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Abstract

This article presents a rigorous simulation-based optimization framework that enables concurrent and consistent decision-

making in building design. Analytical Target Cascading (ATC), a multi-level engineering design optimization framework, is

extended to thermal and HVAC design in buildings. The framework facilitates computational decision support for meeting

building performance goals, allows autonomy of specialized design tasks with timely and efficient use of analysis tools, and

preserves dependencies between possibly competing building performance goals. A pilot application demonstrates how ATC

functions in the context of building design. Relevance and benefits of this hierarchical optimization approach to multi-criteria

building performance problems are also discussed.

Published by Elsevier B.V.
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1. Introduction and background

Building simulation’s central concern is design

performance. The field of building simulation is

dedicated to developing analytic tools for modeling

and computing performance in design; it has signifi-

cantly influenced design practice and the way that

computational analytic tools have been used to

examine a design’s performance. Hence, the iterative
0926-5805/$ - see front matter. Published by Elsevier B.V.

doi:10.1016/j.autcon.2004.11.004

* Corresponding author. Tel.: +1 404 385 2913; fax: +1 404

894 0572.

E-mail address: ruch@coa.gatech.edu (R. Choudhary).
process of making design decisions, computing their

effects on design performances, and evaluating and

comparing the results with previous design decisions

is well integrated in the use of building simulation

tools. Design optimization can formalize and improve

this process.

Optimization techniques have been used in archi-

tecture primarily for solving problems of space layout,

structural design, and building performance. Space

layout optimization is concerned with finding feasible

topology and dimensions of interrelated objects that

meet all design requirements and maximize design

preferences [16,17]. Structural optimization involves

configuration of structural elements and whole con-
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structions, their geometrical and mechanical features,

and the properties of their materials for optimizing

mechanical, economic and/or aesthetic criteria [2].

Building performance optimization involves position-

ing and sizing architectural elements, selecting mate-

rials, and determining appropriate control settings for

maximizing acoustic, thermal or lighting performance

criteria in a given context. Performance optimization

is different from solving structural design and space

allocation problems. In addition to geometry, top-

ology, and materials, it is significantly influenced by

schedules of control and operation of the design.

Similar to structural design, model functions in

building performance optimization problems are

mostly simulation-based, often involving complex

finite element analysis.

Gero et al. [9] and Wilson and Templeman [36]

were among the first to present building performance

problems within the design optimization framework.

Wilson and Templeman [36] derived design decisions

that minimize initial and operational costs of an office

building by posing the problem as a constrained non-

linear optimization problem. Gero et al. [9] included

energy efficiency in the context of other performance

criteria and proposed a design optimization model for

generating Pareto sets to understand trade-offs

between multiple performance criteria.

In general, problems involving architectural

design elements are often ill defined. Too often,

design elements are selected by simultaneously

considering numerous quantifiable as well as non-

quantifiable criteria. In addition, the nature of the

problems and use of complex simulations to

evaluate functions often yield undesirable properties

in the optimization model. For these reasons, the

use of numerical methods to solve building per-

formance problems has been restrictive, and AI

techniques were generally favored in the 1990s for

their logical rather than mathematical approach

[18,27,28,31]. The contribution of AI techniques is

still significant for posing simulation-based design

as a systematic problem, and for initiating the use

of computational techniques to solve them. How-

ever, they have been shown to have very limited

applicability.

Many improvements in numerical methods, sol-

ution strategies, and development of new algorithms

over the past decade now allow a wide range of
complex problems to be solved effectively. Building

performance functions are often smooth in theory, and

where possible, gradient-based methods have been

shown to be very efficient and reliable [6,11,25,38].

However, use of complex simulations often results in

derivative discontinuities, because of which gradient-

based methods can fail.

Derivative-free deterministic methods such as

generalized pattern search [1], DIRECT [12], and

lattice methods [32] have been shown to perform

particularly well for problems that suffer from

simulation noise [26,29,34], but are generally limited

to small problems. In addition to discontinuities in

function-responses, simulation-based optimization

can also be time-consuming since each design

evaluation involves the use of simulation. Recent

applications [34,6] have addressed both these issues

by using approximation-based methods that derive

simpler functions of the original simulation responses

and use them for a partial search during the

optimization process.

Over the past few years, stochastic methods such

as simulated annealing and genetic algorithms have

also become very popular, and have been applied to a

range of problems for optimizing thermal and lighting

performance based on building enclosure, HVAC

design, and control schedules [3,5,7,37]. These

methods are attractive mainly because they solve a

wide range of problems, do not require functions to be

smooth, and can handle mixed-discrete variables.

However, these methods are based on random search

and will often derive unreliable results unless used

with considerable skill and intuition.

Hybrid strategies combining two or more methods

have been used to overcome problems associated with

one particular method. For example, Michalek et al.

[19] and Monks et al. [22] use the global and versatile

nature of stochastic methods with rigor and efficiency

of gradient-based methods in a combined framework.

[35] propose to combine genetic algorithms and

pattern search [10] to derive a hybrid method that

reduces computational run time in problems involving

expensive simulations.

In addition to exploring a range of different

methods, the applications from the past few years

also demonstrate that with good understanding of the

methods involved, design optimization can be effec-

tively used to improve building performance and
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provide rigor in the way we use simulation tools.

However, simulation-based design tasks often require

expert analysis of different but interconnected per-

formance goals. In principle it is desirable to evaluate

interrelated design decisions concurrently so that their

combined effects on different performance goals may

be maintained. However, combining all design deci-

sions and evaluating them simultaneously is difficult

because it involves multiple and often conflicting

performance goals, which may require expert analysis

at very different levels of complexity and with

different design information.

Past work on the simultaneous optimization of

multiple performance goals has used multi-criteria

formulations with preference or non-preference-based

strategies. These applications typically provide the

decision maker with values for decision variables that

best accommodate a weighted set of performance

criteria. The difficulty in elaborating them to include

more than a few analytical tasks and decision

variables is that the problem quickly becomes too

large and complex to be implemented in one model.

Even when numerical results are successfully

obtained, one may not be able to interpret the design

trade-offs or use intuition to confirm computed results

[24]. For large and complex cases, some form of

problem decomposition becomes necessary. In addi-

tion to making a problem manageable, decomposition

of a large problem by focus or discipline is beneficial

because it allows for the specialized analysis and

decision making of individual design tasks. On the

other hand, when the decision maker separates and

designs individual parts of the problem, he must not

only coordinate common decisions between different

problems, but also combine the solutions into a single

compatible set.

To coordinate design decisions conducted in

separate parts, or for different performance aspects

of the same problem, a rigorous and tractable process

is necessary. This article thus presents a simulation-

based design optimization model that: (a) is rigorous;

(b) facilitates computational decision support for

meeting performance goals; (c) allows autonomy of

specialized design tasks with timely and efficient use

of analysis tools; and, (d) preserves dependencies

between various performance goals associated with a

design, thereby enabling concurrent and consistent

decision making.
2. Simulation-based building design by hierarchical

optimization

Solving a combination of interrelated problems

belongs to the realm of systems design, which is the

branch of engineering concerned with the develop-

ment of large and complex systems. Since simulation-

based design problems require multiple criteria and

diverse modes of analysis, they can be placed in the

category of systems design, in which solving numer-

ous performance goals for one problem is similar to

assembling interconnected decision-making tasks. In

this paper we present Analytic Target Cascading

(ATC) in the context of thermal and HVAC design

[4]. Hitherto used for automotive designs [13,14],

ATC is a hierarchical optimization methodology for

achieving compatible design targets in large engineer-

ing systems at early product development stages. It is

based on the premise that the performance of a system

element can be derived analytically as a function of its

decision variables.

The following assumptions apply for using ATC as

a methodology for handling thermal and HVAC

design problems:

! Performance goals can be embodied as design

targets that are to be achieved via design decisions.

Some of the performance goals can be set as

overall design targets, and introduced as part of

initial problem definition.

! These targets, along with any required perform-

ance specifications, can be computed as functions

of design decisions by using analysis/simulation

models.

! A complex simulation-based design problem can

be decomposed or partitioned into subproblems

that can be further decomposed.

! It is possible to identify a hierarchical organization

in the decomposition.

In the context of simulation-based design, a

particularly beneficial feature of this decomposi-

tion–coordination approach is that each subproblem

in the hierarchy constitutes a separate optimization

problem and is associated with only those analysis

models that are capable for computing the values of

performance goals set for it. This allows both

optimization algorithms and analysis tools to be
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used exclusively for the relevant decision-making

problem.

The following section describes the ATC method-

ology. This methodology was earlier referred to by

Michelena et al. [21] and more thoroughly presented

by Kim [14]. While the ideas remain faithful to the

original formulation, the general notation has since

evolved. The notation followed in this article refers to

[20] and [23]. Through a pilot application, we

demonstrate how problem-specific selection of opti-

mization methods can be used for solving simulation-

based design tasks in buildings. Furthermore, appli-

cation of optimization methods in building design is

extended not only to computing efficient solutions for

specific problems, but also to deriving compatible

values of dependencies between multiple intercon-

nected decision problems.
3. The ATC process

ATC is a multidisciplinary hierarchical optimiza-

tion methodology that provides a systematic process

for propagating desired top-down performance targets

to appropriate lower level performance values (Fig. 1;

[23]). In the ATC framework, the original design

problem is partitioned into a set of subproblems

constituting system, subsystems, and components.

Design targets are specified at the top level of the

multi-level design formulation and bcascaded downQ
to lower levels. Subproblems at lower levels are

formulated so that all elements included in the

hierarchy match the cascaded targets consistent with

the overall system targets. Design targets derived at

lower levels are rebalanced to higher levels by
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Fig. 1. Analytic Target Cascading.
iteratively adjusting values of targets and decision

variables.

Each subproblem in the ATC hierarchy requires a

decision model and one or more analysis models. The

decision model of a subproblem is its formulation as a

design optimization model. It requires representation

of subproblem performance R, decision variables x̄,

and all relevant constraints g and h on decision

variables. The decision model also embodies the links

of each subproblem to upper and lower level

subproblems in the hierarchy. It is through these links

that top-level targets are propagated down and lower

level responses are rebalanced up the hierarchy. Each

decision model is associated with one or more

analysis models to compute performance R as a

function of decision variables x̄. The analysis model/s

take(s) values of decision variables as input and

returns their corresponding performance response as

output (Fig. 2). Every analysis model requires an

analysis tool (a simulation, for example) or an analytic

function r from which performance R can be derived

with respect to decision variables x̄. In the building

simulation context, the simulation will typically return

a data set (for example, a vector of room temperatures

at every time step), which is processed by the analysis

model into the required performance response (for

example, maximum daily temperature).

Every subproblem in the ATC hierarchy is formu-

lated and solved independently, and is posed to

optimize btarget matchingQ with its upper and lower

level subproblems. The ATC problem is solved

iteratively for meeting all targets as closely as possible

by a coordination strategy. Once compatible targets

are derived from the ATC process, individual sub-

problems can be isolated and outsourced to be solved

in further detail, thereby enabling truly concurrent

design [15]. In the ATC methodology, this constitutes

the embodiment design step [14]. ATC is a general-

izable design methodology with proven convergent
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properties [20]. Fig. 3 shows these basic steps in the

ATC process, as well as the embodiment design step

that follows it.

Formulating a design problem in the ATC frame-

work requires: (a) identifying appropriate decomposi-

tion, (b) hierarchical organization of decomposed

subproblems and identifying key links between them,

(c) formulation of subproblems as decision models

and identifying suitable optimization algorithms to

solve them, and (d) building and mapping appropriate

analysis models to each decision model.

Once formulated, steps involved in solving an ATC

problem can be summarized as: (a) specifying values

of overall design targets (referred to formally as

btarget settingQ), (b) propagating specified top-level

targets to lower levels and optimizing all subproblems

to match targets as closely as possible, and (c)

iteratively searching for an overall consistent solution

by applying a coordination strategy.

3.1. Hierarchical formulation

The first step in setting up an ATC problem is to

decompose the problem hierarchically. Typically four

types of decomposition strategies are commonly

found in systems design literature [33]: Object,
system
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simulation-based design problems by notions of
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logic of information flow.
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element in the hierarchy. An analysis model is

appropriate if it can compute performance values as

functions of its decision variables. The existence of

appropriate analysis models is presumed in this setup.

Every analysis model evaluates design decisions by

taking variables and parameters as input and returning

performance values as output.

In the ATC framework, problem partitioning also

includes identifying common links between subpro-

blems. Horizontal links between subproblems are

called linking variables. Linking variables represent

decisions shared among two or more decision models

at the same vertical level [14]. Their value is

determined individually by the decision models that

share them and coordinated by the upper level parent

problem. This means that subproblems that share

linking variables must also have a common decision

model at the upper level.

The vertical relationships between decomposed

levels are embodied by performance targets and

responses. Fig. 4 shows the information flow up and

down the ATC hierarchy for a three-level problem
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with one system, three subsystems, and two compo-
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decision models, and oval boxes are the analysis

models. As an example, the subsystem B model
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model S. At an iteration k in the ATC process,
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and RL
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component levels. Subsystem B is solved for deter-

mining values of its local decision variables x̃B, values
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values of coordinating linking variables yB such that

deviations from information received from upper and

lower levels are minimized. This includes minimizing

deviations between RB1 and RL
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B2, yB
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B. Subsystem B

computes its response RB by using its analysis model.
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interactions responses of a particular level are decision
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variables input to the analysis model at the level

above. Another condition in this organization is that

linking variables are shared between children of a

parent problem.

3.2. Mathematical models

Fig. 5 shows the ATC formulation in the standard

index notation given by Michelena and Park [20]. For

target matching a problem Sij for the j-th design

model at the i-th level, the general formalization of the

optimization model is stated as:

minimize
x̃x ij;y iþ1ð Þj;e

R
ij
;ey
ij

jjRij � RU
ij jj22 þ jjyij � yUij jj22 þ eRij þ eyij

ð1Þ
subject to:X
kaCij

jjR iþ1ð Þk � RL
iþ1ð Þk jj22VeRij ;

X
kaCij

jjy iþ1ð Þk � yLiþ1ð Þk jj22Veyij;

gij x̄xij
� �

V0;

hij x̄xij
� �

¼ 0;

where:

– x̄ij=[x̃ij, yij, R(i+1)k1
,. . .,R(i+1)kcij

]T is the vector of

all decision variables of element j at level i,

– Rij=rij(x̄ij) where rij is the vector function that

represents the analysis model. It calculates the

responses for element j at level i by taking in all

its decision variables as input.

– Cij={k1,. . .,kcij}, and cij is the number of child

elements,
j = Ai = 1

i = 2

i = 3

j = A j = B

j = A j = B j = C j = D

L
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Elements j

Fig. 5. Standard index notation for a hierarchically partitioned

problem.
– x̃xijaR
nij is the vector of local decision variables

for element j at level i,

– yijaR
lij is the vector of linking variables for

element j at level i,

– RijaR
dij is the vector of local responses for

element j at level i. It is a function of local,

linking, and children response variables:

rij : R
nijþlijþ

P
k
d iþ1ð ÞkYR

dij ,

– eij
R is the tolerance variable for consistency of

targets set at element j level i and the responses of

j’s children,

– eij
y is the tolerance variable for consistency of

linking variables coordinated at element j level i

for child elements at the (i+1)th level,

– RU
ijaR

dij is the vector of response values cascaded

to element j at level i as targets from its parent at

level (i�1),

– yUijaR
lij is the vector of coordinating linking

variables for the linking variables in the children

of element j at level i. This vector includes one

copy of each linking variable from all of element

j’s children.

– RL
iþ1ð ÞkaR

d iþ1ð Þk is the vector of response variable

values cascaded to the element j at level i from its

k-th child at level (i�1),

– yL
iþ1ð ÞkaR

l iþ1ð Þk is the vector of linking variable

values cascaded to the element j at level i from its

k�th child at level (i�1),

– gij : R
dijþnijþlijYR

vij and hij : R
dijþnijþlijYR

sij are

vector functions representing inequality and

equality design constraints,

– td t2
2 represents the square of the l2 norm.

In this general formulation, the overall system

targets are specified (represented as Rij=T). Also,

subproblems that do not have any children will not

contain the tolerance variable for coordinating lower

level information. Subproblems that do not share any

linking variables with other children of their parent

element will not have the terms for minimizing linking

variable deviations, and parents whose children do not

share any linking variables will not include the

tolerance variable for coordinating linking variables.

3.3. Hierarchical coordination

The order of solving each decision model in the

ATC hierarchy and dispatching its solution to other
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models in the hierarchy is called coordination strategy.

Once the ATC problem is set up for all elements in a

hierarchy in the form shown in Eq. (1), a coordination

strategy is applied to iterate through the multi-level

structure. The main requirement for a coordination

strategy is that it should converge to the same solution

set as that of an unpartitioned problem [20,24]. A

general assumption in the ATC literature is that the

optimization problems are continuous. However the

formulation is also valid for mixed-discrete problems.

The ATC formulation is both top-down and

bottom-up, which means that once some overall

performance targets are specified at the topmost level,

they are disseminated down to determine the value of

lower level performances. Likewise, if performance

targets are initially specified for lower level problems,

then the upper level performances can be determined

based on the information propagated up from the

lower levels. In this manner, the solutions derived at

any particular level in the hierarchy are sought to be

consistent with all other components of the partitioned

problem. The iterative process of cascading targets is

repeated until specified termination criteria are met.

3.4. Relevance and benefits to consistent simulation-

based design

In addition to the general benefits of problem-

partitioning and explicit means of deriving system

optimality, ATC offers a goal-driven method in

contrast to the data-centric approaches to collaborat-

ing design decisions in building simulation. It is a

process in which dialogues between multiple decision

making tasks are singularly motivated towards meet-

ing performance specifications. Instead of direct

transfer/sharing of information among various simu-

lations from a data repository, this framework

connects simulations via decision-making models, or

in other words, through the purposes for which they

are required (see Fig. 4). Communications among

simulations thus occur only where necessary. This is a

particularly beneficial prospect in the building design

context where communications between interrelated

simulations can be overwhelming and sometimes even

indiscernible. It is also an approach that is likely to be

more rewarding because all aspects involved in a

simulation-based scenario including making deci-

sions, evaluating trade-offs, or invoking a particular
analysis tool, depend on what performance specifica-

tions of a particular problem. Likewise, their consid-

eration is central to the ATC model.

In addition, the ATC process seeks solutions that

are compatible with all performance goals included in

the problem. If a compatible set is not feasible, the

ATC process allows the modeler to examine trade-offs

explicitly. Explicit knowledge of trade-offs between

performance targets can better inform decision mak-

ing in practical settings where performance goals are

likely to be contradictory.

The clear separation between the decision and the

analysis model is also an important feature in this

hierarchical decomposition approach. It implies that

the decision models can be freely modified as per the

problem, by adding or changing performance goals or

decision variables. New functional relations can be

included as additional constraints depending on the

peculiarities of the problem under consideration.

Furthermore, analysis tools can be used efficiently

without information overload of irrelevant decision

variables. The independence of the decision model

from the analysis model also provides the flexibility

to use any relevant simulation tool that is available.

Finally, for any particular subproblem in the hier-

archy, multiple analysis models can be also used if

required. The following section extends this method-

ology to the building design context through a pilot

application.
4. Pilot application

Thermal and HVAC design illustrate a typical

simulation-based problem outsourced to specialists by

specifying a set of performance goals and design

decisions by which those goals much be achieved.

Such problems permit partitioning decision-making

tasks into subproblems defined by the design deci-

sions involved, the type of design information a

particular analysis or a simulation requires, the

performance aspect, or the physical zone being

considered.

The following problem extends the ATC frame-

work to the context of simulation-based design in

buildings by applying it to the thermal design and

analysis of a fictional design scenario. This design

case also serves to validate the multi-level optimiza-
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tion approach against solving the problem altogether

in one model by comparing results obtained from

both. Symbols used throughout this study are given at

the end of this article (Table 8).

4.1. Design scenario

Thermal design of a three-zone building consisting

of one office and two workshops is considered

(Fig. 6). This problem is defined for making decisions

on the sizes of walls and windows, thermostatic set

point temperatures, and average zone velocities for

meeting specified performance targets. The two

workshops (zones 2 and 3) are assumed to be identical

in terms of use, environmental conditions, and

occupancy.

Depending on the function and schedules of use,

the following targets are specified for the building:

(a) Overall floor area: while seeking the optimum

wall sizes of each zone, the total building area A,

must match the given overall area TA of the

building.

(b) Total thermal performance of zone 1, 2 and 3:

100% bthermal performanceQ is targeted for the
xw

ZONE 1: OFFICE

ZONE 2: WORKSHOP

ZONE 3: WORKSHOP

plan

ys

yo

N

Fig. 6. The Three Zone
building. This implies that at the best case, the

summation of the thermal performance P of all

three zones should match target TP=1.

Area A and thermal performance P represent the

overall building responses, and are derived by

summing individual zone area and performance:

A ¼ 2Aw þ Ao; and P ¼ 2Pw þ Poð Þ=3 ð2Þ

where Aw and Ao are the areas of the workshop and

office respectively, and Pw and Po are their thermal

performance values. Thermal performance Pw of the

workshop is formulated for minimizing annual heat-

ing and cooling energy. So Pw=1 when the total

energy consumption of the workshop is zero. Thermal

performance Po of the office is defined for max-

imizing the number of occupied hours over which a

given occupant comfort index is maintained, and

Po=1 when the average absolute value of thermal

comfort index PMV over all occupied hours is zero.

Since the two workshops are identical, their area and

thermal performance is computed for one zone and

doubled to include the other.
xw

gw

south elevation

Example Case.
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The decision variables included in this problem

are: (a) width of the workshop xw, (b) ys and ys+yo as

length of the workshop and office respectively, (c)

window wall percentage of the workshop gw, (d)

window height of the office go, (e) mean zone

velocity vw and vo, heating set point temperatures thw
and to

h, and cooling set point temperatures tcw and to
c of

the workshop and office, respectively.

Aw and Pw are derived from the decision variables

and parameters related to the workshops, and Ao and

Po are functions of the office attributes only except for

ys, which is the length of the common wall between

the office and the workshop.

In addition to meeting overall targets TA and TP,

each zone design must be within defined feasible

limits of average room temperatures and thermal

comfort at all occupied hours and total annual energy

cost.

4.2. ATC formulation: hierarchical decomposition

The problem as posed can be decomposed in a

bilevel structure, based on physical distinctions

between the zones (see Fig. 7). The overall thermal

design problem is represented at the system level

where target values TA and TP are specified for
Fig. 7. Decomposition of the Three-Z
building area and thermal performance. The problem

is decomposed into two subproblems at the second

level. Subsystem 1 represents the office and sub-

system 2 represents the workshops.

The system level problem Z determines optimal

values of zone area and thermal performance (Aw, Ao

and Pw, Po) for meeting specified building targets TA
and TP. Values of zone area and performances

derived at this level are cascaded down to the

appropriate zone level problem as targets. The

subsystem problems are solved for meeting their

area and thermal performance targets that are passed

down from the upper level, while satisfying design

constraints. The common wall between the workshop

and office ( ys) is represented as a linking variable,

which means that it is coordinated by the system

level problem Z. The following mathematical for-

mulations are used to set up the ATC process for this

problem. Symbols used throughout this example are

also given in Table 8.

4.2.1. System level model

The system level problem is posed for meeting

specified targets TA=597 m2 and TP=1 with respect to

zone areas Aw, Ao and thermal performance Pw, Po,

for minimizing deviations between values of zone
one Thermal Design Problem.
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area and performance derived at this level with those

passed back from the subsystem level, and for

coordinating the value of linking variable shared

between the two subsystem problems. The optimiza-

tion model for the system level problem is formally

stated as:

Z : Minimize ðP � TPÞ2þ P � TAð Þ2 þ eR þ ey
ð3Þ

with respect to:

RZs ¼ Aw;Ao;Pw;Poð Þ

yZs ¼ ysð Þ

eR; ey ¼ eR1; eR2; eR3; eR4; ey
� �

where:

RZ P;A½ � ¼ rZ RZsð Þ

subject to:

Aw � AL
w

� �2
VeR1 Ao � AL

o

� �2
VeR2

Pw � PL
w

� �2
VeR3 Po � PL

o

� �2
VeR4

1

2
ys � yLs

� �
Zs1

� �2
þ ys � yLs

� �
Zs2

� �2� �
Vey

Amin
w VAwVAmax

w Amin
o VAoVAmax

o

Pmin
w VPwVPmax

w Pmin
o VPoVPmax

o

ymin
s VysVymax

s

In this particular example there are no local

variables at the system level (see Table 1). Therefore,

the only constraints are those formulated for coordi-

nating the information received from the lower level.

In addition to minimizing difference between targets

and performances, the deviation tolerances (eR and ey)
used for coordinating lower level information are also
Table 1

Summary of responses and variables at the system level

System level problem Z

System responses (RZs) [ P, A]

Local variables (x̃) –

Responses from the subsystem level (RZs) [ Po, Pw, Ao, Aw]

Subsystem level linking variables (yZs) [ ys]
minimized. In an ideal case the deviation tolerances

are expected to be zero, implying that values of the

building level variables match the performance values

determined at the level below, and the value of the

shared variable ys is set the same in both subsystems.

All objectives in this multi-criteria formulation are

equally weighted, and all targets and responses are

scaled between 0 and 1.

4.2.2. Subsystem level models

The optimization problems at the subsystem level

are posed for finding values of local variables and

linking variable such that the deviations between

target zone area and performance cascaded down from

the upper level are minimized, while satisfying all

local constraints. Since both subsystem problems 1

and 2 represent the last levels in this example, their

problem formulation will not include any terms for

coordinating of lower level information.

The local decision variables included in subsystem

1 (office decision model) are: (a) partial length of the

office yo, (b) window height of the office, (c) mean

zone velocity vo, (d) heating set point temperature to
h,

and (e) cooling set point temperature to
c. Subsystem 2

(workshop decision model) local variables include: (a)

width of the workshop xw, (b) window wall percent-

age of the workshop gw, (c) mean zone velocity vw,

(d) heating set point temperature tw
h, and (e) cooling

set point temperature tw
c. Length of the common wall

between the office and workshop ys is the linking

variable.

The scaled area of the office Aw and the workshop

Ao are derived from the following decision variables

and parameters (see Fig. 6):

Aw ¼ kw xwysð Þ ð4Þ

Ao ¼ ko xo ys þ yoð Þð Þ

where xw and xo are the width of the workshop and

the office respectively, ys is the length of the work-

shop and also the shared wall between the office and

the workshop, and ys+yo is the length of the office. kw
and ko are the scaling parameters for Aw and Ao,

respectively.

Thermal performance Pw and Po are evaluated

with respect to the decision variables by using a

simulation tool that takes the values of the decision

variables as input, and returns their corresponding
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performance values as responses. Pw represents the

sum of total annual heating and cooling energy load of

the office scaled by the maximum feasible amount of

energy load Erefw:

Pw ¼
Xm
i¼1

Hw
i þ

Xm
i¼1

Cw
i

 !,
Erefw ð5Þ

where Hi
w and Ci

w are the heating and cooling energy

at time step i (i=60 min), and m is the total number of

time steps in the year for which Hi
w and Ci

w are

computed. Thermal performance Po is a thermal

comfort index representing the average absolute value

of thermal comfort in the office (measured in PMV)

over all occupied hours m̄:

Po ¼
Xm̄

i¼1

uo
i

�� �� !,
m̄ ð6Þ

In addition to meeting overall targets TA and TP,

each zone design must be within defined feasible

limits of average room temperatures, thermal comfort,

and total annual energy cost. These thermal perform-

ance indices are also computed with respect to the

decision variables included in the problem.

Both office and workshop are required to maintain

average air temperature between 20 8C and 23 8C
during all occupied hours m̄. The analysis model

evaluates the zone average air temperatures at all m̄

and returns the maximum and minimum air temper-

ature of each zone to the decision model, which

evaluates them by the following statements:

twW VtrefW ; toW VtrefW
twV VtrefV ; toV VtrefV

ð7Þ

where twW and toW are the maximum mean air temper-

atures of the workshop and office respectively, twV and
toV are the minimum mean air temperatures of the

workshop and office respectively, trefW is the max-

imum allowed temperature of the zones (23 8C), and
trefV is the minimum allowed temperature of the zones

(20 8C).
Absolute value of the thermal comfort index

(measured in PMV) at every occupied hour is required

to be less than a specified upper limit. The analysis

model returns the maximum absolute value of thermal
comfort over all m̄ to the decision model, which

evaluates it against the maximum feasible value:

uwWVuref ; and uoWVuref ð8Þ

where uwW and uoW are the maximum thermal comfort

values of the workshop and office respectively, and

uref is their maximum feasible value.

The total annual heating and cooling energy of

both zones (Ew and Eo) is also constrained by their

specified upper limits:

EwVErefw; and EoVErefw ð9Þ

where Ew ¼
Pm

i¼1 H
w
i þ

Pm
i¼1 C

w
i

� �
, and Eo ¼Pm

i¼1 H
o
i þ

Pm
i¼1 C

o
i

� �
. Erefw and Erefo are specified

upper limits for Ew and Eo, respectively.

The mathematical decision models of the zone and

workshop are stated as follows:

Subsystem 1: The Office Decision Model

Zs1 : Minimize Po � PU
o

� �2 þ Ao � AU
o

� �2
þ ys � yUs
� �2 ð10Þ

with respect to:

x̃xo ¼ yo; go; vo; t
h
o; t

c
o

� �
yZs1 ¼ ysð Þ
where:

RZs1 Po;Ao;Eo; toW; toV;uoW½ � ¼ rZs1 x̃xo; yZs1ð Þ
subject to:

toW� trefW V0 trefV � toVV0
uoWVuref EoVErefo

ymin
o VyoVymax

o gmin
o VgoVgmax

o

vmin
o VvoVvmax

o

tho
� �min

VthoV tho
� �max

tco
� �min

VtcoV tho
� �max

Subsystem 2: The Workshop Decision Model

Zs2 : Minimize Pw � PU
w

� �2 þ Aw � AU
w

� �2
þ ys � yUs
� �2 ð11Þ

with respect to:

x̃xw ¼ yw; gw; vw; t
h
w; t

c
w

� �
yZs2 ¼ ysð Þ



Table 2

Summary of responses and variables at the subsystem level

Subsystem level

problems

Zs1 Zs2

Subsystem responses

(RZs)

[ Po, Ao] [ Pw, Aw]

Local variables (x̃) [ yo, go, vo, to
h, to

c] [ yw, gw, vw, tw
h, tw

c]

Subsystem linking

variables (yZs)

[ ys] [ ys]
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where:

RZs2 Pw;Aw;Ew; twW; twV ;uwW½ � ¼ rZs2 x̃xw; yZs2ð Þ

subject to:

twW� trefW V0 trefV � twV V0
uwW Vuref EwVErefw

ymin
w VywVymax

w gmin
w VgwVgmax

w

vmin
w VvwVvmax

w

thw
� �min

VthwV thw
� �max

tcw
� �min

VtcwV tcw
� �max

4.3. Implementation setup

Sequential Quadratic Programming (SQP) is used

to optimize of the system level performance targets.

SQP is a gradient-based optimization algorithm,

which means that it uses function gradients to make

decisions about which designs to explore. The

algorithm is fast for small problems and produces

locally optimal design. Since SQP requires all

decision variables and design relations to be smooth,

superEGO [30] was used to optimize zone level

problems where some design relations are non-smooth

because of simulation bnoise.Q An approximation-

based global optimization algorithm, superEGO is

also efficient for problems where the analysis models

may include calls to expensive simulation tools. The

algorithm takes an initial data sample of the objective

function and fits a surrogate model to that data. It uses

the surrogate model to search for optimal solutions

and therefore reduces the number of calls to the

analysis model. Although not highly critical in this

demonstration case, this feature is an important

consideration for any future applications where

expensive simulations could make the ATC process

extremely time-consuming.

All decision variables, constraints, and functions

used in this formulation are scaled between 0 and 1.

Table 2 summarizes the responses and variables

included in the subproblem level models.

The analysis models of both subproblems use

Energy Plus, a building energy analysis tool [8], for

computing zone responses for evaluating targets as

well as design constraints. All evaluations are run

hourly, for 1 year. The analysis model aggregates the
thermal performance indices calculated by the simu-

lation tool in appropriate forms and returns them to

the decision model as design responses.

4.4. Hierarchical optimization

Fig. 8 shows the information flow up and down the

levels, as well as input and output between the

decision and analysis models. Starting from the

system level, deviations between specified targets

[TA,TP] and system level responses [A,P] are mini-

mized with respect to subsystem responses RZs1 and

RZs2. Values of RZs1 and RZs2 computed at the system

level are cascaded down to corresponding subsystem

problem as zone level targets RU
Zs1 and RU

Zs1. At this

point, an estimated initial value of the linking variable

yZs is also passed down to both zone level problems as

target yUZs. Both subsystem level problems are now

solved for values of local and linking variables such

that: (a) deviations between zone level targets and

linking variables cascaded from the upper level (RU
Zs1,

RU
Zs1, and yUZs) are minimized, (b) zone responses

computed at the subsystem level are minimized, and

(c) all constraints are satisfied.

When the subsystem level problems are solved, the

responses and linking variables computed by the zone

level models are passed back to the system level

model as lower level responses (RL
Zs, R

L
Zs, and yLZs),

and the building level problem is resolved with

respect to zone responses and linking variables for

matching overall targets and for minimizing devia-

tions between zone area, performance, and linking

variables passed back from the lower level.

When responses and linking variables computed

at the subsystem level are passed back to the system

level decision model, one target cascading iteration is

complete. For this top-down case, the iterations were

terminated when the deviation terms ER and Ey
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Fig. 8. Information Exchange between the Bi-level Thermal Design Case.
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became smaller than a specified tolerance and also

when the decision variables of all the models in the

hierarchy stopped changing between subsequent

iterations. At the end of the ATC process, all

performance targets (TA, TP, Ao, Aw, Po, Pw) and

linking variables ( ys) are determined in compatibility

with one another, i.e., meeting the targets as closely

as possible, while satisfying constraints throughout

the hierarchy.

4.5. ATC results

For the three-zone case, the ATC process termi-

nated in 12 iterations. Table 3 shows the trade-offs
Table 3

Overall system level targets and responses

Top-level model: overall

building performance

Targets Responses

Thermal performance of building P (%) 100 92.6

Overall area of building A (m2) 597 521

Deviation between subsystem targets

and responses eR (scaled)

0 0.05

Deviation among subsystem linking

variables ey (scaled)
0 0.0025
between overall building and zone level targets. For

the goal of maximizing thermal performance and area,

these trade-offs represent the best compromise

between performance targets while meeting all feasi-

bility constraints. Table 4 shows the values of

subproblem responses and coordinating linking vari-

able determined at the top level. These values are

passed down as targets to the subsystem levels, and

Table 5 shows the subsystem solution for meeting

these targets, and Table 6 shows the optimal values for

subsystem level local variables. As shown in Table 5,

the workshop targets do not match their target values.

This is because the thermal performance target for the
Table 4

Top-level design solution

Top-level decision variables Initial

values

Optimal

values

Lower

bounds

Upper

bounds

Thermal performance of

office Po (%)

1 1 0 1

Area of office Ao (m
2) 237 225 112 237

Thermal performance of

workshop Pw (%)

1 0.89 0 1

Area of workshop Aw (m2) 180 168 48 180

Linking variable ys (m) 15 14 8 15



Table 5

Subsystem level targets and responses

Subsystem design solution Targets Responses

Subsystem 1: office model

Thermal performance of office Po (%) 1 1

Area of office Ao (m
2) 225 225.36

Linking variable ys (m) 14 14.47

Subsystem 2: workshop model

Thermal performance of workshop Pw (%) 0.89 0.94

Area of workshop Aw (m2) 168 138

Linking variable ys (m) 14 13.7

Table 7

Comparison of ATC and AAO solutions

Decision variables ATC AAO
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workshop (minimizing total energy) is unattainable,

and while minimizing the energy cost, the area of the

workshop is also reduced.

4.6. Validation of ATC results against ball at onceQ
solution

Since this example case is small, these results are

also compared to results obtained when the same

problem was posed as one optimization problem, and

solved ball at once,Q namely without the ATC

decomposition. (This comparison is a validation of

ATC given by Kim [14]). The ball at onceQ problem
was optimized using superEGO. Table 7 shows both

the ATC and ball at onceQ solution. The objective

function value is the total deviation between all targets
Table 6

Subsystem level decision variables

Subsystem variables Initial

values

Optimal

values

Lower

bounds

Upper

bounds

Subsystem 1 (office model): Variables

Partial length of office yo (m) 4.75 4.31 1.3 4.75

Window height go (m) 1.0 0.84 0.5 1.5

Mean zone velocity vo (m/s) 0.35 0.14 0.1 0.5

Heating set point temperature

to
h (8C)

22 21.21 19 24

Cooling set point temperature

to
c (8C)

22 21.34 19 24

Subsystem 1 (workshop model): Variables

Width of workshop xw (m) 12 10.1 6 12

Window wall percentage gw (%) 0.8 0.67 0.2 0.8

Mean zone velocity vw (m/s) 0.35 0.18 0.1 0.5

Heating set point temperature

tw
h (8C)

22 20.34 19 24

Cooling set point temperature

tw
c (8C)

22 23.93 19 24
and performance goals, and Ao, Po, Aw, and Pw are the

performance values determined for the two zones.

Ideally, the solution to the ball at onceQ problem

should be the same or better than the ATC results for

the same problem. However, better results have been

derived by the ATC process. The use of SQP at the

system level of the ATC formulation allowed better

convergence towards the true optimum. Additionally,

partitioning of the problem results in lower dimen-

sionality of optimization problem. It includes 5

variables per subproblem as against 11 variables

when the problem is solved ball at once,Q and this

increases the performance of superEGO and also

improves convergence.

In general, computational expense of the analysis

and non-smooth functional dependencies are common

features of the energy analysis problem. Therefore, it

is difficult to solve the whole problem using gradient-

based optimization algorithms such as SQP. On the

other hand, solving the whole problem using super-

EGO compromises the solution. As it turns out, by

allowing the use of different optimization strategies

suitable at specific levels of the system decomposi-

tion, the ATC process results in a better solution.
solution solution

Total objective function value (scaled) 0.013 0.098

Top-level design variables

Thermal performance of office Po (%) 1 0.81

Area of office Ao (m
2) 225.36 210.96

Thermal performance of workshop Pw (%) 0.94 0.834

Area of workshop Aw (m2) 138 142.5

Linking variable ys (m) 14 13.2

Subsystem 1 (office model): Variables

Partial length of office yo (m) 4.31 4.38

Window height go (m) 0.84 1.01

Mean zone velocity vo (m/s) 0.14 0.1

Heating set point temperature to
h (8C) 21.21 21.75

Cooling set point temperature to
c (8C) 21.34 21.67

Subsystem 1 (workshop model): Variables

Width of workshop xw (m) 10.1 10.8

Window wall percentage gw (%) 0.67 0.83

Mean zone velocity vw (m/s) 0.18 0.20

Heating set point temperature tw
h (8C) 20.34 21.56

Cooling set point temperature tw
c (8C) 23.93 21.88



Table 8

Nomenclature for the design of thermal performance target

Variables/responses Description Units

TA target area of the three zone building

TP target performance of the three zone building

Aw area of the workshop

Ao area of the office

Pw total annual energy used by the office

Po thermal comfort of the office

ys length of wall between the office and workshop m

xw width of workshop’s south wall m

yo length of part of office wall m

gw window height of workshop m

go window wall percentage of office %

tw
h heating setpoint temperature of workshop 8C
to
h heating setpoint temperature of office 8C
tw
c cooling setpoint temperature of workshop 8C
to
c cooling setpoint temperature of office 8C
vw mean air velocity in workshop m/s

vo mean air velocity in office m/s

Hi
w heating energy consumption in workshop at timestep i J

Ci
w cooling energy consumption in workshop at timestep i J

Hi
o heating energy consumption in workshop at timestep i J

Ci
o cooling energy consumption in workshop at timestep i J

Erefw maximum allowed total energy load of workshops J

Erefo maximum allowed total energy load of workshops J

ui
o thermal comfort in office at timestep i PMV

uwW maximum thermal comfort in workshop over all timesteps PMV

uoW maximum thermal comfort in office over all timesteps PMV

uref maximum allowed thermal comfort PMV

twW maximum mean air temperature in workshops 8C
twV minimum mean air temperature in workshops 8C
toW maximum mean air temperature in office 8C
twV minimum mean air temperature in office 8C
trefW maximum allowed mean air temperature 8C
trefV minimum allowed mean air temperature 8C

Other symbols Description

Z overall building performance model

Zs1 office decision model

Zs2 workshop decision model

RZ top-level responses

RZs subsystem responses

yZs subsystem linking variables

x̃w local variables of workshop model

x̃o local variables of office model

eR vector of tolerance variables for deviation between subsystem targets set

at the top level and the responses computed by the subsystem level

ey vector of tolerance variables for deviation between coordinating linking variables

set at the top level and the linking variables computed by the subsystem level

kw scaling factor for area of workshops

ko scaling factor for area of office

R. Choudhary et al. / Automation in Construction 14 (2005) 551–568566



R. Choudhary et al. / Automation in Construction 14 (2005) 551–568 567
5. Conclusions

Results from the pilot study demonstrate the

potential of the ATC process for lending clarity and

tractability to the typically complex decision-making

problems in building performance analysis. In

performance-based decision making, it is particularly

beneficial to be able to determine compatible

performance targets at all decision nodes on the

basis of some overall specifications. Furthermore, at

the end of the target cascading process, it is possible

to systematically revisit the problem if some targets

are not met, or if trade-offs between different

performance goals do not appeal to the decision

maker.

In addition, the decomposition approach allows the

individuality of a local analysis task to be preserved,

and so: (a) analysis tools can be invoked at particular

levels and for specific needs avoiding information

overload, (b) the decision-making space for a local

problem is clearer since it only includes locally

relevant variables and functional relationships, and

(c) appropriate optimization algorithms can be

invoked depending specifically on the formulation

of the local analysis problem.

Several challenges were faced during this study.

An example is identifying the typical decision

variables that can be considered during the analysis

process such as the external wall and roof assem-

blies. These are important decision variables in an

exterior load dominated zone. However, they are

difficult to include as decision variables due to non-

smooth functional dependencies. Another challenge

is identifying analysis tools that are relatively fast

and also sensitive to changes in the values of

decision variables. Finally, the solution obtained

from the target cascading process depends on how

the performance targets are weighted at the top level,

and this poses problems typical of multi-criteria

formulations.

Work in progress addresses these issues. Although

we present its applicability through a pilot study, this

strategy is valid for a broad class of complex building

performance problems where the multiplicity of

functions and performance specifications make it

particularly difficult to retain the integrity of design

decisions. Such applications also constitute work in

progress (Table 8).
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in smart façade systems, Proceedings of the Eighth Interna-

tional IBPSA Conference, The Netherlands, 2003.

[26] K. Peippo, P.D. Lund, E. Vartiainen, Multivariate optimization

of design trade-offs for solar low energy buildings, Energy and

Buildings 29 (2) (1999) 189–205.

[27] J. Pohl, L. Myers, A. Chapman, ICADS: An intelligent

computer-aided design environment, Ashrae Transactions 96

(2) (1990) 473–480.

[28] A.D. Radford, J.S. Gero, Design by optimization in architec-

ture and building, Van Nostrand Reinhold, New York, 1988.

[29] A. Saporito, et al., Multi-parameter building thermal analysis

using the lattice method for global optimization, Energy and

Buildings 33 (3) (2001) 267–274.
[30] M.J. Sasena, Flexibility and efficiency enhancements for

constrained global design optimization with kriging approx-

imations, PhD dissertation, University of Michigan, 2002.

[31] E. Shaviv, Y.E. Kalay, Combined procedural and heuristic

method to energy-conscious building design and evaluation,

in: Y.E. Kalay (Ed.), Evaluating and predicting design

performance, John Wiley and Sons, New York, 1992.

[32] I.H. Sloan, S. Joe, Lattice methods for multiple integration,

Oxford University Press, New York, 1994.

[33] T. Wagner, A general decomposition methodology for optimal

system design, PhD dissertation, University of Michigan, 1993.

[34] M. Wetter, E. Polak, A convergent optimization method using

pattern search algorithms with adaptive precision simulation,

Proceedings of the Eighth International IBPSA Conference.

Eindhoven, The Netherlands, 2003.

[35] M. Wetter, J. Wright, Comparison of a generalized pattern

search and a genetic algorithm optimization method, Proceed-

ings of the Eighth International IBPSAConference. Eindhoven,

The Netherlands, 2003.

[36] A.J. Wilson, A.B. Templeman, An approach to the optimum

thermal design of office buildings, Building and Environment

11 (1) (1976) 39–40.

[37] J.A. Wright, H.A. Loosemore, R. Farmani, Optimization of

building thermal design and control by multi-criterion genetic

algorithm, Energy and Buildings 34 (9) (2002) 959–972.

[38] M. Zaheer-uddin, G.R. Zheng, Optimal control of time-

scheduled heating, ventilating and air conditioning processes

in buildings, Energy Conversion and Management 41 (1)

(2000) 49–60.


	Analytic target cascading in simulation-based building design
	Introduction and background
	Simulation-based building design by hierarchical optimization
	The ATC process
	Hierarchical formulation
	Mathematical models
	Hierarchical coordination
	Relevance and benefits to consistent simulation-based design

	Pilot application
	Design scenario
	ATC formulation: hierarchical decomposition
	System level model
	Subsystem level models

	Implementation setup
	Hierarchical optimization
	ATC results
	Validation of ATC results against all at once solution

	Conclusions
	References


