u1 solves (P1). Suppose that ũ ∈ R
m is an arbitrary vector

with ‖ũ‖Rm = 1. Since {ui}m
i=1 is an orthonormal basis in R

m, we have

ũ =

m∑

i=1

〈ũ, ui〉Rm ui.
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Thus,

n∑

j=1

∣
∣〈yj , ũ〉Rm

∣
∣
2

=

n∑

j=1

∣
∣
∣
∣
∣

〈

yj ,

m∑

i=1

〈ũ, ui〉Rm ui

〉

Rm

∣
∣
∣
∣
∣

2

=

n∑

j=1

m∑

i=1

m∑

k=1

(〈
yj , 〈ũ, ui〉Rm ui

〉

Rm

〈
yj , 〈ũ, uk〉Rm uk

〉

Rm

)

=

n∑

j=1

m∑

i=1

m∑

k=1

(
〈yj , ui〉Rm〈yj , uk〉Rm〈ũ, ui〉Rm〈ũ, uk〉Rm

)

=
m∑

i=1

m∑

k=1

(〈 n∑

j=1

〈yj , ui〉Rm yj

︸ ︷︷ ︸

=λiui

, uk

〉

Rm

〈ũ, ui〉Rm〈ũ, uk〉Rm

)

=
m∑

i=1

m∑

k=1

(

〈λiui, uk〉Rm

︸ ︷︷ ︸

=λiδik

〈ũ, ui〉Rm〈ũ, uk〉Rm

)

=

m∑

i=1

λi

∣
∣〈ũ, ui〉Rm

∣
∣
2 ≤ λ1

m∑

i=1

∣
∣〈ũ, ui〉Rm

∣
∣
2

= λ1 ‖ũ‖2
R

= λ1

=

n∑

j=1

∣
∣〈yj , u1〉Rm

∣
∣
2
.

Consequently, u1 solves (P1) and argmax (P1) = σ2
1 = λ1.

If we look for a second vector, orthogonal to u1 that again describes the data set
{yi}n

i=1 as well as possible then we need to solve

(P2) max
u∈Rm

n∑

j=1

∣
∣〈yj , u〉Rm

∣
∣
2

s.t. ‖u‖
Rm = 1 and 〈u, u1〉Rm = 0.

SVD implies that u2 is a solution to (P2) and argmax (P2) = σ2
2 = λ2. In fact, u2

solves the first-order necessary optimality conditions (1.7) and for

ũ =

m∑

i=2

〈ũ, ui〉Rm ui ∈ span {u1}⊥

we have
n∑

j=1

∣
∣〈yj , ũ〉Rm

∣
∣
2 ≤ λ2 =

n∑

j=1

∣
∣〈yj , u2〉Rm

∣
∣
2
.

Clearly this procedure can be continued by finite induction. We summarize our
results in the following theorem.

Theorem 1.1. Let Y = [y1, . . . , yn] ∈ R
m×n be a given matrix with rank d ≤

min{m,n}. Further, let Y = UΣV T be the singular value decomposition of Y ,
where U = [u1, . . . , um] ∈ R

m×m, V = [v1, . . . , vn] ∈ R
n×n are orthogonal matrices

and the matrix Σ ∈ R
m×n has the form as (1.2). Then, for any ℓ ∈ {1, . . . , d} the

solution to

(Pℓ) max
ũ1,...,ũℓ∈Rm

ℓ∑

i=1

n∑

j=1

∣
∣〈yj , ũi〉Rm

∣
∣
2

s.t. 〈ũi, ũj〉Rm = δij for 1 ≤ i, j ≤ ℓ
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is given by the singular vectors {ui}ℓ
i=1, i.e., by the first ℓ columns of U . Moreover,

(1.8) argmax (Pℓ) =

ℓ∑

i=1

σ2
i =

ℓ∑

i=1

λi.

Proof. Since (Pℓ) is an equality constrained optimization problem, we introduce
the Lagrangian

L : R
m × . . . × R

m

︸ ︷︷ ︸

ℓ-times

×R
ℓ×ℓ

by

L(ψ1, . . . , ψℓ,Λ) =

ℓ∑

i=1

n∑

j=1

∣
∣〈yj , ψi〉Rm

∣
∣
2

+

ℓ∑

i,j=1

λij

(
δij − 〈ψi, ψj〉Rm

)

for ψ1, . . . , ψℓ ∈ R
m and Λ = ((λij)) ∈ R

ℓ×ℓ. First-order necessary optimality
conditions for (Pℓ) are given by

(1.9)
∂L
∂ψk

(ψ1, . . . , ψℓ,Λ)δψk = 0 for all δψk ∈ R
m and k ∈ {1, . . . , ℓ}.

From

∂L
∂ψk

(ψ1, . . . , ψℓ,Λ)δψk = 2

ℓ∑

i=1

n∑

j=1

〈yj , ψi〉Rm〈yj , δψk〉Rmδik

−
ℓ∑

i,j=1

λij〈ψi, δψk〉Rmδjk −
ℓ∑

i,j=1

λij〈δψk, ψj〉Rmδki

= 2
n∑

j=1

〈yj , ψk〉Rm〈yj , δψk〉Rm −
ℓ∑

i=1

(λik + λki) 〈ψi, δψk〉Rm

=

〈

2

n∑

j=1

〈yj , ψk〉Rm yj −
ℓ∑

i=1

(λik + λki) ψi, δψk

〉

Rm

and (1.9) we infer that

(1.10)
n∑

j=1

〈yj , ψk〉Rm yj =
1

2

ℓ∑

i=1

(λik + λki) ψi in R
m and for all k ∈ {1, . . . , ℓ}.

Note that

Y Y T ψ =

n∑

j=1

〈yj , ψ〉Rm yj for ψ ∈ R
m.

Thus, condition (1.10) can be expressed as

(1.11) Y Y T ψk =
1

2

ℓ∑

i=1

(λik + λki) ψi in R
m and for all k ∈ {1, . . . , ℓ}.

Now we proceed by induction. For ℓ = 1 we have k = 1. It follows from (1.11) that

(1.12) Y Y T ψ1 = λ1ψ1 in R
m

with λ1 = λ11. Next we suppose that for ℓ ≥ 1 the first-order optimality conditions
are given by

(1.13) Y Y T ψk = λkψk in R
m and for all k ∈ {1, . . . , ℓ}.
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We want to show that the first-order necessary optimality conditions for a POD
basis {ψi}ℓ+1

i=1 of rank ℓ + 1 are given by

(1.14) Y Y T ψk = λkψk in R
m and for all k ∈ {1, . . . , ℓ + 1}.

By assumption we have (1.13). Thus, we only have to prove that

(1.15) Y Y T ψℓ+1 = λℓ+1ψℓ+1 in R
m.

Due to (1.11) we have

(1.16) Y Y T ψℓ+1 =
1

2

ℓ+1∑

i=1

(λi,ℓ+1 + λℓ+1,i)ψi in R
m.

Since {ψi}ℓ+1
i=1 is a POD basis we have 〈ψℓ+1, ψj〉Rm = 0 for 1 ≤ j ≤ ℓ. Using (1.13)

and the symmetry of Y Y T we have for any j ∈ {1, . . . , ℓ}
0 = λj 〈ψℓ+1, ψj〉Rm = 〈ψℓ+1, Y Y T ψj〉Rm = 〈Y Y T ψℓ+1, ψj〉Rm

=
1

2

ℓ+1∑

i=1

(λi,ℓ+1 + λℓ+1,i) 〈ψi, ψj〉Rm = (λj,ℓ+1 + λℓ+1,j) .

This gives

(1.17) λℓ+1,i = −λi,ℓ+1 for any i ∈ {1, . . . , ℓ}.
Inserting (1.17) into (1.16) we obtain

Y Y T ψℓ+1 =
1

2

ℓ∑

i=1

(λi,ℓ+1 + λℓ+1,i) ψi + λℓ+1,ℓ+1 ψℓ+1

=
1

2

ℓ∑

i=1

(λi,ℓ+1 − λi,ℓ+1) ψi + λℓ+1,ℓ+1 ψℓ+1 = λℓ+1,ℓ+1 ψℓ+1.

Setting λℓ+1 = λℓ+1,ℓ+1 we obtain (1.15).
Summarizing, the necessary optimaity conditions for (Pℓ) are given by the sym-
metric m × m eigenvalue problem

(1.18) Y Y T ui = λiui for i = 1, . . . , ℓ.

It follows from SVD that {ui}ℓ
i=1 solves (1.18). The proof that {ui}ℓ

i=1 is a solution

to (Pℓ) and that argmax (Pℓ) =
∑ℓ

i=1 σ2
i holds is analogous to the proof for (P1);

see Exercise 1.2). ¤

Motivated by the previous theorem we give the next definition.

Definition 1.2. For ℓ ∈ {1, . . . , d} the vectors {ui}ℓ
i=1 are called POD basis of

rank ℓ.

The following result states that for every ℓ ≤ d the approximation of the columns
of Y by the first ℓ singular vectors {ui}ℓ

i=1 is optimal in the mean among all rank
ℓ approximations to the columns of Y .

Corollary 1.3 (Optimality of the POD basis). Let all hypotheses of Theorem 1.1

be satisfied. Suppose that Ûd ∈ R
m×d denotes a matrix with pairwise orthonormal

vectors ûi and that the expansion of the columns of Y in the basis {ûi}d
i=1 be given

by

Y = ÛdCd, where Cd
ij = 〈ûi, yj〉Rm for 1 ≤ i ≤ d, 1 ≤ j ≤ n.
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Then for every ℓ ∈ {1, . . . , d} we have

(1.19) ‖Y − U ℓBℓ‖F ≤ ‖Y − Û ℓCℓ‖F .

In (1.19), ‖ · ‖F denotes the Frobenius norm given by

‖A‖F =

√
√
√
√

m∑

i=1

n∑

j=1

∣
∣Aij

∣
∣
2

=
√

trace
(
AT A

)
for A ∈ R

m×n,

the matrix U ℓ denotes the first ℓ columns of U , Bℓ the first ℓ rows of B and similarly
for Û ℓ and Cℓ.

Remark 1.4. Notice that

‖Y − Û ℓCℓ‖2

F =
m∑

i=1

n∑

j=1

∣
∣
∣Yij −

ℓ∑

k=1

Û ℓ
ikCkj

∣
∣
∣

2

=
n∑

j=1

m∑

i=1

∣
∣
∣Yij −

ℓ∑

k=1

〈ûk, yj〉RmÛ ℓ
ik

∣
∣
∣

2

=

n∑

j=1

∥
∥
∥yj −

ℓ∑

k=1

〈yj , ûk〉Rm ûk

∥
∥
∥

2

Rm
.

Analogously,

‖Y − U ℓBℓ‖2

F =

n∑

j=1

∥
∥
∥yj −

ℓ∑

k=1

〈yj , uk〉Rmuk

∥
∥
∥

2

Rm
.

Thus, (1.19) implies that

n∑

j=1

∥
∥
∥yj −

ℓ∑

k=1

〈yj , uk〉Rmuk

∥
∥
∥

2

Rm
≤

n∑

j=1

∥
∥
∥yj −

ℓ∑

k=1

〈yj , ûk〉Rm ûk

∥
∥
∥

2

Rm

for any other set {ûi}ℓ
i=1 of ℓ pairwise orthonormal vectors. Hence, the POD basis

of rank ℓ can also be determined by solving

(1.20) min
ũ1,...,ũℓ∈Rm

n∑

j=1

∥
∥
∥yj −

ℓ∑

i=1

〈yj , ũi〉Rm ũi

∥
∥
∥

2

Rm
s.t. 〈ũi, ũj〉Rm = δij , 1 ≤ i, j ≤ ℓ.

♦

Proof of Corollary 1.3. Note that (see Exercise 1.3))

‖Y − Û ℓCℓ‖2

F = ‖Ûd(Cd − Cℓ
0)‖

2

F = ‖Cd − Cℓ
0‖

2

F =
d∑

i=ℓ+1

n∑

j=1

∣
∣Cd

ij

∣
∣
2
,
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where Cℓ
0 ∈ R

d×n results from C ∈ R
d×n by replacing the last d − ℓ rows by 0.

Similarly,

(1.21)

‖Y − U ℓBℓ‖2

F = ‖Uk(Bd − Bℓ
0)‖

2

F = ‖Bd − Bℓ
0‖

2

F =

d∑

i=ℓ+1

n∑

j=1

∣
∣Bd

ij

∣
∣
2

=

d∑

i=ℓ+1

n∑

j=1

∣
∣〈yj , ui〉Rm

∣
∣
2

=

d∑

i=ℓ+1

n∑

j=1

〈
〈yj , ui〉Rmyj , ui

〉

Rm =

d∑

i=ℓ+1

〈Y Y T ui, ui〉Rm

=

d∑

i=ℓ+1

σ2
i ,

By Theorem 1.1 the vectors u1, . . . , uℓ solve (Pℓ). From (1.21),

‖Y ‖2
F = ‖ÛdCd‖2

F = ‖Cd‖2

F =

d∑

i=1

n∑

j=1

∣
∣Cd

ij

∣
∣
2

and

‖Y ‖2
F = ‖UdBd‖2

F = ‖Bd‖2

F =

d∑

i=1

n∑

j=1

∣
∣Bd

ij

∣
∣
2

=

d∑

i=1

σ2
i

we infer that

‖Y − U ℓBℓ‖2

F =
d∑

i=ℓ+1

σ2
i =

d∑

i=1

σ2
i −

ℓ∑

i=1

σ2
i = ‖Y ‖2

F −
ℓ∑

i=1

n∑

j=1

∣
∣〈yj , ui〉Rm

∣
∣
2

≤ ‖Y ‖2
F −

ℓ∑

i=1

n∑

j=1

∣
∣〈yj , ûi〉Rm

∣
∣
2

=

d∑

i=1

n∑

j=1

∣
∣Cd

ij

∣
∣
2 −

ℓ∑

i=1

n∑

j=1

∣
∣Cd

ij

∣
∣
2

=

d∑

i=ℓ+1

n∑

j=1

∣
∣Cd

ij

∣
∣
2

= ‖Y − Û ℓCℓ‖2

F ,

which gives (1.19). ¤

Remark 1.5. It follows from Corollary 1.3 that the POD basis of rank ℓ is optimal
in the sense of representing in the mean the columns {yj}n

j=1 of Y as a linear
combination by an orthonormal basis of rank ℓ:

ℓ∑

i=1

n∑

j=1

∣
∣〈yj , ui〉Rm

∣
∣
2

=
ℓ∑

i=1

σ2
i =

ℓ∑

i=1

λi ≥
ℓ∑

i=1

n∑

j=1

∣
∣〈yj , ûi〉Rm

∣
∣
2

for any other set of orthonormal vectors {ûi}ℓ
i=1. ♦

The next corollary states that the POD coefficients are uncorrelated.

Corollary 1.6 (Uncorrelated POD coefficients). Let all hypotheses of Theorem 1.1
hold. Then.

n∑

j=1

〈yj , ui〉Rm〈yj , uk〉Rm =
n∑

j=1

Bℓ
ijB

ℓ
kj = σ2

i δik for 1 ≤ i, k ≤ ℓ.
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Proof. The claim follows from (1.18) and 〈ui, uk〉Rm = δik for 1 ≤ i, k ≤ ℓ:

n∑

j=1

〈yj , ui〉Rm〈yj , uk〉Rm =

〈 n∑

j=1

〈yj , ui〉Rmyj

︸ ︷︷ ︸

=Y Y T ui

, uk

〉

Rm

= 〈σ2
i ui, uk〉Rm = σ2

i δik.

¤

Next we turn to the practical computation of a POD-basis of rank ℓ. If n < m
then one can determine the POD basis of rank ℓ as follows: Compute the eigenvec-
tors v1, . . . , vℓ ∈ R

n by solving the symmetric n × n eigenvalue problem

(1.22) Y T Y vi = λivi for i = 1, . . . , ℓ

and set, by (1.3),

ui =
1√
λi

Y vi for i = 1, . . . , ℓ.

For historical reasons [13] this method of determing the POD-basis is sometimes
called the method of snapshots. On the other hand, if m < n holds, we can obtain
the POD basis by solving the m × m eigenvalue problem (1.18).

For the application of POD to concrete problems the choice of ℓ is certainly of
central importance for applying POD. It appears that no general a-priori rules are
available. Rather the choice of ℓ is based on heuristic considerations combined with
observing the ratio of the modeled to the total energy contained in the system Y ,
which is expressed by

E(ℓ) =

∑ℓ
i=1 λi

∑d
i=1 λi

.

Let us mention that POD is also called Principal Component Analysis (PCA)
and Karhunen-Loève Decomposition.

1.2. The POD method with a weighted inner product. Let us endow the
Euclidean space R

m with the weighted inner product

(1.23) 〈u, ũ〉W = uT Wũ = 〈u,Wũ〉
Rm = 〈Wu, ũ〉

Rm for u, ũ ∈ R
m,

where W ∈ R
m×m is a symmetric, positive-definite matrix. Furthermore, let

‖u‖W =
√

〈u, u〉W for u ∈ R
m be the associated induced norm. For the choice

W = I, the inner product (1.23) coincides the Euclidean inner product.

Example 1.7. Let us motivate the weighted inner product by an example. Suppose
that Ω = (0, 1) ⊂ R holds. We consider the space L2(Ω) of square integrable
functions on Ω:

L2(Ω) =

{

ϕ : Ω → R

∣
∣
∣

∫

Ω

|ϕ|2 dx < ∞
}

.

Recall that L2(Ω) is a Hilbert space endowed with the inner product

〈ϕ, ϕ̃〉L2(Ω) =

∫

Ω

ϕϕ̃ dx for ϕ, ϕ̃ ∈ L2(Ω)

and the induced norm ‖ϕ‖L2(Ω) =
√
〈ϕ,ϕ〉L2(Ω) for ϕ ∈ L2(Ω). For the step size

h = 1/(m − 1) let us introduce a spatial grid in Ω by

xi = (i − 1)h for i = 1, . . . ,m.
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For any ϕ, ϕ̃ ∈ L2(Ω) we introduce a discrete inner product by trapezoidal approx-
imation:

(1.24) 〈ϕ, ϕ̃〉L2
h
(Ω) = h

(
ϕh

1 ϕ̃h
1

2
+

m−1∑

i=2

(
ϕh

i ϕ̃h
i

)
+

ϕh
mϕ̃h

m

2

)

,

where

ϕh
i =







2

h

∫ h/2

0

ϕ(x) dx for i = 1,

1

h

∫ xi+h/2

xi−h/2

ϕ(x) dx for i = 2, . . . ,m − 1,

2

h

∫ 1

1−h/2

ϕ(x) dx for i = m

and the ϕ̃h
i ’s are defined analogously. Setting W = diag (h/2, h, . . . , h, h/2) ∈

R
m×m, ϕh = (ϕh

1 , . . . , ϕh
m)T ∈ R

m and ϕ̃h = (ϕ̃h
1 , . . . , ϕ̃h

m)T ∈ R
m we find

〈ϕ, ϕ̃〉L2
h
(Ω) = 〈ϕh, ϕ̃h〉W = (ϕh)T Wϕ̃h.

Thus, the discrete L2-inner product can be written as a weighted inner product of
the form (1.23). ♦

Now we replace (P1) by

(P1
W ) max

u∈Rm

n∑

j=1

∣
∣〈yj , u〉W

∣
∣
2

s.t. ‖u‖W = 1.

Analogously to Section 1.1 we treat (P1
W ) as an equality constrained optimization

problem. The Lagrangian L : R
m × R → R for (P1

W ) is given by

L(u, λ) =

n∑

j=1

∣
∣〈yj , u〉W

∣
∣
2

+ λ
(
1 − ‖u‖2

W

)
for (u, λ) ∈ R

m × R.

Suppose that u ∈ R
m is a solution to (P1

W ). Then, a first-order necessary optimality
condition is given by

∇L(u, λ)
!
= 0 in R

m × R.

We compute the gradient of L with respect to u: Since W is symmetric, we derive

∂L
∂ui

(u, λ) =
∂

∂ui

(
n∑

j=1

∣
∣
∣
∣

m∑

k=1

m∑

ν=1

Y T
jνWνkuk

∣
∣
∣
∣

2

+ λ

(

1 −
m∑

k=1

m∑

ν=1

uνWνkuk

))

= 2
n∑

j=1

( m∑

k=1

m∑

ν=1

Y T
jνWνkuk

)( m∑

µ=1

Y T
jµWµi

)

− λ

( m∑

ν=1

uνWνi +

m∑

k=1

Wikuk

)

= 2

m∑

k=1

m∑

ν=1

m∑

µ=1

Wiµ

n∑

j=1

YµjY
T
jνWνkuk − 2λ

( m∑

k=1

Wikuk

)

= 2

(

WY Y T Wu − λWu

)

i

.
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Thus,

(1.25) ∇uL(u, λ) = 2
(
WY Y T Wu − λWu

) !
= 0 in R

m.

Equation (1.25) yields the generalized eigenvalue problem

(1.26) (WY )(WY )T u = λWu.

Since W is symmetric and positive definite, W possesses an eigenvalue decomposi-
tion of the form W = QDQT , where D = diag (η1, . . . , ηm) contains the eigenvalues
η1 ≥ . . . ≥ ηm > 0 of W and Q ∈ R

m×m is an orthogonal matrix. We define

Wα = Qdiag (ηα
1 , . . . , ηα

m)QT for α ∈ R.

Note that (Wα)−1 = W−α and Wα+β = WαW β for α, β ∈ R; see Exercise 1.4).
Moreover, we have

〈u, ũ〉W = 〈W 1/2u,W 1/2ũ〉
Rm for u, ũ ∈ R

m

and ‖u‖W = ‖W 1/2u‖Rm for u ∈ R
m.

Setting ū = W 1/2u ∈ R
m and Ȳ = W 1/2Y ∈ R

m×n and multiplying (1.26) by
W−1/2 from the left we deduce the symmetric, m × m eigenvalue problem

(1.27a) Ȳ Ȳ T ū = λū in R
m.

From ∂L
∂λ (u, λ)

!
= 0 in R we infer the constraint ‖u‖W = 1 that can be expressed as

(1.27b) ‖ū‖
Rm = 1.

Thus, the first-order optimality conditions (1.27) for (P1
W ) are — as for (P1)

(compare (1.7)) — an m × m eigenvalue problem, but the matrix Y as well as the
vector u have to be weighted by the matrix W 1/2.

It can be shown (see Exersice 1.4.1)) that

u1 = W−1/2ū1

solves (P1
W ), where ū1 is an eigenvector of Ȳ Ȳ T corresponding to the largest eigen-

value λ1 with ‖ū1‖Rm = 1. Due to SVD the vector u1 can be also determined by
solving the symmetric n × n eigenvalue problem

Ȳ T Ȳ v̄1 = λ1v̄1

where Ȳ T Ȳ = Y T WY , and setting

(1.28) u1 = W−1/2ū1 =
1√
λ1

W−1/2Ȳ v̄1 =
1√
λ1

Y v̄1.

As in Section 1.1 we can continue by looking at a second vector u ∈ R
m with

〈u, u1〉W = 0 that maximizes
∑n

j=1 |〈yj , u〉W |2. Let us generalize Theorem 1.1 as
follows.

Theorem 1.8. Let Y ∈ R
m×n be a given matrix with rank d ≤ min{m,n}, W a

symmetric, positive definite matrix, Ȳ = W 1/2Y and ℓ ∈ {1, . . . , d}. Further, let
Ȳ = ŪΣV̄ T be the singular value decomposition of Ȳ , where Ū = [ū1, . . . , ūm] ∈
R

m×m, V̄ = [v̄1, . . . , v̄n] ∈ R
n×n are orthogonal matrices and the matrix Σ has the

form

ŪT Ȳ V̄ =

(
D 0
0 0

)

= Σ ∈ R
m×n.
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Then the solution to

(Pℓ
W ) max

ũ1,...,ũℓ∈Rm

ℓ∑

i=1

n∑

j=1

∣
∣〈yj , ũi〉W

∣
∣
2

s.t. 〈ũi, ũj〉W = δij for 1 ≤ i, j ≤ ℓ

is given by the vectors ui = W−1/2ūi, i = 1, . . . , ℓ. Moreover,

(1.29) argmax (Pℓ
W ) =

ℓ∑

i=1

σ2
i =

ℓ∑

i=1

λi.

Proof. Using similar arguments as in the proof of Theorem 1.1 one can prove that
{ui}ℓ

i=1 solves (Pℓ
W ); see Exersice 1.4). ¤

Remark 1.9. Due to SVD and Ȳ T Ȳ = Y T WY the POD basis {ui}ℓ
i=1 of rank

ℓ can be determined by the method of snapshots as follows: Solve the symmetric
n × n eigenvalue problem

Y T WY v̄i = λiv̄i for i = 1, . . . , ℓ,

and set

ui = W−1/2ūi =
1√
λi

W−1/2
(
Ȳ v̄i

)
=

1√
λi

W−1/2W 1/2Y v̄i =
1√
λi

Y v̄i

for i = 1, . . . , ℓ. Notice that

〈ui, uj〉W = uT
i Wuj =

δijλj
√

λiλj

for 1 ≤ i, j ≤ ℓ.

For m ≫ n the method of snapshots turns out to be faster than computing the
POD basis via (1.27). Notice that the matrix W 1/2 is also not required for the
method of snapshots. ♦

1.3. Application to time-dependent systems. For T > 0 we consider the
semi-linear initial value problem

ẏ(t) = Ay(t) + f(t, y(t)) for t ∈ (0, T ],(1.30a)

y(0) = y0,(1.30b)

where y0 ∈ R
m is a chosen initial condition, A ∈ R

m×m is a given matrix, f :
[0, T ]×R

m → R
m is continuous in both arguments and locally Lipschitz-continuous

with respect to the second argument. It is well known that (1.30) has a unique
(classical) solution y ∈ C1(0, T ; Rm) ∩ C([0, T ]; Rm) given by the implicit integral
representation

y(t) = etAy0 +

∫ t

0

e(t−s)Af(s, y(s)) ds

with etA =
∑∞

i=0 tnAn/(n!). Let 0 ≤ t1 < t2 < . . . < tn ≤ T be a given time grid
in the interval [0, T ]. For simplicity of the presentation, the time grid is assumed
to be equidistant with step-size ∆t = T/(n − 1), i.e., tj = (j − 1)∆t. We suppose
that we know the solution to (1.30) at the given time instances tj , j ∈ {1, . . . , n}.
Our goal is to determine a POD basis of rank ℓ ≤ n that desribes the ensemble

yj = y(tj) = etjAy0 +

∫ tj

0

e(tj−s)Af(s, y(s)) ds, j = 1, . . . , n,
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as well as possible with respect to the weighted inner product:

(P̂n,ℓ
W )

min
ũ1,...,ũℓ∈Rm

n∑

j=1

αj

∥
∥
∥yj −

ℓ∑

i=1

〈yj , ũi〉W ũi

∥
∥
∥

2

W
s.t. 〈ũi, ũj〉W = δij for 1 ≤ i, j ≤ ℓ,

where the αj ’s denote non-negative weights which will be specified later on. Note

that for αj = 1 for j = 1, . . . , n and W = I problem (P̂n,ℓ
W ) coincides with (1.20).

Example 1.10. Let us consider the following one-dimensional heat equation:

θt(t, x) = θxx(t, x) for all (t, x) ∈ Q = (0, T ) × Ω,(1.31a)

θx(t, 0) = θx(t, 1) = 0 for all t ∈ (0, T ),(1.31b)

θ(0, x) = θ0(x) for all x ∈ Ω = (0, 1) ⊆ R,(1.31c)

where θ0 ∈ C(Ω) is a given initial condition. To solve (1.31) numerically we apply
a classical finite difference approximation for the spatial variable x. In Example 1.7
we have introduced the spatial grid {xi}m

i=1 in the interval [0, 1]. Let us denote
by yi : [0, T ] → R the numerical approximation for θ(· , xi) for i = 1, . . . ,m. The
second partial derivative θxx in (1.31a) and the boundary conditions (1.31b) are
discretized by centered difference quotients of second-order so that we obtain the
following ordinary differential equations for the time-dependent functions yi:

(1.32a)







ẏ1(t) =
−2y1(t) + 2y2(t)

h2
,

ẏi(t) =
yi−1(t) − 2yi(t) + yi+1(t)

h2
, i = 2, . . . ,m − 1,

ẏm(t) =
−2ym(t) + 2ym−1(t)

h2

for t ∈ (0, T ]. From (1.31c) we infer the initial condion

(1.32b) yi(0) = θ0(xi), i = 1, . . . ,m.

Introducing the matrix

A =
1

h2










−2 2 0
1 −2 1

. . .
. . .

. . .

1 −2 1
0 2 −2










∈ R
m×m

and the vectors

y(t) =






y1(t)
...

ym(t)




 for t ∈ [0, T ], y0 =






θ0(x1)
...

θ0(xm)




 ∈ R

m

we can express (1.32) in the form

(1.33)
ẏ(t) = Ay(t) for t ∈ (0, T ],
y(0) = y0

Setting f ≡ 0 the linear initial-value problem coincides with (1.30). Note that
now the vector y(t), t ∈ [0, T ], represents a function in Ω evaluated at m grid
points. Therefore, we should supply R

m by a weighted inner product representing
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a discretized inner product in an appropriate function space. Here we choose the
inner product introduced in (1.24); see Example 1.7. Next we choose a time grid
{tj}n

j=1 in the interval [0, T ] and define yj = y(tj) for j = 1, . . . , n. If we are
interested in finding a POD basis of rank ℓ ≤ n that desribes the ensemble {yj}n

j=1

as well as possible, we end up with (P̂n,ℓ
W ). ♦

To solve (P̂n,ℓ
W ) we apply the techniques used in Sections 1.1 and 1.2, i.e., we use

the Lagrangian framework. Thus, we introduce the Lagrange functional

L : R
m × . . . × R

m

︸ ︷︷ ︸

ℓ−times

×R
ℓ×ℓ → R

by

L(u1, . . . , uℓ,Λ) =
n∑

j=1

αj

∥
∥
∥yj −

ℓ∑

i=1

〈yj , ui〉W ui

∥
∥
∥

2

W
+

ℓ∑

i=1

ℓ∑

j=1

Λij

(
1 − 〈ui, uj〉W

)

for u1, . . . , uℓ ∈ R
m and Λ ∈ R

ℓ×ℓ with elements Λij , 1 ≤ i, j ≤ ℓ. It turns out that

the solution to (P̂n,ℓ
W ) is given by the first-order necessary optimality condions

(1.34a) ∇ui
L(u1, . . . , uℓ,Λ)

!
= 0 in R

m, 1 ≤ i ≤ ℓ,

and

(1.34b) 〈ui, uj〉W
!
= δij , 1 ≤ i, j ≤ ℓ.

From (1.34a) we derive

(1.35) Y DY T Wui = λiui for i = 1, . . . , ℓ,

where D = diag (α1, . . . , αn) ∈ R
n×n. Inserting ui = W−1/2ūi in (1.35) and

multiplying (1.35) by W 1/2 from the left yield

(1.36a) W 1/2Y DY T W 1/2ūi = λiūi.

From (1.34b) we find

(1.36b) 〈ūi, ūj〉Rm = ūT
i ūj = uT

i Wuj = 〈ui, uj〉W = δij , 1 ≤ i, j ≤ ℓ.

Setting Ȳ = W 1/2Y D1/2 ∈ R
m×n and using WT = W as well as DT = D we infer

from (1.36) that the solution {ui}ℓ
i=1 to (P̂n,ℓ

W ) is given by the symmetric m × m
eigenvalue problem

Ȳ Ȳ T ūi = λiūi, 1 ≤ i ≤ ℓ and 〈ūi, ūj〉Rm = δij , 1 ≤ i, j ≤ ℓ.

Note that

Ȳ T Ȳ = D1/2Y T WY D1/2 ∈ R
n×n.

Thus, the POD basis of rank ℓ can also be computed by the methods of snapshots
as follows: First solve the symmetric n × n eigenvalue problem

Ȳ T Ȳ v̄i = λiv̄i, 1 ≤ i ≤ ℓ and 〈v̄i, v̄j〉Rn = δij , 1 ≤ i, j ≤ ℓ.

Then we set (by SVD)

ui = W−1/2ūi =
1√
λi

W−1/2Ȳ v̄i =
1√
λi

Y D1/2v̄i, 1 ≤ i ≤ ℓ;

compare (1.28).
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Note that

〈ui, uj〉W = uT
i Wuj =

1
√

λiλj

v̄T
i D1/2Y T WY D1/2

︸ ︷︷ ︸

=Ȳ T Ȳ

v̄j =
λi

√
λiλj

v̄T
i v̄j =

λiδij
√

λiλj

for 1 ≤ i, j ≤ ℓ, i.e., the POD basis vectors u1, . . . , uℓ are orthonormal in R
m with

respect to the inner product 〈· , ·〉W .

Of course, the snapshot ensemble {yj}n
j=1 for (P̂n,ℓ

W ) and therefore the snapshot
set span {y1, . . . , yn} depend on the chosen time instances {tj}n

j=1. Consequently,

the POD basis vectors {ui}ℓ
i=1 and the corresponding eigenvalues {λi}ℓ

i=1 depend
also on the time instances, i.e.,

ui = un
i and λi = λn

i , 1 ≤ i ≤ ℓ.

Moreover, we have not discussed so far what is the motivation to introduce the non-

negative weights {αj}n
j=1 in (P̂n,ℓ

W ). For this reason we proceed by investigating the
following two questions:

• How to choose good time instances for the snapshots?
• What are appropriate non-negative weights {αj}n

j=1?

To address these two questions we will introduce a continuous version of POD. Let
y : [0, T ] → R

m be the unique solution to (1.30). If we are interested to find a POD
basis of rank ℓ that describes the whole trajectory {y(t) | t ∈ [0, T ]} ⊂ R

m as good
as possible we have to consider the following minimization problem

(P̂ℓ
W )

min
ũ1,...,ũℓ∈Rm

∫ T

0

∥
∥
∥y(t) −

ℓ∑

i=1

〈y(t), ũi〉W ũi

∥
∥
∥

2

W
dt

s.t. 〈ũi, ũj〉W = δij , 1 ≤ i, j ≤ ℓ,

To solve (P̂ℓ
W ) we use similar arguments as in Sections 1.1 and 1.2. For ℓ = 1 we

obtain instead of (P̂ℓ
W ) the minimization problem

(1.37) min
ũ∈Rm

∫ T

0

∥
∥
∥y(t) − 〈y(t), ũ〉W ũ

∥
∥
∥

2

W
dt s.t. ‖ũ‖2

W = 1,

Suppose that {ũi}m
i=2 are chosen in such a way that {ũ, ũ2, . . . , ũm} is an orthonor-

mal basis in R
m with respect to the inner product 〈· , ·〉W . Then we have

y(t) = 〈y(t), ũ〉W ũ +

m∑

i=2

〈y(t), ũi〉W ũi for all t ∈ [0, T ].

Thus,
∫ T

0

∥
∥
∥y(t) − 〈y(t), ũ〉W ũ

∥
∥
∥

2

W
dt =

∫ T

0

∥
∥
∥

m∑

i=2

〈y(t), ũ〉W ũi

∥
∥
∥

2

W
dt

=

m∑

i=2

∫ T

0

∣
∣〈y(t), ũi〉W

∣
∣
2
dt

we conclude that (1.37) is equivalent with the following maximization problem

(1.38) max
ũ∈Rm

∫ T

0

∣
∣〈y(t), ũ〉W

∣
∣
2
dt s.t. ‖ũ‖2

W = 1.
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The Lagrange functional L : R
m × R → R associated with (1.38) is given by

L(u, λ) =

∫ T

0

∣
∣〈y(t), u〉W

∣
∣
2
dt + λ

(
1 − ‖u‖2

W

)
for (u, λ) ∈ R

m × R.

First-order necessary optimality conditions are given by

∇L(u, λ)
!
= 0 in R

m × R.

Therefore, we compute the partial derivative of L with respect to the ith component
ui of the vector u:

∂L
∂ui

(u, λ) =
∂

∂ui

(∫ T

0

∣
∣
∣

m∑

k=1

m∑

ν=1

yk(t)Wkνuν

∣
∣
∣

2

dt + λ
(

1 −
m∑

k=1

m∑

ν=1

ukWkνuν

))

= 2

∫ T

0

( m∑

k=1

m∑

ν=1

yk(t)Wkνuν

) m∑

µ=1

yµ(t)Wµi dt − 2λ

m∑

k=1

Wikuk

= 2

( ∫ T

0

〈y(t), u〉W Wy(t) dt − λWu

)

i

for i ∈ {1, . . . ,m}. Thus,

∇uL(u, λ) = 2

( ∫ T

0

〈y(t), u〉W Wy(t) dt − λWu

)

!
= 0 in R

m,

which gives

(1.39)

∫ T

0

〈y(t), u〉W Wy(t) dt = λWu in R
m.

Multiplying (1.39) by W−1 from the left yields

(1.40)

∫ T

0

〈y(t), u〉W y(t) dt = λu in R
m.

We define the operator R : R
m → R

m as

(1.41) Ru =

∫ T

0

〈y(t), u〉W y(t) dt for u ∈ R
m.

Lemma 1.11. The operator R is linear and bounded (i.e., continuous). Moreover,

1) R is non-negative:

〈Ru, u〉W ≥ 0 for all u ∈ R
m.

2) R is self-adjoint (or symmetric):

〈Ru, ũ〉W = 〈u,Rũ〉W for all u, ũ ∈ R
m.

Proof. For arbitrary u, ũ ∈ R
m and α, α̃ ∈ R we have

R
(
αu + α̃ũ

)
=

∫ T

0

〈y(t), αu + α̃ũ〉W y(t) dt

=

∫ T

0

(α 〈y(t), u〉W + α̃ 〈y(t), ũ〉W ) y(t) dt

= α

∫ T

0

〈y(t), u〉W y(t) dt + α̃

∫ T

0

〈y(t), ũ〉W y(t) dt = αRu + α̃Rũ,
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so that R is linear. From the Cauchy-Schwarz inequality we derive

‖Ru‖W ≤
∫ T

0

∥
∥〈y(t), u〉W y(t)

∥
∥

W
dt =

∫ T

0

∣
∣〈y(t), u〉W

∣
∣ ‖y(t)‖W dt

≤
∫ T

0

‖y(t)‖2
W ‖u‖W dt =

( ∫ T

0

‖y(t)‖2
W dt

)

‖u‖W = ‖y‖2
L2(0,T ;Rm)‖u‖W

for an arbitrary u ∈ R
m. Since y ∈ C([0, T ]; Rm) ⊂ L2(0, T ; Rm) holds, the norm

‖y‖L2(0,T ;Rm) is bounded. Therefore, R is bounded. Since

〈Ru, u〉W =

(∫ T

0

〈y(t), u〉W y(t) dt

)T

Wu =

∫ T

0

〈y(t), u〉W y(t)T Wu dt

=

∫ T

0

∣
∣〈y(t), u〉W

∣
∣
2
dt ≥ 0

for all u ∈ R
m holds, R is non-negative. Finally, we infer from

〈Ru, ũ〉W =

∫ T

0

〈y(t), u〉W 〈y(t), ũ〉W dt =

〈∫ T

0

〈y(t), ũ〉W y(t) dt, u

〉

W

= 〈Rũ, u〉W = 〈u,Rũ〉W
for all u, ũ ∈ R

m that R is self-adjoint. ¤

Utilizing the operator R we can write (1.40) as the eigenvalue problem

Ru = λu in R
m.

It follows from Lemma 1.11 that R possesses eigenvectors {ui}m
i=1 and associated

real eigenvalues {λi}m
i=1 such that

(1.42) Rui = λiui for 1 ≤ i ≤ m and λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0.

Note that
∫ T

0

∣
∣〈y(t), ui〉W

∣
∣
2
dt =

∫ T

0

〈
〈y(t), ui〉W y(t), ui

〉

W
dt = 〈Rui, ui〉W = λi ‖ui‖2

W = λi

for i ∈ {1, . . . ,m} so that u1 solves (1.37).
Proceeding as in Sections 1.1 and 1.2 we obtain the following result.

Theorem 1.12. Let y ∈ C([0, T ]; Rm) be the unique solution to (1.30). Then

the POD basis of rank ℓ solving the minimization problem (P̂ℓ
W ) is given by the

eigenvectors {ui}ℓ
i=1 of R corresponding to the ℓ largest eigenvalues λ1 ≥ . . . ≥ λℓ.

Remark 1.13 (Methods of snapshots). Let us introduce the linear and bounded
operator Y : L2(0, T ) → R

m by

Yv =

∫ T

0

v(t)y(t) dt for v ∈ L2(0, T ).

The adjoint Y⋆ : R
m → L2(0, T ) satisfying

〈Y⋆u, v〉L2(0,T ) = 〈u,Yv〉W for all (u, v) ∈ R
m × L2(0, T )

is given as

(Y⋆u)(t) = 〈u, y(t)〉W for u ∈ R
m and almost all t ∈ [0, T ].
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Then we have

YY⋆u =

∫ T

0

〈u, y(t)〉W y(t) dt =

∫ T

0

〈y(t), u〉W y(t) dt = Ru

for all u ∈ R
m, i.e., R = YY∗ holds. Furthermore,

(Y⋆Yv)(t) =

〈 ∫ T

0

v(s)y(s) ds, y(t)

〉

W

=

∫ T

0

〈y(s), y(t)〉W v(s) ds =: (Kv)(t)

for all v ∈ L2(0, T ) and almost all t ∈ [0, T ]. Thus, K = Y⋆Y. It can be shown that
the operator K is linear, bounded, non-negartive and self-adjoint. Moreover, K is
compact. Therefore, the POD basis can also be computed as follows: Solve

(1.43) Kvi = λivi for 1 ≤ i ≤ ℓ, λ1 ≥ . . . ≥ λℓ > 0,

∫ T

0

vi(t)vj(t) dt = δij

and set

ui =
1√
λi

Yvi =
1√
λi

∫ T

0

vi(t)y(t) dt for i = 1, . . . , ℓ.

Note that (1.43) is a symmetric eigenvalue problem in the infinite-dimensional func-
tion space L2(0, T ). For the functional analytic theory we refer, e.g., to [11]. ♦

Let us turn back to the optimality conditions (1.35). For any u ∈ R
m and

i ∈ {1, . . . ,m} we derive

(
Y DY T Wu

)

i
=

m∑

ν=1

m∑

j=1

m∑

k=1

αjYijYkjWkνuν =
n∑

j=1

αjYij 〈yj , u〉W

=
n∑

j=1

αj 〈yj , u〉W (yj)i,

where (yj)i stands for the ith component of the vector yj ∈ R
m. Thus,

Y DY T Wu =

n∑

j=1

αj 〈yj , u〉W yj =: Rnu.

Note that the operator Rn : R
m → R

m is linear and bounded. Moreover,

〈Rnu, u〉W =

〈 n∑

j=1

αj 〈yj , u〉W yj , u

〉

W

=

n∑

j=1

αj

∣
∣〈yj , u〉W

∣
∣
2 ≥ 0

holds for all u ∈ R
m so that Rn is non-negative. Further,

〈Rnu, ũ〉W =

〈 n∑

j=1

αj 〈yj , u〉W yj , ũ

〉

W

=
n∑

j=1

αj 〈yj , u〉W 〈yj , ũ〉W

=

〈 n∑

j=1

αj 〈yj , ũ〉W yj , u

〉

W

= 〈Rnũ, u〉W = 〈u,Rnũ〉W

for all u, ũ ∈ R
m, i.e., Rn is self-adjoint. Therefore, Rn has the same properties as

the operator R. Summarizing, we have

Rnun
i = λn

i un
i , λn

1 ≥ . . . λn
ℓ ≥ . . . λn

d(n) > λn
d(n)+1 = . . . = λn

m = 0,(1.44a)

Rui = λiui, λ1 ≥ . . . λℓ ≥ . . . λd > λd+1 = . . . = λm = 0.(1.44b)
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Let us note that

(1.45)

∫ T

0

‖y(t)‖2
W dt =

d∑

i=1

λi =

m∑

i=1

λi.

In fact,

Rui =

∫ T

0

〈y(t), ui〉W y(t) dt for every i ∈ {1, . . . ,m}.

Taking the inner product with ui, using (1.44b) and summing over i we arrive at

d∑

i=1

∫ T

0

∣
∣〈y(t), ui〉W

∣
∣
2
dt =

d∑

i=1

〈Rui, ui〉W =

d∑

i=1

λi =

m∑

i=1

λi.

Expanding y(t) ∈ R
m in terms of {ui}m

i=1 we have

y(t) =

m∑

i=1

〈y(t), ui〉W ui

and hence
∫ T

0

‖y(t)‖2
W dt =

m∑

i=1

∫ T

0

∣
∣〈y(t), ui〉W

∣
∣
2
dt =

m∑

i=1

λi,

which is (1.45). Analogously, we obtain

(1.46)

n∑

j=1

αj ‖y(tj)‖2
W =

d(n)
∑

i=1

λn
i =

m∑

i=1

λn
i for every n ∈ N.

For convenience we do not indicate the dependence of αj on n. Let y ∈ C([0, T ]; Rm)
hold. To ensure

(1.47)

n∑

j=1

αj ‖y(tj)‖2
W →

∫ T

0

‖y(t)‖2
W dt as ∆t → 0

we have to choose the αj ’s appropriately. Here we take the trapezoidal weights

(1.48) α1 =
∆t

2
, αj = ∆t for 2 ≤ j ≤ n − 1, αn =

∆t

2
.

Suppose that we have

(1.49) lim
n→∞

‖Rn −R‖L(Rm) = lim
n→∞

sup
‖u‖W =1

‖Rnu −Ru‖W = 0

provided y ∈ C1([0, T ]; Rm) is satisfied. In (1.49) L(Rm) denotes the Banach space
of all linear and bounded operators mapping from R

m into itself. Combining (1.47)
with (1.45) and (1.46) we find

(1.50)

m∑

i=1

λn
i →

m∑

i=1

λi as n → ∞.

Now choose and fix

(1.51) ℓ such that λℓ 6= λℓ+1.

Then by spectral analysis of compact operators ([5, pp. 212–214]) and (1.49) it
follows that

(1.52) λn
i → λi for 1 ≤ i ≤ ℓ as n → ∞.
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Combining (1.50) and (1.52) there exists n̄ ∈ N such that

(1.53)

m∑

i=ℓ+1

λn
i ≤ 2

m∑

i=ℓ+1

λi for all n ≥ n̄,

if
∑m

i=ℓ+1 λi 6= 0. Moreover, for ℓ as above, n̄ can also be chosen such that

(1.54)

d(n)
∑

i=ℓ+1

∣
∣〈y0, u

n
i 〉W

∣
∣
2 ≤ 2

m∑

i=ℓ+1

∣
∣〈y0, ui〉W

∣
∣
2

for all n ≥ n̄,

provided that
∑m

i=ℓ+1 |〈y0, ui〉W |2 6= 0 (1.49) hold. Recall that the vector y0 ∈ R
m

stands for the initial condition in (1.30b). Then we have

(1.55) ‖y0‖2
W =

m∑

i=1

∣
∣〈y0, ui〉W

∣
∣
2
.

If t1 = 0 holds, we have y0 ∈ span {yj}n
j=1 for every n and

(1.56) ‖y0‖2
W =

d(n)
∑

i=1

∣
∣〈y0, u

n
i 〉W

∣
∣
2
.

Therefore, for ℓ < d(n) by (1.55) and (1.56)

d(n)
∑

i=ℓ+1

∣
∣〈y0, u

n
i 〉W

∣
∣
2

=

d(n)
∑

i=1

∣
∣〈y0, u

n
i 〉W

∣
∣
2 −

ℓ∑

i=1

∣
∣〈y0, u

n
i 〉W

∣
∣
2

+

ℓ∑

i=1

∣
∣〈y0, ui〉W

∣
∣
2

+
m∑

i=ℓ+1

∣
∣〈y0, ui〉W

∣
∣
2 −

m∑

i=1

∣
∣〈y0, ui〉W

∣
∣
2

=

ℓ∑

i=1

(∣
∣〈y0, ui〉W

∣
∣
2 −

∣
∣〈y0, u

n
i 〉W

∣
∣
2
)

+

m∑

i=ℓ+1

∣
∣〈y0, ui〉W

∣
∣
2
.

As a consequence of (1.49) and (1.51) we have limn→∞ ‖un
i − ui‖W = 0 for i =

1, . . . , ℓ and hence (1.54) follows.
Summarizing we have the following theorem.

Theorem 1.14. Assume that y ∈ C1([0, T ]; Rm) is the unique solution to (1.30).
Let {(un

i , λn
i )}m

i=1 and {(ui, λi)}m
i=1 be the eigenvector-eigenvalue pairs given by

(1.44). Suppose that ℓ ∈ {1, . . . ,m} is fixed such that (1.51) and

m∑

i=ℓ+1

λi 6= 0,

m∑

i=ℓ+1

∣
∣〈y0, ui〉W

∣
∣
2 6= 0

hold. Then we have

(1.57) lim
n→∞

‖Rn −R‖L(Rm) = 0.

This implies

lim
n→∞

∣
∣λn

i − λi

∣
∣ = lim

n→∞
‖un

i − ui‖W = 0 for 1 ≤ i ≤ ℓ,

lim
n→∞

m∑

i=ℓ+1

(
λn

i − λi

)
= 0 and lim

n→∞

m∑

i=ℓ+1

∣
∣〈y0, u

n
i 〉W

∣
∣
2

=

m∑

i=ℓ+1

∣
∣〈y0, ui〉W

∣
∣
2
.
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Proof. We only have to verify (1.57). For that purpose we choose an arbitrary
u ∈ R

m with ‖u‖W = 1 and introduce fu : [0, T ] → R
m by

fu(t) = 〈y(t), u〉W y(t) for t ∈ [0, T ].

Then, we have fu ∈ C1([0, T ]; Rm) with

ḟu(t) = 〈ẏ(t), u〉W y(t) + 〈y(t), u〉W ẏ(t) for t ∈ [0, T ]

By Taylor expansion there exist τj1(t), τj2(t) ∈ [tj , tj+1] depending on t

∫ tj+1

tj

fu(t) dt =
1

2

∫ tj+1

tj

fu(tj) + ḟu(τj1(t))(t − tj) dt

+
1

2

∫ tj+1

tj

fu(tj+1) + ḟu(τj2(t))(t − tj+1) dt

=
∆t

2
(fu(tj) + fu(tj+1)) +

1

2

∫ tj+1

tj

ḟu(τj1(t))(t − tj) dt

+
1

2

∫ tj+1

tj

ḟu(τj2(t))(t − tj+1) dt.

Hence,

∥
∥Rnu −Ru

∥
∥

W
=

∥
∥
∥
∥
∥

n∑

j=1

αjfu(tj) −
∫ T

0

fu(t) dt

∥
∥
∥
∥
∥

W

=

∥
∥
∥
∥
∥

n−1∑

j=1

(
∆t

2
(fu(tj) + fu(tj+1)) −

∫ tj+1

tj

fu(t) dt

)
∥
∥
∥
∥
∥

W

≤ 1

2

n−1∑

j=1

∫ tj+1

tj

∥
∥ḟu(τj1(t))

∥
∥

W

∣
∣t − tj

∣
∣ +

∥
∥ḟu(τj2(t))

∥
∥

W

∣
∣t − tj+1

∣
∣ dt

≤ 1

2
max

t∈[0,T ]

∥
∥ḟu(t)

∥
∥

W

n−1∑

j=1

(

(t − tj)
2

2
− (tj+1 − t)2

2

∣
∣
∣
∣

t=tj+1

t=tj

)

=
∆t

2
max

t∈[0,T ]

∥
∥ḟu(t)

∥
∥

W

n−1∑

j=1

∆t =
∆t T

2
max

t∈[0,T ]

∥
∥ḟu(t)

∥
∥

W

≤ ∆t T

2
max

t∈[0,T ]

∥
∥ḟu(t)

∥
∥

W

=
∆t T

2
max

t∈[0,T ]

∥
∥〈ẏ(t), u〉W y(t) + 〈y(t), u〉W ẏ(t)

∥
∥

W

= ∆t T max
t∈[0,T ]

‖ẏ(t)‖W ‖y(t)‖W ≤ ∆t T ‖y‖2
C1([0,T ];Rm).

Consequently,

‖Rn −R‖L(Rm) = sup
‖u‖W =1

‖Rnu −Ru‖W ≤ 2∆t ‖y‖2
C1([0,T ];Rm)

∆t→0−→ 0

which is (1.57). ¤
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1.4. Exercises.

1.1) Show that any optimal solution to (Pℓ) is a regular point.

1.2) Verify the claim in Theorem 1.1 that argmax (Pℓ) =
∑ℓ

i=1 σ2
i holds true.

1.3) Show that the Frobenius norm is a matrix norm and that

‖AB‖F ≤ ‖A‖F ‖B‖F for any A, B ∈ R
n×n

is valid. Suppose that Ud ∈ R
m×d is a matrix with pairwise orthonormal

vectors ui ∈ R
m, 1 ≤ i ≤ d. Prove that

‖UA‖F = ‖A‖F for any matrix A ∈ R
d×n.

1.4) Suppose that W ∈ R
m×m is symmetric and positive definite. Let η1 ≥ . . . ≥

ηm > 0 denote the eigenvalues of W and Wα = Qdiag (ηα
1 , . . . , ηα

m)QT be
the eigenvalue decomposition of W . We define

Wα = Qdiag (ηα
1 , . . . , ηα

m)QT for α ∈ R.

Show that (Wα)−1 exists and (Wα)−1 = W−α. Prove that Wα+β =
WαW β holds for α, β ∈ R.

1.5) Verify the claims of Theorem 1.8.
1.5.1) Prove that ui = W−1/2ūi, 1 ≤ i ≤ ℓ, solves (Pℓ

W ), where the matrix
W and the vectors ū1, . . . , ūm are introduced in Theorem 1.8.

1.5.2) Show that (1.29) holds.
1.6) Prove that u1 given by (1.42) is a global solution to (1.37).
1.7) Verify (1.46).

2. Reduced-order modeling (ROM)

In Section 1 we have introduced the POD basis of rank ℓ in R
m and discussed

its application to initial-value problems. If the POD basis is computed, it can be
used to derive a so-called low-dimensional approximation or a reduced-order model
for (1.30). This is the focus of this section.

2.1. ROM for time-dependent systems. Suppose that we have determined a
POD basis {uj}ℓ

j=1 of rank ℓ ∈ {1, . . . ,m} in R
m. Then we make the ansatz

(2.1) yℓ(t) =

ℓ∑

j=1

〈yℓ(t), uj〉W
︸ ︷︷ ︸

=:yℓ
j
(t)

uj for all t ∈ [0, T ],

where the Fourier coefficients yℓ
j , 1 ≤ j ≤ ℓ, are functions mapping [0, T ] into R.

Since

y(t) =

m∑

j=1

〈y(t), uj〉W uj for all t ∈ [0, T ]

holds, yℓ(t) is an approximation for y(t) provided ℓ < m. Inserting (2.1) into (1.30)
yields

ℓ∑

j=1

ẏℓ
j(t)uj =

ℓ∑

j=1

yℓ
j(t)Auj + f(t, yℓ(t)), t ∈ (0, T ],(2.2a)

ℓ∑

j=1

yℓ
j(0)uj = y0(2.2b)
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Note that (2.2) is an initial-value problem in R
m for ℓ ≤ m coefficient functions

yℓ
j(t), 1 ≤ j ≤ ℓ and t ∈ [0, T ], so that the coefficients are overdetermined. There-

fore, we assume that (2.2) holds after projection on the ℓ dimensional subspace
V ℓ = span {uj}ℓ

j=1. From (2.2a) and 〈uj , ui〉W = δij we infer that

(2.3) ẏℓ
i(t) =

ℓ∑

j=1

yℓ
j(t) 〈Auj , ui〉W + 〈f(t, yℓ(t)), ui〉W

for 1 ≤ i ≤ ℓ and t ∈ (0, T ]. Let us introduce the matrix

A = ((aij

))
∈ R

ℓ×ℓ with aij = 〈Auj , ui〉W ,

the vector-valued mapping

yℓ =






yℓ
1
...
yℓ

ℓ




 : [0, T ] → R

ℓ

and the non-linearity F = (F1, . . . ,Fℓ)
T : [0, T ] × R

ℓ → R
ℓ by

Fi(t, y) =

〈

f

(

t,

ℓ∑

j=1

yjuj

)

, ui

〉

W

for t ∈ [0, T ] and y = (y1, . . . , yℓ) ∈ R
ℓ.

Then, (2.3) can be expressed as

(2.4a) ẏℓ(t) = Ayℓ(t) + F(t, yℓ(t)) for t ∈ (0, T ]

From (2.2b) we derive

(2.4b) yℓ(0) = y0,

where

y0 =






〈y0, u1〉W
...

〈y0, uℓ〉W




 ∈ R

ℓ

holds. System (2.4) is called the POD-Galerkin projection for (1.30). In case of
ℓ ≪ m the ℓ-dimensional system (2.4) is a low-dimensional approximation for (1.30).
Therefore, (2.4) is a reduced-order model for (1.30).

2.2. Error analysis for the reduced-order model. In this section we focus on
error analysis for POD Galerkin approximations. For a more detailed presentation
we refer the reader to [7, 8, 9] and [4].

Let us suppose that y ∈ C([0, T ]; Rm) ∩ C1(0, T ; Rm) is the unique solution to
(1.30) and {ui}ℓ

i=1 the POD basis of rank ℓ solving

(2.5) min

∫ T

0

∥
∥
∥y(t) −

ℓ∑

i=1

〈y(t), ui〉W ui

∥
∥
∥

2

W
dt s.t. 〈uj , ui〉W = δij , 1 ≤ i, j ≤ ℓ.

The reduced-order model for (1.30) is given by (2.4). We are interested in estimating
the error

∫ T

0

‖y(t) − yℓ(t)‖2

W dt.

Let us introduce the finite-dimensional space

V ℓ = span {u1, . . . , uℓ} ⊂ R
m
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and the projection Pℓ : R
m → V ℓ by

Pℓu =

ℓ∑

i=1

〈u, ui〉W ui for u ∈ R
m.

Then,

Pℓ
(
αu + α̃ũ

)
=

ℓ∑

i=1

〈αu + α̃ũ, ui〉W ui =

ℓ∑

i=1

(

α 〈u, ui〉W + α̃ 〈ũ, ui〉W
)

ui

= αPℓu + α̃Pℓũ

for all α, α̃ ∈ R and u, ũ ∈ R
m so that Pℓ is linear. Further,

(2.6)

‖Pℓ‖2

L(Rm) = sup
‖u‖W =1

‖Pℓu‖2

W = sup
‖u‖W =1

ℓ∑

i=1

∣
∣〈u, ui〉W

∣
∣
2

≤ sup
‖u‖W =1

m∑

i=1

∣
∣〈u, ui〉W

∣
∣
2

= sup
‖u‖W =1

‖u‖2
W = 1,

i.e., Pℓ is bounded and therefore continuous. In particular, (2.6) and ‖Pℓu‖W =
‖u‖W for any u ∈ V ℓ imply ‖Pℓ‖L(Rm) = 1.

Throughout we shall use the decomposition

(2.7) y(t) − yℓ(t) = y(t) − Pℓy(t) + Pℓy(t) − yℓ(t) = ̺ℓ(t) + ϑℓ(t),

where ̺ℓ(t) = y(t) − Pℓy(t) and ϑℓ(t) = Pℓy(t) − yℓ(t). Note that

∫ T

0

∥
∥
∥y(t) −

ℓ∑

i=1

〈y(t), ui〉W ui

∥
∥
∥

2

W
dt =

∫ T

0

‖y(t) − Pℓy(t)‖2

W dt =

∫ T

0

‖̺ℓ(t)‖2

W dt.

Since {ui}ℓ
i=1 is a POD basis of rank ℓ we have

(2.8)

∫ T

0

‖̺ℓ(t)‖2

W dt =

m∑

i=ℓ+1

λi.

Next we estimate the term ϑℓ(t). Utilizing (1.30a) and (2.4) we obtain for every
uℓ ∈ V ℓ and t ∈ (0, T ]

(2.9)

〈ϑ̇ℓ(t), uℓ〉W = 〈Pℓẏ(t) − ẏ(t), uℓ〉W + 〈ẏ(t) − ẏℓ(t), uℓ〉W
= 〈Pℓẏ(t) − ẏ(t), uℓ〉W

+〈A(y(t) − yℓ(t)) + f(t, y(t)) − f(t, yℓ(t)), uℓ〉W

We choose uℓ = ϑℓ(t) ∈ V ℓ. Let

‖A‖ = max
‖u‖W =1

‖Au‖W

the matrix norm induced by the vector norm ‖ · ‖W . Further,

1

2

d

dt
‖ϑℓ(t)‖2

W = 〈ϑ̇ℓ(t), ϑℓ(t)〉W for every t ∈ (0, T ].
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holds. Then, we infer from (2.9)

(2.10)

1

2

d

dt
‖ϑℓ(t)‖2

W ≤ ‖A‖
(
‖̺ℓ(t)‖W + ‖ϑℓ(t)‖W

)
‖ϑℓ(t)‖W

+‖f(t, y(t)) − f(t, yℓ(t))‖W ‖ϑℓ(t)‖W

+‖Pℓẏ(t) − ẏ(t)‖W ‖ϑℓ(t)‖W .

Suppose that f is Lipschitz-continuous with respect to the second argument, i.e.,
there exists a constant Lf ≥ 0 satisfying

‖f(t, u) − f(t, ũ)‖W ≤ Lf ‖u − ũ‖W for all u, ũ ∈ R
m and t ∈ [0, T ].

Moreover, we have

‖Pℓẏ(t) − ẏ(t)‖2

W =

∥
∥
∥
∥

m∑

i=ℓ+1

〈ẏ(t), ui〉W ui

∥
∥
∥
∥

2

W

=

m∑

i=ℓ+1

∣
∣〈ẏ(t), ui〉W

∣
∣
2

for all t ∈ (0, T ). Consequently, (2.10) and (2.7) imply

1

2

d

dt
‖ϑℓ(t)‖2

W ≤ ‖A‖
2

(

‖̺ℓ(t)‖2

W + ‖ϑℓ(t)‖2

W

)

+ ‖A‖ ‖ϑℓ(t)‖2

W

+ Lf ‖̺ℓ(t) + ϑℓ(t)‖W ‖ϑℓ(t)‖W

+
1

2

(

‖Pℓẏ(t) − ẏ(t)‖2

W + ‖ϑℓ(t)‖2

W

)

≤ ‖A‖
2

‖̺ℓ(t)‖2

W +

(
1

2
‖A‖ +

1

2
+ Lf

)

‖ϑℓ(t)‖2

W

+ Lf ‖̺ℓ(t)‖W ‖ϑℓ(t)‖W +
m∑

i=ℓ+1

∣
∣〈ẏ(t), ui〉W

∣
∣
2

≤ ‖A‖ + Lf

2
‖̺ℓ(t)‖2

W +

(
3

2

(
‖A‖ + Lf

)
+

1

2

)

‖ϑℓ(t)‖2

W

+

m∑

i=ℓ+1

∣
∣〈ẏ(t), ui〉W

∣
∣
2
.

Consequently,

d

dt
‖ϑℓ(t)‖2

W ≤
(

3
(
‖A‖ + Lf

)
+ 1

)

‖ϑℓ(t)‖2

W +
(
‖A‖ + Lf

)
‖̺ℓ(t)‖2

W

+
m∑

i=ℓ+1

∣
∣〈ẏ(t), ui〉W

∣
∣
2
.

Using Gronwall’s lemma (see Exercise 2.1)) and (2.8) we arrive at

(2.11)

‖ϑℓ(t)‖2

W ≤ c1

(

‖ϑℓ(0)‖2

W +
(
‖A‖ + Lf

)
∫ t

0

‖̺ℓ(s)‖2

W ds

)

+c1

m∑

i=ℓ+1

∫ t

0

∣
∣〈ẏ(s), ui〉W

∣
∣
2
ds

≤ c2

(

‖ϑℓ(0)‖2

W +

m∑

i=ℓ+1

(

λi +

∫ T

0

∣
∣〈ẏ(t), ui〉W

∣
∣
2
dt

))

where c1 = exp(3(‖A‖ + Lf ) + 1)T ) and c2 = c1 max{‖A‖ + Lf , 1}.
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Theorem 2.1. Let y ∈ C([0, T ]; Rm) ∩ C1(0, T ; Rm) be the unique solution to
(1.30), ℓ ∈ {1, . . . ,m} be fixed and {ui}ℓ

i=1 a POD basis of rank ℓ solving (2.5). Let
yℓ be the unique solution to the reduced-order model (2.4). Then

∫ T

0

‖y(t) − yℓ(t)‖2

W dt ≤ C

m∑

i=ℓ+1

(

λi +

∫ T

0

∣
∣〈ẏ(t), ui〉W

∣
∣
2
dt

)

for a constant C > 0.

Proof. From (2.8), (2.11) and ϑℓ(0) = Pℓy0 − yℓ(0) = 0 we find

∫ T

0

‖y(t) − yℓ(t)‖2

W dt =

∫ T

0

‖̺ℓ(t) + ϑℓ(t)‖2

W dt

≤ 2

∫ T

0

‖̺ℓ(t)‖2

W + ‖ϑℓ(t)‖2

W dt

≤ 2

m∑

i=ℓ+1

λi + c3

m∑

i=ℓ+1

(

λi +

∫ T

0

∣
∣〈ẏ(t), ui〉W

∣
∣
2
dt

)

with c3 = 2c2. Setting C = 2 + c3 the claim follows directly. ¤

Remark 2.2. The term
m∑

i=ℓ+1

∫ T

0

∣
∣〈ẏ(t), ui〉W

∣
∣
2
dt

can not be estimated by the sum over the eigenvalues λℓ+1, . . . , λm. If we replace
(2.5) by

(2.12a) min

∫ T

0

∥
∥
∥y(t) −

ℓ∑

i=1

〈y(t), ui〉W ui

∥
∥
∥

2

W
+

∥
∥
∥ẏ(t) −

ℓ∑

i=1

〈ẏ(t), ui〉W ui

∥
∥
∥

2

W
dt

subject to

(2.12b) 〈uj , ui〉W = δij for 1 ≤ i, j ≤ ℓ,

we end up with the estimate

∫ T

0

‖y(t) − yℓ(t)‖2

W dt ≤ C̃

m∑

i=ℓ+1

λ̃i

for a constant C̃ > 0. In this case the time derivatives are also included in the
snapshot ensemble. Of course, the operator R defined in (1.41) has to be replaced.
It turns out that the POD basis {ui}ℓ

i=1 is given by the eigenvalue problem

(2.13) R̃ũi = λ̃iũi for 1 ≤ i ≤ m and λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃m ≥ 0

where the operator R̃ : R
m → R

m is defined by

R̃u =

∫ T

0

〈y(t), u〉W y(t) + 〈ẏ(t), u〉W ẏ(t) dt

for u ∈ R
m. ♦
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Remark 2.3. Suppose that we build the matrix Y ∈ R
m×(2n) using the column

vectors yj ≈ y(tj), 1 ≤ j ≤ n, and yj ≈ ẏ(tj−m, m + 1 ≤ j ≤ 2m. Then, the

discrete variant R̃n of the operator R̃ introduced in Remark 2.2 is given by

R̃nu =

n∑

j=1

αj 〈yj , u〉W yj + αj 〈ym+j , u〉W ym+j

=

n∑

j=1

αj

(( m∑

k=1

m∑

ν=1

YkjWkνuν

)

Y·,j +
( m∑

k=1

m∑

ν=1

Yk,m+jWkνuν

)

Y·,m+j

)

=

n∑

j=1

m∑

k=1

m∑

ν=1

((

Y·,jDjjY
T
jk + Y·,m+jDjjY

T
m+j,k

)

Wkνuν

)

= Y

(
D 0
0 D

)

︸ ︷︷ ︸

=:D̃∈R2n×2n

Y T Wu = Y D̃Y T Wu

with non-negative weights introduced in (P̂n,ℓ
W ) and the diagonal matrix D =

diag (α1, . . . , αn) ∈ R
n×n. Thus, we have R̃ = Y D̃Y T W ∈ R

m×m, which is of
the same form as in (1.35). The discrete version to (2.13) is

(2.14) Y D̃Y T Wũi = λ̃iũi for 1 ≤ i ≤ m and λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃m ≥ 0

Setting ũi = W−1/2ūi in (2.14) and multiplying by W 1/2 from the left yield

(2.15) W 1/2Y D̃Y T W 1/2ūi = λiūi.

Let Ȳ = W 1/2Y D̃1/2 ∈ R
m×2n. Using WT = W as well as D̃T = D̃ we infer

from (2.15) that the solution {ũi}ℓ
i=1 is given by the symmetric m × m eigenvalue

problem

Ȳ Ȳ T ūi = λiūi, 1 ≤ i ≤ ℓ and 〈ūi, ūj〉Rm = δij , 1 ≤ i, j ≤ ℓ

and ũi = W−1/2ūi. Note that

Ȳ T Ȳ = D̃1/2Y T WY D̃1/2 ∈ R
2n×2n.

Thus, the POD basis of rank ℓ can also be computed by the methods of snapshots
as follows: First solve the symmetric 2n × 2n eigenvalue problem

Ȳ T Ȳ v̄i = λiv̄i, 1 ≤ i ≤ ℓ and 〈v̄i, v̄j〉R2n = δij , 1 ≤ i, j ≤ ℓ.

Then we set (by SVD)

ũi = W−1/2ūi =
1√
λi

W−1/2Ȳ v̄i =
1√
λi

Y D̃1/2v̄i

for 1 ≤ i ≤ ℓ. ♦

From a practical point of view we do not have the information on the whole
trajectory in [0, T ]. Therefore, let ∆t = T/(n − 1) be a fixed time step size and
tj = (j−1)∆t for 1 ≤ j ≤ n a given time grid in [0, T ]. To simplify the presentation
we choose an equidistant grid. Of course, non-equidistant meshes can be treated
analogously [8]. We compute a POD basis {un

i }ℓ
i=1 of rank ℓ by solving the con-

strained minimization problem (P̂n,ℓ
W ). After the POD basis has been determined,
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we derive the reduced-order model as described in Section 2.1. Thus,

yℓ(t) =

ℓ∑

i=1

yℓ
j(t)u

n
i , t ∈ [0, T ],

solves the POD Galerkin projection of (1.30)

〈ẏℓ(t), un
i 〉W = 〈Ayℓ(t) + f(t, yℓ(t)), un

i 〉W for i = 1 . . . , ℓ and t ∈ (0, T ],(2.16a)

〈yℓ(0), un
i 〉W = 〈y0, u

n
i 〉W for i = 1 . . . , ℓ.(2.16b)

To solve (2.16) we apply the implicit Euler method. By Yj we denote an approxi-
mation for yℓ at the time tj , 1 ≤ j ≤ n. Then, the discrete system for the sequence
{Yj}n

j=1 in V ℓ
n = span {un

1 , . . . , un
ℓ } looks like

〈
Yj − Yj−1

∆t
, un

i

〉

W

= 〈AYj + f(t, Yj), u
n
i 〉W for i = 1 . . . , ℓ, 2 ≤ j ≤ n,(2.17a)

〈Y1, u
n
i 〉W = 〈y0, u

n
i 〉W for i = 1 . . . , ℓ.(2.17b)

We are interested in estimating

n∑

j=1

αj ‖y(tj) − Yj‖2
W .

Let us introduce the projection Pℓ
n : R

m → V ℓ
n by

(2.18) Pℓ
n =

ℓ∑

i=1

〈u, un
i 〉W un

i for u ∈ R
m.

It follows that Pℓ
n is linear and bounded (and therefore continuous). In particular,

‖Pℓ
n‖L(Rm) = 1.
We shall make use of the decomposition

y(tj) − Yj = y(tj) − Pℓ
ny(tj) + Pℓ

ny(tj) − Yj = ̺ℓ
j + ϑℓ

j ,

where ̺ℓ
j = y(tj) − Pℓ

ny(tj) and ϑℓ
j = Pℓ

ny(tj) − Yj . Note that

n∑

j=1

αj

∥
∥
∥y(tj)−

ℓ∑

i=1

〈y(tj), u
n
i 〉W un

i

∥
∥
∥

2

W
=

n∑

j=1

αj ‖y(tj) − Pℓ
ny(tj)‖

2

W =

n∑

j=1

αj ‖̺ℓ
j‖

2

W
.

Since {un
i }ℓ

i=1 is the POD basis of rank ℓ, we have

(2.19)
n∑

j=1

αj ‖̺ℓ
j‖

2

W
=

m∑

i=ℓ+1

λn
i .
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Next we estimate the terms ϑℓ
j . Using the notation ∂ϑℓ

j = (ϑℓ
j − ϑℓ

j−1)/∆t for
2 ≤ j ≤ n we obtain by (1.30a) and (2.17a)

〈∂ϑℓ
j , ui〉 =

〈

Pℓ
n

(
y(tj) − y(tj−1)

∆t

)

− Yj − Yj−1

∆t
, un

i

〉

W

= 〈ẏ(tj) − (AYj + f(tj , Yj))), u
n
i 〉W

+

〈

Pℓ
n

(
y(tj) − y(tj−1)

∆t

)

− ẏ(tj), u
n
i

〉

W

= 〈A(y(tj) − Yj) + f(tj , y(tj)) − f(tj , Yj), u
n
i 〉W(2.20)

+

〈

Pℓ
n

(
y(tj) − y(tj−1)

∆t

)

− y(tj) − y(tj−1)

∆t
, un

i

〉

W

+

〈
y(tj) − y(tj−1)

∆t
− ẏ(tj), u

n
i

〉

W

= 〈A(y(tj) − Yj) + f(tj , y(tj)) − f(tj , Yj) + zℓ
j + wℓ

j , u
n
i 〉W

for 1 ≤ i ≤ ℓ and 2 ≤ j ≤ n, where

zℓ
j = Pℓ

n

(
y(tj) − y(tj−1)

∆t

)

− y(tj) − y(tj−1)

∆t
, wℓ

j =
y(tj) − y(tj−1)

∆t
− ẏ(tj).

Multiplying (2.20) by 〈ϑℓ
j , u

n
i 〉W and adding all ℓ equations we arrive at

(2.21) 〈∂ϑℓ
j , ϑ

ℓ
j〉 = 〈A(y(tj) − Yj) + f(tj , y(tj)) − f(tj , Yj) + zℓ

j + wℓ
j , ϑ

ℓ
j〉W

for j = 2, . . . , n. Note that

2 〈u − ũ, u〉W = 2 ‖u‖2
W − 2 〈ũ, u〉W

= ‖u‖2
W + ‖u‖2

W − 2 〈ũ, u〉W + ‖ũ‖2
W − ‖ũ‖2

W

= ‖u‖2
W − ‖ũ‖2

W + ‖u − ũ‖2
W

for all u, ũ ∈ R
m. Choosing u = ϑℓ

j and ũ = ϑℓ
j−1 we infer from (2.21)

(2.22) 2 〈∂ϑℓ
j , ϑ

ℓ
j〉 =

1

∆t

(

‖ϑℓ
j‖

2

W
− ‖ϑℓ

j−1‖
2

W
+ ‖ϑℓ

j − ϑℓ
j−1‖

2

W

)

.

Inserting (2.22) into (2.21) and using the Cauchy-Schwarz inequality we obtain

‖ϑℓ
j‖

2

W
≤ ‖ϑℓ

j−1‖
2

W
+ ∆t ‖A‖

(
‖̺ℓ

j‖W
+ ‖ϑℓ

j‖W

)
‖ϑℓ

j‖W

+ ∆t
(

‖f(tj , y(tj)) − f(tj , Yj)‖W + ‖zℓ
j‖W

+ ‖wℓ
j‖W

)

‖ϑℓ
j‖W

.

Suppose that f is Lipschitz-continuous with respect to the second argument. Then
there exists a constant Lf ≥ 0 such that

‖f(tj , y(tj)) − f(tj , Yj)‖W ≤ Lf ‖y(tj) − Yj‖W for j = 2, . . . , n.

Hence, by Young’s inequality we find

‖ϑℓ
j‖

2

W
≤ ‖ϑℓ

j−1‖
2

W
+ ∆t

(

c1 ‖̺ℓ
j‖

2

W
+ c2 ‖ϑℓ

j‖
2

W
+ ‖zℓ

j‖
2

W
+ ‖wℓ

j‖
2

W

)

,

where c1 = max{‖A‖, Lf} and c2 = max{3 ‖A‖, 3Lf , 2}. Suppose that

(2.23) 0 < ∆t ≤ 1

2c2
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holds. With (2.23) holding we have

0 ≤ 1 − 2c2∆t < 1 − c2∆t and 1 − c2∆t ≥ 1 − 1

2
=

1

2
.

Thus,

(2.24)
1

1 − c2∆t
=

1 − c2∆t + c2∆t

1 − c2∆t
= 1 +

c2∆t

1 − c2∆t
. ≤ 1 + 2c2∆t

Using (2.24) we infer that

‖ϑℓ
j‖

2

W
≤ (1 + 2c2∆t)

(

‖ϑℓ
j−1‖

2

W
+ ∆t

(
‖zℓ

j‖
2

W
+ ‖wℓ

j‖
2

W
+ c1 ‖̺ℓ

j‖
2

W

))

.

Summation on j yields

‖ϑℓ
j‖

2

W
≤ (1 + 2c2∆t)j

(

‖ϑℓ
0‖

2

W + ∆t

j
∑

k=1

(

‖zℓ
k‖

2

W + ‖wℓ
k‖

2

W + c1 ‖̺ℓ
k‖

2

W

))

.

Note that

(1 + 2c2∆t)j =

(

1 +
2c2j∆t

j

)j

≤ e2c2j∆t.

Thus,

‖ϑℓ
j‖

2

W
≤ e2c2j∆t

(

‖ϑℓ
0‖

2

W + ∆t

j
∑

k=1

(

‖zℓ
k‖

2

W + ‖wℓ
k‖

2

W + c1 ‖̺ℓ
k‖

2

W

))

.

We next estimate the term involving wℓ
k:

∆t

j
∑

k=1

‖wℓ
k‖

2

W = ∆t

j
∑

k=1

∥
∥
∥
∥

y(tk) − y(tk−1)

∆t
− ẏ(tk)

∥
∥
∥
∥

2

W

=
1

∆t

j
∑

k=1

‖y(tk) − y(tk−1) − ∆tẏ(tk)‖2
W

=
1

∆t

j
∑

k=1

∥
∥
∥
∥

∫ tk

tk−1

(tk−1 − s)ÿ(s) ds

∥
∥
∥
∥

2

W

≤ 1

∆t

j
∑

k=1

∫ tk

tk−1

|tk−1 − s|2 ds

∫ tk

tk−1

‖ÿ(s)‖2
W ds

≤ (∆t)2

3

j
∑

k=1

‖ÿ‖2
L2(tk−1,tk;Rm) =

(∆t)2

3
‖ÿ‖2

L2(0,tj ;Rm).
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The term zℓ
k can be estimated as follows:

‖zℓ
k‖

2

W =

∥
∥
∥
∥
Pℓ

n

(y(tk) − y(tk−1)

∆t

)

− y(tk) − y(tk−1)

∆t

∥
∥
∥
∥

2

W

=

∥
∥
∥
∥
Pℓ

n

(y(tk) − y(tk−1)

∆t

)

− Pℓ
nẏ(tk) + Pℓ

nẏ(tk) − y(tk) − y(tk−1)

∆t

∥
∥
∥
∥

2

W

≤ 2 ‖Pℓ
n‖

2

L(Rm)

∥
∥
∥
∥

y(tk) − y(tk−1)

∆t
− ẏ(tk)

∥
∥
∥
∥

2

W

+ 2

∥
∥
∥
∥
Pℓ

nẏ(tk) − ẏ(tk) + ẏ(tk) − y(tk) − y(tk−1)

∆t

∥
∥
∥
∥

2

W

≤ 2 ‖wℓ
k‖

2

W + 4 ‖Pℓ
nẏ(tk) − ẏ(tk)‖2

W + 4

∥
∥
∥
∥
ẏ(tk) − y(tk) − y(tk−1)

∆t

∥
∥
∥
∥

2

W

= 4 ‖Pℓ
nẏ(tk) − ẏ(tk)‖2

W + 6 ‖wℓ
k‖

2

W .

Recall that ∆t ≤ 2αk for 1 ≤ k ≤ n. Hence,

∆t

j
∑

k=1

‖zℓ
k‖

2

W ≤ 8

n∑

k=1

αk ‖Pℓ
nẏ(tk) − ẏ(tk)‖2

W + 2(∆t)2 ‖ÿ‖2
L2(0,tj ;Rm).

Further, ϑℓ
0 = Pℓ

ny0 − Y1 = 0 and 0 ≤ j∆t ≤ T for j = 0, . . . , n − 1. Summarizing

‖ϑℓ
j‖

2

W
≤ c3

( n∑

k=1

8αk

(

‖Pℓ
nẏ(tk) − ẏ(tk)‖2

W + 2c1 ‖̺ℓ
k‖

2

W

)

+
7

3
(∆t)2 ‖ÿ‖2

L2(0,tj ;Rm)

)

,

where c3 = e2c2T max{7/3, 2c1, 8} is independent of ℓ and {tj}n
j=1. From

∑n
k=1 αk =

T and (2.19) we infer

(2.25)

n∑

j=1

αj ‖ϑℓ
j‖

2

W
≤ c3T

( n∑

j=1

αj

(

‖Pℓ
nẏ(tj) − ẏ(tj)‖

2

W + ‖̺ℓ
j‖

2

W

)

+(∆t)2 ‖ÿ‖2
L2(0,T ;Rm)

)

≤ c4

(
m∑

i=ℓ+1

(

λn
i +

n∑

j=1

αj

∣
∣〈ẏ(tj), u

n
i 〉W

∣
∣
2
)

+ (∆t)2

)

with c4 = c3T max{1, ‖ÿ‖2
L2(0,T ;Rm)}.

Theorem 2.4. Let y ∈ C([0, T ]; Rm)∩C1(0, T ; Rm) be the unique solution to (1.30)
satisfying ÿ ∈ L2(0, T ; Rm) and ℓ ∈ {1, . . . ,m} be fixed. Suppose that {un

i }ℓ
i=1 is a

POD basis of rank ℓ solving (P̂n,ℓ
W ). Assume that (2.17) possesses a unique solution

{Yj}n
j=1. Then there exists a constant C > 0 such that

n∑

j=1

αj ‖y(tj) − Yj‖2
W ≤ C

(

(∆t)2 +

m∑

i=ℓ+1

(

λn
i +

n∑

j=1

αj

∣
∣〈ẏ(tj), u

n
i 〉W

∣
∣
2
))

provided ∆t is sufficiently small and f is Lipschitz-continuous with respect to the
second argument.
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Proof. The claim follows directly from (2.19), (2.25), and

n∑

j=1

αj ‖y(tj) − Yj‖2
W ≤ 2

n∑

j=1

αj

(

‖ϑℓ
j‖

2

W
+ ‖̺ℓ

j‖
2

W

)

≤ 2c4

(
m∑

i=ℓ+1

(

λn
i +

n∑

j=1

∣
∣〈ẏ(tj), u

n
i 〉W

∣
∣
2
)

+ (∆t)2

)

+ 2

m∑

i=ℓ+1

λn
i

provided ∆t is sufficiently small and f is Lipschitz-continuous with respect to the
second argument. ¤

Remark 2.5. Compared to the estimate in Theorem 2.1 we observe the term

(2.26)
n∑

j=1

αj

∣
∣〈ẏ(tj), u

n
i 〉W

∣
∣
2

instead of the term

(2.27)

∫ T

0

∣
∣〈ẏ(t), ui〉W

∣
∣
2
dt.

Note that (2.26) is the trapezoidal approximation of (2.27). Furthermore, the error
O((∆t)2) appears in the estimate of Theorem 2.4 due to the Euler method. ♦

Next we address the fact that the eigenvalues {λn
i }m

i=1 and the associated eigen-
vectors {un

i } (i.e., the POD basis) depend on the chosen time grid {tj}n
j=1. We

apply the asymptotic theory presented in Section 1.3. Then, it follows from Theo-
rem 1.14 that there exists a number n̄ ∈ N satisfying

m∑

i=ℓ+1

λn
i ≤ 2

m∑

i=ℓ+1

λi,

m∑

i=ℓ+1

n∑

j=1

αj

∣
∣〈ẏ(tj), u

n
i 〉W

∣
∣
2 ≤ 2

m∑

i=ℓ+1

∫ T

0

∣
∣〈ẏ(t), ui〉W

∣
∣
2
dt

for n ≥ n̄ provided
∑m

i=ℓ+1 λi 6= 0 and
∫ T

0

∣
∣〈ẏ(t), ui〉W

∣
∣
2
dt 6= 0 hold. Thus, we infer

from Theorems 2.1 and 2.4 the following result.

Theorem 2.6. Let all hypothesis of Theorems 1.14, 2.1 and 2.4 be satisfied. If
∫ T

0

∣
∣〈ẏ(t), ui〉W

∣
∣
2
dt 6= 0, then there exists a constant C > 0 and a number n̄ ∈ N

such that

n∑

j=1

αj ‖y(tj) − Yj‖2
W ≤ C

(

(∆t)2 +

m∑

i=ℓ+1

(

λi +

∫ T

0

∣
∣〈ẏ(t), ui〉

∣
∣
2
dt

))

for all n ≥ n̄.
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2.3. Exercises.

2.1) Prove the Gronwall lemma: For T > 0 let η : [0, T ] → R be a non-negative,
differentiable function satisfying

η′(t) ≤ ϕ(t)η(t) + ψ(t) for all t ∈ [0, T ],

where ϕ and ψ are real-valued, non-negative, integrable functions on [0, T ].
Then

η(t) ≤ exp

(∫ t

0

ϕ(s) ds

)(

η(0) +

∫ t

0

ψ(s) ds

)

for all t ∈ [0, T ].

In particular, if

η′ ≤ ϕη in [0, T ] and η(0) = 0

show that η = 0 holds in [0, T ].
2.2) Show that the operator Pℓ

n defined in (2.18) is linear, bounded and satisfies
‖Pℓ

n‖L(Rm) = 1.
2.3) Prove that the first-order necessary optimality condition for (2.12) is given

by R̃ũi = λ̃iũi, 1 ≤ i ≤ ℓ.
2.4) Show that R̃ is linear, bounded, self-adjoint and non-negative provided

y ∈ H1(0, T ; Rm), i.e.,
∫ T

0

‖y(t)‖2
W + ‖ẏ(t)‖2

W dt < ∞

holds.

3. The linear-quadratic control problem

In this section we introduce the optimal state-feedback and the linear-quadratic
regulator (LQR) problem. Utilizing dynamic programming necessary optimality
conditions are derived. It turns out that for the LQR problem the state-feedback
solution can be determined by solving a differential matrix Riccati equation. The
presented theory is taken from the book [2].

3.1. The LQR problem. The goal is to find a state-feedback control law of the
form

u(t) = −Kx(t) for t ∈ [0, T ]

with u : [0, T ] → R
mu , x : [0, T ] → R

mx , K ∈ R
mu×mx so that u minimizes the

quadratic cost functional

(3.1a) J(x, u) =

∫ T

0

x(t)T Qx(t) + u(t)T Ru(t) dt + x(T )T Mx(T ),

where the state x and the control u are related by the linear initial value problem

(3.1b) ẋ(t) = Ax(t) + Bu(t) for t ∈ (0, T ] and x(0) = x0.

In (3.1a) the matrices Q, M ∈ R
mx×mx are symmetric, positive semi-definite, R ∈

R
mu×mu is symmetric, positive definite and in (3.1b) we have A ∈ R

mx×mx , B ∈
R

mx×mu and x0 ∈ R
mx . The final time T is fixed, but the final state x(T ) is free.

Thus, we aim to track the state to the state x̄ = 0 as good as possible. The terms
x(t)T Qx(t) and x(T )T Mx(T ) are measures for the control accuracy and the term
u(t)T Ru(t) measures the control effort. Problem (3.1) is called the linear-quadratic
regulator problem (LQR problem).
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3.2. The Hamilton-Jacobi-Bellman equation. In this section we derive first-
order necessary optimality conditions for the LQR problem. Since generalizing the
problem to a non-linear problem does not cause more difficulties in the deviation,
we consider the problem to find a state-control feedback control law

u(t) = Φ(x(t), t), t ∈ [0, T ],

such that the cost-functional

(3.2a) Jt(x, u) =

∫ T

t

L(x(s), u(s), s) ds + g(x(T ))

is minimized subject to the non-linear system dynamics

(3.2b) ẋ(s) = F (x(s), u(s), s) for s ∈ (0, T ] and x(t) = xt.

We suppose that the functions L : R
mx×R

mu×[0, T ] → [0,∞) and g : R
mx → [0,∞)

satisfy

L(0, 0, s) = 0 for s ∈ [0, T ] and g(0) = 0

Moreover, let F : R
mx × R

mu × [0, T ] → R
mx be continuous and locally Lipschitz-

continuous with respect to the variable x. Moreover, xt ∈ R
mx holds. To derive

optimality conditions we use the so-called Bellman principle (or dynamic program-
ming principle). The essential assumption is that the system can be characterized
by its state x(t) at the time t ∈ [0, T ] which completely summarizes the effect of
all u(s) for 0 ≤ s ≤ t. The dynamic programming principle was first proposed by
Bellman [1].

Theorem 3.1 (Bellman principle). Let t ∈ [0, T ]. If u∗(s) is optimal for s ∈ [t, T ]
and x∗ is the associated optimal state, starting at the state xt ∈ R

mx , then u∗(s)
is also optimal over the subinterval [t + ∆t, T ] for any ∆t ∈ [0, T − t] starting at
xt+∆t = x∗(t + ∆t).

Proof. We show Theorem 3.1 by contradiction. Suppose that there exists a control
u∗∗ so that

(3.3)

∫ T

t+∆t

L(x∗∗(s), u∗∗(s), s) ds + g(x∗∗(T ))

<

∫ T

t+∆t

L(x∗(s), u∗(s), s) ds + g(x∗(T )),

where

ẋ∗(s) = F (x∗(s), u∗(s), s) and ẋ∗∗(s) = F (x∗∗(s), u∗∗(s), s)

hold for s ∈ [t + ∆t, T ]. We define the control

(3.4) u(s) =

{

u∗(s) if s ∈ [t, t + ∆t],

u∗∗(s) if s ∈ (t + ∆t, T ].



MODEL REDUCTION USING POD 35

By x(s) we denote the state satisfying ẋ(s) = F (x(s), u(s), s) for s ∈ [t, T ] and
x(t) = xt. Then we derive from (3.3) and (3.4) that

(3.5)

∫ T

t

L(x(s), u(s), s) ds + g(x(T ))

=

∫ t+∆t

t

L(x∗(s), u∗(s), s) ds +

∫ T

t+∆t

L(x∗∗(s), u∗∗(s), s) ds + g(x∗∗(T ))

<

∫ t+∆t

t

L(x∗(s), u∗(s), s) ds +

∫ T

t+∆t

L(x∗(s), u∗(s), s) ds + g(x∗(T ))

=

∫ T

t

L(x∗(s), u∗(s), s) ds + g(x∗(T )).

Recall that u∗(s) is optimal for s ∈ [t, T ] by assumption. From (3.5) it follows that
the control u given by (3.4) yields a smaller value of the cost functional. This is a
contradiction. ¤

Next we derive the Hamilton-Jacobi-Bellman equation for (3.2). Let V ∗ : R
mx ×

[0, T ] → R denote the minimal value function given by

(3.6)

V ∗(xt, t)

= min
u:[t,T ]→Rmu

{

Jt(x, u)
∣
∣ ẋ(s) = F (x(s), u(s), s), s ∈ (t, T ] and x(t) = xt

}

for (xt, t) ∈ R
mx × [0, T ], where

Jt(x, u) =

∫ T

t

L(x(s), u(s), s) ds + g(x(T )).

From the linearity of the integral and (3.6) we conclude

(3.7)

V ∗(xt, t)

= min
u:[t,t+∆t]→Rmu

{ ∫ t+∆t

t

L(x(s), u(s), s) ds + V ∗(x(t + ∆t), t + ∆t)
∣
∣

ẋ(s) = F (x(s), u(s), s), s ∈ (t, t + ∆t] and x(t) = xt

}

for (xt, t) ∈ R
mx × [0, T − ∆t], where we have used the Bellman principle. Thus,

by using the Bellman principle the problem of finding an optimal control over the
interval [t, T ] has been reduced to the problem of finding an optimal control over
the interval [t, t + ∆t].
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Now we replace the integral in (3.7) by L(x(t), u(t), t)∆t, perform a Taylor ap-
proximation for V ∗(x(t+∆t), t+∆t) about the point (xt, t) = (x(t), t) and approx-
imate x(t + ∆t) − x(t) by F (x(t), u(t), t)∆t. Then we find

V ∗(xt, t) = min
ut∈Rmu

{

L(xt, ut, t)∆t + V ∗(xt, t) +
∂V ∗

∂t
(xt, t)∆t

+ ∇V ∗(xt, t)
T F (xt, ut, t)∆t + o(∆t)

}

= V ∗(xt, t) +
∂V ∗

∂t
(xt, t)∆t

+ ∆t min
ut∈Rmu

{

L(xt, ut, t) + ∇V ∗(xt, t)
T F (xt, ut, t) +

o(∆t)

∆t

}

for any ∆t > 0. Thus,

−∂V ∗

∂t
(xt, t) = min

ut∈Rmu

{

L(xt, ut, t) + ∇V ∗(xt, t)
T F (xt, ut, t) +

o(∆t)

∆t

}

.

Taking the limit ∆t → 0 and using V ∗(xt, T ) = g(xt) we obtain

(3.8a) −∂V ∗

∂t
(xt, t) = min

ut∈Rmu

{
L(xt, ut, t) + ∇V ∗(xt, t)

T F (xt, ut, t)
}

for all (xt, t) ∈ R
mx × [0, T ) and

(3.8b) V ∗(xt, T ) = g(xt)

for all xt ∈ R
mx .

To solve (3.8) we proceed in two steps. First we compute a solution ut to

u∗(t) = argmin
ut∈Rmu

{
L(xt, ut, t) + ∇V ∗(xt, t)

T F (xt, ut, t)
}

and set

(3.9) Ψ(∇V ∗(xt, t), xt, t) = u∗(t),

which gives us a control law. Then we insert (3.9) into (3.8a) and solve

−∂V ∗

∂t
(xt, t) = L(xt,Ψ(∇V ∗(xt, t), xt, t), t)

+ ∇V ∗(xt, t)
T F (xt,Ψ(∇V ∗(xt, t), xt, t), t)

for all (xt, t) ∈ R
mx × [0, T ). Finally, we can compute the gradient ∇V ∗(xt, t) and

deduce the state-feedback law

u∗(t) = Φ(xt, t) = Ψ(∇V ∗(xt, t), xt, t) for all (xt, t) ∈ R
mx × [0, T ).

Remark 3.2. 1) In general, it is not possible to solve (3.8) analytically. How-
ever, for the LQR problem we can derive an explicit solution for the state-
feedback law.

2) Note that the Hamilton-Jacobi-Bellman equation are only necessary opti-
mality conditions. ♦
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3.3. The state-feedback law for the LQR problem. For the LQR problem
we have

L(x, u, t) = xT Qx + uT Ru, g(x) = xT Mx, F (x, u, t) = Ax + Bu

for (x, u, t) ∈ R
mx × R

mu × [0, T ]. For brevity, we focus on the situation, where
the matrices A, B, Q, R are time-invariant. However, most of the presented theory
also holds for the time-varying case.

First we minimize

xT Qx + uT Ru + ∇V ∗(x, t)T
(
Ax + Bu

)

with respect to u. First-order necessary optimality conditions are given by

uT Rũ + ũT Ru + ∇V ∗(x, t)T Bũ = 0 for all ũ ∈ R
mu .

By assumption, R is symmetric and positive definite. Then we find
(
2Ru + BT∇V ∗(x, t)

)T
ũ = 0 for all ũ ∈ R

mu

and

(3.10) u∗ = −1

2
R−1BT∇V ∗(x, t).

For the minimal value function V ∗ we make the quadratic ansatz

(3.11) V ∗(x, t) = xT P (t)x, P (t) ∈ R
mx×mx symmetric.

Then, we have ∇V ∗(x, t) = 2P (t)x so that

u∗ = −R−1BT P (t)x.

Note that

∂V ∗

∂t
(xt, t) = xT

t Ṗ (t)xt,

L(xt,−R−1BT P (t)xt, t) = xT
t Qxt + xT

t P (t)BR−1BT P (t)xt

= xT
t

(
Q + P (t)BR−1BT P (t)

)
xt,

F (xt,−R−1BT P (t)xt, t) = Axt − BR−1BT P (t)xt =
(
A − BR−1BT P (t)

)
xt,

∇V ∗(xt, t) = 2P (t)xt.

Consequently,

− xT
t Ṗ (t)xt = −∂V ∗

∂t
(xt, t)

= xT
t

(
Q + P (t)BR−1BT P (t)

)
xt +

(
2P (t)xt

)T (
A − BR−1BT P (t)

)
xt

for all xt ∈ R
mx , which yields

− xT
t Ṗ (t)xt

= xT
t

(
Q + P (t)BR−1BT P (t) + 2P (t)A − 2P (t)BR−1BT P (t)

)
xt

= xT
t

(
2P (t)A + Q − P (t)BR−1BT P (t)

)
xt

for all xt ∈ R
mx . From P (t) = P (t)T we deduce that

2xT
t P (t)Axt = xT

t P (t)Axt + xT
t AT P (t)xt = xT

t

(
AT P (t) + P (t)A

)
xt.
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Using V ∗(xt, T ) = xT
t P (T )xt and (3.8b) we get

−xT
t Ṗ (t)xt = xT

t

(
AT P (t) + P (t)A + Q − P (t)BR−1BT P (t)

)
xt, t ∈ [0, T )

(3.12a)

xT
t P (T )xt = xT

t Mxt.

(3.12b)

Since (3.12) holds for all xt ∈ R
mx we obtain the following matrix Riccati equation

−Ṗ (t) = AT P (t) + P (t)A + Q − P (t)BR−1BT P (t), t ∈ [0, T )(3.13a)

P (T ) = M.(3.13b)

Finally, the optimal state-feedback is given by

u∗(t) = −K(t)x(t) and K(t) = R−1BT P (t).

Example 3.3. Let us consider the problem

min

∫ T

0

|x(t)|2 + |u(t)|2 dt s.t. ẋ(t) = u(t) for t ∈ (0, T ].

Choosing mx = mu = 1, A = M = 0 and B = Q = R = 1 the matrix Riccati
equation has the form

−Ṗ (t) = 1 − P (t)2 for t ∈ [0, T ) and P (T ) = 0.

This scalar ordinary differential equation can be solved by separation of variables.
Its solution is

P (t) =
1 − e−2(T−t)

1 + e−2(T−t)

with the optimal control u∗(t) = −P (t)x(t). ♦

3.4. Exercises. Let us consider the one-dimensional heat equation

θt(t, x) = θxx(t, x) + u(t)χ(x) for all (t, x) ∈ Q = (0, T ) × Ω,(3.14a)

θx(t, 0) = θx(t, 1) = 0 for all t ∈ (0, T ),(3.14b)

θ(0, x) = θ0(x) for all x ∈ Ω = (0, 1) ⊂ R,(3.14c)

where θ = θ(t, x) is the temperature, u = u(t) the control input, χ = χ(x) a given
control shape function and θ0 = θ0(x) a given initial condition.

3.1) Apply a classical finite difference approximation for the spatial variable
x (compare Example 1.10) and derive the finite-dimensional initial value
problem for the finite difference approximations.

3.2) Utilizing the trapezoidal rule deduce a discretization for the quadratic cost
functional

J(θ, u) =
1

2

∫

Ω

|θ(T, x) − θT (x)|2 dx +
κ

2

∫ T

0

|u(t)|2 dt,

where θT = θT (x) is a given desired terminal state and κ > 0 denotes a
fixed regularization parameter.

3.3) Formulate the matrix Riccati equation for the discretized quadratic cost
functional — see part 3.2) — and the discretized heat equation — see part
3.1).
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3.4) What is the matrix Riccati equation in the case if we apply a POD Galerkin
approximation instead of a finite difference discretization? How can we
solve the matrix Riccati equation numerically?

4. Balanced truncation

Let us consider the linear time-invariant system

ẋ(t) = Ax(t) + Bu(t) for t ∈ (0,∞) and x(0) = x0,(4.1a)

y(t) = Cx(t) for t ∈ [0,∞)(4.1b)

where x(t) ∈ R
mx is called the system state, x0 ∈ R

mx is the initial condition of
the system, u(t) ∈ R

mu is said to be the system input and y(t) ∈ R
my is called the

system output. The matrices A, B and C are assumed to have appropriate sizes.
It is helpful to analyze the linear system (4.1) through the Laplace transform.

Definition 4.1. Let f(t) be a time-varying vector. Then its Laplace transform is
defined by

(4.2) L[f ](s) =

∫ ∞

0

e−stf(t) dt for s ∈ R.

The Laplace transform is defined for those values of s, for which (4.2) converges.

The Laplace transforms of u(t) and y(t) are given by

L[u](s) =

∫ ∞

0

e−stu(t) dt and L[y](s) =

∫ ∞

0

e−sty(t) dt = CL[x](s),

where we have used (4.1b). Note that

L[ẋ](s) =

∫ ∞

0

e−stẋ(t) dt = −
∫ ∞

0

(−s)e−stx(t) dt +
(
e−stx(t)

)
∣
∣
∣

s=∞

s=0

= sL[x](s) − x0.

Therefore, the Laplace transform of the dynamical system (4.1a) yields

sL[x](s) − x(0) = AL[x](s) + BL[u](s),

which gives

L[x](s) = (sI − A)−1x(0) + (sI − A)−1BL[u](s).

Thus,

(4.3) L[y](s) = CL[x](s) = C(sI − A)−1x(0) + C(sI − A)−1BL[u](s).

For x(0) = 0 the expression (4.3) reduces to

(4.4) L[y](s) = G(s)L[u](s)

where

(4.5) G(s) = C(sI − A)−1B

is called the transfer matrix of the system.
Given the initial state x0 and the input u(t), the dynamical system response x(t)

and y(t) for t ∈ [0, T ] satisfy

x(t) = etAx0 +

∫ t

0

e(t−s)ABu(s) ds and y(t) = Cx(t).
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If u(t) = 0 holds for all t ∈ [0, T ], we infer that

x(t) = e(t−t1)Ax(t1)

for any t1, t ∈ [0, T ]. The matrix e(t−t1)A acts as a transformation from one state
to another. Therefore, Φ(t, t1) = e(t−t1)A is often called the state transition matrix.

Definition 4.2. The dynamical system (4.1a) or the pair (A,B) are called con-
trollable if for any x0 ∈ R

mx and final state xT ∈ R
mx there exists a (piecewise

continuous) input u such that the solution to (4.1a) satisfies x(T ) = xT . Otherwise,
(A,B) is said to be uncontrollable.

Controllability can be verified as stated in the next theorem. For a proof we
refer to [14].

Theorem 4.3. The following claims are equivalent:

1) (A,B) are controllable.
2) The controllability gramian

Wc(t) =

∫ t

0

esABBT esAT

ds

is positive definite for every t > 0.
3) The controllability matrix

C =
[
B AB A2B . . . Amx−1B

]
∈ R

mx×(mxmu)

has full rank.

Definition 4.4. 1) The unforced system ẋ(t) = Ax(t) is called stable, if the
eigenvalues of A are in the open left half plane, i.e., ℜeλ < 0 for every
eigenvalue λ . A matrix with this property is said to be stable or Hurwitz.

2) The dynamical system (4.1a) or (A,B) are called stabilizable if there exists
a state-feedback u(t) = −Kx(t) so that A − BK is stable.

The next result, which is proved in [14], is a consequence of Theorem 4.3.

Theorem 4.5. The following claims are equivalent:

1) (A,B) are stabilizable.
2) The matrix [A − λI B] ∈ R

mx×(mx+mu) has full row rank for all λ ∈ C

with a negative real part, i.e., ℜeλ < 0.

Let us now consider the dual notions of observability.

Definition 4.6. The dynamical system (4.1) or (A,C) are called observable if
for any t1 ∈ (0, T ], the initial condition x0 ∈ R

mx can be determined from the
time history of the input u(t) and the output y(t) in the interval [0, t1] ⊂ [0, T ].
Otherwise, the system or (A,C) is said to be unobservable.

For a proof of the next theorem we refer the reader to [14].

Theorem 4.7. The following claims are equivalent:

1) (A,C) is observable.
2) The observability gramian

Wo(t) =

∫ t

0

esAT

CT CesA ds

is positive definite for every t > 0.
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(3) The observability matrix

O =








C
CA
...

CAmx−1








∈ R
(mxmy)×mx

has full rank.

We set

Wc =

∫ ∞

0

esABBT esAT

ds and Wo =

∫ ∞

0

esAT

CT CesA ds.

It can be proved that Wc and Wo can be determined numerically by solving the
Lyapunov equations

AWc + WcA
T + BBT = 0 ∈ R

nx×nx ,(4.6a)

AT Wo + WoA + CT C = 0 ∈ R
nx×nx .(4.6b)

The controllability gramian is a measure to what degree each state is excited by
an input. Suppose that x1, x2 ∈ R

nx are two states with ‖x1‖Rnx = ‖x2‖Rnx . If
xT

1 Wcx1 > xT
2 Wcx2 holds, then we say that the state x1 is more controllable than

x2. This means, it takes a smaller input to drive the system from x0 to x1 than to
x2. It can be proved that the gramian Wc is positive definite if and only if all states
are reachable with some input u. On the other hand, the observability gramian
Wo is a measure to what degree each state excites future outputs y. Let x0 be an
initial state. If u = 0 holds, we have

‖y‖2
L2(0,∞;Rmy ) =

∫ ∞

0

y(s)T y(s) ds =

∫ ∞

0

x(s)T CT Cx(s) ds

=

∫ ∞

0

xT
0 esAT

CT CesAx0 ds = xT
0 Wox0.

We say that the state x1 is more observable than another state x2 if the correspond-
ing output y1 = Cx1 yields a larger value of the L2-norm than for y2 = Cx2

The gramians depend on the coordinates. Suppose that

(4.7) x = T z

where T ∈ R
nx×nx is a regular matrix. Then we obtain instead of (4.1) the system

ż(t) = Ãz(t) + B̃u(t) for t ∈ (0,∞) and z(0) = z0,(4.8a)

y(t) = C̃z(t) for t ∈ [0,∞)(4.8b)

with

Ã = T −1AT , B̃ = T −1B, C̃ = CT , z0 = T −1x0.

Let Wc solve (4.6a). The controllability gramian W̃c for (4.8) satisfies

ÃW̃c + W̃cÃ
T + B̃B̃T = 0

i.e.,

(4.9) T −1AT W̃c + W̃cT T ATT −T + T −1BBTT −T = 0.
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Multiplying (4.9) by T from the left and by T T from the right yields

(4.10) AT W̃cT T + T W̃cT T AT + BBT = 0.

From (4.6a) and (4.10) we infer that Wc = T W̃cT T holds. Thus, the coordinate
transformation (4.7) implies that the controllability gramian Wc is transformed as

Wc 7→ W̃c = T −1WcT −T .

Now we suppose that Wo solves (4.6b). The observability gramian W̃o for (4.8)
satisfies

ÃT W̃o + W̃oÃ + C̃T C̃ = 0

i.e.,

(4.11) T T ATT −T W̃o + W̃oT −1AT + T T CT CT = 0.

Multiplying (4.9) by T −T from the left and by T −1 from the right yields

(4.12) ATT −T W̃oT −1 + T −T W̃oT −1A + CT C = 0.

From (4.6b) and (4.12) we infer that Wo = T −T W̃oT −1 holds. Thus, the coordinate
transformation (4.7) implies that the observability gramian Wo is transformed as

Wo 7→ W̃o = T T WoT .

The goal is to find a transformation T such that

(4.13) T −1WcT −T = T T WoT = Σ = diag (σ1, . . . , σmx
).

The elements σ1 ≥ σ2 ≥ . . . ≥ σmx
are called Hankel singular values of the system.

They are independent of the coordinate system. It can be shown that a regular ma-
trix T which satisfies (4.13) exists if the system is controllable and observable, i.e.,
the matrices Wc and Wo are positive definite. The coordinate transformation T is
said to be a balancing transformation. Computing appropriately scaled eigenvalues
of the product WcWo, the matrix T can be determined. In the balanced coordi-
nates, the states which are least influenced by the input u also have least influence
on the output y. In balanced truncation the least controllable and observable states
having little effect on the input-output performance are truncated.

Instead of (4.8) we only consider the system for the first ℓ ∈ {1, . . . ,mx} com-
ponents of z:

żℓ(t) = Ãℓzℓ(t) + B̃ℓu(t) for t ∈ (0,∞) and zℓ(0) = z0ℓ,(4.14a)

yℓ(t) = C̃ℓzℓ(t) for t ∈ [0,∞),(4.14b)

where

Ã =

(
Ãℓ ∗
∗ ∗

)

, B̃ =

(
B̃ℓ

∗

)

, C̃ =
(

C̃ℓ ∗
)
, z0ℓ =

(
z̃0ℓ

∗

)

,

and Ãℓ ∈ R
ℓ×ℓ, B̃ℓ ∈ R

ℓ×mu , C̃ℓ ∈ R
my×ℓ and z0ℓ ∈ R

ℓ.
One big advantage of balanced truncation is that a-priori error bounds are

known. These bounds are formulated for the transfer function. Suppose that
G(s) = C(sI − A)−1B ∈ R

my×mu is the transfer function of the system (4.1) and
Gℓ(s) = Cℓ(sI −Aℓ)

−1Bℓ ∈ R
my×mu is the transfer function of the reduced system

(4.14). Then we have

‖G − Gℓ‖ = max
{

‖(G − Gℓ)u‖L2(0,∞;Rmy ) : ‖u‖L2(0,∞;Rmu ) = 1
}

> σℓ+1
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and

‖G − Gℓ‖ < 2

mx∑

i=ℓ+1

σi.
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