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Abstract— This paper describes a decentralized Bayesian ap-
proach to coordinating multiple autonomous sensor platforms search-
ing for a single non-evading target. In this architecture, each decision
maker builds an equivalent representation of the target state PDF
through a Bayesian DDF network enabling them to coordinate their
actions without exchanging any information about their plans. The
advantage of the approach is that a high degree of scalability and real
time adaptability can be achieved. The effectiveness of the approach is
demonstrated in different scenarios by implementing the framework
for a team of airborne search vehicles looking for a stationary, and
a drifting target lost at sea.

I. INTRODUCTION
“Yacht Grimalkin capsized in position thirty miles north-west of

Land’s End...”1

When rescue authorities receive a distress signal time be-
comes critical. Survival expectancy decreases rapidly when
lost at sea and a rescue mission’s primary goal is to search
for and find the castaways as diligently and efficiently as
possible. The search, based on some coarse estimate of the
target location, must often be performed in low visibility
conditions and despite strong winds and high seas causing
the location estimate to grow even more uncertain as time
goes by. Keeping these time and physical constraints in
mind, and given a large team of heterogeneous platforms
such as high flying long range aircrafts, helicopters and
ships equipped with different sensors, what should be the
optimal search strategy?

This paper presents a decentralized Bayesian approach
to the target detection problem as described in [8] (Chapter
9). It expands the single vehicle framework proposed in [2]
to an arbitrary number of sensing platforms by integrating
a fully decentralized Bayesian data fusion (DDF) technique
with a decentralized coordinated control scheme that was
first proposed by Grocholsky [6]. Scalability, modularity
and real-time adaptability are the advantages of the decen-
tralized approach. At any time, new rescue vehicles can
join, or momentarily quit for refuelling, the search effort
and the system should seemly and robustly adapt to the
change.

The breakdown of the paper is as follows. Firstly, the
decentralized Bayesian filtering algorithm that accurately
maintains and updates the target state probability distri-
bution is described in the next section. Then section III
describes the searching problem, and section IV describes
the utility function selected and formulates the decentral-
ized control optimization problem. Then, in section V the
effectiveness of the approach is demonstrated for multiple

1Coastguard broadcast during the desastrous 1979 Fastnet yacht race,
August 14, 1979 [9]

airborne search vehicles in three different scenarios for sta-
tionary, and drifting targets, and in one instance, the optimal
cooperative solution is compared with the coordinated one.
Finally, conclusions and ongoing research directions are
highlighted in the last section.

II. BAYESIAN FILTERING

This section presents the mathematical foundations of
the Bayesian decentralized data fusion algorithm that keeps
track of the target state PDF. The Bayesian approach is
particularily suitable for combining in a rational manner
heterogeneous non-gaussian sensor observations with other
sources of quantitative and qualitative information [11][1].

In Bayesian analysis any quantity that is not known
is considered a random variable. The state of knowledge
about such a random variable is expressed in the form of
a probability density function (PDF). Any new information
in the form of a probabilistic observation is combined with
the previous PDF using the Baye’s theorem in order to
update the state of knowledge and form the new a posteriori
PDF. That PDF forms the quantitative basis on which all
inferences, or control decisions (Sec.IV) are made.

In the searching problem, the unknown variable is the
target state vector xt ∈ X t which in general describes the
target location but could also include its attitude, velocity,
etc. The analysis starts by determining the a priori PDF
of xt , p(xt

0|z0) ≡ p(xt
0), which combines all available in-

formation including past experience. For example, this a
priori PDF could be in the form a gaussian distribution
representing the prior coarse estimate of the parameter
of interest. If noting but the bounds is known about the
parameter, the least biased approach is to represent this
knowledge by a uniform PDF over the bounded region
of the space. Then, once the prior distribution has been
established, the PDF of the target state at time step k,
p(xt

k|z1:k), can be constructed recursively, provided the
sequence z1:k = {zi

j : i = 1, ...,Ns, j = 1, ...,k} of all the
observations made from the Ns sensors on board the search
vehicles, zi

j being the observation from the ith sensor at
time step j. This recursive estimation is performed in two
stages: prediction and update.

A. Prediction
A prediction stage is necessary in Bayesian analysis

when the PDF of the state to be evaluated is evolving with
time i.e. the target is in motion or the uncertainty about
its location is increasing. Suppose we are at time step k−1
and the latest PDF update, p(xt

k−1|z1:k−1) is available. Then
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the predicted target state PDF at time step k is obtained by
the following Chapman-Kolmogorov equation

p(xt
k|z1:k−1) =

∫

p(xt
k|x

t
k−1)p(xt

k−1|z1:k−1)dxt
k−1 (1)

where p(xt
k|x

t
k−1) is a probabilistic Markov motion model.

If the motion model is invariant over the target states, then
the above integral is simply a convolution. Practically, this
convolution is performed numerically by a discretization of
the two PDF’s on a grid, followed by the multiplication of
their Fast Fourier Transforms (FFT)’s, and an inverse FFT
of the produce to retrieve the result.
B. Update

At time step k a new set of observations zk = {z1
k , ...,z

Ns
k
}

becomes available and the update is performed using the
Bayes rule where all the observations are assumed to be
independent. In other words, the update is performed by
multiplying the prior PDF (posterior from the prediction
stage) by all the individual conditional observation likeli-
hoods p(zi

k|x
t
k) as in the following

p(xt
k|z1:k) = K p(xt

k|z1:k−1)
Ns

∏
i=1

p(zi
k|x

t
k) (2)

where the normalization coefficient K is given by

K = 1/
∫

[

p(xt
k|z1:k−1)

Ns

∏
i=1

p(zi
k|x

t
k)

]

dxt
k (3)

Practically, the multiplication of equation 2 is performed
numerically by multiplying together the corresponding el-
ements of a grid.
C. Bayesian DDF

In an information gathering task such as searching, if
each sensor is connected to a processing unit called a
node, then it is possible through communication and fusion
of the information to reconstruct at each node the global
information state of the world, e.g. the target state PDF.
Figure 1 depicts how the update and prediction equations
are integrated in the Bayesian DDF node of fully connected
network.

Fig. 1. Bayesian DDF node of a fully connected network.

III. THE SEARCHING PROBLEM

This section describes the equations for computing the
probability of detection of a lost object referred to as the
target. For further details on the searching problem see [10]
and [8].

If the target detection likelihood (observation model)
from the ith sensor at time step k is given by p(zi

k|x
t
k) where

zi
k = Di

k, and Di
k represents a “detection” event by sensor

i at tk, then the likelihood of “no detection” by the same
sensor is given by its complement p(D

i
k|x

t
k) = 1− p(Di

k|x
t
k).

The combined ‘no detection’ likelihood for all the sen-
sors at time step k is simply a multiplication of the
individual no detection likelihoods

p(Dk|x
t
k) =

Ns

∏
i=1

p(Di
k|x

t
k) (4)

where Dk = D
1
k ∩ ...∩ D

Ns
k represents the event of a ‘no

detection’ observation by every sensor at time step k.
At time step k, given all the previous observations z1:k−1,

the conditional probability of a combined ‘no detection’
event (zk = Dk) to occur, noted p(Dk|z1:k−1) = qk, depends
on how the combined ‘no detection’ likelihood (Eq. 4), and
the latest target PDF (from the prediction stage 1) overlap.
In fact, qk is given by the reduced volume (i.e. < 1) of the
target PDF after having been carved out (multiplied) by the
‘no detection’ likelihood in the update stage equation (Eq.
2) and before applying the normalization coefficient K to
it.

p(Dk|z1:k−1) =
∫

p(Dk|x
t
k)p(xt

k|z1:k−1)dxt
k = qk (5)

Notice that qk is exactly the inverse of the normalization
factor K for a ‘no detection’ event (i.e. qk = 1/K for zk = Dk
in equation 3), and is always smaller than 1.

Hence, if qk represents the conditional probability of
failing to detect the target for a specific observation step,
then the joint probability of failing to detect the target in
all of the steps from 1 to k, noted Qk = p(D1:k), is obtained
by the product of all the qk’s as follows

Qk =
k

∏
i=1

p(Di|D1:i−1) =
k

∏
i=1

qi = Qk−1qk (6)

where D1:i−1 is the set z1:i−1 of observations where every
observation is ‘no detection’ (Di,∀i). From the above it can
be deduced that the probability that the target has gotten
detected in k steps, noted Pk, is given by Pk = 1−Qk.

Another way of obtaining Pk is to first compute pk, the
probability that the target gets detected for the first time on
time step k as follows

pk =
k−1

∏
i=1

p(Di|D1:i−1)
[

1− p(Dk|D1:k−1)
]

=
k−1

∏
i=1

qi

[

1−qk

]

= Qk−1

[

1−qk

]

(7)

Assuming no false detection from the sensors, the proba-
bility of detection Pk is given by the cumulative sum of the
pk’s

Pk =
k

∑
i=1

pi = Pk−1 + pk (8)

For this reason we will refer to Pk as the ‘cumulative’ prob-
ability of detection to distinguish it from the conditional
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probability of detection at time k which is equal to 1−qk.
Notice that as k goes to infinity, Pk increases towards one.
With k increasing, the added probability of detection pk
gets smaller and smaller as the conditional probability of
detection (1−qk) in Eq. 7 gets discounted by a continuously
decreasing Qk−1.

The mean time to detection (MTTD) is the expectation
of the number of steps required to detect the target

E[k] =
∞

∑
k=1

kpk = MTTD (9)

To summarize, the goal of a searching strategy could either
be to maximize the chances of finding the target given
a restricted amount of time by maximizing Pk over the
time horizon, or to minimize the expected time to find
the target by minimizing the MTTD. The difficulty though
in evaluating the MTTD lies in the fact that one must in
theory evaluate pk for all k’s up to infinity. Although in
practice MTTD could be evaluated approximatively over a
sufficiently long interval (i.e. Pk must be close to 1).

IV. PLANNING
A. Optimal Trajectory

Optimality is always defined in relation to an objective, or
utility function [12]. For a multiple sensor platforms control
solution to be optimal (i.e. cooperative), it must be the
negotiated jointly optimal group decision. For the searching
problem there are two suitable candidates to evaluate a
trajectory utility, namely the the MTTD (Eq. 9), and the
cumulative probability of detection Pk (Eq. 8). In this paper,
the later objective function is used.

Hence, for an action sequence u = {u1, ...uNk
} over a

time horizon of length T = Nk dt, we have the following
utility function

J(u,Nk) =
k+Nk

∑
i=k

pi = Pk+Nk
−Pk (10)

where u is a Ns×Nk matrix where Ns and Nk are the number
of sensors/vehicles and the number of lookahead steps
respectively. The optimal control strategy u∗ is the sequence
that maximizes that utility subject to uLB ≤ u ≤ uUB.

u∗ = {u∗
1, ...,u

∗
Nk
} = argmax

u
J(u,Nk) (11)

For the searching problem, because early actions strongly
influence the utility of subsequent actions, the longer the
time horizon, the more likely the computed trajectory is
to be globally optimal. However, the computational cost
follows the “curse of dimensionality” and with increas-
ing lookahead depth becomes intractable. In practice only
solutions for very restricted number of lookahead steps
are possible. One way to increase the lookahead without
increasing the cost of the solution too much is to have a
piecewise constant (see [7] and [3]) control sequence where
each control parameters is maintained over a specified num-
ber of time steps, and to recompute the planned trajectory

at short intervals. Such control solutions are said to be
‘quasi-optimal’ as they compromise the global optimality
of the control solution for a lower computation cost, but
nevertheless, depending on the problem at hand, often
provide better trajectories than the ones computed with the
same number of control parameters but with shorter time
horizons.
B. Coordinated Planning

A coordinated is different than a cooperative control solu-
tion. In a coordinated control architecture, decision makers
plan individually based on their current knowledge of the
world (e.g. target state PDF) and only exchange observed
information via the DDF network which ensures that each
platform share a common global image of the world [6].
There is no mechanism to reach a negotiated outcome, but
the information exchanged between the decision makers
influence each others subsequent decisions by altering the
prior on which these local decisions are made. Hence
coordinated trajectories are realized simply by activating a
DDF network with independent control laws implemented
internally at each sensor/vehicle node (fig.1).

Coordinated solutions are suboptimal, but they have the
advantage of being completely decentralized. As such,
because the individual planning computation costs do not
increase with the number of platforms, they offer tremen-
dous scalability potential limited only by the communica-
tion medium. Although it can be implemented for longer
lookahead, the simplest form of coordinated control is
for one-step lookahead. As will be demonstrated in the
results section (Sec. V-B), this greedy form of coordinated
searching strategy provides very sensible control solutions
at very low computational costs.

V. APPLICATION
Ultimately, the goal of the ongoing research effort is to

demonstrate the autonomous search framework on ACFR’s
fleet of unmanned air vehicles (UAV’s) (fig. 2a). A stepping
stone towards this goal is to use ACFR’s high fidelity
simulator (fig. 2b) of the UAV’s hardware, complete with
different sensor models, and DDF communication proto-
cols, on which the flight software can be tested before
being implemented on board the platform almost without
any modifications [4].

The rest of this section describes the implementation of
the coordinated Bayesian searching framework for a single
lost target that could either be stationary or mobile by
multiple airborne vehicles. However, the method is readily
applicable to searching problems of all kinds, let it be
on land, underwater or airborne search for bushfires, lost
hikers, enemy troops in the battlefield, or prospection for
ore and oil, or even to search for water or evidence of life
on another planet.
A. Problem description

The problem chosen for the illustration of the frame-
work involves the search for a life-raft lost at sea by a
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(a)

(b)
Fig. 2. (a) The fleet of Brumby Mark-III uav’s been developed at ACFR as
part of the ANSER project. These flight vehicles have a payload capacity
of up to 13.5 kg and operational speed of 50 to 100 knots. (b) Display of
the high fidelity multi-UAV simulator.

group of Ns airborne sensor platform i = 1, ...,Ns equipped
with GPS receivers (assuming perfect localization), and
a searching sensor (downward looking millimeter wave
radar) that can be modelled by likelihood functions (over
range and bearing) hence relating the control actions to the
probability of finding the target. Each vehicle is moving in
the xy plane at constant velocity Vi where the single control
parameter ui

k is the heading rate and is maintained over
the time interval dt. The maximum heading rate amplitude
(umax = ±1.1607 rad/s) corresponds to a 6g acceleration,
the UAV’s manoeuvre limit at V = 50 m/s ( 100 knots).
There is one observation (full scan) made once every second
by each sensor. The sensors are assumed to have perfect
discrimination i.e. no false target detection. However, they
may fail to call a detection when the target is present i.e.
miss contact. The omnibearing sensors’ maximum range
( 400m) is much smaller than the size of the searching area
(2km x 2km). Drift current and winds (of up to 30 knots)
affect the target distribution over time in a probabilistic way
through the process model. The target PDF is of general
form and is evaluated and maintained on a discrete grid.
As the length of the search is limited by the vehicles
fuel autonomy, the search objective consists in maximizing
the cumulative probability of finding the target in a fixed
amount of time (Eq.10).

For details of the vehicles and the target motion models,
as well as the sensors detection likelihood,the readers are
referred to [2].

B. Results
For all the results presented in this section, except the

last example, the initial target PDF is assumed to be a
symmetric Gaussian distribution centered at the origine

with a standard deviation of 500m, and except for the
heterogeneous case, the searching vehicles are all flying
at an altitude of 250m.

1) Stationary Target: Figure 3 shows the resulting coor-
dinated ‘greedy’ (1-step lookahead) search trajectories for
2 vehicles and the corresponding 3D views of the target
PDF evolution at different stages as the search progresses
from 0 to 180 seconds. The fact that each vehicle build an
equivalent representation of the target state PDF through
DDF enables them to coordinate their actions without
exchanging any information about their plans. Although
this solution is very cheap computationally, it produces
efficient plans that correspond to maximizing locally the
individual payoff gradients. However because of the myopic
planning, the vehicles fail to detect higher payoff values
outside their sensor range. Figure 3e displays in solid line
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(c) (d)
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(e) (f)
Fig. 3. Coordinated greedy search for a static target: (a) 3D view of the
prior (Gaussian) target distribution and the platform locations (time tk =
10), (b) to (d) Views of the platform trajectories and the updated target
pdf at time tk = 30, 60 and 180 respectively, (e) Conditional (solid line)
and ‘discounted’ (dashed dotted line) probability of detecting the target on
time step k (p(Dk|z1:k) = 1−qk, and pk = Qk(1−qk)), and (f) cumulative
probability probability of detection Pk for the coordinated (solid line), and
cooperative (dashed line) 1-step solutions.

the conditional probability of detection (1−qk) obtained at
every time step tk. The dashed line represents the actual
probability that the target gets detected on that time step
which is the same as the solid line, but discounted by Qk−1
which corresponds to the payoff function pk. The peaks
in both functions are happening when the search vehicles
flyby over high probability regions in the target PDF.
Figure 3f shows the ‘cumulative’ probability Pk that the the
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target as been detected by time step tk for the coordinated
superimposed with the cooperative solution. This along with
the computed trajectories (not shown) confirms that for very
short lookahead depths, both solutions are very similar.
Another phenomenon to notice about the greedy search is
the fact that because the volume under the PDF is always
equal to one, as the vehicles traverse a mode of the function
(e.g. when they both converge to the original PDF mode for
the first time (figure 3a), it has the effect of pushing away
the probability mass hence increasing the entropy of the
distribution, consequently making it harder and harder to
increase the utility as time passes. The phenomenon will be
referred to as the scattering effect. Intuitively, for a given
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(c) (d)
Fig. 4. Trajectory optimization: (a) Quasi-optimal cooperative trajectories
for a 60s search (6 control parameters per trajectory maintained for 10s
each), and (b) comparison between Pk evolution (top), and control selec-
tions u(k)’s (bottom) for the coordinated 1s lookahead (greedy) solution
(solid line), and the 6 parameters piecewise constant solution (dashed
line), (c) and (d) Greedy and quasi-optimal trajectories (12 parameters)
respectively for 1 vehicle over 120s. The corresponding Pk’s compressed
on 60s are the dotted lines shown in (b).

fixed trajectory length one could imagine that, instead of
rushing to the PDF’s peak as in the greedy solution, the
optimal strategy would be to circle around the peak but
without flying over it, in such a manner as to plow the
probability mass towards the peak, effectively concentrating
it (reducing the entropy), in order to increase the payoff of
the last observations. In fact, as shown on figure 4a, this
is exactly what happen. The piecewise constant cooperative
‘optimal’ control solution with 6 parameters per trajectory,
for a 60s plan, shows the paths spiraling in instead of
spiraling out. The comparison between the utility function
evolution (figure 4b) shows what one would anticipate. The
greedy solution first gets a head start as each vehicle go
straight to the peak to finish with P60 = .673, but the ‘quasi-
optimal’ solution progresses steadily to ultimately finish
with P60 = .757, a 12.5% increase.

Also shown in figure 4b are the single vehicle ‘greedy’
and ‘quasi-optimal’ Pk’s (dotted lines) for which the corre-
sponding trajectories are illustrated in figure 4c and d. In

order to compare the cumulative probabilities for the same
number of observations, the Pk’s of the single vehicle are
actually the results of 120s long plans displayed on the
60s long graph. Hence one can see that when the optimal
trajectories are computed, two vehicles are performing
about twice as fast as one vehicle, but with a very small
loss in efficiency due to interference. For the ‘greedy’ (1-
step lookahead) case the coordinated solution is also very
similar to the single vehicle case, but is not necessarily
worse than a single vehicle going twice as fast.

2) Drifting Target – Heterogeneous Vehicles: This sec-
tion demonstrates the method for heterogeneous vehicles
searching for a drifting target. A slower vehicle (V2 =
40m/s), flying at an altitude of 600m is teaming with
two faster vehicles (V1,3 = 55m/s) flying at lower altitude
(250m). Because vehicle number 2 is flying higher, it has a
lower resolution (i.e. lower detection likelihood), but it has
a larger field of view (800m vs 400m of ground radius).
The optimization technique is the same used as for the
static target, but the computational costs are increased by
a few fold as the convolution operation needed for the
target prediction stage is a costly operation. This is also
compounded by the fact that because the target PDF is
moving, a larger grid is necessary, making it even more
costly to perform the convolution and the optimization.
Nevertheless, the coordinated greedy solution is still very
effective. The 3D plots of the search evolution are shown
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(c) (d)
Fig. 5. Coordinated (1s lookahead) search for a drifting target with 3
heterogeneous vehicles: (a) to (c) 3D views of the searching vehicles tra-
jectories and updated target PDF at time tk = 30, 90, and 150 respectively,
and (d) Cumulative probability of detection Pk.

on figure 5. Once again, the coordinated solution shows
quite reasonable trajectories terminating with P150 = 95.5%
(figure 5d).

3) Scalability: In this example the real strength of the
coordinated control strategy is demonstrated for 10 vehicles
searching for a stationary target without increasing the com-
putation cost at each node. Figure 6 illustrates the evolution
of the coordinated trajectories. By allowing a more efficient
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Fig. 6. Coordinated search for a static target with 10 vehicles:(a) to (d)
3D views of the target PDF and the coordinated trajectories evolution at
time tk = 1, 60, 120 and 180s respectively, (e) Straight pattern search at
tk = 160s, and (f) Pk for the coordinated (solid line) vs. the flight formation
(dashed line) search.

allocation of the search effort, the coordinated approach
compares advantageously to the simple scanning search
strategy shown on figure 6e which is somewhat reminiscent
of current searching strategies followed by coastguards and
Navies. In fact after 160s, the time needed for the formation
to traverse the searching area, Pk reaches a value of only
P160 = .575 vs. P160 = .718 for the coordinated solution, a
24.9% increase (fig. 6f).

VI. SUMMARY AND ONGOING WORK

This paper addressed the problem of coordinating multi-
ple possibly heterogeneous sensing platforms performing a
search mission for a single target in a dynamic environment.
The general decentralized Bayesian framework presented
explicitly considers the search vehicles kinematics, the sen-
sors detection function, as well as the target arbitrary mo-
tion model. It was demonstrated to adaptively find efficient
coordinated search plans in a completely decentralized way.
A major appeal of the approach is that nodal computation
costs are kept constant regardless of their number thus
offering a high potential for scalability.

Because of the nature of the search problem, it is quite
important to accurately keep track of the very non-Gaussian
target state PDF. However, any grid based approach such
as the one presented is intrinsically subject to the “curse

of dimensionality”, and as soon as one needs to increase
the search area, the resolution of the grid, or the number
of dimensions in the state-space, computational costs tend
to get out of hand. As part of the ongoing research effort,
techniques such as Monte Carlo methods, or particle filters
[5], as well as the so called kernel methods are being
investigated to overcome the computational limitations.

Another limitation of the technique as presented comes
from the assumption that every DDF node transmits and
receives every single observation without a miss via broad-
casting. Beyond the obvious bandwidth limitations, such
assumptions are not quite practical in real life since com-
munication systems are plagued by delays and intermittent
transmissions. To overcome this problem, work in progress
also involves developing a channel filter to allow the
Bayesian DDF network to be tree connected and hence
reduce drastically the communication loads that are in-
curred in a fully connected network, as well as allowing
intermittent burst communications.

Beyond the demonstration of the approach on a team
of UAV’s, the ultimate objective of this research is to
eventually have multiple platforms participating in actual
search and rescue (SAR) missions with real-time coop-
erative planning and fully integrated human in the loop
inputs. As shown by the results presented, the technique as
the potential to greatly improve on current SAR protocols,
which in turn could be critical in saving human lives.
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