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Abstract:

Due to its ability to provide dense, fast and accurate range measurements, airborne laser

scanning (ALS) is becoming increasingly popular for extensive, large area surveying tasks;

however, there is still a lack of (published) methods for 3D segmentation and object modeling

that exploit the full potential of this new technology. In this paper, we investigate strategies for

extracting and reconstructing power lines in 3D from ALS point clouds and give preliminary

results for a 1000m X 140m test scan; exact 3D-reconstructions of power lines are important

for energy providers in order to assert that the physical parameters of the cable are still within

a safe margin and to quickly detect anomalies or defects.

1 Introduction

Airborne laser scanning (ALS), also referred to as LIDAR, is a relatively new technology for

obtaining dense (up to 10 points/m2), accurate range measurements over large areas; for an

introductory overview, see [11]. It is mainly used for the generation of detailed digital terrain

models (DTMs), e.g. [7], but also for surveying and reconstruction of city areas [9, 1]. The

scanner system, which is mounted on an airborne platform (plane or helicopter), actively

emits laser pulses at a given rate (typically about 40 kHz), and measures the travel time

between the emitted and reflected pulse, from which the distance to the illuminated spot on

the ground can be computed. The laser beam is continuously moved (or deflected) across the

direction of flight, resulting in a zigzag pattern of illuminated points. The polar coordinates

(distance, deflection angle) thus obtained by the scanner system have to be synchronized with

and transformed according to GPS/INS measurements pertaining to the position/orientation

of the platform in order to obtain the final 3D cartesian coordinates of the scanned points.



From a technological point of view, commercially available ALS systems are by now rela-

tively mature (though the technology is still rapidly evolving). However, the development

of algorithms for the subsequent processing of ALS data, in particular for classification and

reconstruction of complex man-made objects, is in comparison still in its early adolescence -

and thus remains a very active and challenging research field - for several reasons: First, the

planimetric (xy) coordinates of the points provided by an ALS scan are, by the very nature

of the scanning process, sub-randomly distributed [1]. In particular, this prevents the direct

application of image processing techniques, unless the laser data are gridded (i.e., interpo-

lated into a regular grid) first, which, besides loss of accuracy, can lead to additional problems

(e.g., 3D-information present in the original data might be “squashed” to 2.5D). Second, due

the huge amount of data provided by ALS scans, specialized tools and algorithms for efficient

storage management and data reduction are required. Third, the interaction of the laser beam

with the environment - and hence the physical “meaning” of the backscattered pulse - is not

yet sufficiently well understood, and the results of continued research in this direction are

likely to have profound impact also on the later processing stages [10].

In this paper, we will investigate strategies for extracting and reconstructing power lines from

3D ALS point clouds. This task is carried out on behalf and with support of the Verbundplan

Prüf- und Messtechnik (VPM), which requires this information in order to a) detect anomalies

or defects in the power lines or the pylons, b) assert that line corridors have been built

according to plan, and c) determine the “clearance sector” about the line corridors (i.e., the

area free of vegetation and buildings). Obtaining exact 3D measurements on small diameter

objects like power lines is extremely costly and time consuming using manual tachymetric

techniques, and near impossible with standard photogrammetric approaches. ALS is the first

technology that is able to provide dense, fast and accurate measurements on such intricate

structures at reasonable cost.

In the next section, after giving a brief survey of classical 2.5D range segmentation techniques,

we give a detailed discussion of our approach to 3D extraction and modeling of power lines

from ALS data. Some open problems and ideas for future work are discussed in section 3.

2 Implementation

Most existing approaches for range image segmentation in computer vision are based on

region-growing: 2.5D surface patches (typically planes or low-order polynomials) are fitted

locally to several small seed regions, which are then grown by adding neighboring points

consistent with the current surface-hypothesis (i.e., points yielding a low residual w.r.t. the

estimated range value). After a region has been grown, the parameters of its corresponding

surface are re-estimated. This process is iterated until a given termination condition is met.

See, for example, [2] (seminal paper), [6] (overview and experimental comparison of different



algorithms). Note that a segmentation thus obtained also provides a 2.5-reconstruction of

the scene in terms of the instantiated primitives (i.e., surface patches). However, such a

“partial reconstruction” will, in most practical applications, serve only as an intermediate

representation, and additional steps - like surface grouping - are still required prior to object

classification or scene interpretation.

Although the general approach outlined above has also been applied to the extraction of

buildings from LIDAR data, (see [9]), it does not seem well suited for the extraction of

geometrically more intricate structures like power lines. Since, for example, we must also be

able to detect all of several different lines located above each other, the distribution of the

data cannot simply be assumed (up to noise) as intrinsically 2-dimensional1), but the model(s)

used must respect the inherently 3-dimensional nature of the data. For the same reason,

gridding (i.e., interpolating and resampling the data into a regular grid) - which is a necessary

prerequisite for the application of any image processing technique (e.g., morphological filtering)

in general, and the segmentation approaches discussed above in particular - should be used

with extreme caution or, better, not at all.

In our approach, after preprocessing, groups of parallel power lines (corridors) are located

in the projection of the point cloud onto the x-y-plane using a 2D Hough transform (HT,

see, e.g.,[4]) . A 3D fit for each power line is then computed locally within its corresponding

corridor. In the rest of this section, we discuss our implementation and illustrate the major

steps with results obtained from a test scan provided by VPM, which covers a 1000 m flight

segment recorded with 140 m swath (scan line) width, which is shown in Fig. 1a).

2.1 Preprocessing

A DTM (digital terrain model) is computed and the terrain (i.e., non-object) points removed.

For this purpose, we use the robust interpolation method for DTM-generation proposed by

Kraus et al. [7]. Their approach is related to iteratively reweighted least squares M-estimation,

but uses an asymmetric weight function that penalizes points above the fitted surface more

than points under the surface.

In order to alleviate subsequent computations, a Karhunen-Loeve transformation is performed:

the xy-coordinates of the original data are mean-normalized, and the x-axis is aligned with

the axis of least inertia (first principal eigenvector); after this transformation, the x-axis will

point approximately in the general flight direction.

1)This is, in essence, the so called surface coherence assumption [2] underlying all region-growing approaches
based on surface fitting.



Figure 1: a) Planimetric view of test scan with terrain points already removed. The high density
area in the middle part of the image contains mainly vegetation, but also the pylons. b) Data
set after filtering and mean normalization, 4 clusters of parallel power lines (corridor segments)
extracted by the HT can be clearly distinguished.

2.2 Culling (Filtering)

Even with the terrain points removed, the HT cannot be applied immediately, since there

are still too many non-line points present.2) A particular problem in our case are vegetation

areas with high local point density, since these tend to clutter up the accumulator. Hence, we

devised a culling mechanism, which first subdivides the x-y-plane into 1 m × 1 m cells, then

binarizes the grid by assigning 1 to all non-empty cells and 0 to all others, and finally removes

all 1-cells having either no (singular area) or more than 3 (high density area) 8-neighbors in

the grid-topology. This operation can be thought of as a kind of erosion that tries to preserve

low-dimensional structures; it seems to work well in practice and, as can bee seen also from

Fig. 1b), gets rid of (or, at least, yields a substantial thinning of) the most troublesome

non-line regions with high point density.

2.3 Iterative HT

The HT is performed on the points of the original data set belonging to cells which have not

been removed during the previous filtering step.

We found that the standard HT did not work well, even on the filtered data. The reason

is that the point density among the power lines themselves can be very inhomogeneous, and

2)Although the Hough transform is a robust technique, it clearly cannot give reasonable results for data sets
consisting mostly of outliers. For this reason, the HT is normally applied to features indicating the presence
of the primitive of interest (e.g., edge images), and not directly to the original data.



lines generating a large number of return pulses (these are, for example, lines located above or

nearly above each other) tend to clutter up the accumulator in a fashion similar to high density

vegetation areas. The effect is that such areas tend to produce many, only slightly different

line hypotheses in their vicinity, each yielding a high number of votes.3) This effect can be

countered, to some degree, by reducing the resolution of the accumulator, but unfortunately

this also reduces the accuracy of the estimates. Another possibility would be to perform some

kind of non-maxima suppression, but this has not been explored yet. Instead, we employed

an iterative version of the HT, which, after each run, removes all data points supporting the

hypothesis with the highest number of votes (i.e., these points are not allowed to vote again).

This approach yields, in our case, better result than the standard HT, and, in addition, allows

us to determine the number of lines in a semi-adaptive fashion, e.g., “stop after more than

80% of points are accounted for by line hypotheses”. The results of the HT on the filtered

image are shown in Fig. 1b).

2.4 Line Clustering

The lines detected by the HT are grouped into corridor segments using a minimum linkage

hierarchical clustering approach [3], and the intersections of these segments are computed.

This step reduces the amount of data to be considered during subsequent computations, gives

an initial estimate of the position of the pylons and allows to analyze each corridor segment

in turn. A typical corridor segment is shown in Fig. 2.

2.5 Local Analysis and Catenary Fitting

During this step, the scan points belonging to a single corridor segment (between two pylons)

are segmented, i.e., assigned to individual power lines, while the line parameters are estimated.

The form of a hanging cable supported at both ends acted upon by gravity is given by the so

called catenary curve:

z = 0.5 a (ex/a + e−x/a) = a cosh(x/a), (1)

whereby a is the “elasticity” constant of the cable. We model the power lines as 3D catenaries

with 6 parameters (position, elasticity, roll and yaw angle). However, in order to compute

the actual - non-linear - fit, one has to estimate N + 6 parameters4) simultaneously using

an iterative optimization technique (e.g., Gauss-Newton). Similarly, computing the shortest

distance between N points and a given catenary involves non-linear minimization (although,

3)At a more profound level, this problem is due to limited spatial resolution ∆x of the laser scanning system:
sensed lines have a non-negligible width (up to 2∆x), and nearby singular lines become indistinguishable.

4)Since the ALS measurements have noise in all 3 coordinates, it is not sufficient to minimize only the height
residuals. Instead, one has to minimize the distance of the points from the catenary, resulting, in our case, in
N additional parameters for the catenary “parameter” x.



Figure 2: 3D view of the points belonging to complete corridor segment, including pylons and
vegetation, but terrain points removed.

in this case, the minimization(s) can be performed sequentially) and thus is computationally

rather costly. Since the catenary parameters are estimated robustly using RANSAC [5] (which

requires repeated computation of the support and thus of the distances from the hypothesized

catenaries), it is crucial to have good initial segmentation hypotheses, i.e., subsets of points

belonging, with high probability, to the same power line. We obtain these by training a Neu-

ral Gas Network on the whole corridor segment, and then performing a Competitive Hebbian

Learning (CHL) step [8]. Neural Gas is a vector quantization algorithm which approximates

the distribution of the ALS points with a small number (200 in our case) of reference vectors.

CHL connects neighboring reference vectors whose corresponding second-order Voronoi poly-

hedra are non-empty5), thus yielding a subset of the Delauny triangulation of the reference

vectors. Provided the number of reference vectors is large enough, CHL will not connect

reference vectors belonging to different power lines; however, a larger number of reference

vectors leads to longer training times and tends to produce multiple connected regions per

power line. The connected components determined by CHL now serve as pool for generating

minimal subsets of size 6, which are used in a RANSAC competition in order to robustly fit

the catenaries; an example of a fitted catenary is shown in Fig. 3.

5)The second-order Voronoi polygon Vij of two units i, j is the set of all points v for which the corresponding
reference vectors wi,wj are the two nearest neighbors.



Figure 3: Fitted catenary plus consensus set (support). Note that for visualization purposes,
the axes have been scaled differently (the catenary is about 500 m long and only 30 m high).

3 Conclusion and Outlook

We have presented an approach for 3D extraction and recognition of power lines from ALS

data. Although the preliminary results are encouraging, there still remain several open issues.

One problem that has not been tackled yet is the “concatenation” of single corridor segments

(including the fitted power lines) into corridors. Also pending is the improvement of several

of the already implemented parts, namely the filtering (culling) algorithm and the iterated

HT, discussed in sections 2.2 and 2.3, respectively.

The filtering algorithm seems to work reasonably well for scanner systems that provide an

approximately equal spacing of the points in the in-flight (x) and cross-flight (y) dimensions

(e.g., TopScan); unfortunately, this is not true, for example, for the popular TopoSys scanners

(which use a higher sampling frequency in the in-flight direction). A possible remedy is to

compute the first derivatives within a scan line in order to identify candidate points, which

are then passed to the HT. Unfortunately, the topological structure (scan line neighborhood)

is often not preserved in the recorded scans (as in the case of our test scan).

As stated earlier, we had to resort to an iterative version of the HT in order to compensate for

accumulator clutter. However, the iterative HT is a somewhat dangerous approach, in that

the removal of the support set of one false line hypothesis will affect adversely all subsequent

hypotheses . We intend to obviate the need for an iterative version of the HT by either



employing a model selection approach (e.g., MDL-based) or by detecting maxima (modes) in

the accumulator (using, e.g., the mean shift algorithm).
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