
Pathogenesis of Myelofibrosis With Myeloid Metaplasia
Ayalew Tefferi

A B S T R A C T

The primary disease process in myelofibrosis with myeloid metaplasia (MMM) is clonal myeloproliferation
with varying degrees of phenotypic differentiation. This is characteristically accompanied by secondary
intramedullary collagen fibrosis, osteosclerosis, angiogenesis, and extramedullary hematopoiesis. Modern
clonality studies have confirmed the multipotent stem-cell origin of the neoplastic process in MMM. The
nature of the specific oncogenic mutation(s) is currently being unraveled with the recent discovery of an
association between a somatic point mutation of JAK2 tyrosine kinase (V617F) and bcr/abl-negative
myeloproliferative disorders, including MMM. The pathogenetic mechanisms that underlie the secondary
bone marrow stromal changes in MMM are also incompletely understood. Mouse models of this latter
disease aspect have been constructed by either in vivo overexpression of thrombopoietin (TPOhigh mice) or
megakaryocyte lineage restricted underexpression of the transcription factor GATA-1 (GATA-1low mice).
Gene knockout experiments using such animal models have suggested the essential role of hematopoietic
cell-derived transforming growth factor beta1 in inducing bone marrow fibrosis and stromal cell–derived
osteoprotegerin in promoting osteosclerosis. However, experimental myelofibrosis in mice does not
recapitulate clonal myeloproliferation that is fundamental to human MMM. Other cytokines that are
implicated in mediating myelofibrosis and angiogenesis in MMM include basic fibroblast, platelet-derived,
and vascular endothelial growth factors. It is currently assumed that such cytokines are abnormally released
from clonal megakaryocytes as a result of a pathologic interaction with neutrophils (eg, emperipolesis). This
latter phenomenon, through neutrophil-derived elastase, could also underlie the abnormal peripheral-blood
egress of myeloid progenitors in MMM.
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INTRODUCTION

Myelofibrosis with myeloid metaplasia
(MMM) was first described in 18791 and is
currently classified as a myeloproliferative dis-
order (MPD).2 The disease presents either de
novo (agnogenic myeloid metaplasia) or in the
setting ofbothpolycythemiavera(PV;postpoly-
cythemic myeloid metaplasia) and essential
thrombocythemia (ET; post-thrombocythemic
myeloid metaplasia).3,4 The clinical phenotype
includes progressive anemia, massive spleno-
megaly, a leukoerythroblastic blood smear, pro-
found constitutional symptoms, cachexia, and
hepatosplenic as well as nonhepatosplenic ex-
tramedullary hematopoiesis.5 Bone marrow his-
tology displays substantial collagen fibrosis,
osteosclerosis, and angiogenesis.6 Most patients
are diagnosed after age 60 years,7 and reported
median survival ranges from 3.5 to 10 years.8-11

Causes of death include infection, bleeding, or-

gan failure, portal hypertension, and leukemic
transformation.9-11 The latter occurs in 8% to
23% of the patients in the first decade of the
disease. Current drug therapy has not altered
the natural history of the disease.12 Although
the prospect of cure is possible with allogeneic
hematopoietic stem-cell transplantation, the
majority of affected patients are not suitable can-
didates for the particular treatment modality be-
cause of either advanced age or the presence
of comorbid conditions.13 Therefore, rational
treatment approaches in MMM await elucida-
tion of the underlying pathogenetic mecha-
nisms of both clonal myeloproliferation14 and
the reactive bone marrow stromal changes
that are believed to be cytokine mediated.15

CLONALITY STUDIES

Normal hematopoiesis in large animals is
polyclonal, and individual multipotent stem

From the Division of Hematology,
Department of Internal Medicine,
Mayo Clinic College of Medicine,
Rochester, MN.

Submitted December 13, 2004; accepted
March 24, 2005.

Author’s disclosures of potential con-
flicts of interest are found at the end of
this article.

Address reprint requests to Ayalew
Tefferi, MD, Division of Hematology,
Department of Internal Medicine, Mayo
Clinic College of Medicine, 200 First St
SW, Rochester, MN 55905; e-mail:
tefferi.ayalew@mayo.edu.

© 2005 by American Society of Clinical
Oncology

0732-183X/05/2333-8520/$20.00

DOI: 10.1200/JCO.2004.00.9316

JOURNAL OF CLINICAL ONCOLOGY B I O L O G Y O F N E O P L A S I A

VOLUME 23 � NUMBER 33 � NOVEMBER 20 2005

8520



cells are capable of both myeloid and lymphoid lineage
differentiation.16 In contrast, hematopoiesis in patients
with MPD, including those with MMM, is monoclonal and
is supported by a genetically transformed mutant clone that
retains the capacity to differentiate across multiple cell lin-
eages.17 In general, clonality studies in MPD have mostly
been based on allelic polymorphisms between the pater-
nally and maternally derived X chromosomes in females.18

In a normal (polyclonal) somatic cell population, the ran-
dom X chromosome inactivation process has affected both
the maternal and paternal X chromosomes.19 In a clonal cell
population, in contrast, because of the single-cell derivation
of the neoplastic process, only the maternal or the paternal
X chromosome is affected (not both). This difference in X
chromosome inactivation pattern between so-called nor-
mal and clonal cell populations can be demonstrated in
informative (heterozygous at the genetic locus of interest)
females, at either the DNA (on the basis of methylation
differences between active and inactive genes),20 or post-
DNA level (on the basis of the fact that RNA and enzyme
expression is restricted to the active chromosome).18,21,22

Some of the classic studies in this regard have used glucose-
6-phosphate dehydrogenase isoenzyme analysis (ie, protein
level investigation),14,23,24 whereas more recent studies have
focused on X-linked DNA25,26 and transcript21 analysis.

Monoclonality in MMM was suggested as early as 1968
based on the clonal occurrence of an abnormal chromosome
marker.27 Subsequent glucose-6-phosphate dehydrogenase–
based clonality studies in the 1970s documented clonal in-
volvement of bone marrow mononuclear cells as well as
peripheral-blood granulocytes, erythrocytes, and platelets, but
not bone marrow fibroblasts.14,28 Similarly, X-linked DNA

analysis has revealed monoclonal X chromosome inactivation
pattern in peripheral-blood leukocytes,29 granulocytes,26,30 bone
marrow mononuclear cells,26 and, in some cases, T lympho-
cytes.30 Theseobservationsweresupportedbycytogenetics-based
demonstration of clonality in erythroid,31,32 granulocyte-
monocyte,31,32 and granulocyte-monocyte-erythroid progeni-
tors,32 but not in fibroblasts.33,34 Clonality in MMM has also
been investigated using N-ras mutation as a marker and show-
ing its presence in granulocytes, monocytes, and erythroblasts,
as well as B and T lymphocytes.35 Similarly, a recent study
used a combination of immunomagnetic cell separation tech-
nique and interphase cytogenetics to demonstrate clonal in-
volvement of T and B lymphocytes (Fig 1).17 Therefore,
current evidence strongly supports the true stem-cell nature
of the mutant clone in MMM, and within the confines of
the available testing methods, interpatient heterogeneity in
the extent of clonal involvement by a specific cell type has
been demonstrated.17,30

THE SEARCH FOR DISEASE-SPECIFIC MUTATIONS

Cytogenetic Studies

Despite the abundant evidence for clonal hematopoiesis
in MMM, the nature of the disease-causing genetic mutation
remains elusive. The detection of a consistent cytogenetic ab-
normality in myeloid malignancies is not only diagnostically
useful,36,37 but may also provide pathogenetic clues.38,39 Un-
fortunately, the majority of myeloid disorders do not bear a
specific karyotypic marker, and observed abnormalities often
represent secondary subclones possibly linked to the genetic

Fig 1. Fluorescent in situ hybridization
studies of T (CD3�) and B (CD19�) lympho-
cytes, neutrophils, and precursor cells of
myeloid (CD34�), megakaryocyte (CD61�),
and erythroid (CD71�) lineage in myelofibro-
sis with myeloid metaplasia. All cells exhibit
a single orange signal, revealing a deletion of
the long arm of chromosome 20/13, and two
green signals of the control probe.
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instability of the mutant clone.40,41 Nevertheless, the cytoge-
netics of MMM has been extensively studied, and a wide spec-
trum of structural and numerical chromosome abnormalities
have been described.42-63 In general, recurrent cytogenetic ab-
normalities occur in approximately 50% of chemotherapy-
naive patients with MMM, and the most prevalent lesions,
representing more than 80% of the abnormal cases, include
del(20)(q11;q13), del(13)(q12;q22), trisomy 8, trisomy 9,
del(12)(p11;p13), monosomy or long-arm deletions involving
chromosome 7, and partial trisomy 1q (Fig 2).57,63 However,
the individual lesions occur in only the minority of patients
(10% to 25% of the abnormal cases), and none are specific to
MMM (Fig 2).63 Furthermore, the application of molecular
cytogenetic studies by fluorescent in situ hybridization did not
disclose additional, karyotypically occult, structural lesions.64

Incidentally, the pattern of cytogenetic abnormalities is similar
between the three subtypes of MMM: agnogenic myeloid
metaplasia, postpolycythemic myeloid metaplasia, and post-
thrombocythemic myeloid metaplasia.63

As mentioned above, although not disease specific,
13q-, 20q-, and abnormalities of chromosome 1 are charac-
teristically prevalent in MMM and constitute a focus of
interest regarding pathogenetic insight. Molecular charac-
terization of 13q- in bcr/abl-negative MPD has revealed
microdeletions that did not involve the retinoblastoma
(RB1) tumor suppressor gene locus,65 whereas the RB1
region is commonly deleted in 13q- associated with multi-
ple myeloma.66,67 Consistent with this observation, the par-
ticular cytogenetic abnormality seems to confer good
prognosis in MMM but is associated with adverse prognosis
in multiple myeloma.63,68 In regard to 20q-, similar molec-
ular studies have suggested commonly deleted regions that

were specific to either MPD or myelodysplastic syndrome/
acute myeloid leukemia.69 Accordingly, further inquiry into
the specific genes that are located in the commonly deleted
regions of MPD-associated 20q- might shed additional
pathogenetic insight on MMM. Partial trisomy 1 that is
associated with certain derivative chromosomes is argu-
ably the most specific cytogenetic abnormality in MMM.
Interestingly, one particular such lesion, der(6)t(1 ;6)
(q21-23;p21-23), involves a chromosomal region (6p21)
that houses the FK-506 binding protein 5 (FKBP51) gene,
which was recently shown to be overexpressed in CD34�

cell-derived megakaryocytes of patients with MMM and
potentially confer an antiapoptotic effect through inhibi-
tion of calcineurin.70 Molecular studies are currently un-
derway to map the precise breakpoints of these intriguing
translocations and learn their pathogenetic role in MMM.

Mutation Screening Studies

The pathogenesis of MMM and related bcr/abl-
negative MPD might be explained, in part, by a somatic
point mutation on exon 14 (V617F) of the JAK2 kinase gene
that is located on chromosome 9p24.71-73 The recurrent
JAK2 mutation was identified by either a candidate gene
approach71,73 or a high-throughput DNA sequencing of the
functional domains of 85 human tyrosine kinases.72 The
incidence of the mutant allele in granulocytes collected
from MPD patients was 35% to 50% in MMM, 32% to 57%
in ET, and 74% to 97% in PV.72,73 No mutation was de-
tected in either normal individuals or patients with second-
ary erythrocytosis.71-73 The JAK2 V617F mutation occurs
within the auto-inhibitory JH2 domain, resulting in dys-
regulation of kinase activity that resides in the JH1 domain.
Supporting evidence for this comes from the demonstra-
tion of mutant allele-mediated activation of both JAK2- and
STAT5-mediated transcription, as well as the induction of
either Epo hypersensitivity or growth factor independence
in cell lines.71,72 Furthermore, erythrocytosis was induced
in mice transplanted with bone marrow cells carrying the
mutant allele.71 However, direct mutation screening for
other candidate genes, including type III receptor ty-
rosine kinases (c-kit, c-fms, flt-3), has generally yielded
negative results.74,75

Loss-of-Heterozygosity Studies

In certain human cancers, loss of heterozygosity
(LOH) of chromosomal regions harboring mutated tumor
suppressor genes is either a key oncogenic event or contrib-
utes to disease progression. Genome-wide patterns of LOH
can be studied using polymorphic genetic markers, and the
principle behind the particular molecular investigation is
that the loss of the normal allele of a tumor suppressor gene
in the presence of a mutated allele results in homozygous
loss of protective gene function.76

Fig 2. Karyotypic abnormalities (Abns) in 83 chemotherapy-naive patients
with myelofibrosis with myeloid metaplasia. For comparison, the prevalence
of each anomaly in other chronic myeloid disorders, including polycythemia
vera (PV), essential thrombocythemia (ET), and myelodysplastic syndrome
(MDS), is provided in the box below the figure.63,199-201.
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In a recent study, a genome-wide screening for LOH
using 86 polymorphic markers encompassing all 22 auto-
somes was performed on CD34� cells obtained from 29
patients with MMM.77 Allelic loss was compared with that
of normal T lymphocytes from the same patients. After
combing the results of marker studies on the same arm of
individual chromosomes, the most frequent allelic loss was
observed on 1q (25%), 3p (24%), and 3q (22%).77 Interest-
ingly, the LOH patterns were not correlated with structural
lesions detected by cytogenetic studies. Using 23 additional
LOH markers, a detailed mapping of the chromosome 3p
arm between D3S1597 and D3S1578 revealed a CDR be-
tween D3S1583 and D3S1609 at 3p24 that houses the reti-
noic acid receptor tumor suppressor gene. Subsequent
experiments revealed that RAR2 gene expression was mark-
edly decreased in all tested patients with MMM, even in the
absence of LOH at the particular locus. Additional experi-
ments suggested that this was the result of an epigenetic
mechanism mediated by abnormal methylation of the gene
promoter P2.77 Although RAR is considered important in
myeloid differentiation, additional studies are needed to
decipher the specific pathogenetic role of the observed
phenomenon in MMM. In the meantime, the particular
work provides support for evaluating the therapeutic
value of demethylating as well as retinoic acid-based
agents in MMM.78,79

Gene Expression Studies

In gene expression analysis, an altered gene or bio-
chemical pathway associated with a particular disease may
be revealed by the identification of a consistently upregu-
lated or downregulated gene across a cohort of patients with
the same disease.80 Global gene expression profiling has
been shown to accurately distinguish among previously
established phenotypic categories of hematologic malig-
nancies as well as reveal additional molecular classes.81

More importantly, considerable pathogenetic insight may
be obtained by comparing gene expression patterns of dis-
eased and normal tissue.

To date, only one study has evaluated MMM by oligo-
nucleotide microarray analysis.82 Gene expression by
CD34� cells in eight patients with MMM was compared
with that of six normal controls. Upregulated genes in
MMM included several transcription factors (JUNB at
19p13.2, GATA2 at 3q21, N-myc at 2p24.1), granulocyte-
macrophage colony-stimulating factor (CSF1 at 5q33),
interleukin-8 (IL8 at 4q13-21), IL1B at 2q14, platelet-
derived endothelial cell growth factor (PDECGF at
22q13.33), platelet factor 4 at 4q12-21, and delta, Drosoph-
ila homolog-like 1 (DLK1 at 14q32). Downregulated genes
included connective tissue growth factor (CTGF) that is
located on chromosome 6q23.1, osteopontin (OPN) lo-
cated at 4q21-25, FK-506 binding protein 5 (FKBP5) lo-

cated at 6p21, bone morphogenic protein 2B (BMP2B)
located at 14q22-23, macrophage inhibitory cytokine-1
(MIC-1) located at 19p13, BCL-1 located at 11q13, cell
division cycle 2 (cdc2) located 10q21.1, and cdc20 located
at 9q13-21.

Some of the upregulated transcription factors (eg,
N-myc) may be relevant to cell cycle progression and, along
with some of the overexpressed growth factors (eg, CSF1,
PDECGF) and pleiotropic cytokines (eg, IL-8, IL-1B),
might contribute to the myeloproliferation and stromal
reaction in MMM.83-85 Dlk1 is a transmembrane protein
belonging to the superfamily of epidermal growth factor–
like proteins and is essential for normal hematopoiesis, and
its abnormal expression has also been demonstrated in my-
elodysplastic syndrome.86 Osteopontin is a secreted cell
attachment phosphoprotein that might participate in cell-
matrix interaction and might facilitate fibroblast, osteo-
blast, and osteoclast contribution to the pathology of the
stromal reaction in MMM.87 BMP2B might play a similar
role in the associated changes in bone remodeling.88 The
results of the aforementioned DNA microarray study re-
garding FKBP51 gene expression is at odds with another
study that used a differential display approach and demon-
strated overexpression in megakaryocytes derived from
CD34� cells of patients with MMM.70 The discrepancy
might have arisen from either the distinct cell populations
studied in the two different reports (peripheral-blood
CD34� cells82 v CD34-derived megakaryocytes70) or the
associated experimental conditions in the latter study
(comparison of cytokine-prepared normal megakaryocytes
v spontaneously grown MMM megakaryocytes).70 Regard-
less, the systematic evaluation of data coming out of various
types of gene expression studies, including DNA microarray
analysis, should help generate specific hypothesis for more
focused molecular investigations.

Other Molecular and Biologic Studies

Another biologic feature of megakaryocytes in MMM
is their endogenous (cytokine-independent) growth capa-
bility as well as their hypersensitivity to various growth
factors, including thrombopoietin (TPO).89-94 The specific
in vitro growth characteristic might also affect other cell
lineages95,96 and is not specific to MMM, as it is readily seen
in other MPD, including PV97-99 and ET.96,100-102 Such
growth factor independence is not seen in either normal
subjects or reactive myeloproliferation103 and, in MPD, has
not been attributed to mutations in ligand receptor89,104 or
receptor-associated signal transducer molecules.105 One
suggested mechanism of intrinsic growth factor hypersen-
sitivity in MMM involves megakaryocyte overexpression of
FKBP51 that is associated with constitutive JAK2/STAT5
activation.70,106 This possibility is consistent with the recent
discovery of an activation mutation of JAK2 (V617F) in
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MPD.71-73 However, megakaryocyte FKBP51 gene as well as
protein expression in MMM was shown to be similar to that
of normal megakaryocytes in another study.107

Another study has suggested the constitutive activation
of the �c/JAK3/STAT3 pathway in CD34� cells from pa-
tients with MMM that was coupled with the inability to
differentiate into natural-killer cells.108 Obviously, such ex-
amples of altered cellular biology are by no means specific to
MMM and could represent a nonspecific feature that is
common to many neoplastic cell processes.109,110 The same
can be said about the stem-cell leukemia gene, the expres-
sion of which in blood mononuclear cells from patients
with MMM was shown to be increased.111 Markedly de-
creased megakaryocyte/platelet expression of the TPO
receptor (Mpl) is another nonspecific112,113 cellular fea-
ture in MMM114 that is also seen in ET115 and PV.114 The
particular phenomenon has been blamed for the normal
or elevated serum concentrations of TPO in MMM116

that is unexpected in lieu of the disease-associated in-
creased megakaryocyte mass.

PATHOGENETIC MECHANISM OF BONE MARROW
STROMAL REACTION

MMM is typically characterized by bone marrow collagen
fibrosis, new bone formation (osteosclerosis), and angio-
genesis.6,117 As elaborated in the previous section on clonal-
ity studies, bone marrow fibroblasts in MMM are
polyclonal33,34,118 and exhibit normal function and in vitro
growth characteristics.118 This information, coupled with
the observation that both cellular and extracellular levels of
various fibrogenic and angiogenic cytokines are altered in
patients with MMM, strongly supports the contention that the
bone marrow histologic changes in MMM are reactive and
cytokine mediated.118-120 In this regard, several patient-
centered studies have suggested a pathogenetic role for
transforming growth factor beta (TGF-�),121-123 platelet-
derived growth factor,123 basic fibroblast growth factor,124-

126 vascular endothelial growth factor (VEGF),127 and tissue
inhibitors of matrix metalloproteinases.128,129 Similar cir-
cumstantial evidence has long suggested that megakaryo-
cytes122,130 and activated monocytes120 might be the
source of the aforementioned nosogenic cytokines. Fur-
thermore, a pathologic interaction between megakaryo-
cytes and neutrophils (emperipolesis), induced by
altered megakaryocyte P-selectin distribution, might un-
derlie the abnormal cytokine release mechanism.131,132

Neutrophil-derived enzymes, including elastase, might
also participate in the pathologic process by facilitating
peripheral-blood egress of myeloid progenitors.133-135

Mouse models of myelofibrosis have provided addi-
tional information regarding the role of certain cytokines in

the pathogenesis of the stromal reaction in MMM.136,137

There are currently two established models of experimental
myelofibrosis in mice: TPOhigh and GATA-1low mice. The
former is constructed by the systemic overexpression of
thrombopoietin137-140 and the latter by megakaryocyte lin-
eage restricted underexpression of the transcription factor
GATA-1.141 The common feature to both experimental
models is tissue accumulation of megakaryocytes, a result of
TPO-driven proliferation in TPOhigh mice142 and impaired
megakaryocyte maturation in GATA-1low mice.143 How-
ever, considerable heterogeneity exists among different
mouse models in terms of both phenotype and disease
tempo (Fig 3).138,140,141,144-146 In immune-deficient mice,
myelofibrosis and osteosclerosis developed only in the se-
vere combined immunodeficient (T and B cell deficient)
model attributed to both the high degree of TPO expres-
sion, compared with the nude (T cell deficient) model, as
well as the retention of intact monocyte-macrophage func-
tion, compared with the nonobese diabetic severe com-
bined immunodeficient (T and B as well as multiple other
defects in innate immunity, including NK and monocyte-
macrophage function) model.146,147 Furthermore, experi-
mental myelofibrosis in TPOhigh mice has been shown to be
reversible either by transplantation139 or cessation of the
systemic administration of TPO.148

Fig 3. Mouse models of myelofibrosis. Transgenic GATA-1low or IgH/
mTPOhigh develop a complete myelofibrosis with myeloid metaplasia phe-
notype with delayed onset of myelofibrosis and osteosclerosis.141,145 In
contrast, transgenic ApoE/hTPOhigh mice develop incomplete phenotype,
megakaryocytic hyperplasia without myelofibrosis.144 Similarly, both com-
plete138,140,146 and incomplete146 phenotypes are seen in nontransgenic
mouse models whose bone marrow stem cells were retrovirally trans-
duced to overexpress thrombopoietin. SCID, severe combined immuno-
deficient disease; NOD-SCID, nonobese diabetic severe combined
immunodeficient disease.
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The role of megakaryocyte-derived TGF-� in myelofi-
brosis was first suggested by the in vitro observation that the
addition of a neutralizing anti–TGF-� antibody inhibited
the stimulatory effects of a megakaryoblast-conditioned
medium on collagen synthesis in bone marrow fibroblasts
from a patient with acute megakaryocytic leukemia.121 In-
terestingly, the particular cytokine has also been implicated
in hairy cell leukemia–associated reticulin and collagen fi-
brosis.149 Consistent with these observations, TGF-�1 null
murine hematopoietic stem cells retrovirally infected with
murine TPO failed to produce bone marrow fibrosis when
transplanted into lethally irradiated wild-type mice, despite
the development of all other components of the complete
phenotype.136 Similarly, the osteosclerotic component of
experimental myelofibrosis in TPOhigh mice is aborted by
knocking out the stromal cell-derived osteoprotegerin
gene.150 Similarly, an age-dependent increase in osteopro-
tegerin accompanied the development of osteosclerosis in
one of the aforementioned transgenic TPO models.145

TGF-�1 seems to be similarly important in an the alterna-
tive model of GATA-1low mice.141,151 In this instance, treat-
ment with TPO improved the associated thrombocytopenia
as well as stabilized bone marrow fibrosis through down-
regulation of TGF-�1 expression.152

THERAPEUTIC IMPLICATIONS

The aforementioned pathogenetic information regarding
the stromal reaction in MMM underlies the rationale for
testing a series of drugs at my institution over the last 12
years. Accordingly, specific drugs that have been evaluated
included those that were directed at reducing megakaryo-
cyte bulk (interferon alfa-2a,153 cladribine154,155), impair-
ing megakaryocyte differentiation and thus possibly
interfering with megakaryocyte-neutrophil interaction
(anagrelide156), inhibiting TGF-�–mediated fibroblast pro-
liferation and collagen synthesis (suramin,157 pirfeni-
done158), inhibiting platelet-derived growth factor
receptor–associated tyrosine kinase activity (imatinib me-
sylate159), and interfering with angiogenesis and TNF-�
production (thalidomide,160-163 etanercept164). Unfortu-
nately, none of these agents were shown to induce favorable
changes in bone marrow stroma, although clinical benefit
was demonstrated with cladribine, thalidomide, and etan-
ercept.155,160,164 On the basis of these findings, we are cur-
rently running treatment trials with a more potent
thalidomide analog (CC-5013; lenalidomide; Revlimid;
Celgene, Summit, NJ) as well as combination therapy with
thalidomide and etanercept. Revlimid is the lead com-
pound among the immunomodulatory analogs of thalido-
mide (ImiDs), and its ex vivo antiangiogenic as well as
anti-tumor necrosis factor property is estimated to be at

least 50-fold higher than that of thalidomide.165,166 Within
the context of myeloid malignancies, the drug was recently
shown to have excellent therapeutic activity in MDS associ-
ated with a 5q- chromosomal abnormality.167

There are several other antiangiogenic agents that might
be considered for future therapeutic trials in MMM. In this
regard, we have recently completed a phase II study (unpub-
lished) with a farnesyl transferase inhibitor (R115777) that is
known to downregulate VEGF expression.168 Some promise
of therapeutic activity in this regard has already been commu-
nicated by other investigators.169 In another upcoming pilot
study, we plan to evaluate the therapeutic activity of bort-
ezomib,170 a proteosome inhibitor, which in addition to its
indirect antiangiogenic effect, might overcome the antiapop-
totic effect of FKBP51 overexpression in MMM.70,106 Other
antiangiogenic agents that are undergoing clinical trials and
are potent inhibitors of VEGF receptors, platelet-derived
growth factor receptor, and Kit include SU-5416, SU-6668,
and PTK-787.171-173 In general, these agents were well toler-
ated, but their activity has so far been underwhelming.171,173

Rapamycin is another antiangiogenic drug174 that might be
worth looking into because it also interferes with collagen
synthesis175 and abnormal granulocyte migration.135,176

Another venue of therapeutic trials might target the
downstream effectors of TGF-�.177 One such candidate
molecule is connective tissue growth factor,178,179 and hu-
man monoclonal antibodies against connective tissue
growth factor are already being evaluated in clinical trials
involving other fibrotic disorders.180 One can also envision
treatment molecules that target either the TGF-� recep-
tor181,182 or the postreceptor signaling intermediates, the
Smad proteins.183,184 In the end, it is likely that a combina-
tion of drugs directed at different molecules might be
needed for effective control of the composite stromal aber-
ration in MMM. In this regard, the recently discovered,
MPD-associated JAK2 V617F might constitute a molecular
target for the development of rational drug therapy.185

In summary, based on the composite set of informa-
tion obtained from laboratory investigation of patient sam-
ples as well as experimental myelofibrosis in mice, a
working model of the stromal reaction in MMM is pro-
posed (Fig 4). In this model, the central event is the accu-
mulation of bone marrow megakaryocytes that is clonal17

in man but cytokine-mediated in experimental myelo-
fibrosis.137-141 These megakaryocytes, both in man and
mice, are also qualitatively abnormal and exhibit abnormal
distribution of P-selectin131,132 and decreased expression of
Mpl.114 The former abnormality promotes a pathologic
interaction with neutrophils (emperipolesis) and the latter
an in situ increase in TPO concentration. The excess TPO
might enhance the underlying clonal myeloproliferation as
well as induce stromal cells to produce fibrogenic, osteo-
genic, and angiogenic cytokines. Such cytokines are also
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abnormally released as a result of the aforementioned em-
peripolesis as well as activation of clonal monocytes.120 The
different components of the overall stromal reaction (fibro-
sis, osteosclerosis, angiogenesis, CD34 cell egress) might be
linked to one or more specific cytokines.136,150

It is underscored that experimental myelofibrosis in
mice does not recapitulate clonal myeloproliferation that is
fundamental to human MMM.17 However, it does capture
the stromal aberration that is integral to the human
disease.186-193 Similarly, alterations in either gene structure
or gene expression involving TPO,194 c-Mpl,89,195 GATA-
1,196,197 or FOG-1 (the transcriptional regulator of GATA-
1)198 have not been detected in human MMM. Regardless, the
availability of animal models of myelofibrosis should facilitate
in vivo preclinical drug testing as well as identification of cru-
cial molecules that can be therapeutically targeted.
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