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Abstract

We determine the optimal adaptive rate and power con-
trol strategies to maximize the total average throughput in
a multicode CDMA system. Peak power and instantaneous
bit error rate (BER) constraints are assumed at the trans-
mitter with matched filter detection at the receiver. We first
obtain results for the case where the codes available to each
user are unrestricted, and we then consider the more prac-
tical scenario where each user has a finite discrete set of
codes. An upper bound for the maximum average through-
put is obtained and evaluated for Rayleigh fading. Sub-
optimal low-complexity schemes are considered to illustrate
the performance tradeoffs between optimality and complex-
ity. We also show that the optimum rate and power adap-
tation scheme with unconstrained rates is in fact just a rate
adaptation scheme with fixed transmit powers, and it per-
forms significantly better than adapting just power alone.

1. Introduction

Although adaptive modulation and multirate CDMA
form the foundations for the third generation of wireless
communication systems, adaptive CDMA remains a rela-
tively unexplored area of research. In this work we investi-
gate the maximum throughput that can be achieved through
joint rate and power adaptation in a multirate CDMA sys-
tem. We assume conventional matched filter detection with
perfect channel information and an instantaneous BER con-
straint. We restrict our attention to multicode or multi-
ple processing gain schemes, which have been shown to
have almost the same performance [1][2]. Other multi-
rate CDMA schemes have also been proposed but are not
as viable as multicode or multiple processing gain schemes.
The conventional matched filter receiver, although subop-
timal for multiuser detection, remains popular because of
its simplicity. We use a maximum power constraint since
any transmitter will in practice necessarily have an upper
limit on its transmit power, especially on the reverse link.
Our QOS measure is the maximum instantaneous bit error
rate or, equivalently, the minimum (E;/N,) 55 Necessary
for each of the transmitted spreading codes of a user.

2. System Model

We consider a single cell, variable rate multicode (or
multiple processing gain) CDMA system with K users,
each having a specific set of M code sequences (or spread-
ing gain values) to choose from. The code sequences as-
signed to a user are orthogonal so that a user does not in-
terfere with himself. However, users do interfere with each
other, ie. sequences transmitted by different users are not
orthogonal to each other. The system uses BPSK with co-
herent demodulation. A maximum instantaneous bit er-
ror rate constraint must be met for a user to transmit on
the channel. The channel is affected by slow fading (as-
sumed constant over a bit time), additive white Gaussian
noise (AWGN), and multiple access interference (MAI) due
to other users. The user’s channel access is assumed to be
asynchronous.

Under the standard Gaussian approximation [2] the in-
stantaneous bit energy to noise spectral density ratio for the
i** user can be expressed as [3]

P;i(x)

ﬂ o ni(X)
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where I = {1,2,---,K} is the index set of users and
X = {x1, X2, , Xk} is the vector of channel power fade
levels experienced by each user. P;(x) = Si(x)g:i(r:)x: is
the received power, where S;(x) is the transmitted power,
r; 1S the user’s distance from the base station and g;(r;) is
the propagation path loss. NV, is the AWGN power spectral
density. For multicode CDMA, N is the spreading gain
and n; (%) is the number of orthogonal, synchronous codes
transmitted in parallel by user i. For variable spreading, N
is the maximum spreading gain (corresponding to the mini-
mum or unit rate) of the system and rates n; () are achieved
by reducing the spreading factor for user 4 to % The
chip duration T, remains fixed in all schemes.

We assume that a perfect estimate of the channel state ;
and the propagation path loss g;(r;) of each user is available
at the base station. Also, a reliable feedback channel exists
to send power and rate control information from the base
station to the mobiles with no errors and negligible delay.



Henceforth, for brevity we will limit our discussion to
multicode systems. However, note that the system model
as defined earlier applies to both multicode and multiple
spreading gain systems, and therefore our results can be re-
formulated to apply to multiple spreading gain systems [4].

3. Problem Definition and Constraints

Our goal is to maximize the total throughput of the sys-
tem averaged over the fading distributions of the users, sub-
ject to a peak transmit power constraint and an instanta-
neous BER constraint. The total throughput is defined as
the sum of the data rates of all users. The instantaneous
BER constraint implies that a user can transmit on the chan-

nel only if his instantaneous (%) i is above a specified

€

target level. We assume the same BER constraint for all
users. The peak transmit power is usually determined by the
transmitter hardware. However, depending on the path loss
and channel fade different users may have different peak re-
ceived power constraints. Subject to these constraints, we
wish to find the optimal rate and power adaptation on the
fading channel that maximizes the average total throughput.
Note that since our power and BER constraints are instanta-
neous (rather than average), average throughput maximiza-
tion is the same as instantaneous throughput maximization
for each fade vector. The general optimization problem is
therefore as follows: Find the optimal rate and power adap-
tation to maximize the instantaneous throughput

Topt(X|c1yc2. .. Cn :crila,x E nk (X
e kel

subject to the constraints cy, ca, . - . , Cp.

The constraints we use in different sections, abbreviated
as cx, or ¢y, are provided here for reference. For all ¢ € I,
the constraints are

Peak Power (c1): 0L P, (Y) P; maz(Xi)

Max BER (c2) : when P;(%) > 0 then
2
nil) > (Q7!(BER))?

v ker iy Pe(X) + v

Unlimited Rates  (e3): 0 < n;(x) < oo

Continuous Rates  (c4) : n;(X%) € R

Limited Rates (c5): 0<ni(x) <M

Discrete Rates (ch): ni(x) e z*

4. Optimal Unlimited Continuous Rate and
Power Adaptation

In practical multicode CDMA systems the number of
codes transmitted by a user at any instant can only be an
integer between 0 and M. In this section we relax this con-
straint and treat n; (%) as a continuous variable that takes
values over the entire range of positive real numbers. The

resulting maximum throughput gives an upper bound on the
performance of practical systems. Under this assumption
we present the following proposition:

Theorem 1 The optimal solution that maximizes the aver-
age total throughput is such that

Pk(Y) € {Oa Pk,maa:(Xk)}

That is, either a user does not transmit, or he transmits at
full power.

Vk € 1.

Proof From (c2) we get that
Pi(x) 3N
> ker—qiy Pe(X) + 3%:" (Q~(BER))*’

Note that we replaced the inequality in (c2) by an equal-
ity. This is because in a CDMA system, transmit power
needs to be just enough to meet the BER constraint. Dif-
ferentiating the total instantaneous throughput T'(%) =
> ier ni(X) twice with respect to P;() we can easily ver-

ify that 2 Sk > 0. Hence T(x) is a convex function of
P;(x) and the maximum value will always lie at the bound-
ary. This completes the proof.

Without loss of generality we assume that

)

ni(X) =
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Under this assumption we define the best & users as the first
k users in the index set I. Note that these are the best users
since they have the greatest received powers at the base sta-
tion when transmitting at their maximum power.

In light of Theorem 1, we can write the optimum instan-
taneous throughput subject to our constraints as

DPi,maa: (Xz)

Topt(X|c1, 2,3, ¢4) =
” ’ ’ ’ 'iEIopt ZkEIoPtf{i} Pk,maz(xk:) + C ’

where for notational convenience, we define D =
3NN -
GE I(BER sand C = . Iope C I is the set of users

transmlttlng at their peak powers for maximum throughput.
We still need to find I, for the optimum solution. There
are 2K — 1 non-empty subsets of I, and the throughput for
each can be found according to equation given above. How-
ever, it is easy to see that if k,p, users need to transmit ac-
cording to the optimal adaptation then without loss of gen-
erality they can be the k,,; best users. Thus, to obtain I,
we only need to find k,,; for which there are only K possi-
bilities.

5. Optimum Limited Continuous Rate and

Power Adaptation Scheme

In the previous section we allowed an unlimited number
of codes for every user. However, since a user’s codes are



orthogonal, the number of codes available to a user cannot
exceed the processing gain of the system. Another factor
that further limits the number of codes in a practical sys-
tem is the constraint on the Peak-to-Mean Envelope Power
Ratio (PMEPR) for linear amplification. It has been shown
that for random codes PMEPR increases linearly with the
number of parallel codes [2]. It is therefore interesting to
see how throughput is affected when we limit the number
of codes available to a user.

We wish to find Top (X, |c1, c2, 3, ca). Note that we
still assume that the number of codes is a continuous vari-
able (c4). Let the optimum throughput be achieved with the
kopt best users transmitting. Let us partition the set I,
into three mutually disjoint and collectively exhaustive sub-
sets I'ns, Ip and Ig, such that I, is the index set of users
operating at the rate boundary (transmitting M codes), Ip
is the index set of users at the power boundary (transmitting
at peak power S; mq5) that are not at the rate boundary, and
Iy is the index set of the remaining users that need to trans-
mit to achieve the maximum throughput. Let the number
of users in each set be ks, kp, and kg respectively. The
following propositions characterize the optimal powers and
rates of users in these sets.

Theorem 2 The optimal solution is such that Vi, j € I,p,
if P;(x,7) > Pj(X,7) > 0,theni € Ip; U Ip.

Proof It can be easily verified that for two users, ¢ and 7,
such that P;(x,7) > P;(x,7) > 0,and ¢ ¢ Ip; U Ip, the
total throughput increases if we decrease P; and increase
P; so that the total power P; 4 P; is fixed. Thus, the proof
follows by contradiction. For details see [4].

Theorem 3 The optimum solution is such that

Vi, j € I PZ(YaF) :Pj(27F) :PM(YaF)a (4)
Vielp Pi(X,T) = Pimac(XirTi), ®)
kr <1, (6)

VieIp Pu(X,7) > Pi(X,7) > Pg, (M

where Py is the received power of the user in Ig (i.e. not
at his rate or power boundary). By (6) there can be at most
one such user. If there is no such user we define P = 0.

Proof  First, consider two users on the rate boundary
i,j € Ip. This implies that n;(x,7) = n;(x,7). Sub-
stituting from (2) proves (4). (5) follows from the defini-
tion of Ip. (6) follows from Proposition 2 and the fact that
equal received powers correspond to a minimum in the total
throughput as mentioned earlier. Since higher rates require
higher powers, (7) is trivial.

Propositions 2 and 3 tell us that the maximum throughput
with finite rates is achieved with ks best users at the rate
boundary, each with the same received power Py (), the

next kp best users at the power boundary (transmitting at
Si maz), @nd at most one user with received power Pg that
is not at his power or rate boundary. Assuming we know
kar and kp we now want to find the optimum values of
PM(Y, T) and PR(Y, 7).

Using (2) to obtain Pg in terms of Py (%) and P; az,
the total throughput can be written as

TkMykP (Y|cl’ C2, C.{s, 04) =

D(Py (%7) (B +1—kn)—Pp,—C)
ke M+ Py ot Prr (R7)FC

DPi,ma.w (X‘ia’r‘i)
+ ZiGIP Pt (%,7) (14 37) = Pi,maz (xi:73) © ®)

Differentiating the total throughput with respect to
Py (%,7) and equating the derivative to zero gives us the
equation that can be solved to obtain Py, (%) and Pr(x). A
more detailed description of the derivation is given in [4].
We use this scheme to find the optimum average throughput
for our system in Section 9.

6. Analytical Upper bound for Unlimited Con-
tinuous Rate and Power Adaptation

The optimal scheme considered earlier gives us a way
to find the maximum instantaneous throughput achievable
for a given channel fade-vector and a given user location
vector. However, an analytical expression for the maximum
average (averaged out over the probability distribution of
the channel fade vector) throughput is difficult to achieve.
We can upper bound this optimal average throughput by the
throughput achieved when every user is as good as the best
user. Mathematically,

Topt (Y|Cla 02) < Topt(%|clla C2)a
where
cll :0< Pz(Y) < Pmaz(?) = Iz_lglxpj,maw(x‘i)-
Now, the optimum rate and power allocation strategy gives

us

Dktranspmam (Y)
max
0<ktrans <K (ktrans - 1)Pmaz (Y

{ DKPypas(X) if Praz (X

Topt (X}, c2) C

<C

NN

(E~1)Ppas(X)+C
%M otherwise.

For the symmetric case, S; maz9i(ri) = Smasz, Vi € I
and assuming Rayleigh fading, the ;s are exponential dis-
tributed as p,, () = & exp(—2) and the probability distri-
bution of P,,,, is found to be [4]

Prree(@) = (1 —exp(-2) e (-2). @)



Straightforward integration then yields the average through-
put upperbound as

— _ — 7: 2 1
T -S5O K0 { B () T
+ 255 (et (1= el 2G) - 5 el
C(i KC(i
(7o sie=s] - [o. 50 )) 1)
In Section 9 we compare the average throughput given by
this upper bound with the optimal average throughput found

through Monte Carlo simulations with the optimal schemes
described in the other sections.

7. Optimum Limited Discrete Rate and Power
Adaptation

We now consider the throughput in a more practical sys-
tem with limited discrete rates Top: (X, 7|1, c2, ¢35, ¢}). We
need the following proposition:

Theorem 4 The received powers required to achieve a rate
vector m = {ny,n9, -+ ,ng}, n; € Z*, can be expressed
as

) =C(55) 1= vier, @

n; +D

where v = Zjel n"ﬁ Moreover, for a given rate vector
) J

to be achievable, we must have v < 1.

Proof The expression for P;(%) is obtained by solving (2)
for a given rate vector. The achievability condition v < 1 is
required because the powers have to be positive.

The achievability constraint v < 1 gives us the maxi-
mum number of users that can transmit simultaneously as

Kpas <1+ D. (11)

Since we only have discrete limited rates, we can construct a
table of all possible rate vectors (that satisfy v < 1) and the
received power vectors required to achieve the correspond-
ing rate vectors obtained using Proposition 4. Note that this
table does not depend on the channel state. However, for a
given channel state the peak recieved power constraint de-
pends on the channel state. Thus the optimal adaptation
policy is to find the maximum throughput rate vector in this
table for which the required received power vector satisfies
the peak received power constraint for that channel state.

Although the size of the table can be large, note that
it is much less than M ¥ since the maximum achievable
throughput is much less than M K for large K. Moreover,
the size of the table does not increase as the number of users
increases beyond K., (defined in (11)).

A more detailed discussion on how the search can be
made more efficient is included in [4]

8. Optimal Power Control vs Optimal Rate
Control

In this section we wish to find the maximum average
throughputs achieved with rate or power control alone.
First we consider optimum power control, so that when-
ever a user transmits, he uses a fixed number of codes
M, while the transmit power is adapted to the chan-
nel fade vector. The average throughput for such a sys-
tem is T = ME[k(x)], where k(x) is the number
of users transmitting M codes for a given channel fade
vector . Since we are interested in the average over
the fading distribution, we consider the symmetric case,
P;(x) < Smazxi- Now, if k(%) users are transmitting
the same number of codes simultaneously, they must all
have the same received power Pj(%). Substituting into
(2) we get Py(x) = Lr%k(*) which implies that x; >
M
m = Xmin (k) Vi € Iop:(X). The optimum
power adaptation in this case is to choose the maximum
k such that at least & users have channel fades better than
Xmin (k). The distribution of % is found as Prob[k(X) >
k] = Prob [k or more users have fades x; > Xmin(k)] =
Zf‘;k (%) pi,(1—pk) K1, where p, = Prob[x; > Xmin (k)]
and the {x;} are independent, identically distributed. Us-
ing this we obtain the average throughput achievable with
power adaptation alone as

min(K,|D/M+1]) K K
Y i \K—i
> (3 (V-
k=1 i—k
- Z ( )Pk+1 Pk+1)K_i)- (12)
i=k+1

Next we look at optimum rate adaptation. We restrict our
system so that whenever a user transmits, he uses a fixed
power P, while the number of codes is adapted to the chan-
nel fade vector. We assume the number of codes to be con-
tinuous and unlimited. But this gives us our optimum power
and rate adaptation scheme considered in Section 4. Hence,
the optimum rate and power adaptation is actually just the
optimum rate adaptation.

9. Numerical Results

The average throughput under different constraints is
found and plotted in Figure 1. The parameters common to
the curves in Figure 1 are : Spreading Gain N = 63,D =

3N _ _
© (BER)E = = 12db. All users are

assumed to have the same peak transmit power and the same
propagation path loss. Channel power fades are assumed to
be exponential distributed (flat Rayleigh fading) with unit
variance. M=10 for limited rates schemes. With these pa-
rameters, the maximum number of users that can transmit

20, ( Smesg(t)e



simultaneously is K, = 20. Average throughput for the
various schemes is found using Monte Carlo simulations.
The analytical upper bound curve is also plotted in the same
figure. As expected, for a given number of users in the sys-
tem, the average throughputs for various schemes are in the
order:

Analytical Upper bound (AU)> Optimum Unlimited
Continuous Rate and Power Adaptation (OUCRPA) >
Optimum Limited Continuous Rate and Power Adapta-
tion (OLCRPA) > Optimum Limited Discrete Rate and
Power Adaptation (OLDRPA) > Optimum Power Adapta-
tion (OPA).

The Quantized Unlimited Rates and Power Adapta-
tion(QURPA) curve represents a direct quantization scheme
where the OUCRPA rate vector is quantized by componen-
twise truncation. Obviously as the number of transmitting
users increases, more quantizations have to be performed
and the throughput actually decreases. Thus a “direct”
quantization of OUCRPA fails miserably. On the other hand
a slightly smarter adaptation of OUCRPA to discrete rates
is given by the Discrete Unlimited Rate and Power Adapta-
tion(DURPA) curve. The adaptation is such that

F’imaz‘ iy 11
T(X,7) = max D Z | maz (Xi» i)

i€1opt

where I, = {1,2,---,n}. As apparent from Figure 1,
this scheme provides a good approximation to ODLRPA.

The OUCRPA and OLCRPA curves in Figure 1 suggest
that increasing the total number of codes assigned to each
user above a sufficiently large value does not significantly
increase throughput.

10. Conclusion

We derive the maximum throughput achievable in a vari-
able rate variable power CDMA system using a matched
filter receiver. We find the optimum rate and power adapta-
tion schemes for limited/unlimited and continuous/discrete

average throughput

101

e
—&— quantized unlim. rates

o 10 20 30 40 50 60 70
no of users.

Figure 1. Average Throughputs

Zkelam_{i} Pk,mam(Xka Tk) + CJ

rates. We present an analytical upper bound to estimate the
maximum achievable average throughput. We also compare
optimal rate adaptation to optimal power adaptation. Our
numerical results compare the performances of these opti-
mal schemes under various assumptions (limited/unlimited,
continuous/discrete) on the rates available to each user.
We also simulate some sub-optimal schemes with lower
complexity to determine the performance tradeoffs between
complexity and optimality.

We find that increasing the maximum rate (humber of
codes) available to each user beyond a given value does
not significantly increase throughput. We also find that a
peak power constraint limits the maximum achievable aver-
age throughput even with unlimited rates (codes) available
to every user. This is in contrast to the case where there is an
average power constraint: in this case it can be shown that
the unlimited rates (codes) assumption leads to unbounded
average throughput. Thus, a maximum power constraint is
a more fundamental limitation than an average power con-
straint.

The optimal rate and power adaptation scheme with un-
constrained rates is in fact just a rate adaptation scheme,
with fixed transmit powers. On the other hand, the opti-
mum power adaptation scheme with fixed rates yields sig-
nificantly lower average throughput. Thus although power
adaptation is much simpler to implement than rate adapta-
tion, it does not achieve the average throughputs possible
with rate adaptation.

In practice any system will have additional constraints
arising out of the need to be “fair” to users in deep fades,
other concerns like prolonging battery life (average power
constraint), or additional QOS requirements (delay con-
straints) etc. which will reduce the maximum achievable
throughput.
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