MODEL REDUCTION USING PROPER ORTHOGONAL
DECOMPOSITION

S. VOLKWEIN

ABSTRACT. In this lecture notes an introduction to model reduction utilizing
proper orthogonal decomposition (POD) is given. The close connection be-
tween POD and singular value decomposition (SVD) of rectangular matrices is
emphasized. As an application POD is used to derive a reduced-order model for
non-linear initial value problems. The strategy is extended to linear-quadratic
optimal control problems governed by ordinary differential equations. The re-
lationship to classical model reduction techniques like balanced truncation is
studied.

1. The POD method in R™

In this section we introduce the POD method in the Euclidean space R™ and
study the close connection to the SVD of rectangular matrices; see [6]. We also
refer to the monograph [3].

1.1. POD and SVD. Let Y = [y1,...,ys] be a real-valued m x n matrix of rank
d < min{m,n} with columns y; € R™, 1 < j < n. Consequently,

~ 1 n
(1.1) y= gzyj
j=1

can be viewed as the column-averaged mean of the matrix Y.

SVD [10] guarantees the existence of real numbers o1 > 09 > ... > 04 > 0 and
orthogonal matrices U € R™*™ with columns {u;}72; and V' € R™*" with columns
{v;}1~ such that

(1.2) vTyv=( 2 0) o xermo,
0 O
where D = diag (01,...,04) € R¥? and the zeros in (1.2) denote matrices of
appropriate dimensions. Moreover the vectors {u;}¢; and {v;}%_, satisfy
(1.3) Yv; =ou; and Y7Tu, =00, fori=1,...,d.

They are eigenvectors of YYT and YTV, respectively, with eigenvalues \; = o2 > 0,
i=1,...,d. The vectors {u;}{" ;. , and {v;}]",;,, (if d < m respectively d < n)
are eigenvectors of YY7T and YTY with eigenvalue 0.

From (1.2) we deduce that

Yy =UxvT.
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2 S. VOLKWEIN

It follows that Y can also be expressed as
(1.4) Y =UD(VHT,
where U? € R™*? and V¢ € R"*? are given by
Ul =Uy forl1<i<m, 1<j<d,
Vi=V; for1<i<n, 1<j<d.
Setting B = D(V4)T € R¥" we can write (1.4) in the form
Y =UB? with BY = D(VH)T ¢ R,

Thus, the column space of Y can be represented in terms of the d linearly in-
dependent columns of U?. The coefficients in the expansion for the columns y;,
j =1,...,n, in the basis {u;}%_, are given by the jth-column of B?. Since U is
orthogonal, we find that

d d
Z BLUYL =Y (D)), us = Z (WH'U DY), w
=1 =1 —[deRdxd
d d m d
Z (U TY = (ZUgiij>UiZ<Ui,yj>Rm u;,
i=1 i=1 =1 i=1
=ul'y;

where (-, -)gm denotes the canonical inner product in R™. Thus,

d
(1.5) Yj :Z<ijui>Rm u; forj=1,...,n
i=1

Let us now interprete SVD in terms of POD. One of the central issues of POD
is the reduction of data expressing their essential information by means of a few
basis vectors. The problem of approximating all spatial coordinate vectors y; of Y’
simultaneously by a single, normalized vector as well as possible can be expressed
as

n
2 .
(P') max 7 [{gj u)gn|” subject to (s.6) [ulfn = 1.
]'_

where ||u||lgm = v/(u, u)rm for u € R™.

Note that (P!) is a constrained optimization problem that can be solved by
considering first-order necessary optimality conditions. We introduce the function
e:R™ — R by e(u) = 1—|Jul|3.. for u € R™. Then, the equality constraint in (P?1)
can be expressed as e(u) = 0. Notice that Ve(u) = 2u” is linear independent if
u # 0 holds. In particular, a solution to (P!) satisfies u # 0. Thus, any solution to
(P1) is a regular point. Let £ : R™ x R — R be the Lagrange functional associated
with (P1), i.e

P = Jult.)  for (u,A) € R™ x R.

L(u,A) =Y (Y g
j=1



MODEL REDUCTION USING POD 3

Suppose that u € R™ is a solution to (P!). Since u is regular, there exists a
Lagrange multiplier satisfying the first-order necessary optimality condition

VL(u,\) =0 in R™ x R.
We compute the gradient of £ with respect to u:

Jj=1 k=1
=23 (ZYijyjkuk> 2)u;
k=1 \j=1
——
=(YYT)i
Thus,
(1.6) Vul(u,A) =2(YYTu—Xu) =0 in R™.

Equation (1.6) yields the eigenvalue problem
(1.7a) YYTu=Xu inR™.
Notice that YY 7T € R™*™ is a symmetric matrix satisfying

u' (YY) u = (YTu) 'Y u = ||y Tyl ;,L >0 for all u e R™.

Thus, YY7 is positive semi-definite. It follows that Y'Y possesses m non-negative
eigenvalues A\y > Ay > ... > A, > 0 and the corresponding eigenvectors can be
chosen such that they are pairwise orthonormal.

From 2% (u, \) = 0 in R we infer the constraint
(1.7b) || ul
Due to SVD the vector u; solves (1.7) and

Rm — 1.

n n n

Z’<yj7u1 RrR™ Z yjaul R™ y]7u1>R = Z<<yjaul>Rm,ijul>Rm

j=1 =1 j=1

<.

n n m
Z Yj, u1) ]R'my]7u1> :<Z<Zykj(u1)k>yjaul>
— R’"L ]:1 k:l R’"L

<]1
<

Z( Y. ch( )k>aul> =<YYTU17U1>R,,,L
— RW},

k=1

)\1 <U1,U1>Rm )\1 ||U1H]?gm = )\1.

We next prove that u; solves (P!). Suppose that @ € R™ is an arbitrary vector
with ||@||gm = 1. Since {u;}1* is an orthonormal basis in R™, we have

U= Z (T, i) grm Us-
i—1
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Thus
n m 2
Z’(yﬁa)[@m’ Z < Yj, ’U, U; Rmuz>
Jj=1 j=1 i=1 R™
n m m
= Z y]? 0, u;) R™ uZ>Rm <y_]7 (a, uk>Rm uk>Rm)
j=11i=1 k=1
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Consequently, u; solves (P1) and argmax (P1) = 0% = \;.
If we look for a second vector, orthogonal to u; that again describes the data set
{yi}_, as well as possible then we need to solve

n
2
P2 U g t. m =1and (u,uy)gm = 0.
) mae Y g udl” st Julgn =1 and (uu
=
SVD implies that us is a solution to (P?) and argmax (P?) = 03 = A\a. In fact, us
solves the first-order necessary optimality conditions (1.7) and for

m

= Z (1, U ) g u; € span {ug }-
=2

ST @ |” <22 = [y, un)gn |
Jj=1 j=1

Clearly this procedure can be continued by finite induction. We summarize our
results in the following theorem.

we have

Theorem 1.1. Let Y = [y1,...,yn] € R™*™ be a given matriz with rank d <
min{m,n}. Further, let Y = USVT be the singular value decomposition of Y,
where U = [ug, ..., Upy] € R™X™ V = [vy,...,v,] € R"™™ are orthogonal matrices

and the matriz ¥ € R™*™ has the form as (1.2). Then, for any £ € {1,...,d} the
solution to

st (Ui, Uj)pm = 0ij for 1 <, j </

.....
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is given by the singular vectors {ul}f 1, t.e., by the ﬁrst £ columns of U. Moreover,

(1.8) argmax (P%) = ZO’ = Z)\

Proof. Since (P) is an equality constrained optimization problem, we introduce
the Lagrangian
L:R™x ... x R™ xR>¢
—_———

f-times
by

L n L
2
L1, e, A) = ZZ |(Ws> Vi) | + Z Xij (815 — (i s gom )
i=1 j=1 i,5=1
for ¥1,...,¢0 € R™ and A = ((\;;)) € R**. First-order necessary optimality
conditions for (P) are given by

£ (U1, ..., e, N)dhr, =0 for all d¢o, € R™ and k € {1,...,¢}.

(1.9) e

From

L L n
87,(/%(1/]17"')1/][7 51/% _QZZ yja'l;bz R™ yj76wk>]Rm ik

=1 j=1

~

¢
— Z Aij (Vi 0k ) gm Ok — Z Aij 0k, Y5) pom O

,j=1 ‘,j—l

~

n

=2 Z <yj7wk>Rm Yi, 51/% ]Rm Z ik + /\kl wu 5¢k>]Rm

j= i=1

n J4
= <2 (W Wk U5 — D (Nik + Aei) Ui, 5¢k>
R’NL

j=1 i=1

=

and (1.9) we infer that
n 4

1 . m
(1.10) ; (Vs Yr)pm Yj = 3 ; (Nik + Aki) ;. in R™ and for all k € {1,...,¢}.
Note that
n
YY" = (y;, ¢)gmy; for € R™.

j=1

Thus, condition (1.10) can be expressed as
¢
1
(1.11) YY Ty = 3 > (Nik+ ki) in R™ and for all k € {1,...,}.
i=1

Now we proceed by induction. For £ = 1 we have k = 1. It follows from (1.11) that
(1.12) YYTpy = Ay in R™

with A\; = A11. Next we suppose that for £ > 1 the first-order optimality conditions
are given by

(1.13) YY T4y, = M\gtb,  in R™ and for all k € {1,...,0}.
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We want to show that the first-order necessary optimality conditions for a POD
basis {@bl}fill of rank £ + 1 are given by

(1.14) YY T4 = Mptpp in R™ and for all k € {1,...,£4 1}.
By assumption we have (1.13). Thus, we only have to prove that
(1.15) YY1 = Nep1tep1  in R™.
Due to (1.11) we have
1 £+1
(1.16) YYTippyy = 3 Z (Niet1 + Aeg14) 9 in R™.
i=1

Since {¢;}‘*} is a POD basis we have (1y41,%;)gm = 0 for 1 < j < £. Using (1.13)
and the symmetry of YYT we have for any j € {1,...,/}
O = )\] <1/)€+1a /l;[}j>Rm, = </ll}€+17 YYT1/}j>RnL = <YYT/I/}Z+17 wj>R7n

041
1

=3 Z ier1 + Aegri) Wi i) g = Njerr + Aega) -
i=1

This gives
(1.17) Aig1=—Xie41 foranyie{1,...,¢}.

Inserting (1.17) into (1.16) we obtain
¢

1
YY T4y = 3 D it + Aer1i) $i+ Aegaer1 Yo
i=1

¢

1

3 E (Aier1 = Nijer1) i + X101 Yot = N1 Ve
=1

Setting Agy1 = A¢t1,¢41 we obtain (1.15).
Summarizing, the necessary optimaity conditions for (P*) are given by the sym-
metric m X m eigenvalue problem

(1.18) YYTu; = Nu; fori=1,...,¢.

It follows from SVD that {u;}¢_, solves (1.18). The proof that {u;}¢_, is a solution
to (P?) and that argmax (PY) = Zle o2 holds is analogous to the proof for (P!);

see Exercise 1.2). O
Motivated by the previous theorem we give the next definition.

Definition 1.2. For ¢ € {1,...,d} the vectors {u;}¢_, are called POD basis of
rank £.

The following result states that for every ¢ < d the approximation of the columns
of Y by the first ¢ singular vectors {u;}¢_, is optimal in the mean among all rank
¢ approximations to the columns of Y.

Corollary 1.3 (Optimality of the POD basis). Let all hypotheses of Theorem 1.1
be satisfied. Suppose that U? € R™*? denotes a matriz with pairwise orthonormal
vectors U; and that the expansion of the columns of Y in the basis {ﬁi}gzl be given
by

Y = U, where C’idj = (Ui, Yj)pm for1<i<d,1<j<n.
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Then for every £ € {1,...,d} we have
(1.19) 1Y —U*Bp < [IY = UC|p.

In (1.19), || - || denotes the Frobenius norm given by

SN Ayl =

i=1 j=1

Al = trace (ATA)  for A e R™*",

the matriz U* denotes the first £ columns of U, B the first £ rows of B and similarly
for U* and C*.

Remark 1.4. Notice that

14 5 n m 4 2
TRCl A 5 Y S Star e N o i O ST PR rY
i=1 j=1 k=1 j=1i=1 k=1
n 2
Z Hy] Z y]aak>RmﬂkHRm-
j=1 k=1
Analogously,
n L
£e)2 2
Iy - U'BY5 = =S s RmukH .
j=1 k=1
Thus, (1.19) implies that
n é 2
Z Hyj - yj?“k ]Rmuk“ < Z Hy] ijﬂk>R7nﬂkHRm’
j=1 k=1

for any other set {;}{_, of ¢ pairwise orthonormal vectors. Hence, the POD basis
of rank ¢ can also be determined by solving

2

(1.20) min Z Hyj (Y i) o Ui

Uy 7uz€R’"
i=1

st (U, Uj)gm = 035, 1 <1d,5 < L.

R™

Proof of Corollary 1.3. Note that (see Exercise 1.3))

d n

A 2 ~ 2 2 2

IY = U°Clp = 10(C* = COlp = 10 = Cille = > D |CEI
i=0+1 j=1
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where Cf§ € RI*™ results from C € RY*™ by replacing the last d — ¢ rows by 0.
Similarly,

d n
2 2 2 2
Iy —U'B | = |UB = BYIp = 1B~ Bl = > > |BE|

i=0+1 j=1
d n )
Do D s uidam

i=0+1 j=1
(1.21) ¢ n d

Z Z<<ijui>R'rraijui>Rm = Z <YYTW,W>Rm

i=0+1 j=1 i=0+1

By Theorem 1.1 the vectors uy, ..., u, solve (P*). From (1.21),

d n
~ 2 2 2
Y12 = [T = ey = 35| o

i=1 j=1
and
) 9 d n ) d
2 d nd d d
Y113 = 0BG = 1B = >N [BE =3 o?
i=1 j=1 i=1
we infer that

14 L n
Iy — U'BY|% = Z 0% = Za =S = V1= D05 [ )|
i=0+1 i=1 =1 j=1
n d n ¢ n
<Yz - ZZ o ) | = DD | =S D |
i=1j=1 i=1j=1 i=1j=1
d n 5 . 9
= > Y |CE] =1y =0,
i=0+1 j=1
which gives (1.19). O

Remark 1.5. It follows from Corollary 1.3 that the POD basis of rank £ is optimal
in the sense of representing in the mean the columns {y;}7_; of ¥ as a linear
combination by an orthonormal basis of rank ¢:

£ n

22 ltwg il ZG —ZA =33

i=1 j=1 i=1 j=1

for any other set of orthonormal vectors {d; }¢_,. O
The next corollary states that the POD coefficients are uncorrelated.

Corollary 1.6 (Uncorrelated POD coefficients). Let all hypotheses of Theorem 1.1
hold. Then.

n
Z(yjauz>Rm yj7uk ZB k] —0'26”@ fO’f’l SL]{ Sé
Jj=1



MODEL REDUCTION USING POD 9

Proof. The claim follows from (1.18) and {(u;, ug)gm = 6 for 1 < i,k < £

n n
Z (Yjs i) (Y Uk ) g = <Z <yj7ui>Rmyjauk> = (07 Ui, ) g = 07 O
R'VYL

Jj=1 Jj=1

:YYTui
g

Next we turn to the practical computation of a POD-basis of rank £. If n < m
then one can determine the POD basis of rank ¢ as follows: Compute the eigenvec-
tors vy, ...,v, € R™ by solving the symmetric n X n eigenvalue problem

(1.22) YTYv, = \jv; fori=1,...,¢

and set, by (1.3),
1

Vi
For historical reasons [13] this method of determing the POD-basis is sometimes
called the method of snapshots. On the other hand, if m < n holds, we can obtain
the POD basis by solving the m x m eigenvalue problem (1.18).

For the application of POD to concrete problems the choice of £ is certainly of
central importance for applying POD. It appears that no general a-priori rules are
available. Rather the choice of £ is based on heuristic considerations combined with
observing the ratio of the modeled to the total energy contained in the system Y,
which is expressed by

u; = Yv, fori=1,...,¢.

¢
g = Zi:l >\'L
0 ==F—

Zi:l Ai

Let us mention that POD is also called Principal Component Analysis (PCA)
and Karhunen-Loéve Decomposition.
1.2. The POD method with a weighted inner product. Let us endow the
FEuclidean space R™ with the weighted inner product
(1.23) (U, Wy = u" Wit = (u, Witgm = (Wu, @)gm for u, @ € R™,
where W € R™*™ is a symmetric, positive-definite matrix. Furthermore, let

lullw = /{u,u)w for u € R™ be the associated induced norm. For the choice
W = I, the inner product (1.23) coincides the Euclidean inner product.

Example 1.7. Let us motivate the weighted inner product by an example. Suppose
that Q = (0,1) C R holds. We consider the space L?*({) of square integrable
functions on

L?(Q) = {50 : Q) —>]R‘ / |g0\2dx < oo}.
Q
Recall that L?(Q) is a Hilbert space endowed with the inner product
<S0795>L2(Q) = /Qc,mﬁ dx for ¢, ¢ € LQ(Q)

and the induced norm [|¢||r2(0) = /{p, ©)r2(0) for ¢ € L?(2). For the step size
h=1/(m — 1) let us introduce a spatial grid in by

x;=(—1h fori=1,...,m.
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For any ¢, ¢ € L?() we introduce a discrete inner product by trapezoidal approx-
imation:

hzh Mzl
~ P1¥ ‘Pm@m
(1.24) <%<P>L§,<Q)=h< S D (el + )
i=2
where
9 [h/2
ﬁ/ p(z)dx fori =1,
0
N 1 zi+h/2
ol = 7/ p(x)de fori=2,...,m—1,

9 fl
f/ p(z)de  fori=m
h 1—-h/2

and the @}’s are defined analogously. Settlng W = diag(h/2,h,...,h,h/2) €
Rmxm,w (Ol ot )T € R™ and ¢M = (gh,..., g0 )T E]meeﬁnd

(@ 2@y = (0" @ )w = (") TWR.

Thus, the discrete L2-inner product can be written as a weighted inner product of
the form (1.23). O

Now we replace (P!) by

(PL) max > [y udy|* st lully = 1.
1

ueR™ —

Analogously to Section 1.1 we treat (Py;,) as an equality constrained optimization
problem. The Lagrangian £ : R™ x R — R for (P1;;) is given by

A) = Z (o) + A1 = ullfy)  for (u,)) € R™ x R.

Suppose that u € R™ is a solution to (Pj;,). Then, a first-order necessary optimality
condition is given by

VL(u,\) =0 in R™ x R.
We compute the gradient of £ with respect to u: Since W is symmetric, we derive

e (9 = 5 (Z DD Vi W] + ( zzuu ))

n
j=1"k=1v=1 =1lv=1
m

(S S ) (S0

j=1 “k=1lv=

m

- )\<Z UuWui + i Wzk“k)

m m m m
- QZZZW‘NZ uj JyWukuk - 2>‘<ZWU€UI§)
k=1v=1pu=1 =1

=2 (WYYTWu - AWu) )

i
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Thus,

(1.25) VouL(u,A) = 2(WYYTWu—AWu) =0 in R™.
Equation (1.25) yields the generalized eigenvalue problem

(1.26) WY)YWY)Tu = \Wu.

Since W is symmetric and positive definite, W possesses an eigenvalue decomposi-
tion of the form W = QDQT, where D = diag (11, . ..,m,) contains the eigenvalues
m>...2 0y >0o0f Wand Q € R™*™ is an orthogonal matrix. We define

W = Qdiag (n,...,n%)QT for a € R.
Note that (W)™t = W= and W8 = WoW?’ for a, 3 € R; see Exercise 1.4).
Moreover, we have
(u, )y, = (W20, W 2a@)g,,  for u, & € R™

and [Julw = |[W%u||gm for u € R™.

Setting @ = W'/2u € R™ and Y = W/2Y € R™*" and multiplying (1.26) by
W12 from the left we deduce the symmetric, m x m eigenvalue problem
(1.27a) YYTa=Xa inR™.
From 9% (u, ) < 0 in R we infer the constraint |lu|]lw = 1 that can be expressed as
(1.27b) |a|lgm = 1.

Thus, the first-order optimality conditions (1.27) for (P};,) are — as for (P?!)
(compare (1.7)) — an m x m eigenvalue problem, but the matrix ¥ as well as the
vector u have to be weighted by the matrix W1/2,

It can be shown (see Exersice 1.4.1)) that

Uy = W_1/2’L_Ll

solves (P},), where 4 is an eigenvector of Y'Y corresponding to the largest eigen-
value Ay with ||@1||gm = 1. Due to SVD the vector u; can be also determined by
solving the symmetric n X n eigenvalue problem

YTY0, = My
where YTY = YTWY, and setting
1

1 _
1.98 W Y2 = — W VY5 = — Vo,
(1:28) “ “ von o on o

As in Section 1.1 we can continue by looking at a second vector u € R™ with

(u,ur)w = 0 that maximizes > ;_, |(yj,u)w|?. Let us generalize Theorem 1.1 as
follows.

Theorem 1.8. Let Y € R™*™ be a given matriz with rank d < min{m,n}, W a
symmetric, positive definite matriz, Y = wirzy and ¢ € {1, .;.,d}. Further, let
Y = UXV7T be the singular value decomposition of Y, where U = [ty ..., Uy] €

R™X™M V= [v1,...,0,] € R™™™ are orthogonal matrices and the matriz ¥ has the
form

TN D 0 _ mxn

U'YVv = ( 0 0 )= YeR .
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Then the solution to

L n
- 2 - .
(Piy) . R ZZ gty |” st (i, ig)yy, = 6ij for 1 <i,j < ¢
i=1 j=1
is given by the vectors u; = W=1/2q,, i =1,...,L. Moreover,
¢ ¢
(1.29) argmax (PY,) = ZU? = Z i
i=1 i=1

Proof. Using similar arguments as in the proof of Theorem 1.1 one can prove that
{u;}i_, solves (P%,); see Exersice 1.4). O

Remark 1.9. Due to SVD and YTY = YTWY the POD basis {u;}¢_; of rank
£ can be determined by the method of snapshots as follows: Solve the symmetric
n X n eigenvalue problem

YIWY0; = \v; fori=1,....4,
and set

L wRw 2y, = L Yo,

1 _
w2 — w2V = ——
u;, =W Us; w ( vl) o o

Vi
fori=1,...,¢. Notice that
0ijAj
For m > n the method of snapshots turns out to be faster than computing the

POD basis via (1.27). Notice that the matrix W'/2 is also not required for the
method of snapshots. O

(Ui uj)y = U?Wuj = for 1 <i,5 </.

1.3. Application to time-dependent systems. For 7' > 0 we consider the
semi-linear initial value problem

(1.30a) y(t) = Ay(t) + f(t,y(t)) fort e (0,7,
(1.30b) y(0) = yo,

where yo € R™ is a chosen initial condition, A € R™*™ is a given matrix, f :
[0,T] x R™ — R™ is continuous in both arguments and locally Lipschitz-continuous
with respect to the second argument. It is well known that (1.30) has a unique
(classical) solution y € C*(0,T;R™) N C([0,T];R™) given by the implicit integral
representation

t
y(t) = yo + / =4 f(s y(s)) ds
0

with e'4 = 372 #"A"/(nl). Let 0 <ty <ty <...<t, <T be a given time grid
in the interval [0,T]. For simplicity of the presentation, the time grid is assumed
to be equidistant with step-size At = T/(n — 1), i.e., t; = (j — 1)At. We suppose
that we know the solution to (1.30) at the given time instances t;, j € {1,...,n}.
Our goal is to determine a POD basis of rank ¢ < n that desribes the ensemble

tj
y; = y(t;) = ey, +/O et (s,y(s))ds, j=1,...,n,



MODEL REDUCTION USING POD 13

as well as possible with respect to the weighted inner product:
5,0
(Py)

n 4
min E a~H P — g Ui ) o U
iy, R £ 7 1|Ys : <yja Z>W i
j=1 i=1

2

s.t. <ai7aj>w = 52‘]‘ for 1 < i,j < f,
w

where the ;’s denote non-negative weights which will be specified later on. Note
that for aj =1 for j =1,...,n and W = I problem (I:’"WZ) coincides with (1.20).

Example 1.10. Let us consider the following one-dimensional heat equation:

(1.31a) 0i(t,x) = 05 (t, x) for all (¢,2) € @ =(0,T) x Q,
(1.31b) 0.(t,0) =06,(¢t,1)=0 for all t € (0,T),
(1.31c) 0(0,2) = Op(x) for all z € Q = (0,1) C R,

where 6y € C(€) is a given initial condition. To solve (1.31) numerically we apply
a classical finite difference approximation for the spatial variable z. In Example 1.7
we have introduced the spatial grid {z;}™; in the interval [0,1]. Let us denote
by y; : [0,7] — R the numerical approximation for (-, z;) for i = 1,...,m. The
second partial derivative 6., in (1.31a) and the boundary conditions (1.31b) are
discretized by centered difference quotients of second-order so that we obtain the
following ordinary differential equations for the time-dependent functions y;:

_ —2u1 (t) + 290 (t)

() =~ Tl
. i—1(t) — 2y (t) + yia1 (2t
(1323) yz(t) :y 1() yhé) y+1()’ 27 7,',n_]_7
. —2ym () + 2ym—1(t)
for t € (0,7T]. From (1.31c) we infer the initial condion
(1.32b) yi(0) = Og(x;), i=1,...,m.
Introducing the matrix
-2 2 0
1 -2 1
1 . . . mXm
A= 72 Ce eR
1 -2 1
0 2 =2
and the vectors
yi(t) Oo(x1)
y(t) = : fort € [0,T], wyo= : eR™
Ym (1) Oo(zm)

we can express (1.32) in the form

y(t) = Ay(t) forte (0,77,

y(0) =wo

Setting f = 0 the linear initial-value problem coincides with (1.30). Note that

now the vector y(t), t € [0,T], represents a function in Q evaluated at m grid
points. Therefore, we should supply R™ by a weighted inner product representing

(1.33)
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a discretized inner product in an appropriate function space. Here we choose the
inner product introduced in (1.24); see Example 1.7. Next we choose a time grid
{t;}j—; in the interval [0,7] and define y; = y(t;) for j = 1,...,n. If we are
interested in finding a POD basis of rank ¢ < n that desribes the ensemble {y;}}_,
as well as possible, we end up with (f’;}vl) O

To solve (pcvl) we apply the techniques used in Sections 1.1 and 1.2, i.e., we use
the Lagrangian framework. Thus, we introduce the Lagrange functional

L:R™x...xR"xR> SR
£—times
by
¢ 2

E(”l?"' ,UZ,A> = Zaj HyJ - Z<yﬂ’u7’>wul W

j=1 i=1 i=1 j=1

for uy,...,up € R™ and A € R®** with elements A;;, 1 < 4,5 < ¢. It turns out that
the solution to (153{’,[) is given by the first-order necessary optimality condions

(1.34a) YV L(ui,...,up,A) =0 inR™ 1<i<¢,
and
(1.34b) (Wi, )y = 65, 1< 4,5 < L.

From (1.34a) we derive
(1.35) YDYT™Wu; = \u; fori=1,....¢,

where D = diag (a1,...,a,) € R™"™. Inserting u; = W~2%,; in (1.35) and
multiplying (1.35) by W/2 from the left yield

(1.36a) W2y DYTw2a; = \a,.

From (1.34b) we find

1.36b Uiy U )y = Ut Uy = ul Wy = (ug,us)y, = 055, 1<1i,j <.
J/R 1 ] 7 J IIW J

Setting Y = W'/2Y D'/2 ¢ R™*" and using W’ = W as well as DT = D we infer
from (1.36) that the solution {u;}¢_, to (PTVL‘}Z) is given by the symmetric m x m
eigenvalue problem

YYTT]Z':A[L_LZ', 1§2§€ and <'L_Li,'L_Lj>]Rm :5ij7 1 SZ,]S@
Note that

YTy = DY2yTwyDY? ¢ R™™,

Thus, the POD basis of rank ¢ can also be computed by the methods of snapshots
as follows: First solve the symmetric n X n eigenvalue problem

YTY'T},L' = )\ilji, 1 S ) é ¢ and <?7)i,17}j>Rﬂ, = 5ij7 1 S 17] S /.
Then we set (by SVD)
1 - 1
—— WYYy, = —YDY?y;, 1<i<y

Vi

% %

U; = Wﬁl/z’l—ti =

compare (1.28).
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Note that
1 A Aidij
(ug, uj)y, = ul Wu; = ol DYV2YTWy DY2 55 = ol5; = =2
Aidj e Aidj VA
for 1 <14,5 </, i.e., the POD basis vectors uq,...,uy are orthonormal in R™ with

respect to the inner product (-, ).

Of course, the snapshot ensemble {y;}7_, for (P}f",@) and therefore the snapshot
set span{yi,...,yn} depend on the chosen time instances {t;}7_;. Consequently,
the POD basis vectors {u;}¢_; and the corresponding eigenvalues {\;}¢_, depend
also on the time instances, i.e.,

u; =wuy and A =Ar, 1<i</l

Moreover, we have not discussed so far what is the motivation to introduce the non-
negative weights {a;}7_; in (P'{f"/). For this reason we proceed by investigating the
following two questions:

e How to choose good time instances for the snapshots?

e What are appropriate non-negative weights {a;}_;?
To address these two questions we will introduce a continuous version of POD. Let
y : [0, T] — R™ be the unique solution to (1.30). If we are interested to find a POD
basis of rank ¢ that describes the whole trajectory {y(¢) |t € [0,T]} C R™ as good
as possible we have to consider the following minimization problem

(Py) ﬁl,-»r.l,%li?eﬂw /OT Hy(t) - i (y(t), i)y @

i=1
st (U, Uj)y = 045, 1 <4, <,

2

dt
w

To solve (f’%v) we use similar arguments as in Sections 1.1 and 1.2. For £ =1 we
obtain instead of (P%,) the minimization problem

T 2
asn min [ fuo - w8y e s -1
Suppose that {@;}, are chosen in such a way that {@, G, ..., Uy} is an orthonor-

mal basis in R™ with respect to the inner product (-, ). Then we have

y(t) = (y(t), @)y, a+ i (y(t), W)y w; for all t € [0,T].
=2
Thus,
/ ot - e iy e - / i é@(t),mwai i
- i/T (g (8), i)y |

we conclude that (1.37) is equivalent with the following maximization problem

T
~ 2 ~
(1.38) max/o (y(), )y | dt st [allsy = 1.

aER™
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The Lagrange functional £ : R™ x R — R associated with (1.38) is given by

T
L(u, \) = / |<y(t),u>W|2dt +A(1 - ||u|\12,V) for (u,A) € R™ x R.
0
First-order necessary optimality conditions are given by
VL(u,A) =0 inR™ x R.

Therefore, we compute the partial derivative of £ with respect to the ith component
u; of the vector u:

oL 0 T, m m

2dt + )\(1 - iiukwkuuy))

k=1v=1 k=1 v=1
T, m o m m m
=2 [ (X W) 3 o OWeadt =20 W
0 Tp=1v=1 e prt

- 2</OT ((0) oy Wyt) dt — /\Wu)

for i € {1,...,m}. Thus,

(2

T
VuL(u,\) = 2(/ (y(t),u), Wy(t)dt — AWu) 20 inR™,
0
which gives
T
(1.39) / (W), u)y Wy(t)dt = A\Wu in R™.
0
Multiplying (1.39) by W~! from the left yields

T
(1.40) /0 (b, uhyy(t) dt = M in R™.

We define the operator R : R™ — R™ as

T
(1.41) Ru = A (y(t),u)y, y(t)dt for u e R™.

Lemma 1.11. The operator R is linear and bounded (i.e., continuous). Moreover,
1) R is non-negative:
(Ru,u)y, >0 for allu € R™.
2) R is self-adjoint (or symmetric):
(Ru,t)y, = (u,Ra)y, for allu, & € R™.

Proof. For arbitrary u, & € R™ and «, & € R we have
T
R(au+ au) = / (y(t), au + &)y, y(t) dt
0
T
= [ @ t®.uy +6 . aw)uea

=a/0 (y(t), why y(t) dt+d/0 (y(t), @)y, y(t) dt = aRu + @R,
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so that R is linear. From the Cauchy-Schwarz inequality we derive

T T
ImﬂWSAIW@WM%MMﬁ:A|@@WMMMWW&

T T
2 2 2
SAMMWMWM=(AHMMW&MWWZMMmmWﬂWW

for an arbitrary u € R™. Since y € C([0,T];R™) C L?(0,T;R™) holds, the norm
lyll2(0,7;rm) is bounded. Therefore, R is bounded. Since

T

T T
<Ru,u>w( / <y<t>,u>wy<t>dt) Wa= [ {yl0)uhy o) W

T 2
:/O (), u)yy > dt > 0

for all u € R™ holds, R is non-negative. Finally, we infer from

T T
Ruhy = [ o 0.2 it = { [ 0. Dws0dt)
= (R, u)y, = (u, R)y,
for all u, w € R™ that R is self-adjoint. ([l
Utilizing the operator R we can write (1.40) as the eigenvalue problem
Ru=Au in R™.

It follows from Lemma 1.11 that R possesses eigenvectors {u;}", and associated
real eigenvalues {\;}™, such that

(1.42) Ru; = u; for 1 <i<m and A\ >X>...> )\, >0.

Note that

/ [ (8), uiyy | dt = / () )y (D)), A = (R, g = A il = A
0 0

for i € {1,...,m} so that u; solves (1.37).
Proceeding as in Sections 1.1 and 1.2 we obtain the following result.

Theorem 1.12. Let y € C([0,T];R™) be the unique solution to (1.30). Then
the POD basis of rank £ solving the minimization problem (P%V) is given by the
etgenvectors {ui}le of R corresponding to the £ largest eigenvalues A1 > ... > Ay.

Remark 1.13 (Methods of snapshots). Let us introduce the linear and bounded
operator ) : L?(0,T) — R™ by
T
Vv = / v(t)y(t)dt for v € L*(0,T).
0

The adjoint Y* : R™ — L2(0,T) satisfying
(Y*u,v) 297y = (u, Yv)y,  for all (u,v) € R™ x L*(0,T)
is given as

(YV*u)(t) = (u,y(t))y for u e R™ and almost all ¢ € [0, 7.
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Then we have

yru= [ Oy u®dt = [ o,y ve)dt = Ru

for all uw € R™, i.e., R = YY* holds. Furthermore,

T T
Y Yo)(t) = < / v(s)y(s)ds,y(t>>wz [ w0 o) as = (o)t

for all v € L?(0,T) and almost all ¢ € [0, T]. Thus, K = Y*Y. It can be shown that
the operator K is linear, bounded, non-negartive and self-adjoint. Moreover, K is
compact. Therefore, the POD basis can also be computed as follows: Solve

T
(1.43) Kv; = M\v; for 1 <1 < E’ A > > A >0, / Ui(t)’Uj(t) dt = 52‘]‘
0

and set

1 1 /T
U = —=JYv; = — vi(t)yt)dt fori=1,... 4L
Vi Vi Jo
Note that (1.43) is a symmetric eigenvalue problem in the infinite-dimensional func-
tion space L2(0,T). For the functional analytic theory we refer, e.g., to [11]. O

Let us turn back to the optimality conditions (1.35). For any u € R™ and
i€ {1,...,m} we derive

Ms

(YDYT"Wu), =

Z Z ;Y5 YiiWipu, = Z a; Yij (Yj, )y
j=1

1j=1k=1

i (Y w) y (Y5)is

v

<
Il
—_

|

where (y;); stands for the ith component of the vector y; € R™. Thus,
YDYTWu = Zaj (W, w)wy; = R"u.
j=1
Note that the operator R™ : R™ — R™ is linear and bounded. Moreover,

<R uu>W<Zaj Yj, U Wyj7 > Zaj y], ZO

j=1
holds for all w € R™ so that R™ is non-negative. Further,

<R"u,a>w<2aj <yj,u>wyj,~> Zaj s, W (5 )
j=1

= <Zaj <yj,ﬂ>wyj,u> = (R, u)yy = (u, R™i)yy
j=1 w

for all u, u € R™, i.e., R" is self-adjoint. Therefore, R™ has the same properties as
the operator R. Summarizing, we have

(1.44a) R = Alul, AT > A > A:il(n) > )‘Z(n)+1 =...=A =0,
(1.44b) Ru; = Ajug, M2 o2 > A1 = = A =
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Let us note that

T
(1.45) | i ae - ZA—ZA

In fact,

T
Ru; = / (y(t),ui)y y(t)dt for every i € {1,...,m}.
0

Taking the inner product with w;, using (1.44b) and summing over ¢ we arrive at

d_ T ) d
)SY ITORBNIRED SCIERM ZA —ZA

Expanding y(t) € R™ in terms of {u;}"; we have

)= {y(t),u)yu

i=1

T m T m
/0 Hy(t)n@vdtzz/o y(8), uihy [P dt = 3,
=1 =1

which is (1.45). Analogously, we obtain

and hence

d(n) m

(1.46) Zaj lly(t; ||W Z A= Z)\f for every n € N.
j=1

i=1

For convenience we do not indicate the dependence of a; onn. Let y € C([0, T];R™)
hold. To ensure

(147 S )l = [ O s a0
Jj=1
we have to choose the a;’s appropriately. Here we take the trapezoidal weights
At At
(1.48) a1:7, aj=Atfor2<j<n-1, ozn:?.
Suppose that we have
(1.49) lim [|R" = R|gm) = lim sup |IR"u — Rul|y, =0

provided y € C1([0, T]; R™) is satisfied. In (1.49) L(R™) denotes the Banach space
of all linear and bounded operators mapping from R™ into itself. Combining (1.47)
with (1.45) and (1.46) we find

(1.50) DA =D N asn— o
i=1 i=1

Now choose and fix

(1.51) ¢ such that Mg # Apy1.

Then by spectral analysis of compact operators ([5, pp. 212-214]) and (1.49) it
follows that

(1.52) A=A for1<i</lasn— oo
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Combining (1.50) and (1.52) there exists i € N such that

(1.53) Z A <2 Z A; foralln >,
i=0+1 i=0+1
if ZZ@H Ai # 0. Moreover, for ¢ as above, 7. can also be chosen such that
d(n)

(1.54) Z |(yo,u?>w|2 <2 Z |<y0,ui>w|2 for all n > 7,
i=+1 i=0+1

provided that Y™™, | [(yo, ui)w|* # 0 (1.49) hold. Recall that the vector yo € R™
stands for the initial condition in (1.30b). Then we have

(1.55) ol = D= Kyos uady
i=1
If t; = 0 holds, we have yo € span {y;}7_; for every n and
) d(n) )
(1-56) Hy0||w = Z |<y07u?>W| :
i=1
Therefore, for £ < d(n) by (1.55) and (1.56)
o) 2 o) 2w P 2
i=0+1 i=1 i=1 i=1
+ Z |<y07ui>W|2 - Z }<y07Ui>W|2
i=0+1 =1
2 12 e 2
i=1 i=0+1

As a consequence of (1.49) and (1.51) we have lim,,_ o |[ul' — u;||w = 0 for i =
1,...,¢ and hence (1.54) follows.
Summarizing we have the following theorem.

Theorem 1.14. Assume that y € C1([0,T];R™) is the unique solution to (1.30).
Let {(ul, X))}, and {(ui, M)}y be the eigenvector-eigenvalue pairs given by
(1.44). Suppose that £ € {1,...,m} is fized such that (1.51) and

dONA0 Y |0, )y |* # 0

i=C+1 i=0+1
hold. Then we have
(1.57) nlgr;@ [R™ =R gmy = 0.
This implies
lim A} = \| = 7}1_)11;0 llui —willy, =0 forl<i<U{,

n—oo
m

dim ST (A= A) =0 end  Tm > (o, ulhy|T = D (o, uidy |
i=0+1 i=0+1 i=0+1
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Proof. We only have to verify (1.57). For that purpose we choose an arbitrary
u € R™ with ||ul]lw = 1 and introduce f,, : [0,T] — R™ by

fult) = (y(t),u)y y(t) for t € [0, T].
Then, we have f, € C'([0,T];R™) with

Fu®) = (), )y y(8) + (y(t), uhyy 9(t)  for ¢ € [0,7]
By Taylor expansion there exist 7;1(t), 7;2(t) € [t;,t;41] depending on t

/tj”1 fu(t)dt = ;/tjm Fulty) + fulmin(0)(t —t;)dt
+ %/t_jﬂ fultjr) + fu(sz(t))(t —tjyq)dt
= % (fulty) + fultiza) + %/t ) — 1)

J

1 [ti+r
+§/t fu(Tja(®))(t —tj41) dt.

J

Hence,
n T
R —Rully, = || S asfult) — [ fult)at
j=1 0 w
n—1 At ti+1
| X (5 e+ n - [ noa)
i=1 g w
1 noloeti .
<3 Z/t [ fulrin (D) |y [t = 3] + [ Fu(mizO) [y [t = i | At
i=1 7t
1 ; (=) (-
< g max 1@y ; ( 22 |,
At . sy AtT :
=3 max | £ )| J; At = —5— max, [ £u®)|
AtT ;
<~ e | fu®)]]
AtT . .
= =5 mae [[(5(0) why y(1) + Gy 0) whyy 500) oy
= AT mae 150l [9(0) < AT [z o e
Consequently,
IR™ = Rllpgmy = sup [|R™u— Rully < 28t [yl|2s o250y~ 0

llullw=1

which is (1.57). O
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1.4. Exercises.

1.1) Show that any optimal solution to (P*) is a regular point.
1.2) Verify the claim in Theorem 1.1 that argmax (PY) = Zle o? holds true.

1.3) Show that the Frobenius norm is a matrix norm and that
|AB|lp < [|Al oI Bllp  for any A, B € R**"

is valid. Suppose that U? € R™*? is a matrix with pairwise orthonormal
vectors u; € R™, 1 < ¢ < d. Prove that

|UA||p = ||Al| for any matrix A € R**™.

1.4) Suppose that W € R™*™ is symmetric and positive definite. Let n; > ... >
Nm > 0 denote the eigenvalues of W and W = Qdiag (1%, ...,17%)QT be
the eigenvalue decomposition of W. We define

W = Qdiag (n¢,...,n%)QT for a € R.

Show that (W%)~! exists and (W)~! = W~ Prove that Wot8 =
WeW?# holds for a, B € R.
1.5) Verify the claims of Theorem 1.8.
1.5.1) Prove that u; = W=1/2q;, 1 <4 < £, solves (P%,), where the matrix
W and the vectors 1, ..., U, are introduced in Theorem 1.8.
1.5.2) Show that (1.29) holds.
1.6) Prove that uy given by (1.42) is a global solution to (1.37).
1.7) Verify (1.46).

2. Reduced-order modeling (ROM)

In Section 1 we have introduced the POD basis of rank ¢ in R™ and discussed
its application to initial-value problems. If the POD basis is computed, it can be
used to derive a so-called low-dimensional approrimation or a reduced-order model
for (1.30). This is the focus of this section.

2.1. ROM for time-dependent systems. Suppose that we have determined a
POD basis {u;};_, of rank £ € {1,...,m} in R™. Then we make the ansatz

L
(2.1) v'() =D W' (t)us)y, u; forall t € (0,77,
=y; (¢

where the Fourier coefficients yf, 1 < j < ¢, are functions mapping [0,7] into R.

Since
m

y(t) = (y(t),u;)y,u; forallt [0, 7]
j=1

holds, y*(t) is an approximation for y(¢) provided £ < m. Inserting (2.1) into (1.30)
yields

4 V4
(2.2a) D o¥iuy = vit) Auy + f(t Y1), e (0,T],
j=1 j=1

¢
(2.2b) ZYf‘(O)Uj =Y



MODEL REDUCTION USING POD 23

Note that (2.2) is an initial-value problem in R™ for ¢ < m coefficient functions
y4(t), 1 <j < Land t € [0,T], so that the coefficients are overdetermined. There-
fore, we assume that (2.2) holds after projection on the ¢ dimensional subspace
V¢ = span {uj}ﬁzl. From (2.2a) and (u;,u;)w = 0;; we infer that

¢
(2.3) i) = yht) (Auj, us)y, + (F(E Y (1) w)y
j=1

for1<i</{andte (0,7]. Let us introduce the matrix
A= ((am)) S R with a;; = <AUj,u7;>W,

the vector-valued mapping
y' = . [0, 7] — R*

and the non-linearity F = (Fy,...,F,)T : [0,T] x R — R by

‘
Fi(t,y) = <f<t,Z}’jUj)7Ui> for t € [0,T] and y = (y1,...,y¢) € R".
j=1

w
Then, (2.3) can be expressed as

(2.4a) ¥O(t) = Ay“(t) + F(t,y'(t)) fort e (0,T]
From (2.2b) we derive
(2.4b) yé(o) = Yo,
where
<y0, U1>W
Yo = : € R
<y0, U€>W

holds. System (2.4) is called the POD-Galerkin projection for (1.30). In case of
¢ < m the ¢-dimensional system (2.4) is a low-dimensional approximation for (1.30).
Therefore, (2.4) is a reduced-order model for (1.30).

2.2. Error analysis for the reduced-order model. In this section we focus on
error analysis for POD Galerkin approximations. For a more detailed presentation
we refer the reader to [7, 8, 9] and [4].

Let us suppose that y € C([0,T];R™) N C(0,T;R™) is the unique solution to
(1.30) and {u;}_, the POD basis of rank £ solving

/4

@) min [ o)~ 3 w0 e

i=1

2
dt st (uj,ug)y =0y, 1 <4, <L
w

The reduced-order model for (1.30) is given by (2.4). We are interested in estimating
the error

/0 ly(t) — 011 dt.

Let us introduce the finite-dimensional space

V% =span{us,...,u} C R™
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and the projection P’ : R™ — V¢ by

¢
Plu = Z (u, ui)y u;  for u e R™.

i=1
Then,

14

¢
P au+au Z ou + &ty u;) uZ:Z(a@,ui)Wer(ﬂ,ui)W) Uu;
im1 i=1

= aP'u + aPla

for all @, @ € R and u, & € R™ so that P’ is linear. Further,

2 2
”,PZHL(]R"”) = Ssup ||7)Z“||W = sup Z| (u, ug) y
(2.6) llwlly = HuHWf i=1
< sup Z| u, Ui)y | = sup ||U||12/V =1,
llullw =157 ully =1

i.e., P¢ is bounded and therefore continuous. In particular, (2.6) and |P‘ullw =
||lullw for any u € V¢ imply ||7DZ||L(RM) =1.
Throughout we shall use the decomposition

(2.7) y(t) =y (t) = y(t) = Ply(t) + Ply(t) —y'(t) = o' (t) + (1),
where of(t) = y(t) — Pfy(t) and ¥¢(t) = P'y(t) — y*(t). Note that

1

[ o= sl

i=1

= / ly(t) — Py dt = / I @)% .

Since {u;}{_, is a POD basis of rank ¢ we have
T
(28) | et at= 3 A
0 1=0+1

Next we estimate the term 9¢(¢). Utilizing (1.30a) and (2.4) we obtain for every
u® € V¥ and t € (0,T]

W), ul)y, = (P
=

~
~
@

u(
(2.9) Péy(
We choose uf = 9¢(t) € V*. Let

4 = max | Aul

the matrix norm induced by the vector norm | - |lw. Further,

th L0t @I = (94), 0By for every ¢ € (0,7
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holds. Then, we infer from (2.9)

SO < 14N Ol + 1Ol )19

2.10
(2.10) A y(0) = FEY w19 Ol
HIP () = g0y [19°(0) Iy
Suppose that f is Lipschitz-continuous with respect to the second argument, i.e.,
there exists a constant Ly > 0 satisfying

1f(tw) — f(t, @)y < Ly Ju—illy, for all u, i € R™ and t € [0, 7).

Moreover, we have

2 m

= 3 ) widy |

W i=rt1

m

S (0 )y

i=+1
for all t € (O T). Consequently, (2.10) and (2.7) imply

AL (et @y + 10 @1 ) + 1Al @l
+Lf 10 (8) + 9 () 19 ()

(W () = 50w + 19O )
141

1 2
<7 _ _ é
< 2 e Ol + (2 |A||+2+Lf)|19 t)l

1Pt — 9815 =

14
5o 9y <

+ Lyl @)l 19Ol + > 1), uidyy |
i=0+1

lA|l+ L 2 3 1 2
<BALELLy oo, + (3 (1al+ 2) + 5 ) 19l

I
o

Consequently,

SOl < (30141 + L) +1) WOl + (141 + L)l Dl

R

i=0+1

Using Gronwall’s lemma (see Exercise 2.1)) and (2.8) we arrive at
t
2 2 2
Iy <c1(|19f<o>||w+ 141+ L) [ 1l as)
2
(2.11) +e1 Z / [(9(s), us)yy | ds

i=0+1
<a(O+ >0 (ot [ oo ar))
1=0+1
where ¢; = exp(3(||A]| + Ly) +1)T') and ¢2 = ¢y max{||A|| + Ly, 1}.
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Theorem 2.1. Let y € C([0,T];R™) N CH0,T;R™) be the unique solution to
(1.30), £ € {1,...,m} be fized and {u;}_, a POD basis of rank ¢ solving (2.5). Let
y* be the unique solution to the reduced-order model (2.4). Then

T m T
J— Z 2 . Y u, 2
/0 y(® y(t)HWdtsci;l(m / 58,y | dt)

for a constant C > 0.

Proof. From (2.8), (2.11) and ¥*(0) = P’y — 3*(0) = 0 we find
|1 =0l at = [+ o'l a
0 0
T 2 2
<2 [l Ol + 101
0
<22A+c32< / (), u) vy | dt)

1=0+1 1=0+1

with ¢z = 2¢5. Setting C = 2 + ¢3 the claim follows directly. [l

Remark 2.2. The term
> [ 0wl
i=0+1

can not be estimated by the sum over the eigenvalues Ag41,..., Ap. If we replace

(2.5) by

¢ ¢ 9
(2.12a) mln/ Hy ; ), ug) Wu, —|— Hy ; )s Wi) yy Wi Wdt
subject to
(2.12b) (uj,uidy, = d;; for 1 <i,j <4,

we end up with the estimate

T m
/Ouyu) )] dt < & z

for a constant C' > 0. In this case the time derivatives are also included in the
snapshot ensemble. Of course, the operator R defined in (1.41) has to be replaced.
It turns out that the POD basis {ui}le is given by the eigenvalue problem

(2.13) Ri; =Nt for 1<i<m and A >XA>...2 X, >0
where the operator R : R — R™ is defined by
R T
Ru= [ (yle) ) 0(0) + (3(0), ) (0
0

for u € R™. O



MODEL REDUCTION USING POD 27
Remark 2.3. Suppose that we build the matrix ¥ € R"™*2") using the column

vectors y; =~ y(t;), 1 < j <mn, and y; = y(tj—m, m+1 < j < 2m. Then, the
discrete variant R™ of the operator R introduced in Remark 2.2 is given by

R'u =

NE

Qj <yj’ u>Wyj + oy <ym+j7 u>Wym+j

mom
o (( > Vi Wiw, )Y, + (

k=1v=1

<.
Il
—

I
M:
N

HMS

m
Z k,m+j Wkuuu) Y,nL-i-j)

<(Y7] Y+ Y,m+ijjY$+j,k> Wku“y)

<.
Il
—

<.
Il
—

|
L<

Il
NE
S EMS

D ) Y'Wu=YDY"Wu

—_——
::DERZ’" x2n

with non-negative weights introduced in (f’g{,@) and the diagonal matrix D =
diag (a1, ...,a,) € R™ ™, Thus, we have R = YDYTW € R™*™_ which is of
the same form as in (1.35). The discrete version to (2.13) is

(2.14) YDYTWi; = Nty for 1 <i<m and A\ >Xg>...> X\, >0
Setting @; = W~1/2@; in (2.14) and multiplying by W'/2 from the left yield
(2.15) W2y DYTw2a; = \a,.
Let Y = WY2yDY2 ¢ R™*2" Using WT = W as well as DT = D we infer
from (2.15) that the solution {@;}{_, is given by the symmetric m x m eigenvalue
problem
?YT’ELi =\Nu;, 1 <i</{ and <ai7ﬂj>Rm = 6i]‘, 1<i4,5</
and @; = W~1/2g;. Note that
YTY — Dl/QyTwybl/Q c RQTLXZTL'
Thus, the POD basis of rank ¢ can also be computed by the methods of snapshots
as follows: First solve the symmetric 2n x 2n eigenvalue problem
YTYT}i =\, 1 <i</{ and <'Dia77j>R2n = 51’]” 1<4,5 < /.
Then we set (by SVD)
1 _ 1 -
=W = — W VY5, = — Y DYy,
Wr Vr

for 1 <i </ O

From a practical point of view we do not have the information on the whole
trajectory in [0,7]. Therefore, let At = T'/(n — 1) be a fixed time step size and
tj = (j—1)At for 1 < j < nagiven time grid in [0, T]. To simplify the presentation
we choose an equidistant grid. Of course, non- equidistant meshes can be treated

analogously [8]. We compute a POD basis {u?};_; of rank ¢ by solving the con-
strained minimization problem (P{,Lve). After the POD basis has been determined,
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we derive the reduced-order model as described in Section 2.1. Thus,

Zyj Jui', t€[0,T],

solves the POD Galerkin projection of (1.30)

(2.16a) (g°(6), ul )y = (Ay"(t) + f(t, 5 (1)), uf)yy fori=1....0and te (0,T],
(2.16b) (¥*(0),u)yy = (Yo, ul" )y fori=1...,¢
To solve (2.16) we apply the implicit Euler method. By Y; we denote an approxi-

mation for 3 at the time tj, 1 <j < n. Then, the discrete system for the sequence
{Y;}i_, in V! = span {u?,...,u}} looks like

Y, -Y;_
(2.17a) <3A;1,U?>W = (AY; + f(t,Y)), ui')y, fori=1....0,2<j<mn,
(2.17b) (Y1,ui )y = (Mo, ui )y fori=1...,¢

We are interested in estimating
n
2
> ly(t) = Vil
=1

Let us introduce the projection P: : R™ — V! by

¢
(2.18) Pl = Z (u,ui' )y uip  for uw e R™.

i=1
It follows that P’ is linear and bounded (and therefore continuous). In particular,

IPEllL@my = 1.
We shall make use of the decomposition

y(ty) = Y; = y(t;) = Puy(t;) + Pry(t;) = Y; = of + 95,
where ¢f = y(t;) — Piy(t;) and 9§ = Ply(t;) —Y;. Note that

> ay [t =3 it u

j=1 1=1

=" oy llyty) — Ply(ty)lyy = Zajngju
j=1

Since {ul'};_; is the POD basis of rank ¢, we have

n 9 m N
(2.19) Yol = > A
j=1

i=0+1
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Next we estimate the terms 9%. Using the notation 994§ = (9§ — ¥_,)/At for
2 < j < n we obtain by (1.30a) and (2.17a)

(@94, u;) = <734< y(t;) A&;(tg 1)> _ YjA}t/j_l’u?>
= (y(t;) — (AY +f(t],Y)) v

(e (0) ),

(2.20) A(y Y]) t], y(tj f(tja 7“?>W
y(t)) — y ~1) tj) ]—1) u”
- ( ) ),

y(ty) = o

< (t])7 ’L>W

(Ay(t;) — )+f(y, (t5)) = F(t5,Y)) + 25 + wh,ul)y,
for 1 <i</fand 2 < j <n, where

1)

 (y(t;) = (t (t;) —y(tj—1) (t;) —y(tj-1)

Multiplying (2.20) by (19?, u)w and adding all ¢ equations we arrive at

(2.21) (995, 05) = (Aly(t;) = Y5) + f(t5,u(t) — F(t5,Y5) + 25 + wj,95),,
for j =2,...,n. Note that
2 (u — @y u)y, = 2|ullzy — 2 (@, u)y,
= l[ullyy + llullfy — 2 (@ uhy + a5 — @l
= Jlulliy = @5y + llu — a5y

for all u,@ € R™. Choosing u = 19§- and 4 = 19?71 we infer from (2.21)

1 2 2 2
@22 2050 = 5 (150G, — W05l + 195 - 0T, ).
Inserting (2.22) into (2.21) and using the Cauchy-Schwarz inequality we obtain
2 2
195115 < 195111y, + AtIAN (5l + 1951 ) 1951y
+ A (11£ (5, 9()) = £ Yl + 1250y + oLy ) 191

Suppose that f is Lipschitz-continuous with respect to the second argument. Then
there exists a constant Ly > 0 such that

1 (t5,9(t5)) — f (5, Yi)llw < Lyp lly(t) = Yilly forj=2,....n
Hence, by Young’s inequality we find

2 e 2 012 )2 ¢
921%, < 19%ol + At (e bl + ez 921 + 2402, + w2, ).
where ¢; = max{||A||, Ly} and ¢z = max{3|/A]||,3Ls,2}. Suppose that

1
2.23 0< At < —
(2.23) <Ats o~
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holds. With (2.23) holding we have
1 1
0<1—2cAt <1—coAt and 1—02At21—§:§.

Thus,

1 . 1 — oAt + e At . oAt

2.24 - _14 8t
( ) 1-— CQAt 1-— CQAt 1-— CQAt

<1+ 2c5At
Using (2.24) we infer that
2 2 2 2 2
194115, < (1+ 22280 (195 5, + At(I12f 11, + lwf I, + e llgdll, ).

Summation on j yields

J
2 : 2 2 2 2
19515 < 1+ 2ea)? (10515, + 803 (Il + Tkl -+ ekl ) )-
k=1

Note that

: 2e5j AL’ :
(1 + QCgAt)J = (1 + CQ]) < e2c2J At
J

Thus,

J
002 iA 02 02 02 0112
19511, < e** lt<190|W JFAtZ (sz”W + willw + a1 ||Qk||W)>
k=1

We next estimate the term involving wﬁ:

2

y(tr) _A?i(tkfl) — e

J J
2
Ati ||w£||W:At§ :
=1 k=1

w

_ é > lly(te) — ylteor) — Atg(t) 1%

k=1
1 J tr 2
= — (tr—1 — 8)¥(s)ds
At ; /tkl w
1 J tr tr 5
<2 [ e sPds [ el ds
k=17 tk—1 te—1
(A2 I~ s (A1)?
< 3 Z Hy”m(tk,l,tk;RM) = 3 ||y||L2(0’tjiRm)'

k

=
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The term zﬁ can be estimated as follows:

; () = yln) _ ylte) —yln) |
=4 = ‘p;; )
ellw Gy L )
_ e (¥ —y(tr-1)\ e, ‘. ylte) —y(te) 2
Al y(te) —y(te—1) . 2
S 2||7)’I’LHL(]RM) T _y(tk;) .
2
' j ; te) — y(ts—
+2 ’ Pri(te) = 9(te) + (1) — W ’
w
2
2 . . 2 . t o t
< 2wl + 4 PLo(tk) — 9(tx) ]l +4 Hy(tk) B %
w

. 5 2 2
= 4[1Prg(tk) — 5ty + 6wl

Recall that At < 2ay, for 1 < k < n. Hence,
’ 2 - 2
. . .12
ALYzl <8 an [PL(tn) = §(t) lw + 20407 61720 1, mm)-
k=1 k=1
Further, 9§ = Plyo — Y1 =0and 0 < jAt < T for j =0,...,n — 1. Summarizing
19@ 2 < " [ . . 2 e 2 7 A 2 12
19405, < es (D 8 (IPLa0R) — i00) Iy + 261 Dokl ) +5 (A0 1122 0., 0m) )
k=1

where ¢z = €27 max{7/3,2¢;, 8} is independent of £ and {t;}7_,. From Y 7_, ap =
T and (2.19) we infer

n n
2 . . 2 2
sl < er(( X as (1Pt - i)l + 1215,)
j=1 j=1
2
(2.25) +(At)? ||y||L2(0,T;1Rm)>
% n & . n 2
< C4< Z ()\i + Zaj |(y(tj),ui >W| > + (At)2>
=041 j=1

with s = esTmax{1, [|§l|72( rrm)}-
Theorem 2.4. Lety € C([0,T];R™)NC (0, T;R™) be the unique solution to (1.30)
satisfying § € L?(0, T;R™) and £ € {1,...,m} be fized. Suppose that {u?}i_, is a

POD basis of rank ¢ solving (137‘},@) Assume that (2.17) possesses a unique solution
{Y;}5_,. Then there exists a constant C' > 0 such that

>oaslutes) - vl < (@02 + Y (3 + L ey ittt 7))
j=1 j=1

i=0+1

provided At is sufficiently small and f is Lipschitz-continuous with respect to the
second argument.
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Proof. The claim follows directly from (2.19), (2.25), and
n ) n ) )
> as ly(ts) = Yilly <23 s (19515, + Iy, )
Jj=1 j=1

< m( 3 (A? +> |<y'(tj),u;’)W’2> - <At>2>
j=1

i=0+1

+2ixy

i=0+1

provided At is sufficiently small and f is Lipschitz-continuous with respect to the
second argument. O

Remark 2.5. Compared to the estimate in Theorem 2.1 we observe the term
- . 12
(2.26) > o [@(t), uf)
j=1

instead of the term

(2.27) /0 ((8), wa) g | it

Note that (2.26) is the trapezoidal approximation of (2.27). Furthermore, the error
O((At)?) appears in the estimate of Theorem 2.4 due to the Euler method. O

Next we address the fact that the eigenvalues {A?}7, and the associated eigen-
vectors {u]'} (i.e., the POD basis) depend on the chosen time grid {t;}7_,. We
apply the asymptotic theory presented in Section 1.3. Then, it follows from Theo-
rem 1.14 that there exists a number n € N satisfying

i=0+1 i=0+1
m n ) m T )
ISP IN[TNEMEESD Sl ORI
i=+1 =1 i=e+170

for n > 7 provided Y7, | A; # 0 and fOT |(w(t), ui>W|2 dt # 0 hold. Thus, we infer
from Theorems 2.1 and 2.4 the following result.

Theorem 2.6. Let all hypothesis of Theorems 1.14, 2.1 and 2.4 be satisfied. If

fOT ’(y'(t),ui>w|2dt # 0, then there exists a constant C > 0 and a number n € N
such that

- m T
> s lsts) - Vlf < (a4 > (v [ lewafar))

for alln > n.
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2.3. Exercises.

2.1) Prove the Gronwall lemma: For T > 0 let  : [0,7] — R be a non-negative,
differentiable function satisfying

7' (t) < pt)n(t) +4(t) forall t € [0,T7,

where ¢ and 1 are real-valued, non-negative, integrable functions on [0, 7.
Then

t t
n(t) < exp (/ o(s) ds) <77(0) +/ P(s) ds) for all t € [0, 7).
0 0
In particular, if
n <pnin [0,7] and n(0) =0

show that n = 0 holds in [0, T].
2.2) Show that the operator P/ defined in (2.18) is linear, bounded and satisfies

IPilLmy = 1.
2.3) Prove that the first-order necessary optimality condition for (2.12) is given
2.4) Show that R is linear, bounded, self-adjoint and non-negative provided

y € HY(0,T;R™), ie.,

T
/0 ly@IZ + 912 dt < 0o
holds.

3. The linear-quadratic control problem

In this section we introduce the optimal state-feedback and the linear-quadratic
regulator (LQR) problem. Utilizing dynamic programming necessary optimality
conditions are derived. It turns out that for the LQR problem the state-feedback
solution can be determined by solving a differential matrix Riccati equation. The
presented theory is taken from the book [2].

3.1. The LQR problem. The goal is to find a state-feedback control law of the
form

u(t) = —Kz(t) forte|0,T)
with w : [0,T] — R™ z :[0,T] — R™=, K € R™«*™= g0 that u minimizes the
quadratic cost functional

(3.1a) J(x,u) = /0 ()T Qx(t) + u(t)” Ru(t) dt + =(T)" Mx(T),

where the state z and the control u are related by the linear initial value problem
(3.1b) z(t) = Az(t) + Bu(t) for t € (0, 7] and xz(0) = zo.

In (3.1a) the matrices Q, M € R™=*™= are symmetric, positive semi-definite, R €
R™u*™u jg gymmetric, positive definite and in (3.1b) we have A € R™=*"= B ¢
R™M=>Mu and xg € R™=. The final time T is fixed, but the final state z(7T') is free.
Thus, we aim to track the state to the state £ = 0 as good as possible. The terms
2(t)TQx(t) and x(T)T Mx(T) are measures for the control accuracy and the term
u(t)” Ru(t) measures the control effort. Problem (3.1) is called the linear-quadratic
regulator problem (LQR problem).
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3.2. The Hamilton-Jacobi-Bellman equation. In this section we derive first-
order necessary optimality conditions for the LQR problem. Since generalizing the
problem to a non-linear problem does not cause more difficulties in the deviation,
we consider the problem to find a state-control feedback control law

u(t) = ®(x(t),t), tel0,T],

such that the cost-functional

T
(3.2a) Ji(z,u) = / L(z(s),u(s),s)ds + g(z(T))
t
is minimized subject to the non-linear system dynamics
(3.2b) z(s) = F(z(s),u(s),s) for s € (0,7] and =(t) = 2.

We suppose that the functions L : R™= xR™= x[0,T] — [0, 00) and g : R™= — [0, 00)
satisfy

L(0,0,s) =0for s €[0,7] and ¢(0)=0

Moreover, let F: R™= x R™ x [0,T] — R™= be continuous and locally Lipschitz-
continuous with respect to the variable x. Moreover, x; € R™= holds. To derive
optimality conditions we use the so-called Bellman principle (or dynamic program-
ming principle). The essential assumption is that the system can be characterized
by its state x(t) at the time ¢ € [0,7] which completely summarizes the effect of
all u(s) for 0 < s < t. The dynamic programming principle was first proposed by
Bellman [1].

Theorem 3.1 (Bellman principle). Let t € [0,T]. If u*(s) is optimal for s € [t,T]
and z* is the associated optimal state, starting at the state xy € R™= then u*(s)
is also optimal over the subinterval [t + At,T] for any At € [0,T — t] starting at
T+ At = x*(t + At)

Proof. We show Theorem 3.1 by contradiction. Suppose that there exists a control
w** so that

/t L@ (s),u™ (5), 5)ds + g(=™* (T))

+At T
< / L(z*(s), u*(s), s) ds + g(z*(T)),
t+At

(3.3)

where
#*(s) = F(z*(s),u*(s),s) and &**(s) = F(x™(s),u""(s), s)

hold for s € [t + At, T]. We define the control

(3.4) u(s) = { Z*Es) if s € [t,t + At],

*(s) if s e (t+ At T).
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By z(s) we denote the state satisfying #(s) = F(x(s),u(s),s) for s € [t,T] and
x(t) = x;. Then we derive from (3.3) and (3.4) that

[ Lats)u(s).5) ds + gla(r))
i t+At T
:/t L(x*(s),u*(s),s)ds+/t L(z™*(s), ™ (), s) ds + g™ (T))

(3.5) tat

t+At T
</t L(J;*(s),u*(s),s)ds+/tJrAtL(x*(s),u*(s),s)ds—|—g(x*(T))

T
:/t L(z*(s),u*(s),s)ds + g(z*(T)).

Recall that u*(s) is optimal for s € [t,T] by assumption. From (3.5) it follows that
the control u given by (3.4) yields a smaller value of the cost functional. This is a
contradiction. O

Next we derive the Hamilton-Jacobi-Bellman equation for (3.2). Let V* : R™= x
[0,T] — R denote the minimal value function given by

V* (I’t, t)

3.6
(3.6) _ u:[t’%i}u&vnu {Jt(x,u) |i(s) = F(x(s),u(s),s), s € (t,T] and z(t) = xt}

for (x4, t) € R™= x [0,T], where

T
Hau) = [ La(s)uls).5)ds + gfa(T))
¢
From the linearity of the integral and (3.6) we conclude

V*((Et, t)

t+At
3.7) = u;[t,t-s-rgi?—»Rmu { /t L(z(s), u(s), s)ds + V*(x(t + At), t + At) |

z(s) = F(x(s),u(s),s), s € (t,t + At] and z(t) = th}

for (x¢,t) € R™= x [0,T — At], where we have used the Bellman principle. Thus,
by using the Bellman principle the problem of finding an optimal control over the
interval [t,T] has been reduced to the problem of finding an optimal control over
the interval [¢, ¢+ At].
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Now we replace the integral in (3.7) by L(x(¢),u(t),t)At, perform a Taylor ap-
proximation for V*(z(t + At), t+ At) about the point (z,t) = (z(t),t) and approx-
imate z(t + At) — x(t) by F(xz(t),u(t),t)At. Then we find

*

V*(2nt) = min {Lm,ut, DAL+ V(a0 t) + 2 (e 1) At

ug ER™Mu ot

+ VV* (@, )T F(xy, ug, t) At + O(At)}
ov*

= V*(l't,t) + ot (.I‘t,t)At
A
+ At min {L(xt,ut,t) YV (0, )T F (e, t) + 2 t)}
uy R At

for any At > 0. Thus,

(o) = min {Eou,t) + 9V @) P + 250,

Taking the limit At — 0 and using V*(x4,T) = g(x;) we obtain

oV )
ot (z1,1) = ulélﬂlg}m {L(s, e, t) + YV (@, )T F (24, us, ) }

for all (x¢,t) € R™= x [0,T) and

(3.8a)

(3.8b) Vi (2, T) = g(4)

for all z; € R™=.
To solve (3.8) we proceed in two steps. First we compute a solution u; to

u*(t) = argmin {L(z¢,up, t) + VV*(24,t)" F (24, us,t) }

us ER™u

and set
(39) (VV (xtv ) ztat) = U*(t),
which gives us a control law. Then we insert (3.9) into (3.8a) and solve

oV
ot

(mt’t) = (xtﬂ (VV*(CCD ) xt,t),t)
+VV*(xt7t)TF(xt7 (VV (‘rtu ) xtat)7t)

for all (x¢,t) € R™= x [0,T). Finally, we can compute the gradient VV*(x4,t) and
deduce the state-feedback law

u*(t) = ®(xy,t) = O(VV* (2, t),24,1) for all (z4,t) € R™= x [0,T).

Remark 3.2. 1) In general, it is not possible to solve (3.8) analytically. How-
ever, for the LQR problem we can derive an explicit solution for the state-
feedback law.

2) Note that the Hamilton-Jacobi-Bellman equation are only necessary opti-
mality conditions. O
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3.3. The state-feedback law for the LQR problem. For the LQR problem
we have

L(z,u,t) = 27 Qz + " Ru, g(x) =2 Mz, F(x,u,t)= Az + Bu

for (z,u,t) € R™= x R™« x [0,T]. For brevity, we focus on the situation, where
the matrices A, B, @, R are time-invariant. However, most of the presented theory
also holds for the time-varying case.

First we minimize

2" Qz +u" Ru+ VV*(z,t)" (Az + Bu)
with respect to u. First-order necessary optimality conditions are given by
u' R+ 4T Ru+ VV*(z,t)TBu =0 for all & € R™=.
By assumption, R is symmetric and positive definite. Then we find
(2Ru+ BTVV*(2,)) =0 for all & € R™

and

1
(3.10) u* = -5 R'BTVV*(x,t).

For the minimal value function V* we make the quadratic ansatz
(3.11) V*(x,t) = 2T P(t)z, P(t) € R™=*™= symmetric.
Then, we have VV*(x,t) = 2P(t)x so that
u* = —R'BTP(t)x.
Note that
o
ot
L(zy, —R'BTP(t)xy,t) = 2T Quy + 2l P(t)BR™'BT P(t)a,
=2/ (Q+ P(t)BR'BTP(t))x,
F(z,—R™'B"P(t)z,t) = Axy — BR'BTP(t)z; = (A— BR™'B" P(t))a,
VV*(z,t) = 2P(t)xs.

(z4,t) = xtTP(t)xt,

Consequently,

*

— 2l P(t)z, = —aa‘; (¢,t)
— 27 (Q + P(t)BR™'BTP(t))z; + (2P(t)z;)" (A= BR'BTP(t))x,
for all x; € R™=, which yields
- xtTP(t)l“t
=2/ (Q+ P(t)BR'BTP(t) + 2P(t)A — 2P(t)BR™'BT P(t))z,
=af (2P(t)A+Q — P(t)BR™'BT P(t))x,
for all z, € R™=. From P(t) = P(t)” we deduce that
20{ P(t)Azy = o} P(t) Az, + o ATP(t)z, = o] (AT P(t) + P(t)A) ;.
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Using V*(x4,T) = o] P(T)z; and (3.8b) we get
(3.12a)
—al P(t)a, = o} (ATP(t) + P(t)A+ Q — P(t)BR™'BTP(t))x;, t€[0,T)
(3.12b)
zl P(T)xy = xf M.
Since (3.12) holds for all z; € R™= we obtain the following matriz Riccati equation
(3.13a) —P(t)=ATP(t) + Pt)A+Q — P)BR™'BTP(t), t<[0,T)
(3.13b) P(T)= M.
Finally, the optimal state-feedback is given by
u*(t) = —K(t)z(t) and K(t)= R 'BTP(t).
Example 3.3. Let us consider the problem
T
min/ O + [u@®)2dt st @) = ult) for ¢ € (0,T].
0
Choosing m; = m, =1, A= M =0 and B =@ = R = 1 the matrix Riccati
equation has the form
~P(t)=1—P(t)? fort €[0,7) and P(T)=0.

This scalar ordinary differential equation can be solved by separation of variables.

Its solution is
1— 672(T7t)
PO = 1=

with the optimal control u*(t) = —P(t)z(t). O

3.4. Exercises. Let us consider the one-dimensional heat equation

(3.14a) O1(t,x) = O (t,x) +u(t)x(x) forall (t,z) € @ =(0,T) x £,
(3.14b) 0,(¢,0) = 0,(t,1) =0 for all t € (0,T),
(3.14¢) 6(0,z) = Oy(x) forall z € Q@ = (0,1) C R,

where 6 = 6(t, z) is the temperature, u = u(t) the control input, x = x(z) a given
control shape function and 6y = 6p(z) a given initial condition.
3.1) Apply a classical finite difference approximation for the spatial variable
x (compare Example 1.10) and derive the finite-dimensional initial value
problem for the finite difference approximations.
3.2) Utilizing the trapezoidal rule deduce a discretization for the quadratic cost
functional

J(0,u) = %/Q|9(T7x)—9T(a:)|2dm+g/0 (b)) dt,

where 07y = 0r(x) is a given desired terminal state and x > 0 denotes a
fixed regularization parameter.

3.3) Formulate the matrix Riccati equation for the discretized quadratic cost
functional — see part 3.2) — and the discretized heat equation — see part
3.1).
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3.4) What is the matrix Riccati equation in the case if we apply a POD Galerkin
approximation instead of a finite difference discretization? How can we
solve the matrix Riccati equation numerically?

4. Balanced truncation
Let us consider the linear time-invariant system
(4.1a) z(t) = Ax(t) + Bu(t) for t € (0,00) and xz(0) = xq,
(4.1b) y(t) = Cx(t) for t € [0, 00)

where x(t) € R™= is called the system state, xg € R™= is the initial condition of

the system, u(t) € R™« is said to be the system input and y(t) € R™v is called the

system output. The matrices A, B and C' are assumed to have appropriate sizes.
It is helpful to analyze the linear system (4.1) through the Laplace transform.

Definition 4.1. Let f(t) be a time-varying vector. Then its Laplace transform is
defined by

(4.2) Lfl(s) = /000 e St f(t)dt for s € R.

The Laplace transform is defined for those values of s, for which (4.2) converges.

The Laplace transforms of u(t) and y(t) are given by
Cul(s) = / e=tu(t)dt and  Lly](s) = / e=sty(t) dt = CL[](s),
0 0
where we have used (4.1b). Note that

Cli(s) = /0 T ety dt = — /0 (o) ta(t) dt + (e (t))
= sLz](s) — xo.

S§=0C

s=0

Therefore, the Laplace transform of the dynamical system (4.1a) yields
sL[z](s) — 2(0) = AL[z](s) + BL[u(s),

which gives
L[z](s) = (sI — A)"'x(0) + (s — A)"'BL[u](s).

Thus,

(4.3) L[y](s) = CL[x](s) = C(sI — A)~x(0) + C(sI — A) "' BL[u](s).
For x(0) = 0 the expression (4.3) reduces to

(4.4) Llyl(s) = G(s)Llul(s)

where

(4.5) G(s)=C(sI - A)"'B

is called the transfer matrixz of the system.
Given the initial state z¢ and the input u(t), the dynamical system response x(t)
and y(t) for t € [0,T] satisfy

t
x(t) = et Jr/ e(tfs)ABu(s) ds and y(t) = Cx(t).
0
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If u(t) = 0 holds for all ¢ € [0,T], we infer that
z(t) = et Ag(ty)
for any ¢1, t € [0,7]. The matrix e(*~#)4 acts as a transformation from one state

to another. Therefore, ®(t,t1) = e(*=11)4 is often called the state transition matriz.

Definition 4.2. The dynamical system (4.1a) or the pair (A, B) are called con-
trollable if for any xo € R™= and final state xp € R™= there exists a (piecewise
continuous) input u such that the solution to (4.1a) satisfies ©(T) = xr. Otherwise,
(A, B) is said to be uncontrollable.

Controllability can be verified as stated in the next theorem. For a proof we
refer to [14].
Theorem 4.3. The following claims are equivalent:

1) (A, B) are controllable.
2) The controllability gramian

t
W.(t) = / eABBT A" ds
0

is positive definite for every t > 0.
3) The controllability matriz
C=[B AB A’B ... A™=~!'B] e Rm=*(mam)
has full rank.
Definition 4.4. 1) The unforced system &(t) = Ax(t) is called stable, if the
eigenvalues of A are in the open left half plane, i.e., ReX < 0 for every
eigenvalue A . A matrix with this property is said to be stable or Hurwitz.

2) The dynamical system (4.1a) or (A, B) are called stabilizable if there exists
a state-feedback u(t) = —Kx(t) so that A — BK is stable.

The next result, which is proved in [14], is a consequence of Theorem 4.3.

Theorem 4.5. The following claims are equivalent:
1) (A, B) are stabilizable.
2) The matriz [A — A\ B] € R™=*(matmu) has full row rank for all X € C
with a negative real part, i.e., ReX < 0.
Let us now consider the dual notions of observability.

Definition 4.6. The dynamical system (4.1) or (A,C) are called observable if
for any t1 € (0,T], the initial condition xyg € R™= can be determined from the
time history of the input u(t) and the output y(t) in the interval [0,t1] C [0,T].
Otherwise, the system or (A, C) is said to be unobservable.

For a proof of the next theorem we refer the reader to [14].

Theorem 4.7. The following claims are equivalent:

1) (A,QC) is observable.
2) The observability gramian

t
W,(t) = / A" 0T CesA ds
0

is positive definite for every t > 0.



MODEL REDUCTION USING POD 41

(3) The observability matriz

has full rank.
We set

Wc:/ eABBTe*A" ds  and WO:/ esAT T CesA ds.
0 0

It can be proved that W, and W, can be determined numerically by solving the
Lyapunov equations

(4.6a) AW, +W.A" + BBT =0 € R"=X"=,

(4.6b) ATW, + W,A+CTC =0 € R"=*"=,

The controllability gramian is a measure to what degree each state is excited by
an input. Suppose that x1, o € R™ are two states with ||z1||gn. = ||22||gn=. If
2T W,xy > 23’ Wz holds, then we say that the state z; is more controllable than
9. This means, it takes a smaller input to drive the system from x( to z; than to
Zo. It can be proved that the gramian W, is positive definite if and only if all states
are reachable with some input u. On the other hand, the observability gramian

W, is a measure to what degree each state excites future outputs y. Let g be an
initial state. If u = 0 holds, we have

9130y = [ ()9 ds = [ a7 CTCals)as
= / xgeSATCTC'eSAxO ds = ngOxo.
0

We say that the state x; is more observable than another state x5 if the correspond-
ing output y; = Cz; yields a larger value of the L?-norm than for y = Cay
The gramians depend on the coordinates. Suppose that

(4.7 =Tz

where 7 € R"=*"= ig a regular matrix. Then we obtain instead of (4.1) the system

(4.8a) 2(t) = Az(t) + Bu(t) for t € (0,00) and 2(0) = z,
(4.8b) y(t) = Cz(t) for ¢t € [0, 00)
with

A=T'AT, B=T7'B, C=CT, 2z =T 'a.
Let W, solve (4.6a). The controllability gramian W, for (4.8) satisfies
AW, + W, AT + BBT =0
ie.,

(4.9) TYATW, + W TTATT-T + 7-'BBTT-T = 0.
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Multiplying (4.9) by 7 from the left and by 77 from the right yields

(4.10) ATW, T + TW, TT AT + BBT = 0.

From (4.6a) and (4.10) we infer that W, = TW,T7T holds. Thus, the coordinate

transformation (4.7) implies that the controllability gramian W, is transformed as
Weis We =T "W.T7.

Now we suppose that W, solves (4.6b). The observability gramian W, for (4.8)
satisfies
AW, + W,A+CTC =0

ie.,

(4.11) TrATTTW, + W, T AT + TP CTCT = 0.
Multiplying (4.9) by 7-7 from the left and by 7 ! from the right yields
(4.12) ATT "W, r T TW, T A+ CTC = 0.

From (4.6b) and (4.12) we infer that W, = 7-7W,7 ! holds. Thus, the coordinate
transformation (4.7) implies that the observability gramian W, is transformed as

W, = W, =TTW,T.
The goal is to find a transformation 7 such that
(4.13) T'WT T =T"W, T =% =diag (c1,...,0m,)-

The elements o1 > 09 > ... > oy, are called Hankel singular values of the system.
They are independent of the coordinate system. It can be shown that a regular ma-
trix 7 which satisfies (4.13) exists if the system is controllable and observable, i.e.,
the matrices W, and W, are positive definite. The coordinate transformation 7 is
said to be a balancing transformation. Computing appropriately scaled eigenvalues
of the product W.W,, the matrix 7 can be determined. In the balanced coordi-
nates, the states which are least influenced by the input u also have least influence
on the output y. In balanced truncation the least controllable and observable states
having little effect on the input-output performance are truncated.

Instead of (4.8) we only consider the system for the first £ € {1,...,m,} com-
ponents of z:

(4.14a) 20(t) = Apze(t) + Byu(t) for t € (0,00) and  z(0) = 2o,
(414b) Ye (t) = éng(t) for t € [O, OO),
where

1 Aé * D BE ~ ~ - gog
A_<* *>7 B_<*>7 O_(CZ‘*)a 205_(*>7

and A, € RE*L, By € REXmu C, € Rmv*t and 2, € RE.

One big advantage of balanced truncation is that a-priori error bounds are
known. These bounds are formulated for the transfer function. Suppose that
G(s) = C(sI — A)~'B € R™v*™u ig the transfer function of the system (4.1) and
Go(s) = Cy(sI — Ay) "1 B, € R™v*™u is the transfer function of the reduced system
(4.14). Then we have

|G = Gell = maX{H(G - Gf)u”m(o,oo;uamy) : ||u||L2(07oo;Rmu) = 1} > 061
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and

IG =Gl <2 > o

i=0+1
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