
Constraint Preserving Transformation from Relational

Schema to XML Schema

Chengfei Liu
Centre for Internet Computing and E-Commerce
Faculty of Information and Communication Technologies
Swinburne University of Technology
Melbourne, VIC 3122, Australia
cliu@swin.edu.au

Millist W. Vincent, Jixue Liu
Advanced Computing Research Centre
School of Computer and Information Science
University of South Australia
Adelaide, SA 5095, Australia
{millist.vincent, jixue.liu}@unisa.edu.au

Abstract. XML has become the standard for publishing and exchanging data on
the Web. However, most business data is managed and will remain to be managed
by relational database management systems. As such, there is an increasing need to
efficiently and accurately publish relational data as XML documents for Internet-
based applications. One way to publish relational data is to provide virtual XML
documents for relational data via an XML schema which is transformed from the
underlying relational database schema such that users can access the relational
database through the XML schema. In this paper, we discuss issues in transform-
ing a relational database schema into the corresponding XML schema. We aim to
preserve all integrity constraints defined in a relational database schema, to achieve
high level of nesting and to avoid introducing data redundancy in the transformed
XML schema. In the paper, we first propose a basic transformation algorithm which
introduces no data redundancy, then we improve the algorithm by exploring further
nesting of the transformed XML schema.

Keywords: Schema Transformation, XML, XML Schema, Relational Databases

1. Introduction

XML [4, 1] has become the standard format for publishing and exchang-
ing data on the Web. However, most business data is still stored and
maintained in relational database management systems (RDBMSs). In
fact, RDBMSs will remain dominant in managing business data in the
foreseeable future because of their powerful data management services.
Given that relational databases are proprietary and only accessible
within enterprises while XML documents are designed for accessing
and interchanging over the Internet, there is an increasing need to

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

r2xml3.tex; 3/08/2005; 9:14; p.1



2 Chengfei Liu, Millist W. Vincent, Jixue Liu

efficiently and accurately publish relational data as XML documents
for Internet-based applications.

One approach to publish relational data is to create XML views of
the underlying relational data. Through the XML views, users may
access the relational databases as though they were accessing XML
documents. Once XML views are created over a relational database,
queries in an XML query language like XML-QL [6] or XQuery [3]
can be issued against these XML views for the purpose of accessing
relational databases. SilkRoute [8] is one of the systems taking this
approach. In SilkRoute, XML views of a relational database are defined
using a relational to XML transformation language called RXL, and
then XML queries are issued against these views. The XML queries and
views are combined together by a query composer and the combined
RXL queries are then translated into the corresponding SQL queries.
XPERANTO [14, 5, 13] takes a similar approach. One problem in the
SilkRoute and XPERANTO approaches is that users cannot see the
integrity constraints buried in the relational schema from the XML
views defined. It is important for users to be aware of the constraints
in the XML schema against which they are going to issue queries.

Another approach [12] to publish relational data is to provide virtual
XML documents for relational data via an XML schema which is trans-
formed from the underlying relational database schema such that users
can access the relational database through the XML schema. In this ap-
proach, there is a need to generate an integrated XML schema from the
underlying relational database schema, which is the topic of this paper.
It is also highly desirable that the generated XML schema preserves
all integrity constraints that are defined in the underlying relational
database schema. We aim to achieve this, which makes a significant
distinction compared with the view approach taken by SilkRoute and
XPERANTO.

Currently, there are two options recommended by the W3C for defin-
ing an XML schema. One is the Document Type Definition (DTD) [4, 1]
and the other is the XML Schema [7]. We choose XML Schema because
DTD has a number of limitations.

XML Schema offers great flexibility in modeling documents. There-
fore, there exist many ways to map a relational database schema into a
schema in XML Schema. For examples, In DB2XML [15], an algorithm
is used to map relations to XML elements in almost one-to-one manner.
Based on a flat translation similar to DB2XML, NeT [11] derives nested
structures from flat relations by repeatedly applying the nest operator
on tuples of each relation. XViews [2] constructs a graph based on
primary key/foreign key relationship and generates candidate views by

r2xml3.tex; 3/08/2005; 9:14; p.2



Constraint Preserving Transformation from Relational Schema to XML Schema 3

choosing the node with either maximum in-degree or zero in-degree as
the root element.

In this paper, we discuss issues in transforming a relational database
schema into the corresponding schema in XML Schema. We aim to
achieve the level of nesting of the transformed XML schema as high as
XViews and NeT. In addition, we aim to guarantee that the trans-
formed XML schema preserves all the integrity constraints defined
in the relational database schema and is highly normalized with no
redundancy introduced.

The rest of the paper is organized as follows. In Section 2, we give
a brief introduction to XML Schema, especially the features which
will be used in the schema transformation. In Section 3, we present
the mapping rules of a basic transformation algorithm which converts
a relational schema together with integrity constraints to the corre-
sponding schema in XML Schema without introducing redundancy.
The improvement of the basic algorithm is discussed in Section 4 with
more nested structure explored. Section 5 discusses the related work
and Section 6 concludes the paper.

2. XML Schema

XML Schema [7] is the W3C XML language for describing and con-
straining the content of XML documents. Compared with DTD, it offers
many appealing features.

− XML Schema provides very powerful data typing. A rich set of
built-in data types are provided. Based on that, users are allowed
to derive their own simple types by restriction and complex types
by both restriction and extension. In DTD, only a very limited
number of built-in types are provided, most for defining attributes
only. User cannot define their own types, not to mention complex
types.

− XML Schema provides comprehensive support for representing in-
tegrity constraints such as id/idref, key/keyref, unique, fine grained
cardinalities, etc. while DTD only provides limited support such
as id/idref. The cardinality constraints provided by DTD is mainly
based on Kleine closure.

− Apart from the sequence and selection compositors for grouping
elements, XML Schema also supports other compositors such as
set.

r2xml3.tex; 3/08/2005; 9:14; p.3



4 Chengfei Liu, Millist W. Vincent, Jixue Liu

− XML Schema has the same syntax as XML. This allows the schema
itself be processed by the same tools that read the XML documents
it describes. In contrast, DTD is in a non-XML syntax.

− Namespaces are well supported in XML Schema but not in DTD.

While DTD is still used for very simple applications, XML Schema
is becoming a dominant XML schema language.

The following example illustrates the main features of XML Schema.
The URI ”http://www.w3.org/2001/XMLSchema” identifies the names-
pace xsd where the XML Schema vocabulary recommended by W3C
is defined. The URI ”http://www.swin.edu.au/CompanyML” identifies
the target namespace for the schema to be defined. For each schema,
only one root element is allowed to be declared. In the example, the
root element called Company XML is declared under which there are
four subelements: Employee, Dept, Project and WorksOn.

<?xml version="1.0"?>
<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.swin.edu.au/CompanyML"
xmlns="http://www.swin.edu.au/CompanyML"
elementFormDefault="qualified">

<xsd:element name="Company_XML">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Employee" minOccurs="0"

maxOccurs="unbounded">
<xsd:complexType>
<xsd:attribute name="eno" type="xsd:id" use="required"/>
<xsd:attribute name="dno" type="xsd:idref" use="required"/>
<xsd:attribute name="supEno" type="xsd:idref" use="optional"/>
<xsd:attribute name="name" type="xsd:string" use="required/>
<xsd:attribute name="city" type="xsd:string" use="optional"/>
<xsd:attribute name="salary" type="xsd:int" use="optional"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="Dept" minOccurs="0"

maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="DeptLoc" minOccurs="0"

maxOccurs="unbounded">
<xsd:complexType>

r2xml3.tex; 3/08/2005; 9:14; p.4



Constraint Preserving Transformation from Relational Schema to XML Schema 5

<xsd:attribute name="city" type="xsd:string" use="required"/>
</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name="dno" type="xsd:id" use="required"/>
<xsd:attribute name="mgrEno" type="xsd:idref" use="optional"/>
<xsd:element name="dname" type="xsd:string" use="required"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="Project" minOccurs="0"

maxOccurs="unbounded">
<xsd:complexType>
<xsd:attribute name="pno" type="xsd:id" use="required"/>
<xsd:attribute name="dno" type="xsd:idref" use="required"/>
<xsd:attribute name="pname" type="xsd:string" use="required"/>
<xsd:attribute name="city" type="xsd:string" use="optional"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="WorksOn" minOccurs="0"

maxOccurs="unbounded">
<xsd:complexType>
<xsd:attribute name="eno" type="xsd:idref" use="required"/>
<xsd:attribute name="pno" type="xsd:idref" use="required"/>
<xsd:attribute name="hours" type="xsd:int" use="optional"/>

</xsd:complexType>
</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:key name="PK_DeptLoc">
<xsd:selector xpath="//DeptLoc"/>
<xsd:field xpath="../@dno"/>
<xsd:field xpath="@city"/>

</xsd:key>
<xsd:unique name="UNIQUE_mgrEno">
<xsd:selector xpath="//Dept"/>
<xsd:field xpath="@mgrEno"/>

</xsd:unique>
<xsd:key name="PK_WorksOn">
<xsd:selector xpath="//WorksOn"/>
<xsd:field xpath="@eno"/>
<xsd:field xpath="@pno"/>

</xsd:key>

r2xml3.tex; 3/08/2005; 9:14; p.5



6 Chengfei Liu, Millist W. Vincent, Jixue Liu

</xsd:schema>

Each of the four elements under Company XML allows 0 or multiple
occurrences, which are specified by the minOccurs and the maxOccurs
cardinality constraints of the element. Specific number can be indicated
here for minOccurs and maxOccurs if required. The default values for
both minOccurs and maxOccurs is 1. The cardinality constraint for at-
tributes is specified using the use attribute of the xsd:attribute element.
As each attribute can take at most one value at a time, the required
and optional values are used for compulsory and optional attributes,
respectively.

The Employee element has three compulsory attributes eno, dno and
name, and three optional attributes supEno, city and salary. eno serves
as the identity of the instances of Employee, dno is intended to reference
an instance of element Dept, and supEno is intended to reference an
instance of element Employee. The Dept element has two compulsory
attributes dno and and dname, one optional attribute mgrEno, and
one element DeptLoc. dno serves as the identity of the instances of
Dept while mgrEno is intended to reference an instance of Employee.
mgrEno is unique for Dept elements. The DeptLoc element has one
compulsory attribute city, this attribute together with the attribute
dno of its parent element serve as the identity of the instances of
DeptLoc by using a key element definition. XML Schema supports two
mechanisms to represent identity and reference: one is id/idref which is
also supported in DTD, the other is key/keyref which is not supported
by DTD. id and idref only apply to a single element/attribute while
key and keyref can apply to multiple elements/attributes. The Project
element has three compulsory attributes pno, dno and pname, and one
optional attribute city. pno serves as the identity of the instances of
Project while dno is intended to reference an instance of Dept. The
WorksOn element has two compulsory attributes eno and pno, and one
optional attribute hours. eno and pno together serve as the identity of
the instances of WorksOn using key element definition. Individually,
eno and pno is intended to reference an instance of Employee and
Project, respectively.

3. Schema Transformation

In a relational database schema, different types of integrity constraints
may be defined. In SQL, the system supported integrity constraints
include primary keys (PKs), foreign keys (FKs), null/not-null, and
unique. It is important to map all these constraints to the target XML

r2xml3.tex; 3/08/2005; 9:14; p.6



Constraint Preserving Transformation from Relational Schema to XML Schema 7

schema. Also we aim to achieve a high level of nesting and to avoid
introducing redundancy in the target schema.

As previously discussed, XML Schema supports two mechanisms to
represent identity and reference: id/idref and key/keyref. There are
differences in using these two mechanisms. The former supports the
dereference function in path expressions in most XML query languages
including XQuery. This is important for navigational representation of
queries. However, it only applies to a single element/attributes. It also
has a problem in precisely representing a reference. No restriction is
given to protect an idref element/attribute from referencing an unex-
pected element. The latter may apply to multiple elements/attributes
but cannot support the dereference function. For schema translation, we
leave the choice of these two mechanisms to users. For multi-attribute
primary/foreign keys, however, only key/keyref can be used. For this
purpose, we will differentiate the single attribute primary/foreign keys
from multi-attribute primary/foreign keys while transforming the re-
lational database schema to XML schema. We also classify a relation
into four categories based on different types of primary keys.

DEFINITION 3.1. regular relation
A regular relation is a relation where the primary key contains no
foreign keys.

DEFINITION 3.2. component relation
A component relation is a relation where the primary key contains one
foreign key. This foreign key references another relation which we call
the parent relation of the component relation. The other part of the
primary key serves as a local identifier under the parent relation.

The component relation is used to represent a component or a multi-
valued attribute of its parent relation.

DEFINITION 3.3. supplementary relation
A supplementary relation is a relation where the whole primary key is
also a foreign key which references another relation.

The supplementary relation is used to supplement another relation
or to represent a subclass for transforming a generalization hierarchy
from a conceptual schema.

DEFINITION 3.4. association relation
An association relation is a relation where the primary key contains
more than one foreign key, each of which references a participant rela-
tion of the association.

r2xml3.tex; 3/08/2005; 9:14; p.7



8 Chengfei Liu, Millist W. Vincent, Jixue Liu

3.1. Basic Mapping Rules and Algorithm

Based on the above discussion and definitions, we first give a set of
mapping rules, then an algorithm based on this set of rules.

RULE 1. For a relational database schema Sch, a root element named
Sch XML is created in the corresponding XML schema as follows.

<?xml version="1.0"?>
<xsd:schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="targetNamespaceURI"
xmlns="targetNamespaceURI"
elementFormDefault="qualified">

<xsd:element name="Sch_XML">
<xsd:complexType>

<xsd:sequence>
<!-- transformed relation schema of Sch -->

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

RULE 2. For each regular or association relation R, the following el-
ement with the same name as the relation schema is created and then
put under the root element.

<xsd:element name="R" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<!-- the attributes of R -->

</xsd:complexType>
</xsd:element>

RULE 3. For each component relation R1, let its parent relation be
R2. Then an element similar to Rule 2 and with the same name as the
component relation is created and then placed as a child element of R2.

RULE 4. For each supplementary relation R1, let the relation which
R1 references be R2. Then the following element with the same name as
the supplementary relation schema is created and then placed as a child
element of R2. Notice, there is a difference between the transformed
element of a component relation and the transformed element of a
supplementary relation on maxOccurs.

r2xml3.tex; 3/08/2005; 9:14; p.8



Constraint Preserving Transformation from Relational Schema to XML Schema 9

<xsd:element name="R1" minOccurs="0" maxOccurs="1">
<xsd:complexType>
<!-- the attributes of R1 -->

</xsd:complexType>
</xsd:element>

RULE 5. For each multiple attribute primary key PK of a regular
or an association relation R, suppose the key attributes are PKA1, · · · ,
PKAn, an attribute of the element for R is created for each PKAi(1 ≤
i ≤ n) with the corresponding data type. After that a key element is
defined with a selector to select the element for R and several fields
to identify PKA1, · · · , PKAn. The name of the element PK should be
unique within the namespace.

<xsd:element name="R" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:attribute name="PKA1" type="xsd:PKA1_type" use="required"/>
... ...
<xsd:attribute name="PKAn" type="xsd:PKAn_type" use="required"/>

</xsd:complexType>
</xsd:element>
<xsd:key name="PK">
<xsd:selector xpath="//R"/>
<xsd:field xpath="@PKA1"/>
... ...
<xsd:field xpath="@PKAn"/>

</xsd:key>

RULE 6. For each single attribute primary key with the name PKA
of regular relation R, two options can be taken. The first option is to
use the xsd:key element as in Rule 5. The second option is to use the
xsd:id type for creating an attribute of the element for R as follows.

<xsd:element name="R" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:attribute name="PKA" type="xsd:id" use="required"/>

</xsd:complexType>
</xsd:element>

RULE 7. For each multiple attribute primary key PK of a component
relation R1, let its parent relation be R2, and the key attributes are
GKA1, · · · , GKAm, LKA1, · · · , LKAn where GKA1, · · · , GKAm is a
foreign key referencing the parent relation R2. Then an attribute of

r2xml3.tex; 3/08/2005; 9:14; p.9



10 Chengfei Liu, Millist W. Vincent, Jixue Liu

the element for R1 is created for each LKAi(1 ≤ i ≤ n) with the
corresponding data type. After that a key element is defined with a
selector to select the element for R1 under the element R2, several
fields to identify GKA1, · · · , GKAm belonging to its parent element and
several fields to identify LKA1, · · · , LKAn. The name of the element
PK should be unique within the namespace.

<xsd:element name="R1" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:attribute name="LKA1" type="xsd:LKA1_type" use="required"/>
... ...
<xsd:attribute name="LKAn" type="xsd:LKAn_type" use="required"/>

</xsd:complexType>
</xsd:element>
<xsd:key name="PK">
<xsd:selector xpath="//R1"/>
<xsd:field xpath="../@GKA1"/>
... ...
<xsd:field xpath="../@GKAm"/>
<xsd:field xpath="@LKA1"/>
... ...
<xsd:field xpath="@LKAn"/>

</xsd:key>

RULE 8. Ignore the mapping for the primary key of each supplemen-
tary relation.

RULE 9. For each multiple attribute foreign key FK of a relation R,
except one which is contained in the primary key of a component or
supplementary relation, suppose FK references PK of the referenced
relation, and the foreign key attributes are FKA1, · · · , FKAn, an at-
tribute of the element for R is created for each FKAi(1 ≤ i ≤ n) with
the corresponding data type if FKAi is not part of any primary key.
Then a keyref element is defined with a selector to select the element
for R and several fields to identify FKA1, · · · , FKAn. The name of
the element FK should be unique within the namespace and refer of
the element is the name of the key element of the primary key which it
references.

<xsd:element name="R" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:attribute name="FKA1" type="xsd:FKA1_type"/>
... ...

r2xml3.tex; 3/08/2005; 9:14; p.10



Constraint Preserving Transformation from Relational Schema to XML Schema 11

<xsd:attribute name="FKAn" type="xsd:FKAn_type"/>
</xsd:complexType>

</xsd:element>
<xsd:keyref name="FK" refer="PK">
<xsd:selector xpath="//R"/>
<xsd:field xpath="@FKA1"/>
... ...
<xsd:field xpath="@FKAn"/>

</xsd:keyref>

RULE 10. For each single attribute foreign key FKA of a relation R,
except one which is contained in the primary key of a component or
supplementary relation, two options can be taken. The first option is to
use the xsd:keyref element as in Rule 9. The second option is to use the
xsd:idref type for creating an attribute of the element for R as follows.

<xsd:element name="R" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:attribute name="FKA" type="xsd:idref"/>

</xsd:complexType>
</xsd:element>

RULE 11. For each non-key attribute of a relation R, an attribute with
corresponding name and data type is created for the element of R.

RULE 12. For each attribute with a not-null constraint, add use =
”required” to the attribute declaration. For all other attributes without
a use attribute, add use = ”required” to the attribute declaration.

RULE 13. For each unique constraint defined on attributes UA1, · · · ,
UAn of a relation R, a unique element is defined with a selector to
select the element for R and several fields to identify UA1, · · · , UAn.
The name of the unique element should be unique within the namespace.

<xsd:unique name="UniqueName">
<xsd:selector xpath="//R"/>
<xsd:field xpath="@UA1"/>
... ...
<xsd:field xpath="@UAn"/>

</xsd:unique>

Based on the above mapping rules, it is easy to have the following
transformation algorithm.

r2xml3.tex; 3/08/2005; 9:14; p.11



12 Chengfei Liu, Millist W. Vincent, Jixue Liu

ALGORITHM 1. Basic Schema Transformation
Input: A relational database schema Sch with constraints and an op-
tion to use id/idref or key/keyref.
Output: A corresponding XML schema Sch XML which preserves the
constraints and is redundancy free.
Step 1: create root element Sch XML for the relational database schema
Sch by applying Rule 1.
Step 2: Get next relation schema R, return Sch XML until there is no
relation schema left.
Step 3: If R is for a regular or an association relation create an element
by applying Rule 2.
Step 4: If R is for a component relation create an element by applying
Rule 3.
Step 5: If R is for a supplementary relation create an element by
applying Rule 4.
Step 6: If R is for a regular relation and the primary key of the relation
contains a single attribute, map the primary key by applying Rule 5
for key/keyref option or by applying Rule 6 for id/idref option.
Step 7: If R is for a regular/association relation and the primary key
of the relation contains multiple attributes, map the primary key by
applying Rule 5.
Step 8: If R is for a component relation, map the primary key by
applying Rule 7.
Step 9: If R is for a supplementary relation, map the primary key by
applying Rule 8.
Step 10: For each foreign key in R, if it contains a single attribute, map
the foreign key by applying Rule 9 for key/keyref option or applying
Rule 10 for id/idref option; otherwise map the foreign key by applying
Rule 9.
Step 11: For each non-key attribute, use Rule 11 to map it.
Step 12: For each not-null constraint, use Rule 12 to map it.
Step 13: For each unique constraint, use Rule 13 to map it.
Step 14: Goto Step 2.

3.2. An Example

We use the following relational database schema Company to illustrate
the above algorithm. In the schema, primary keys are underlined while
foreign keys are in italic font. The /U after an attribute or a set of
attributes stands for a unique constraint on the attribute or the set
of attributes while the /N after an attribute stands for a not-null
constraint on the attribute.

r2xml3.tex; 3/08/2005; 9:14; p.12



Constraint Preserving Transformation from Relational Schema to XML Schema 13

Employee(eno, name/N, city, salary, dno/N, supEno)
Dept(dno, dname/N, mgrEno/U)
DeptLoc(dno, city)
Project(pno, pname/N, city, dno/N)
WorksOn(eno, pno, hours)

If the above schema is given as an input to the basic schema transforma-
tion algorithm, the schema in XML Schema Company XML shown in
Section 2 will be generated. All the constraints defined on the relational
schema Company are preserved in the XML schema Company XML.
The id/idref option is used in the transformation.

3.3. Discussion

As XML allows nested structure, redundancy may be brought in when
transforming a flat relation structure to a nested XML structure. For
example, if we put element Dept under element Project, the same de-
partment will be repeated in all projects in the department. However,
if we put elements Dept and Project at the same level or put the
element Project under the element Dept, there is no data redundancy
introduced.

Rule 1 to Rule 13 used in the basic algorithm are relatively straight-
forward for mapping a relational database schema to the correspond-
ing XML schema. One property of the basic algorithm is redundancy
free preservation, i.e., Rule 1 to Rule 13 do not introduce any data
redundancy provided the relational schema is redundancy free.

THEOREM 3.1. If the relational database schema Sch is redundancy
free, the XML schema Sch XML generated by the basic transformation
algorithm is also redundancy free.

This theorem is easy to prove. For a regular or an association relation
R, an element with the same name R is created under the root element,
so the relation R in Sch is isomorphically transformed to an element in
Sch XML. For a component relation R, a sub-element with the same
name R is created under its parent Rp. Because of the foreign key con-
straint, we have the functional dependency PKR → PKRp , i.e., there is
a many to one relationship from R to Rp, therefore it is impossible that
a tuple of R is placed more than one time under different element of
Rp. Similar to a component relation, there is no redundancy introduced
for a supplementary relation. �

r2xml3.tex; 3/08/2005; 9:14; p.13



14 Chengfei Liu, Millist W. Vincent, Jixue Liu

4. Exploring Nested Structures

As we can see, the basic transformation algorithm introduced above
fails to explore all possible nested structures. For example, the Project
element can be moved to be under the Dept element if every project
belongs to a department. Nesting is important in XML schema because
it allows navigation of path expressions to be processed efficiently; oth-
erwise, we have to use either idref or keyref. If we use idref, we may use
system supported dereference function to get the referenced elements.
In XML, the dereference function is expensive because id and idref
types are value based. If we use keyref, we have to put an explicit join
condition in an XML query to get the referenced elements. Therefore,
we need to explore all possible nested structure by further investigating
the referential integrity constraints in the relational schema. For this
purpose, we introduce a reference graph. In the reference graph, we
also include the unique and not-null constraints defined together with
a foreign key constraint.

DEFINITION 4.1. Given a relational database schema Sch = {R1, · · · ,
Rn}, a reference graph of the schema Sch is defined as a labeled di-
rected graph RG = (V,E,L) where V is a finite set of nodes v1, · · · , vn

representing relation schema R1, · · · , Rn in Sch, respectively; E is a
finite set of arcs, if there is a foreign key defined in Ri which references
Rj, an arc e =< vi, vj >∈ E; L is a set of labels for edges by applying
a labeling function from E to the set of foreign keys denoted by the
foreign key attributes together with unique/not-null constraints.

Figure 1. A Reference Graph

The reference graph of the relational schema Company is shown as
in Figure 1. In the graph, the element of node DeptLoc has been put
under the element of node Dept by Rule 3. ¿From the graph, we may
have the following improvements if certain conditions are satisfied.

r2xml3.tex; 3/08/2005; 9:14; p.14



Constraint Preserving Transformation from Relational Schema to XML Schema 15

Figure 2. The Modified Reference Graph

(1) The element of node Project could be put under the element of node
Dept if the foreign key dno is defined as not-null. This is because that
node Project only references node Dept and a many to one relationship
from Project to Dept can be derived from the foreign key constraint.
In addition, the not-null foreign key means every project has to belong
one department. As a result, one project can be put under one depart-
ment and cannot be put twice under different departments in the XML
document.
(2) A loop exists between Employee and Dept. In general, what we can
get from this is a many to many relationship between Employee and
Dept. However, the foreign key mgrEno of Dept reflects a one to one
relationship from Dept to Employee. This semantics can be captured
by checking the unique constraint defined for the foreign key mgrno.
If there is such a unique constraint defined, the foreign key mgrEno of
Dept really suggests a one to one relationship from Dept to Employee.
For the purpose of nesting, we delete the arc from Dept to Employee
labelled mgrno from the reference graph. The real relationship from
Employee to Dept is many to one. As such, the element of the node
Employee can also be put under the element of the node Dept if the
foreign key dno is defined to not-null. The foreign key supEno repre-
sents a many to one reflexive relationship. It has been best represented
as a foreign key in the element for Employee, so we can delete this kind
of arc as well. The resulting reference graph is shown in Figure 2.
(3) The node WorksOn references two nodes Employee and Project.
The element of WorksOn can be put under either Employee and Project
if the corresponding foreign key is not-null. However, which node to
choose to put under all depends on which path will be used often in
queries.

r2xml3.tex; 3/08/2005; 9:14; p.15



16 Chengfei Liu, Millist W. Vincent, Jixue Liu

Obviously the basic algorithm can be improved to allow more nested
structures. To achieve this, we generate a reference graph for a rela-
tional database schema and simplify it by checking whether some loops
can be removed. Then we explore maximum nesting by the following
theorems.

THEOREM 4.1. In a reference graph RG(V,E,L), let v1, v2 ∈ V de-
note relations R1 and R2, respectively. If the out-degree of v1 is 1 and
< v1, v2 >∈ E and not-null is associated with the label of < v1, v2 > and
there is no loop between v1 and v2, then we can move the element for R1

to be under the element for R2 without introducing data redundancy.

The proof of this theorem has already explained by the relationships
between Project and Dept, and between Dept and Employee in Figure 1.
The fact that the only arc from v1 to v2 and no loop between the two
nodes represents a many to one relationship from R1 to R2, while the
not-null foreign key gives a many to exact one relationship from R1 to
R2. Therefore, for each instance of R1, it is put only once under exactly
one instance of R2, no redundancy will be introduced. �

Similarly, we have the following.

THEOREM 4.2. In a reference graph RG(V,E,L), let v0, v1, · · · , vk ∈
V denote relations R0, R1, · · · , Rk, respectively. If < v0, v1 >, · · · , <
v0, vk >∈ E and not-null is associated with the label of at least one of
these arcs, say, < v0, vl > and there is no loop between v0 and any of
v1, · · · , vk, then we can move the element for R0 to be under the element
for Rl without introducing data redundancy.

¿From Theorem 4.1 and Theorem 4.2, we have the following rules.

RULE 14. If there is only one many to one relationship from relation
R1 to another relation R2 and the foreign key of R1 to R2 is defined as
not-null, then we can move the element for R1 to be under the element
for R2 as a child element.

RULE 15. If there are more than one many to one relationship from
relation R0 to other relations R1, · · · , Rk, then we can move the element
for R0 to be under the element for Ri (1 ≤ i ≤ k) as a child element
provided the foreign key of R0 to Rk is defined as not-null.

By many to one relationship from relation R1 to R2, we mean that
there exists at least one arc from node v1 for R1 to node v2 for R2, and
there is no loop between v1 and v2 in the reference graph.

r2xml3.tex; 3/08/2005; 9:14; p.16



Constraint Preserving Transformation from Relational Schema to XML Schema 17

If we apply Rule 14 to the transformed XML schema Company XML,
the elements for Project and Employee will be moved to be under Dept,
consequently, the attribute dno with idref type will be removed from
both Project and Employee elements. Furthermore, if we apply Rule 15
and choose to put WorksOn be under Employee, the element for Work-
sOn will be moved to be under the element for Employee, consequently,
the attribute eno with idref type will be removed from the WorksOn
element. The primary key for WorksOn will also be changed with eno
refers to the eno of its parent element Employee. The improved XML
schema is given below.

<?xml version="1.0"?>
<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.swin.edu.au/CompanyML"
xmlns="http://www.swin.edu.au/CompanyML"
elementFormDefault="qualified">

<xsd:element name="Company_XML">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Dept" minOccurs="0"

maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="DeptLoc" minOccurs="0"

maxOccurs="unbounded">
<xsd:complexType>
<xsd:attribute name="city" type="xsd:string" use="required"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="Project" minOccurs="0"

maxOccurs="unbounded">
<xsd:complexType>
<xsd:attribute name="pno" type="xsd:id" use="required"/>
<xsd:attribute name="pname" type="xsd:string" use="required"/>
<xsd:attribute name="city" type="xsd:string" use="optional"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="Employee" minOccurs="0"

maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="WorksOn" minOccurs="0"

r2xml3.tex; 3/08/2005; 9:14; p.17



18 Chengfei Liu, Millist W. Vincent, Jixue Liu

maxOccurs="unbounded">
<xsd:complexType>
<xsd:attribute name="pno" type="xsd:idref" use="required"/>
<xsd:attribute name="hours" type="xsd:int" use="optional"/>
</xsd:complexType>

</xsd:element>
</xsd:sequence>
<xsd:attribute name="eno" type="xsd:id" use="required"/>
<xsd:attribute name="supEno" type="xsd:idref" use="optional"/>
<xsd:attribute name="name" type="xsd:string" use="required/>
<xsd:attribute name="city" type="xsd:string" use="optional"/>
<xsd:attribute name="salary" type="xsd:int" use="optional"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name="dno" type="xsd:id" use="required"/>
<xsd:attribute name="mgrEno" type="xsd:idref" use="optional"/>
<xsd:element name="dname" type="xsd:string" use="required"/>

</xsd:complexType>
</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:key name="PK_DeptLoc">
<xsd:selector xpath="//DeptLoc"/>
<xsd:field xpath="../@dno"/>
<xsd:field xpath="@city"/>

</xsd:key>
<xsd:unique name="UNIQUE_mgrEno">
<xsd:selector xpath="//Dept"/>
<xsd:field xpath="@mgrEno"/>

</xsd:unique>
<xsd:key name="PK_WorksOn">
<xsd:selector xpath="//WorksOn"/>
<xsd:field xpath="../@eno"/>
<xsd:field xpath="@pno"/>

</xsd:key>
</xsd:schema>

¿From the above improved XML schema Company XML, we can see
that all nested structures have been explored.

Theorem 4.2 also allows that Ri is the same as Rj for 1 ≤ i < j ≤ k.
For example, the relation Supervision(supervisorEno, superviseeEno)

r2xml3.tex; 3/08/2005; 9:14; p.18



Constraint Preserving Transformation from Relational Schema to XML Schema 19

Figure 3. A Reference Graph for m:n Reflexive Relationship

stands for a many to many reflexive relationship between employees,
i.e., an employee may supervise many supervisees and an employee
may be supervised by many supervisors. Its reference graph is shown
in Figure 3. Obviously, the element for Supervision can be moved to be
under the element for Employee. Either supervisorEno or supervisorEno
may be chosen as idref attribute under the element for Supervision. The
XML schema for the relation schema Supervision is given below. Here
we choose to use the arc with the label supervisorEno.

<xsd:element name="Employee" minOccurs="0"
maxOccurs="unbounded">

<xsd:complexType>
<xsd:sequence>
... ...
<xsd:element name="Supervision" minOccurs="0"

maxOccurs="unbounded">
<xsd:complexType>
<xsd:attribute name="supervisorEno" type="xsd:idref"

use="required"/>
</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name="eno" type="xsd:id" use="required"/>

</xsd:complexType>
</xsd:element>
<xsd:key name="PK_Supervision"/>
<xsd:selector xpath="//Supervision"/>
<xsd:field xpath="../@eno"/>
<xsd:field xpath="@supervisorEno"/>

</xsd:key>

r2xml3.tex; 3/08/2005; 9:14; p.19



20 Chengfei Liu, Millist W. Vincent, Jixue Liu

5. Related Work

SilkRoute [8] and XPERANTO [14, 5, 13] choose to publish relational
data by creating XML views of the underlying relational data. The
advantage of this approach is the data independence achieved through
the created views. However, users cannot see the integrity constraints
buried in the underlying relational schema from those XML views. This
may cause difficulty to write XML queries precisely. The approach
taken in this paper can solve this problem by preserving integrity
constraints defined in the relational schema in the transformed XML
schema.

An early work in transforming relational schema to XML schema is
DB2XML [15]. DB2XML uses a simple algorithm to map flat relational
model to flat XML model in almost one-to-one manner. DTD is used
for the target XML schema.

Based on a flat translation similar to DB2XML, NeT [11] derives
nested structures from flat relations by repeatedly applying the nest
operator on tuples of each relation. A problem in this approach is that
the derivation process is solely based on values with no consideration of
the semantics of the schema. As such, the resulting nested structures
may not be useful at all. NeT also choose DTD for target schema,
therefore, does not consider the transformation of integrity constraints.

XViews [2] constructs a graph based on primary key/foreign key
relationship and generates candidate views by choosing the node with
either maximum in-degree or zero in-degree as the root element. The
candidate XML views generated maybe highly nested. DTD is also cho-
sen for target XML schema. Similarly, this approach does not consider
the preservation of integrity constraints. It also suffers considerable
level of data redundancy.

Compared with DB2XML, NeT and XViews, we use XML Schema as
the schema language for target schema. This allows us to take integrity
constraints into account and preserves them in the transformed XML
schema. Similar to NeT and XViews, we explore high level of nested
structures as well. However, our derivation approach captures semantics
that are buried in the relational schema and maps them accurately to
the target XML schema. In NeT and XViews, semantical information
such as integrity constraints are not used to guide the derivation of
nested structures. As such, redundancy is introduced in XViews and
unexpected nested structures may be obtained in NeT.

For integrating XML and relational databases, Kappel et al. [10]
give a comprehensive comparison of the concepts and corresponding
mapping patterns between XML and relational databases. In [10] and
their X-Ray approach [9], three basic kinds of mappings ET Rdirect/indirect

r2xml3.tex; 3/08/2005; 9:14; p.20



Constraint Preserving Transformation from Relational Schema to XML Schema 21

(an XML element to a relation), ET Adirect/indirect (an XML element
to an attribute of a relation) and A Adirect/indirect (an XML attribute to
an attribute of a relation) have been proposed and reasonable mappings
of these three basic mapping patterns from DTD to relational schema
have been discussed.

6. Conclusion

This paper addressed the issues in mapping relational database schema
to XML schema. To generate a high quality XML schema from a re-
lational schema, we believe that a schema transformation algorithm
should provide the following features:

− preserving integrity constraints of the underlying relational database
schema.

− avoiding introducing data redundancy.

− exploring all possible nested structures.

The schema transformation algorithm presented in this paper provides
all three features.

We believe that the proposed algorithm is effective and practical. In
the future, we will investigate how an XML schema can be generated
from a view of a relational database.

Acknowledgements

We are grateful to the anonymous referees for the detailed comments
that helped to improve this paper.

References

1. Abiteboul, S., P. Buneman, and D. Suciu: 2000, Data on the Web: From
Relations to Semistructured Data and XML. Morgan Kaufmann Publishers.

2. Baru, C.: 1999, ‘XViews: XML Views of Relational Schemas’. In: Proceedings
of DEXA Workshop. pp. 700–705.

3. Boag, S., D. C. amd M. Fernandez, D. Florescu, J. Robie, J. Simeon, and M.
Stefanescu: 2002, ‘XQuery 1.0: An XML Query Language’. W3C Working Draft,
http://www.w3.org/TR/2002/WD-xquery-20020430/.

4. Bray, T., J. Paoli, C. Sperberg-McQueen, and E. Maler: 2000, ‘Extensi-
ble Markup Language (XML) 1.0 (Second Edition)’. W3C Recommendation,
http://www.w3.org/TR/REC-xml.

r2xml3.tex; 3/08/2005; 9:14; p.21



22 Chengfei Liu, Millist W. Vincent, Jixue Liu

5. Carey, M., J. Kiernan, J. Shanmugasundaram, E. Shekita, and S. Subramanian:
2000, ‘XPERANTO: Middleware for Publishing Object-Relational Data as XML
Documents’. In: Proceedings of VLDB. pp. 646–648.

6. Deutsch, A., M. Fernandez, D. Florescu, A. Levy, and D. Suciu:
1998, ‘XML-QL: A Query Language for XML’. Submission to W3C,
http://www.w3.org/TR/NOTE-xml-ql/.

7. Fallside, D.: 2001, ‘XML Schema Part 0: Primer’. W3C Recommendation,
http://www.w3.org/TR/xmlschema-0/.

8. Fernandez, M., Y. Kadiyska, D. Suciu, A. Morishima, and W. Tan: 2002,
‘SilkRoute: A Framework for Publishing Relational Data in XML’. ACM Trans.
Database Syst. 27(4), 438–493.

9. Kappel, E. Kapsammer, S. Rausch-Schott, and W. Retschitzegger: 2000, ‘X-Ray
- Towards Integrating XML and Relational Database Systems’. In: Proceedings
of the 19th ER Int. Conf.

10. Kappel, G., E. Kapsammer, and W. Retschitzegger: 2004, ‘Integrating XML
and Relational Database Systems’. World Wide Web 7(4), 343–384.

11. Lee, D., M. Mani, F. Chiu, and W. Chu: 2001, ‘Nesting-Based Relational-to-
XML Schema Translation’. In: Proceedings of the WebDB. pp. 61–66.

12. Liu, C., M. Vincent, J. Liu, and M. Guo: 2003, ‘A Virtual XML Database
Engine for Relational Databases’. In: Proceedings of XSYM. pp. 37–51.

13. Shanmugasundaram, J., J. Kiernan, E. Shekita, C. Fan, and J. Funderburk:
2001, ‘Querying XML Views of Relational Data’. In: Proceedings of VLDB. pp.
261–270.

14. Shanmugasundaram, J., E. Shekita, R. Barr, M. Carey, B. Lindsay, H. Pira-
hesh, and B. Reinwald: 2000, ‘Efficiently Publishing Relational Data as XML
Documents’. In: Proceedings of VLDB. pp. 65–76.

15. Turau, V.: 2001, ‘Making Legacy Data Accessible for XML Applications’.
http://www.informatik.fh-wiesbaden.de/ turau/DB2XML/.

r2xml3.tex; 3/08/2005; 9:14; p.22


