
Designing an autostereoscopic display

Based on a study of three-dimensional languages

Lars Holm Jensen

May 29, 2006

Faculty of Engineering and Science
Aalborg University

Department of Computer Science

c
TITLE:

Designing an autostereoscopic display
Based on a study of three-dimensional
languages

PROJECT PERIOD:
DAT6
February 1st 2006
- May 29th, 2006

PROJECT GROUP:
D624A

GROUP-MEMBERS:
Lars Holm Jensen

SUPERVISOR:
Lone Leth Thomsen

NUMBER OF COPIES: 5

NUMBER OF PAGES: 36

APPENDIX PAGES: 16

TOTAL PAGE NUMBER: 62

SYNOPSIS:

This project focuses on designing a
3D display that is suitable for use
with three-dimensional programming
languages. The distinct requirements of
these are gathered through an analysis
of three three-dimensional languages.
The result is a design for a 3D display
and an implementation of a simulator
of the display.

Preface

This report is made by Lars Holm Jensen on the second Master Thesis
semester at the Department of Computer Science, Aalborg University.
Lars Holm Jensen is associated with the research unit of Programming Tech-
nology. To comply to the Study Board Regulations a résumé of the report is
available in Appendix B.
Basic mathematical skills and knowledge of general programming concepts
are considered a prerequisite for reading this report.
A PDF-document of this report is available at

http://www.larsholm.net/Publications/thesis.pdf

with hyperlinked internal and external references.

Lars Holm Jensen

c©2006 Lars Holm Jensen

i

http://www.larsholm.net/Publications/thesis.pdf

Contents

1 Preanalysis 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Success Criteria . 2
1.4 Delimitation . 3

2 Analysis 4
2.1 Introduction . 4
2.2 Visual programming languages 4
2.3 Three-dimensional programming languages 5

2.3.1 The Cube language . 5
2.3.2 The 3D-Visulan language 7
2.3.3 The 3D-PP language 11

2.4 Sub-conclusion . 12
2.5 3D displays . 12

2.5.1 Parallactic displays . 12
2.5.2 Volumetric displays . 15

2.6 Sub-conclusion . 16

3 Design 17
3.1 Introduction . 17
3.2 Concept . 17
3.3 Model . 18
3.4 Delimiting the e�ective zone 19
3.5 Parameters . 20

ii

CONTENTS iii

3.5.1 The dgap parameter . 22
3.5.2 The dBF parameter 22
3.5.3 The dbar parameter . 22

3.6 Architecture of the simulator 23
3.6.1 The Render-method 25
3.6.2 The View-method . 25

4 Implementation 27
4.1 Introduction . 27

4.1.1 The choice of programming language 27
4.1.2 Implementing the proposed design 28

4.2 Experiments and results . 29

5 Evaluation 34
5.1 An evaluation of the proposed design 34

5.1.1 Comparison to other display types 34
5.1.2 Hardware and software requirements 35

6 Conclusion 36
6.1 Conclusion . 36

A Source code of the simulator 37
A.1 The frmSimulator code . 37
A.2 The clsHead code . 47
A.3 The clsFront code . 48

B Résumé 51

List of Figures

2.1 Using the factorial function in Cube 6
2.2 Factorial function in Cube . 8
2.3 Program moving the shapes continuously left and right 10
2.4 Implementation of a Turing Machine in 3D-Visulan 10
2.5 Pictorial elements in 3D-PP 11
2.6 Program generating the 1000th prime in 3D-PP 13
2.7 The principle of a lenticular display 14

3.1 Illustration of the design concept 18
3.2 Illustration of the design model 19
3.3 Illustration of the e�ective zone 21
3.4 Class diagram of the simulator 24
3.5 Pseudo code for the Render-method 25
3.6 Pseudo code for the View-method 26

4.1 A shot of the 3D graph . 30
4.2 A slide of the 3D graph . 31
4.3 A rendered view . 32
4.4 An anaglyph image of a rendered view 33

iv

Chapter 1

Preanalysis

1.1 Motivation

This project focuses on designing a 3D display that is suitable for use with
three-dimensional programming languages. The reasons for this are manifold.

In [9] it is argued that 3D models of software is superior to 2D models in
communicating information and provides an e�ective method of layout for
3D UML diagrams. Furthermore [25] shows that a true 3D view is likewise
superior to 2D representations of three-dimensional models.

A method for translating Executable UML (xUML) into code is described
in [21]. When implemented this enables business analysts to compile xUML
diagrams, modelling software, directly into executable code.

A declarative approach to transforming UML control �ow diagrams into
BPEL4WS is presented in [12], which enables business analysts to generate
the BPEL4WS code necessary to implement business processes via webser-
vices.

In [14] it is demonstrated that 3D UML diagrams of software systems
with many hundreds of classes can be e�ectively visualised.

These arguments and new developments make it likely that programming
in xUML in 3D might be the next development in the programming world.
Even the paradigm of computing is shifting towards 3D [13]. The paradigms
of computing have gone from electromechanical technology through relay,
vacuum tube, transistor, and integrated circuit technology. According to

1

1.2. PROBLEM STATEMENT 2

Kurzweil the sixth paradigm will be three-dimensional molecular comput-
ing. This will very likely a�ect the programming environment, both when
designing the three-dimensional CPUs and the software that will run on
them. In order to design a 3D display that is suitable for three-dimensional
languages, this report investigates some of serious attempts to create these
languages.

1.2 Problem Statement

This project investigates the �eld of three-dimensional programming lan-
guages, with focus on what they require of a 3D display in order to be bene-
�cial to the �eld of programming in 3D. Based on this a weighty amount of
focus is given to designing a 3D display that ful�ls these requirements. The
display will be autostereoscopic1, as viewing artifacts seem to be a signi�cant
hindrance for widespread use. Further the project will compare the design to
similar designs, and evaluate the design's implications on hardware and/or
software requirements. One method to investigate the functionality of the
design is to implement a display simulator.

1.3 Success Criteria

The main objective of the project is to design an autostereoscopic display
based on a study of three-dimensional languages. To obtain this �rst the
history of 3D programming languages is shortly reviewed, afterwards a few
three-dimensional languages will be singled out, in order to determine if they
have any distinctive requirements for an autostereoscopic display. Based on
this a design of an autostereoscopic display is proposed. A theoretical proof
of the design's e�ectiveness is given and the signi�cance of the parameters
of the design is examined. A simulator is implemented to give an impression
of the functionality of the design. Next the project will give an account for
the advantages and disadvantages of the design, in hardware/software terms
as well as in a 3D programming context. Furthermore a comparison with
existing 3D display designs will be given.

1Capable of providing a true 3D view without the use of artifacts, such as glasses

1.4. DELIMITATION 3

1.4 Delimitation

This project will not present optimisation techniques for rendering graphics
on stereoscopic displays.

Chapter 2

Analysis

2.1 Introduction

This chapter brie�y describes the history of three-dimensional programming
languages and subsequently examines a few of the three-dimensional pro-
gramming languages to determine if these have any distinct requirements for
autostereoscopic displays. In order for this, it is here argued that a thorough
understanding of these languages is needed. A thorough understanding of
a language might help to conjecture typical use patterns, which ultimately
would lead to an identi�cation of any speci�c display requirements. Finally
the state-of-the-art of 3D displays is reviewed and the �ndings are concluded
upon.

2.2 Visual programming languages

Programming languages have been around for a long time. Longer even than
computers some argue. However visual programming languages (VPLs), that
is languages 'in which more than one dimension is used to convey semantics'1,
�rst began to take form around 1965, when William Sutherland of MIT cre-
ated a visual executable data�ow language and later when David Can�eld
Smith made Pygmalion in 1975. Smith was trying to rid programming of
the tedious compile-run-debug-edit cycles and instead introduces two new

1Encyclopedia of Electrical and Electronics Engineering

4

2.3. THREE-DIMENSIONAL PROGRAMMING LANGUAGES 5

concepts; program by demonstration and by using icons. This resulted in an
icon-based programming environment in which users demonstrate how a task
is performed in a 'record mode', after which the program can operate.VPLs
began to gain more momentum after Backus asked 'Can Programming Be
Liberated from the von Neumann Style?' in 1978 [2]. Though not advocat-
ing for visual languages, the article questioned the one-dimensional word-at-
a-time style of conventional programming languages and hereby sparked a
search for new ways of expressing semantics. After this VPLs started to �our-
ish, such as Prograph of 1982 inspired by functional languages and data�ow
diagrams [6], and Pict/D of 1984 based on �ow chart, and Blox of 1986 which
pieced while and if statements together as a puzzle.

2.3 Three-dimensional programming languages

Three-dimensional visualisation in visual languages was used in GL (Geom-
etry Language) in 1968. GL was aimed at solving the placement problem,
when designing three-dimensional structures. Namely helping engineers �nd-
ing spatial overlaps of objects at design time [5]. However GL was never im-
plemented. There are other examples of multidimensional visual languages,
for instance the Structured Analysis and Design Technique (SADT) lan-
guage by Douglas T. Ross, which modelled systems comprising 'things', 'hap-
penings' and their interrelations used for requirements de�nitions [8]. How-
ever SADT was only three-dimensional in the sense that two-dimensional
diagrams could be layered on top of each other. Furthermore though GL and
SADT where referred to as programming languages they both were meant for
speci�cations rather than computation. In 1991 Marc Najork created Cube,
which is the �rst attempt to make a general-purpose three-dimensional visual
language [17]. Several followed later, such as Lingua Graphica, CAEL-3D, 3D
BTTL, 3D-Visulan, ToonTalk, SAM and 3D-PP [3, 10, 11, 18, 22, 24, 26].

2.3.1 The Cube language

Cube is the �rst programming language with three-dimensional notation ca-
pable of computation. Cube is a higher order language based on data�ow and
logic techniques, and as such shares many similarities with one-dimensional

2.3. THREE-DIMENSIONAL PROGRAMMING LANGUAGES 6

languages such as Prolog, Lisp, and ML. These similarities include the ex-
tensive use of recursion and a declarative approach to problem solving. The
following sections are based on [17] and [16] and will give an insight of the
syntax of Cube.

Cube uses cubes as logic variables capable of holding both values and
predicates. Cubes can have ports, which themselves are cubes, that corre-
spond to arguments of the predicate. The ports can be connected by pipes
that facilitate data�ow. In Figure 2.1 the use of the factorial function in
Cube is shown.

Figure 2.1: Using the factorial function in Cube

The data�ow in pipes in Cube has no direction. Data should be thought
of as �owing through pipes in both directions or rather values of holder
cubes are uni�ed through pipes. For instance a holder cube containing the
integer 1 connected to an empty holder cube will evaluate to the two holder

2.3. THREE-DIMENSIONAL PROGRAMMING LANGUAGES 7

cubes containing the same value, in this case the integer 1. If the values are
not uni�able data�ow will fail. This is related to another element in Cube,
planes. Planes are boxes inside cubes that con�ne data�ow failures within
themselves. Planes can be stacked vertically or horizontally, indicating dis-
junctions and conjunctions, respectively. This quality of con�ning data�ow
failures is very powerful and enables conditionality. Now consider the close-
up of the factorial function in Figure 2.2. Assume the value n is �owing in
the left side port. If n is anything but 0 the upper plane will fail, because
n and 0 are not uni�able. If n is 0, however, the upper plane will remain
and the lower plane will fail due to the condition on the �rst left turn of the
input pipe. This leaves the 1 of the upper plane to �ow out the result port.
If n is lower than 0 both planes will fail, thus causing the entire function to
fail. On the other hand if n is greater than 0, the value of n will �ow both
to the multiplication cube and the negation cube. At the negation cube the
value 1 �ows in the right side port of the cube and the result n− 1 will �ow
out the result port. Now n− 1 will �ow into the factorial cube and (n− 1)!

will �ow out. Finally the values n and (n − 1)! will be multiplied and �ow
out the result port of the function.

Cube has a static polymorphic type system and uses a variant of the
Hindley-Milner type inference algorithm [7] that ensures that Cube programs
are well-typed. The user can initiate type inference at design time, when this
happens the Cube system will place a type cube within all empty holder
cubes. Three types are native to Cube; integers, �oating-point numbers and
propositions. However Cube allows de�nitions of new types, such as charac-
ters, strings, lists and trees. This is done in the same manner as regular Cube
coding, here type definition cubes and type planes are used instead. A
thorough description of Cube can be found in [15].

2.3.2 The 3D-Visulan language

The 3D-Visulan language was created in an attempt to totally abandon the
expression of programs in text and symbols. A 3D-Visulan program is ex-
pressed purely in three-dimensional bitmap of pixels. 3D-Visulan is a very
simple language. It is rewrite-rule-based and has very few programming con-

2.3. THREE-DIMENSIONAL PROGRAMMING LANGUAGES 8

Figure 2.2: Factorial function in Cube

2.3. THREE-DIMENSIONAL PROGRAMMING LANGUAGES 9

structs. There are rules, definitions and data. The programming con-
structs are recognised by having a rectangular base and special signature
rises, like walls or bars. Figure 2.3 shows a program in 3D-Visulan. When
executed the white X-�gures and O-�gures move continuously left and right
between the dark walls.

The data in 3D-Visulan is located in a data-world, in Figure 2.3 the
top-right platform, recognised by two vertical bars in each upper corner. All
execution takes place here. The data-world is a three-dimensional array of
pixels, which can have di�erent colours. There are four composite rules the
program in Figure 2.3 and one de�nition. The de�nition is the construct
at the bottom of the picture. A rule can consist of any number of rules,
connected by a single pixel, and has priority in accordance with its location.
Rules are recognised by the T-shaped wall, dividing the before-world and
the after-world. If the before-world, to the left of the T-wall, is matched in
the data-world, the matching data is replaced by the data in the after-world
of the rule. In connected rules all before-worlds must be matched in the
data-world, before replacement can take place. All replacements take place
simultaneously. The de�nition construct, closest in the picture, de�nes that
X-�gures and O-�gures can be matched by a white square in any rule. The
upper left rule states that whenever a white �gure touches a line of dark
pixels on the left, the arrow should change from pointing left to pointing
right. The rule just next to states the opposite. The two rules below, state
that any white �gure should be moved one step sideways in the direction the
arrow is pointing. The result during execution is that the white �gures keep
moving as a group, left and right between the dark walls.

This simple language of data (states) and substitution rules appears like
cellular automata or other �nite state machines, but that is only appearance.
The modest possibility of the conjunction of rules makes 3D-Visulan com-
putationally equivalent to Turing-machines, which means that any problem
that any computer can solve can be solved by a 3D-Visulan program.

Figure 2.4 shows an implementation of a Turing-machine in 3D-Visulan.

2.3. THREE-DIMENSIONAL PROGRAMMING LANGUAGES 10

Figure 2.3: Program moving the shapes continuously left and right

Figure 2.4: Implementation of a Turing Machine in 3D-Visulan

2.3. THREE-DIMENSIONAL PROGRAMMING LANGUAGES 11

2.3.3 The 3D-PP language

The 3D-PP language was created in an e�ort to improve the use of screen
real estate2. Through the years this was identi�ed as a serious problem
for visual programming languages in particular. Pictorial elements seemed
to take up much more space than text. 3D-PP tries to address this with two
ideas. Base the language entirely on a known and compact programming
language, and simply use miniature pictorial elements, shown in Figure 2.5.

Figure 2.5: Pictorial elements in 3D-PP

The language chosen was Haskell, a declarative, polymorphically typed,
lazy, purely functional language based on lambda calculus. This closely re-
sembles the characteristics of Cube and this is no coincident. Declarative
languages seem to require less programming elements than imperative lan-
guages, as in general the problem to solve is often easier to describe than
the solution to the problem. So this is a convenient choice for a visual pro-
gramming language. A clause in 3D-PP is composed in the same manner as
a clause in Haskell:
predicates(arguments, ...) :- guard | body.

The predicates are represented by a parent Goal-element and the guards
and the bodies as child Goal-elements inside the parent. The use of minia-
ture programming elements to support large programs is not without conse-
quences. Such an interface is subject to unmanageable and confusing code,
to counter this 3D-PP employs a direct manipulation3-style interaction as

2The amount of screen space available to a program
3Wikipedia: �Direct manipulation is a human-computer interaction style that ... in-

volves continuous representation of objects of interest, and rapid, reversible, incremental
actions and feedback�

2.4. SUB-CONCLUSION 12

de�ned by [23]. This is among other things manifested in the development of
a new drag-and-drop technique specially suited for use in three-dimensional
spaces.

Figure 2.6 shows a program calculating the 1000th prime in 3D-PP. As
opposed to Cube, 3D-PP does not to expose the same level of details regard-
ing the nesting of programming elements.

2.4 Sub-conclusion

The study of the three-dimensional languages has ascertained that such lan-
guages need not be similar, neither in appearance nor in behaviour. However
all the three studied languages have connecting constructs, which are crucial
to execution, and which require a certain level of details in a display. All
languages have elements, which are sensitive to their location in 3D-space.
This seems to enforce the requirement of a good depth perception in an au-
tostereoscopic display. The perception of the placement and connections of
the three-dimensional objects would bene�t from features that enable the
programmer to look around objects in autostereoscopic displays. Finally if
these languages are to be used in common work environments, a display that
supports multiple observers seems advantageous, likewise that the display is
compact, for instance incorporable in a laptop, would be favourable.

2.5 3D displays

In this section the principles di�erent autostereoscopic displays are described.
These are the parallactic and volumetric displays. These are chosen because
they constitute the far greater part of commercial autostereoscopic displays.

2.5.1 Parallactic displays

The term parallactic displays is commonly used to describe autostereoscopic
displays which have discrete viewing zones, although this is not etymologi-
cally correct. A discrete viewing zone is one in which all viewpoints receive
the same image. Parallactic displays can be based on di�erent technologies,
for instance lenticular and di�ractional displays.

2.5. 3D DISPLAYS 13

Figure 2.6: Program generating the 1000th prime in 3D-PP

2.5. 3D DISPLAYS 14

Lenticular displays work by applying a �lm of lenses in front of or behind
the layer of pixels in an ordinary liquid crystal display. The �lm usually
consists of vertical series of cylindrical lenses that disperse light according
to the location of the light source behind the �lm. Figure 2.7 illustrates the
principle. In this manner the individual vertical pixel line becomes part of a
distinct viewing zone. The lenticular �lm is fashioned such that the observer's
eyes receive two di�erent images at the appropriate viewing position. [4]

One such lenticular display is Philips 42-3D6C01 display

Left eye

Pixels

Lenticular �lm

Right eye

Figure 2.7: The principle of a lenticular display

The di�ractional displays create discrete viewing zones by di�raction.
Di�raction is the bending or redirection of waves that occurs when waves
meet any obstruction or gap. This e�ect is utilised in a special �lm or sheet,
which is then placed between the liquid crystals and their backlighter in a
liquid crystal display.

Ultimately both types function in very much the same manner and their
principles facilitate the same features in 3D displays. They are horizontal
look-around capabilities (horizontal parallax), 2D/3D-switchable, and sup-
port for multiple observers. The disadvantages for both are a low level of
details. The allocation of each vertical line of pixels to a separate viewing
zone decreases the horizontal resolution proportionally. For instance a lentic-
ular or di�ractional display with 10 viewing zones based on a LCD with a
horizontal resolution of 1600 pixels will have a horizontal resolution of 160

pixels. This is less, than most contemporary mobile telephones, which often
has the resolution QVGA (Quarter Video Graphics Array) to support the
popular podcasts. Optionally the lenses can be slanted, which distributes the

2.5. 3D DISPLAYS 15

resolution loss evenly.

2.5.2 Volumetric displays

The �eld of volumetric displays is �lled with di�erent technologies. There
are among others swept volume, emissive volume, laser-based, and layered
LCD displays.

The swept volume display, in some cases referred to as swept surface
display, functions by spinning a translucent screen inside a globe. The screen
itself may emit light or light is projected upon it. In this fashion a three-
dimensional image is perceived.

The emissive volume displays rely on a translucent light-emitting sub-
stance in which points can be individually addressed. So this is a rather
straightforward approach to creating 3D images.

There exist various di�erent laser-based 3D display systems. Most depend
on some kind of substance, in which the intersection or focal point of laser
beams trigger illuminance. This substance could be air, as demonstrated
by [1], or dust illuminated by a visible laser [19], however not all laser-
based displays are based on illuminating substances. Computer generated
holographics use laser in combination with a di�ractional screen to create
the same wave front of light as a real object would.

The last of the volumetric displays described here are the layered LCDs.
They simply consist of several layers of transparent liquid crystal displays,
which can then produce images of three-dimensional object within the layers.

The display types discussed here all have look-around capabilities and
support for multiple observers. Some have a low level of details, such as the
emissive volume and laser-substance-based displays, while others are com-
parable to present 2D displays. The disadvantage of all of them is their
volume. None of the displays discussed here are �at. Some have nuisances
such as background noise and a few of them are not entirely without haz-
ards, such as the laser plasma display by [1] that would cause serious burns
if anybody were to touch the plasma �ashpoints.

2.6. SUB-CONCLUSION 16

2.6 Sub-conclusion

In Table 2.1 the characteristics of the examined displays have been assem-
bled. Full parallax in the �rst column means that one can look around objects
both horizontally and vertically. Detail level is divided into four categories;
poor, low, normal, and high, in ascending order, normal being comparable
to the present level of details in 2D displays. The rightmost column indi-
cates whether the display can be switched into 2D viewing. Two �elds are
marked N/A. Laser-substance in the Noisy-column as there exist both laser-
substance display, which are silent and noisy, and Layered LCD in the Flat-
column, as the display could be made �at, but that would limit the level of
depths portrayable in the display.

Parallax Detail level Depth Flat Mechanical Noisy 2D
Lenticular Horizontal Low Unlimited X × × X

Di�ractional Horizontal Low Unlimited X × × X
Swept volume Full Normal Limited × X X ×

Emissive volume Full Poor Limited × × × ×
Laser-substance Full Poor Limited × × N/A ×

Holographic Full High Unlimited × × × X
Layered LCD Full Normal Limited N/A × × X

Table 2.1: Comparison of the described displays

When reviewing the requirements for three-dimensional languages in au-
tostereoscopic displays in Section 2.4, it is clear that none of the examined
displays ful�ls all the requirements. A ranking of the most suitable displays
will naturally be depending on a subjective evaluation, however it seems
that lenticular, di�ractional or holographic displays are the most apt in a
working environment, due to their accumulated qualities and depending on
whether they should replace a workstation monitor or a laptop display. The
holographic displays can only replace workstation monitors as the display
cannot be �at, due to the laser cannon creating the holographic images.

Chapter 3

Design

3.1 Introduction

In this chapter a design for an autostereoscopic display will be presented. The
design is based on the one presented in [20] by Ken Perlin. The proposed de-
sign generalises Perlin's concept from one viewer to several observers. This,
unfortunately, results in an increased sensitivity to factors such as position,
viewing angle and the tilting of the user's head. This sensitivity, however,
is not greater than currently commercialised autostereoscopic displays. The
advantages of Perlin's and this design are noticeable. The properties of these
are to a greater degree controllable by software. This means that the charac-
teristics, such as the width of the viewing angle and the quality of the display
image, can be suited to �t the surroundings and the computing power avail-
able. Moreover the display can easily be used as a normal 2D display, just
by clearing the front display.

3.2 Concept

In order for the illusion of 3D to be created all that has to be achieved
is the ability to provide each eye of the observer with two di�erent images.
This is obtained by placing a display, which can be switched between opaque
and transparent, in front of a regular image producing display. On the front
display a striped pattern is created. Now an observers eyes would see through
the transparent gaps between the opaque bars and see two di�erent vertical

17

3.3. MODEL 18

lines of the display in the back. This e�ect is utilised to continuously feed
two separate images to each eye. In Figure 3.1 the concept of the design
is illustrated. The �gure shows two heads and the front and background
displays. The �gure also shows which parts of the background display that
can be seen from each eye through the gaps in the front display.

However the pattern on the front display has to move for the observer
to be able to see vertical lines of the entire display in the back. So the
pattern is continuously and very rapidly shifted sideways. This is like the
electron cannon of a television creating the impression of a still picture, while
still generating di�erent images in di�erent directions within a restricted
area in front of the display. This area will subsequently be referred to as
the effective zone and its location and measurements are de�ned by the
various parameters of the design.

Observer Observer

Right eyeRight eye Left eyeLeft eye

Gaps

Lines of sight

Front display

Background
display

Figure 3.1: Illustration of the design concept

3.3 Model

The e�ective zone and its reach are crucial to the display's value as a com-
mercial product, both in terms of quality and market range. In order to
calculate the e�ective zone and overall reason about the design a model is

3.4. DELIMITING THE EFFECTIVE ZONE 19

needed. In this section such a model is presented.
B

F

dBF

vview

dbar

dgap

Figure 3.2: Illustration of the design model

In Figure 3.2 a rudimentary model is illustrated. Here the line segment
of the background display is denoted B, the line segment of the front display
F, the distance between them dBF , the gap width dgap, the bar width dbar

and the angle within which all viewing directions corresponds to one and
only one point on B is denoted vview.

3.4 Delimiting the e�ective zone

In this section the rudimentary model is used to delimit the e�ective zone.
In order to calculate the range a more precise de�nition of the e�ective zone
is needed.

De�nition 1. The e�ective zone is the area in front of the display, in which
it is possible to place two points, pleft and pright, from where two points,
pleft,B and pright,B, on B can be seen, where

• the distance between pleft and pright is deyes

• none of the point are identical,

• none of the points are collinear.

• pleft,B and pright,B may be no closer than dpixel, the width of the pixels
of the display

3.5. PARAMETERS 20

With this de�nition it is straightforward to show that the e�ective zone
exists and is within vview of all points on B. To calculate vview we need no
further information than the given. If vview is the top angle in an isosceles1

triangle with base dbar and altitude dBF then

vview = π − 2 arctan(
2dBF

dbar
)

by simple trigonometry.
The point on the border of the e�ective zone nearest to the display is

the top point of the isosceles triangle with base B and top angle vview and
which is in front of the display. This point, pstart, is shown in Figure 3.3.
The distance between pstart and B is

dmin =
|B|dBF

dbar

since corresponding parts of similar triangles are proportional.
The e�ective zone does not extend in�nitely away from the display. There

exists a distance from where pleft and pright cannot be placed without seeing
the same pixel on B. In other words, where pleft,B and pright,B is closer
than dpixel. Though the curve delimiting the e�ective zone is irregular, the
shortest distance between this curve and pstart is

dmax =
dBF deyes

dpixel

by proportionality.
In this section a model has been presented for the design of an autostereo-

scopic display and several signi�cant parameters have been identi�ed that
have impact on the qualities of the display. Among these the most in�uential
are the distance between the two displays dBF and the bar width dbar.

3.5 Parameters

In this section the parameters identi�ed in the previous section are considered
in a hardware context. Explicit values are designated based on a trade-o�
analysis and present hardware capabilities.

1An isosceles triangle is a triangle with (at least) two equal sides

3.5. PARAMETERS 21

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

B

dBF

F
dgap

dbar

pstart

vview

pright

pleft

dmin

pleft,B pright,B

Figure 3.3: Illustration of the e�ective zone

3.5. PARAMETERS 22

3.5.1 The dgap parameter

The dgap parameter a�ects neither dmin and dmax, nor vview. Nonetheless
it does present a role for the display. A low value for dgap yields a higher
number of discrete viewing zones and a higher image quality, so if the front
and background display have the same pixel density then dgap should be 1

pixel width.

3.5.2 The dBF parameter

The dBF parameter is the most in�uential parameter of the proposed design.
As Section 3.4 shows this parameter partakes in both the determination of
dmin and dmax, as well as vview. A low value for dBF enhances both vview and
dmin, as they both increase. This makes the display viewable from a closer
range and a greater angle. However a low value for dBF also decreases dmax

rendering the display ine�ective at greater distances. Furthermore dBF in
combination with dpixel limits the number of discrete viewing zones, which
needs to be high for the display to be e�ective. The present commercial pixel
width seems to be 0.2 millimetres, thus dBF should be at least the same
size and with displays intended for greater audiences, thus greater viewing
distances, dBF should be 2 millimetres or more.

3.5.3 The dbar parameter

The dbar parameter is present in both the determination of vview and dmin. A
high value of dbar results in a higher vview, but a lower dmin. So there exists
a trade-o� between a wide viewing angle and at how close a distance the
display should be e�ective. Additionally the dbar parameter is limited by the
desirable display update frequency and brightness. This is due to the fact
that the dgap-dbar ratio determines the number of cycles the display has to
run through in order to render one complete image. This in turn reduces both
the frequency and the brightness of the display proportionally. The choice
of the value of the dbar parameter is a matter of hardware capabilities, price
and image quality. Nevertheless a dbar value less than 1 pixel width would
be ine�ective, due to the fact that the display has to be able to display
a di�erent image to each eye. The dbar value is limited upwards �rst and

3.6. ARCHITECTURE OF THE SIMULATOR 23

foremost by computer rendering power and bandwidth limits. Consider a
plausible setting of a 1280 × 1024 resolution display with 14 viewing zones
operating at 60 Hz with 24 bit colours. In this setting the computer would
have to render the 1280×1024 3D images at 840 frames per second and send
the data at

1280× 1024× 24× 60× 14 ≈ 26.4Gbit/s

to the display. This example shows the violent increase in bandwidth and
computational demands these displays have.

3.6 Architecture of the simulator

This section describes how a simulator of the proposed design might be
instantiated. This means that the algorithms described subsequently are not
to be viewed as a part of the proposed design, rather as one way of using the
proposed design to create a stereoscopic view. Of the same reason, and as it
is not the main objective of this project, the description will be brief. Figure
3.4 shows a class diagram of the simulator. The diagram is not exhaustive,
for instance the typical Get/Set-methods for variables are not depicted. The
simulator consists of a main class Simulator, the classes Front, Back, Head,
and Canvas. The main class Simulator is responsible for instantiating the
other objects and drawing them on the graphical user interface. The class
Front models the front display with the pinstriped pattern. The class Back
models the background display. The class Head models the head and eyes
of the observer. Finally the Canvas-class models the bitmaps on which all
images are rendered. The interesting parts of the simulator that are not
described in the proposed design, are the Render- and the View-methods.
They are responsible for rendering the images of the background display and
the eyes of the observer respectively. The rendered images of the background
display are in the �gure referred to as slides. They are rendered from the
precompiled shots of a three-dimensional object viewed from di�erent angles.
The rendered images of the eyes of the observer are simply referred to as eyes
in the Head-class.

3.6. ARCHITECTURE OF THE SIMULATOR 24

1..

1

picture: Bitmap

Canvas

+ Paint(src, x1, y1, w1, h1, x2, y2, w2, h2)
+ Draw(x, y)

2

1

∗

1..

2

heads: Head[]
front: Front
back: Back

Simulator

+ Distance(x1, y1, x2, y2)
+ ProjectXonY(x1, y1, x2, y2, y3)

− Draw()

+ Render(simulator, front)

1

1

1

1

∗

+ Draw()

x: Integer
y: Integer
width: Integer

slides: Canvas[]

spraypoints: Point[]gapwidth: Integer

Back

x: Integer
y: Integer
width: Integer

shots: Canvas[]

Head

x: Integer

radius: Integer
y: Integer

direction: Float

+ Draw()

eyes: Canvas[]

+ View(simulator, front, back)

Front

gapoffset: Integer

+ GetGapCount()
+ GetGapPosition(index)

+ Draw()

barwidth: Integer

Figure 3.4: Class diagram of the simulator

3.6. ARCHITECTURE OF THE SIMULATOR 25

3.6.1 The Render-method

The Render-method is, as mentioned, responsible for rendering the images
of the background display. It is based on what you might call the idea of
�what you put in is what you get out�. Figure 3.5 shows the pseudo-code for
the method.
1 Create an array of spraypoints in a segmental arch around the centre of the display;
2 Create an array of slides to paint on;
3 For every slide in slides{
4 Enumerate t over spraypoints{
5 For every gap in Front{
6 xleft = the far left point on Back seen from spraypoint[t] through gap;
7 xright = the far right point on Back seen from spraypoint[t] through gap;
8 Paint the vertical stripe between xleft and xright of shot[t] on slide;
9 }
10 }
11 Increase Front.gapoffset by Front.gapwidth;
12 }

Figure 3.5: Pseudo code for the Render-method

Essentially this algorithm paints what is supposed to be seen of an image
from a speci�c angle on the area on the background display, which can be
seen through a gap from a speci�c point. This way one sees the depicted
object from exactly the same angle as one is viewing when looking at the
display.

3.6.2 The View-method

TheView-method renders the image seen from two speci�c locations, namely
the locations of the eyes of the observer. This is done very much in the same
manner as the Render-method paints, just in this case the graphical data
is �owing in the opposite direction. The pseudo code for the View-method
is shown in Figure 3.6.

3.6. ARCHITECTURE OF THE SIMULATOR 26

1 Create two canvases, leftview and rightview, to paint on;
2 For every slide in slides{
3 For every gap in Front{
4 xleft = the far left point on Back seen from lefteye through gap;
5 xright = the far right point on Back seen from lefteye through gap;
6 Paint the vertical stripe between xleft and xright of slide on leftview;
7 }
8 For every gap in Front{
9 xleft = the far left point on Back seen from righteye through gap;
10 xright = the far right point on Back seen from righteye through gap;
11 Paint the vertical stripe between xleft and xright of slide on rightview;
12 }
13 Increase Front.gapoffset by Front.gapwidth;
14 }

Figure 3.6: Pseudo code for the View-method

Chapter 4

Implementation

4.1 Introduction

In the section the choice of programming language for implementing the sim-
ulator is presented and argued for, next the implementation of the simulator
of the proposed design is described and the most interesting code parts are
reviewed and explained.

4.1.1 The choice of programming language

The programming languages considered to implement the simulator were
the three-dimensional programming languages presented, Java, C# and Vi-
sual Basic, and the respective versions of these. The choice was based on
requirements such as the ability to program tasks both object-oriented and
sequential imperative in nature, bitmap handling capabilities and the time it
takes to implement a working prototype. Of these languages Visual Basic 6
(VB6) was chosen. The three-dimensional programming languages presented
in this report have no newly developed programming tools, indeed any suit-
able development environments. Java and C# ful�l the required qualities,
but to a slightly lesser degree than VB6. VB6, as opposed to VB.Net, is
not truly object-oriented, rather it is a sequential imperative language with
added on object-oriented constructs. This makes VB6 very suitable for this
speci�c task.

27

4.1. INTRODUCTION 28

4.1.2 Implementing the proposed design

The simulator was implemented very much in accordance with the class
diagram in Figure 3.4. The class Simulator was implemented using the
Win32 ThunderFormDC class simply called Form in VB6. The source code
for Simulator is included in Appendix A.1. The Back-class was implemented
using the Line-class, therefore the Render-method and other code segments
were moved to Simulator. The Front- and Head-classes were implemented
as regular classes and the source codes are included in Appendix A.3 and
A.2 respectively, notice that the View-method was moved to Simulator.
The Canvas-class was implemented using PictureBox controls.

Implementing the Render-method

The Render-method starts at line 22 in Simulator and ends at line 86. The
lines 23 through 30 are variable declarations and the lines 32 through 38

are the calculations of the used parameters. The lines 40 to 50 declare and
calculate spray points. The shots used to render the slides are loaded in the
lines 52 to 57 and the empty slides themselves are created in the lines 59 to
62, however the lines 66 through 84 is the code most similar the pseudo code
of the Render-method in Figure 3.5. For instance are the pseudo code lines

6 xleft = the far left point on Back seen from spraypoint[t] through gap;
7 xright = the far right point on Back seen from spraypoint[t] through gap;
8 Paint the vertical stripe between xleft and xright of shot[t] on slide;

directly implemented in the lines

71 x1 = projectXonY(spraypoints(t).X, spraypoints(t).Y, _
myFront.Gappos(i).X - myFront.Gap * 0.499) - myFront.X

72 x2 = projectXonY(spraypoints(t).X, spraypoints(t).Y, _
myFront.Gappos(i).X + myFront.Gap * 0.499) - myFront.X

74 picSlides(s).PaintPicture picShots(t).Image, x1, 0, _
x2 - x1, .ScaleHeight, x1, 0, x2 - x1

of the Simulator-class. The projextXonY-function calculates the inter-
section between the line going through two points and the line of the back-
ground display. In line 74 the viewable vertical stripe of picShots(t) is

4.2. EXPERIMENTS AND RESULTS 29

painted on picSlides(s). These slides are the ones used when reconstruct-
ing the image from a speci�c angle in the View-method.

Implementing the View-method

The View-method begins at line 103 and ends at line 176 in Simulator. The
lines 105 through 112 are variable declarations and the lines 114 through 121

are the calculations of the used parameters. The lines 136 to 143 loads the
saved slides from the Render-method into memory. Again there is a part,
which implements the pseudo code of the View-method in Figure 3.6, this
is the part from line 152 to line 174. Notice the lines 4, 5, 6, and 9, 10, 11

of the pseudo code. They are implemented in the lines 160, 161, and 164 in
the Simulator-class. When the loops have been run through, two canvases
have been painted over and are now showing the view from the two eyes.

4.2 Experiments and results

The three-dimensional object used during experiments in the simulator is a
graph, from a three-dimensional graph viewer, viewed from di�erent angles.
The graph viewer was developed previous to the writing of this report and
was integrated in the simulator. This particular object was chosen due to
its high level of details and yet having a simple and recognisable shape; the
parabola on one axis and the sine curve on the other. With these properties
rendering errors and imprecisions are easily spotted. Figure 4.1 shows one of
the shots of the graph.

TheRender-method renders these shots into slides. Figure 4.2 shows one
such slide. Remember these slides are not shown directly to the observers.
These slides are seen through the gaps of the front display and there is one
slide per gap o�set. Each time the gap pattern is shifted one gap width
sideways, a new slide is shown on the background display.

When the gap pattern has gone through one cycle, every observer in front
of the display has received an entire and unique view of the display. Figure
4.3 shows a rendered view from one speci�c point in front of the display.
Notice that the graph is somewhat deteriorated. There are several reasons
for this. One reason is that the simulator works in a discrete environment,

4.2. EXPERIMENTS AND RESULTS 30

Figure 4.1: A shot of the 3D graph

4.2. EXPERIMENTS AND RESULTS 31

Figure 4.2: A slide of the 3D graph

4.2. EXPERIMENTS AND RESULTS 32

this means that the view rendered is not precisely the view seen in front of
an actual display. This, to a certain extent, accounts for the black and white
imperfections of the graph. Another deterioration is the distortion of the
depth perception. This particular view has an ampli�ed depth perspective.
This happens when the observation point is closer to the display than the
spray points. A greater distance will ��atten� the image of the display. This
e�ect will also appear on an actual display and is an unavoidable side e�ect
of allowing several observers, although it may be minimised by adjusting
the parameters of the display or by choosing another rendering technique.
The third deterioration is the missing part of the graph on the far left of
the image. This is due to the rendering method used and may most likely be
corrected or limited by optimisation. Since neither the rendering method nor
the optimisation of one such is an objective in this report, nothing further
will be done to correct this.

Figure 4.3: A rendered view

4.2. EXPERIMENTS AND RESULTS 33

Figure 4.4 shows a red/cyan anaglyph1 stereogram of such a view.

Figure 4.4: An anaglyph image of a rendered view

1A three-dimensional image created by superimposing two di�erent views with di�erent
colour schemes upon each other

Chapter 5

Evaluation

5.1 An evaluation of the proposed design

In this section the proposed design will be evaluated and compared to other
3D displays in a three-dimensional programming context. Additionally the
proposed display will be evaluated in the context of hardware and software
requirements.

5.1.1 Comparison to other display types

Table 5.1 shows the assembled characteristics of the examined displays along
with the characteristics of the proposed design. Compared to the two most
suitable displays in Section 2.6, the proposed display may not supersede the
holographic display as a workstation monitor, as the holographic display
has full parallax and a higher detail level. However the proposed display
certainly surpasses the lenticular and di�ractional display in the level of
details. Furthermore the display ful�ls the remaining requirements quite well.
The display can portray depths from somewhere between the display and the
heads of the observers and endlessly into the display. The display has look-
around and multiple observers capabilities, while being incorporable into a
laptop.

34

5.1. AN EVALUATION OF THE PROPOSED DESIGN 35

Parallax Detail level Depth Flat Mechanical Noisy 2D
Lenticular Horizontal Low Unlimited X × × X

Di�ractional Horizontal Low Unlimited X × × X
Swept volume Full Normal Limited × X X ×

Emissive volume Full Low Limited × × × ×
Laser-substance Full Low Limited × × N/A ×

Holographic Full High Unlimited × × × X
Layered LCD Full Normal Limited N/A × × X

Proposed design Horizontal Normal Unlimited X × × X

Table 5.1: Comparison of the described displays

5.1.2 Hardware and software requirements

The software requirements for the proposed display are no greater than dif-
ferent types of autostereoscopic displays with the same level of quality. As
mentioned earlier in this report the software requirements for autostereo-
scopic displays can be quite high, and even though the proposed design
excels in leaving further parameters, such as viewing zones, angle, and dis-
tance, up to dynamic software settings, this adds little to the computational
demand.

The hardware requirements for the presented display are another matter.
For instance a display, based on the proposed design, with a refresh rate of
65 Hz, typical to LCD monitors, and 10 viewing zones, would require an
refresh rate of 650 Hz on both the front and background displays. Moreover
the light intensity of the display, will likewise have been reduced by a factor
10. While this is technically possible, it is certainly not a mass-produced
component. These two factors seem like the most important hindrances for
widespread use. However, all in all, the hardware seem no higher than the
advanced technologies necessary for holographic displays.

Chapter 6

Conclusion

6.1 Conclusion

This report has presented a design for an autostereoscopic display, suited
for, but not limited to, three-dimensional languages. The history of three-
dimensional languages has been reviewed, along with speci�c languages, in
order to acquire their particular requirements for autostereoscopic displays.
The e�ective area of the display has been theoretically accounted for and
the display's parameters have been examined. An impression of the design's
functionality has been given by implementing a simulator. Finally the ad-
vantages and disadvantages of the design have been accounted for, both by
comparison to existing display technologies, and by evaluating the hardware
and software requirements for the design. Two factors were was identi�ed as
the greatest hindrances for widespread use, they were the reduction in illumi-
nance and refresh rate. Nonetheless the proposed design was found to be the
most suitable for use with three-dimensional languages of the investigated
displays.

36

Appendix A

Source code of the simulator

A.1 The frmSimulator code
1 Dim heads As clsArrayHead
2 Dim myFront As clsFront
3 Dim ismoving As Boolean
4 Dim isturning As Boolean
5 Dim currenthead As Single
6 Dim backfrontdist As Single
7
8 Private Type PointSingle
9 X As Single
10 Y As Single
11 angle As Single
12 End Type
13
14 Const PI = 3.14159265358979
15 Const SRCCOPY = &HCC0020
16
17 Private Sub cmdCycle_Click()
18 Timer1.Enabled = Not Timer1.Enabled
19
20 End Sub
21
22 Private Sub Render()
23 Dim d_BF As Single
24 Dim d_gap As Single, d_bar As Single
25 Dim d_view As Single

37

A.1. THE FRMSIMULATOR CODE 38

26 Dim d_eye As Single
27 Dim n_view As Single
28 Dim myHead As New clsHead
29 Dim spraypoints() As PointSingle
30 Dim t As Long, s As Long, i As Long
31
32 d_BF = myFront.Y - myBack.y1
33 d_gap = myFront.Gap
34 d_bar = myFront.Bar
35 d_eye = dist(myHead.lefteye.X, myHead.lefteye.Y, myHead.righteye.X, _

myHead.righteye.Y)
36
37 d_view = PI - Atn(d_BF / (d_bar / 2)) * 2
38 n_view = (d_bar + d_gap) / d_gap
39
40 ReDim spraypoints(n_view)
41
42 'Calculate spraypoints
43 midfrontx = myFront.X + myFront.Width / 2
44 For t = 0 To n_view - 1
45 With spraypoints(t)
46 .angle = -1 / 4 * PI - t * 1 * (PI / 2) / n_view
47 .X = midfrontx + Cos(.angle) * 500
48 .Y = myFront.Y + Sin(.angle) * 500
49 End With
50 Next t
51
52 'Load shot
53 picShots(0).Picture = LoadPicture("C:\Work\VB\Concept\0.bmp")
54 For s = 1 To n_view - 1
55 Load picShots(s)
56 picShots(s).Picture = LoadPicture("C:\Work\VB\Concept\" & s & _

".bmp")
57 Next s
58
59 'Create memory slides
60 For pbs = 1 To n_view - 1
61 Load picSlides(pbs)
62 Next pbs
63
64 myFront.Gapoffset = 0

A.1. THE FRMSIMULATOR CODE 39

65
66 For s = 0 To n_view - 1
67 If Dir("C:\Work\VB\Concept\r" & Format(s, "0#") & ".bmp") = "" _

Then
68 With picSlides(s)
69 For t = 0 To n_view - 1
70 For i = 0 To myFront.Gaps
71 x1 = projectXonY(spraypoints(t).X, spraypoints(t).Y, _

myFront.Gappos(i).X - myFront.Gap * 0.499) - myFront.X
72 x2 = projectXonY(spraypoints(t).X, spraypoints(t).Y, _

myFront.Gappos(i).X + myFront.Gap * 0.499) - myFront.X
73 If x1 > 0 And x2 > 0 And x1 < 383 And x2 < 383 Then
74 .PaintPicture picShots(t).Image, x1, 0, x2 - x1, _

.ScaleHeight, x1, 0, x2 - x1
75 End If
76 Next i
77 Next t
78 .Left = s * 200
79 .Visible = True
80 SavePicture .Image, "C:\Work\VB\Concept\r" & Format(s, "0#") _

& ".bmp"
81 End With
82 End If
83 myFront.Gapoffset = myFront.Gapoffset + myFront.Gap
84 Next s
85
86 End Sub
87
88 Private Sub cmdRender_Click()
89 Render
90
91 End Sub
92
93 Private Sub cmdShow_Click()
94 frm3DGraphCalc.Show
95 End Sub
96
97 Private Sub cmdStep_Click()
98 myFront.Gapoffset = myFront.Gapoffset + myFront.Gap
99 Draw
100

A.1. THE FRMSIMULATOR CODE 40

101 End Sub
102
103 Sub View()
104
105 'Declare variables
106 Dim d_BF As Single
107 Dim d_gap As Single, d_bar As Single
108 Dim d_view As Single
109 Dim d_eye As Single
110 Dim n_view As Single
111 Dim eyepoints() As POINTL
112 Dim t As Long, s As Long, i As Long
113
114 'Calculate initial parametres
115 d_BF = myFront.Y - myBack.y1
116 d_gap = myFront.Gap
117 d_bar = myFront.Bar
118 d_eye = dist(heads.getValue(0).lefteye.X, heads.getValue(0).lefteye.Y, _

heads.getValue(0).righteye.X, heads.getValue(0).righteye.Y)
119
120 d_view = PI - Atn(d_BF / (d_bar / 2)) * 2
121 n_view = (d_bar + d_gap) / d_gap
122
123 'Show the views from the eyes
124 picEyes(0).Visible = True
125 picEyes(1).Visible = True
126
127 DoEvents
128
129 'Load the eye locations into two local variables
130 ReDim eyepoints(2)
131
132 eyepoints(0) = heads.getValue(0).lefteye
133 eyepoints(1) = heads.getValue(0).righteye
134
135
136 If picSlides.Count = 1 Then
137 'Load saved slides into memory
138 picSlides(0).Picture = LoadPicture("C:\Work\VB\Concept\r00.bmp")
139 For pbs = 1 To n_view - 1
140 Load picSlides(pbs)

A.1. THE FRMSIMULATOR CODE 41

141 picSlides(pbs).Picture = LoadPicture("C:\Work\VB\Concept\r" _
& Format(pbs, "0#") & ".bmp")

142 Next pbs
143 End If
144
145 'Always make sure the offset is the same
146 myFront.Gapoffset = 0
147 picEyes(0).Cls
148 picEyes(1).Cls
149
150 pb1.value = 0
151
152 'For every slide
153 For s = 0 To picSlides.Count - 1
154 With picSlides(s)
155 'For both eyes
156 For t = 0 To 1
157 'For every gap
158 For i = 0 To myFront.Gaps
159 'Calculate which part of B the eye sees
160 x1 = projectXonY(eyepoints(t).X, eyepoints(t).Y, _

myFront.Gappos(i).X - myFront.Gap * 0.499) _
- myFront.X

161 x2 = projectXonY(eyepoints(t).X, eyepoints(t).Y, _
myFront.Gappos(i).X + myFront.Gap * 0.499) _
- myFront.X + 1

162 If x1 > 0 And x2 > 0 And x1 < 382 And x2 < 382 Then
163 'Paint the corresponding part
164 picEyes(t).PaintPicture .Image, x1, 0, x2 - x1, _

.ScaleHeight, x1, 0, x2 - x1
165 End If
166 Next i
167 Next t
168 End With
169 'Shift gap positions one gap width right
170 myFront.Gapoffset = myFront.Gapoffset + myFront.Gap
171
172 pb1.value = s / (picSlides.Count - 1) * 100
173
174 Next s
175

A.1. THE FRMSIMULATOR CODE 42

176 End Sub
177
178 Private Sub cmdView_Click()
179 View
180
181 End Sub
182
183 Private Sub Form_Load()
184 Set heads = New clsArrayHead
185 Set myFront = New clsFront
186 With myFront
187 .Bar = 30
188 .Gap = 1
189 .Gapoffset = 5
190 .Width = 500
191 .X = 200
192 .Y = 35
193 End With
194
195 With myBack
196 .x1 = 200
197 .y1 = 20
198 .x2 = 700
199 .y2 = 20
200 End With
201
202 backfrontdist = myFront.Y - myBack.y1
203 ismoving = False
204 isturning = False
205 currenthead = -1
206
207 End Sub
208
209 Private Sub DrawHeads()
210 Dim skincolor As Single
211
212 For i = 0 To heads.size - 1
213 With heads.getValue(i)
214 If i = currenthead Then skincolor = vbBlue Else skincolor _

= vbBlack
215 Me.DrawWidth = 10

A.1. THE FRMSIMULATOR CODE 43

216 PSet (.lefteye.X, .lefteye.Y), vbRed
217 PSet (.righteye.X, .righteye.Y), vbGreen
218 PSet (.nose.X, .nose.Y), skincolor
219 Me.DrawWidth = 1
220 Circle (.X, .Y), .Radius, skincolor, BF
221 End With
222 Next i
223
224 End Sub
225
226 Private Sub DrawFront()
227 Dim i As Long
228
229 Line (myFront.X, myFront.Y)-(myFront.Gappos(0).X, myFront.Gappos(0).Y)
230 For i = 1 To myFront.Gaps
231 Line (myFront.Gappos(i - 1).X + myFront.Gap, _

myFront.Gappos(i - 1).Y)-(myFront.Gappos(i).X, myFront.Gappos(i).Y)
232 Next
233
234 End Sub
235
236 Private Sub DrawLines()
237 Dim i As Long, hi As Long
238
239 For hi = 0 To heads.size - 1
240 With heads.getValue(hi)
241
242 For i = 0 To myFront.Gaps
243 Line (projectXonY(.lefteye.X, .lefteye.Y, _

myFront.Gappos(i).X - myFront.Gap * 0.499), myBack.y1)- _
(.lefteye.X, .lefteye.Y), vbRed

244 Line (projectXonY(.lefteye.X, .lefteye.Y, _
myFront.Gappos(i).X + myFront.Gap * 0.499), myBack.y1)- _
(.lefteye.X, .lefteye.Y), vbRed

245 Next
246
247 For i = 0 To myFront.Gaps
248 Line (projectXonY(.righteye.X, .righteye.Y, _

myFront.Gappos(i).X - myFront.Gap * 0.499), myBack.y1)- _
(.righteye.X, .righteye.Y), vbGreen

249 Line (projectXonY(.righteye.X, .righteye.Y, _

A.1. THE FRMSIMULATOR CODE 44

myFront.Gappos(i).X + myFront.Gap * 0.499), myBack.y1)- _
(.righteye.X, .righteye.Y), vbGreen

250 Next
251
252 End With
253 Next hi
254
255 End Sub
256
257 Private Sub Draw()
258 Me.Cls
259
260 DrawHeads
261 DrawFront
262 DrawLines
263
264 End Sub
265
266 Private Function projectXonY(ByVal x1 As Single, ByVal y1 As Single, _

ByVal x2 As Single) As Single
267 projectXonY = x2 - (x1 - x2) / (y1 - CSng(myFront.Y)) * _

CSng(backfrontdist)
268
269 End Function
270
271 Private Function dist(ByVal x1 As Single, ByVal y1 As Single, _

ByVal x2 As Single, ByVal y2 As Single) As Single
272 dist = Sqr((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2))
273
274 End Function
275
276 Private Sub Form_MouseDown(Button As Integer, Shift As Integer, _

X As Single, Y As Single)
277
278 'currenthead = -1
279 hit = False
280 ismoving = False
281 For i = 0 To heads.size - 1
282 With heads.getValue(i)
283 If dist(.X, .Y, X, Y) < .Radius Then
284 currenthead = i

A.1. THE FRMSIMULATOR CODE 45

285 hit = True
286 End If
287 End With
288 Next i
289
290 If Button = 2 Then
291 If Not hit Then
292 Dim myHead As New clsHead
293
294 myHead.X = X
295 myHead.Y = Y
296
297 heads.addvalue myHead
298 Else
299 heads.Remove currenthead
300 ismoving = False
301 currenthead = -1
302 End If
303 Else
304 If Not hit Then
305 If currenthead <> -1 Then
306 isturning = True
307 End If
308 Else
309 ismoving = True
310 End If
311 End If
312
313 Draw
314
315 End Sub
316
317 Private Sub Form_MouseMove(Button As Integer, Shift As Integer, _

X As Single, Y As Single)
318
319 If ismoving Then
320 With heads.getValue(currenthead)
321 .X = X
322 .Y = IIf(Y > (myFront.Y + .Radius + 1), Y, myFront.Y + _

.Radius + 1)
323 End With

A.1. THE FRMSIMULATOR CODE 46

324 Draw
325 End If
326
327 If isturning Then
328 With heads.getValue(currenthead)
329 If Y < .Y Then
330 .Direction = -Atn((.X - X) / (.Y - Y + 0.0000000001))
331 Else
332 .Direction = PI - Atn((.X - X) / (.Y - Y + 0.0000000001))
333 End If
334 End With
335 Draw
336 End If
337
338 Caption = "(" & X & ", " & Y & ")"
339
340 End Sub
341
342 Private Sub Form_MouseUp(Button As Integer, Shift As Integer, _

X As Single, Y As Single)
343 ismoving = False
344 isturning = False
345
346 End Sub
347
348 Private Sub Form_Paint()
349
350 Draw
351
352 End Sub
353
354 Private Sub Form_Unload(Cancel As Integer)
355
356 For i = 1 To picSlides.UBound - 1
357 Unload picSlides(i)
358 Next i
359
360 Unload frm3DGraphCalc
361
362 End Sub
363

A.2. THE CLSHEAD CODE 47

364 Private Sub Timer1_Timer()
365 myFront.Gapoffset = myFront.Gapoffset + myFront.Gap
366 Draw
367
368 End Sub

A.2 The clsHead code
1 Private myX As Single
2 Private myY As Single
3 Private myRadius As Single
4 Private myDirection As Single
5 Private Const PI = 3.14159265358979
6
7 Public Property Get lefteye() As POINTL
8 Dim mypoint As POINTL
9
10 mypoint.X = myX + Cos(-2 / 3 * PI + myDirection) * myRadius
11 mypoint.Y = myY + Sin(-2 / 3 * PI + myDirection) * myRadius
12
13 lefteye = mypoint
14
15 End Property
16
17 Public Property Get righteye() As POINTL
18 Dim mypoint As POINTL
19
20 mypoint.X = myX + Cos(-1 / 3 * PI + myDirection) * myRadius
21 mypoint.Y = myY + Sin(-1 / 3 * PI + myDirection) * myRadius
22
23 righteye = mypoint
24
25 End Property
26
27 Public Property Get nose() As POINTL
28 Dim mypoint As POINTL
29
30 mypoint.X = myX + Cos(-0.5 * PI + myDirection) * (myRadius + 5)
31 mypoint.Y = myY + Sin(-0.5 * PI + myDirection) * (myRadius + 5)
32
33 nose = mypoint

A.3. THE CLSFRONT CODE 48

34
35 End Property
36
37 Public Property Get X() As Single
38 X = myX
39 End Property
40
41 Public Property Get Y() As Single
42 Y = myY
43 End Property
44
45 Public Property Get Radius() As Single
46 Radius = myRadius
47 End Property
48
49 Public Property Let X(X As Single)
50 myX = X
51 End Property
52
53 Public Property Let Y(Y As Single)
54 myY = Y
55 End Property
56
57 Public Property Let Direction(Direction As Single)
58 myDirection = Direction
59 End Property
60
61 Public Property Get Direction() As Single
62 Direction = myDirection
63 End Property
64
65 Private Sub Class_Initialize()
66 myRadius = 100
67 myDirection = 0
68
69 End Sub

A.3 The clsFront code
1 Private myWidth As Single
2 Private myBar As Single

A.3. THE CLSFRONT CODE 49

3 Private myGap As Single
4 Private myX As Single
5 Private myY As Single
6 Private myGapoffset As Single
7
8 Public Property Let Bar(Bar As Single)
9 myBar = Bar
10
11 End Property
12
13 Public Property Let Gap(Gap As Single)
14 myGap = Gap
15
16 End Property
17
18 Public Property Get Bar() As Single
19 Bar = myBar
20
21 End Property
22
23 Public Property Get Gap() As Single
24 Gap = myGap
25
26 End Property
27
28 Public Property Let Width(Width As Single)
29 myWidth = Width
30
31 End Property
32
33 Public Property Get Width() As Single
34 Width = myWidth
35
36 End Property
37
38 Public Property Let X(X As Single)
39 myX = X
40
41 End Property
42
43 Public Property Get X() As Single

A.3. THE CLSFRONT CODE 50

44 X = myX
45
46 End Property
47
48 Public Property Let Y(Y As Single)
49 myY = Y
50
51 End Property
52
53 Public Property Get Y() As Single
54 Y = myY
55
56 End Property
57
58 Public Property Get Gapoffset() As Single
59 Gapoffset = myGapoffset
60
61 End Property
62
63 Public Property Let Gapoffset(Gapoffset As Single)
64 myGapoffset = Gapoffset Mod myBar
65
66 End Property
67
68
69 Public Property Get Gappos(Index As Long) As POINTL
70 Dim mypos As POINTL
71
72 mypos.Y = myY
73
74 mypos.X = myX + myGapoffset + Index * (myBar + myGap)
75
76 Gappos = mypos
77
78 End Property
79
80 Public Property Get Gaps() As Long
81 Gaps = (myWidth - myGapoffset) \ (myBar + myGap)
82
83 End Property

Appendix B

Résumé

The focus of this project is the design of a 3D display that is suitable for
use with three-dimensional programming languages. In order to derive the
speci�c requirements of these, the history of three-dimensional programming
languages are reviewed and three three-dimensional languages are analysed.
These are the �rst three-dimensional programming language Cube, the mini-
malistic 3D-pixel-based 3D-Visulan, and the 3D-PP language, which focuses
on optimal screen area usage. Successively a set of requirements is compiled.

Subsequently the principles of di�erent autostereoscopic displays are de-
scribed. These are the parallactic displays, both lenticular and di�ractional,
and the volumetric displays, which include the swept volume displays, the
emissive volume displays, the laser-substance displays, the holographic dis-
plays, and the layered LCD displays. Based on the display analysis an assem-
bly of characteristics is devised and the examined displays are considered in
the context of the three-dimensional programming languages' requirements
for autostereoscopic displays.

Upon the analysis a design for an autostereoscopic display is presented.
This design is a generalisation of a design by Ken Perlin, from supporting
one observer to multiple observers. The model for the design includes math-
ematical formulae to calculate the extent of the e�ective zone, the area in
which it is possible to obtain a 3D view. Additionally a model for a simulator
is presented including pseudo code for a rendering technique.

Succeeding an account is given for the implementation of the simula-

51

52

tor and, as a result from the simulator, rendered graphics is presented and
reviewed.

Moreover the design is evaluated both by comparison to the examined
display technologies, and by evaluating the hardware and software require-
ments for the design. Finally the works of this project are concluded upon.

Bibliography

[1] AIST2006. Three dimensional images in the air. Press release, February
2006. URL http://www.aist.go.jp/aist_e/latest_research/2006/
20060210/20060210.html. 2.5.2

[2] John Backus. Can programming be liberated from the von neumann
style? a functional style and its algebra of programs. Communications
of the ACM, 21(8):613�641, August 1978. URL http://www.stanford.
edu/class/cs242/readings/backus.pdf. 2.2

[3] Alberto Del Bimbo, Luigi Rella, and Enrico Vicario. Visual speci�cation
of branching time temporal logic. IEEE 1995, 1995. URL http://www.
cs.concordia.ca/~haarslev/vl95www/ieee/delbimbo.ps.gz. 2.3

[4] Paul Bourke. Autostereoscopic lenticular images, December 1999.
URL http://astronomy.swin.edu.au/~pbourke/stereographics/
lenticular/index.html. 2.5.1

[5] P. G. Comba. A language for three-dimensional geometry. IBM Systems
Journal, 7(3 and 4):292�307, 1968. URL http://www.research.ibm.
com/journal/sj/073/ibmsj3a4N.pdf. 2.3

[6] P. T. Cox and I. J. Mulligan. Compiling the graphical functional lan-
guage prograph. Proceedings of the 1985 ACM SIGSMALL symposium
on Small systems, pages 34�41, 1985. URL http://portal.acm.org/
citation.cfm?id=317169&dl=ACM&coll=portal. 2.2

[7] Luis Damas and Robin Milner. Principal type schemes for functional
programs. In 9th ACM Symposium on Principles of Programming Lan-

53

http://www.aist.go.jp/aist_e/latest_research/2006/20060210/20060210.html
http://www.aist.go.jp/aist_e/latest_research/2006/20060210/20060210.html
http://www.stanford.edu/class/cs242/readings/backus.pdf
http://www.stanford.edu/class/cs242/readings/backus.pdf
http://www.cs.concordia.ca/~haarslev/vl95www/ieee/delbimbo.ps.gz
http://www.cs.concordia.ca/~haarslev/vl95www/ieee/delbimbo.ps.gz
http://astronomy.swin.edu.au/~pbourke/stereographics/lenticular/index.html
http://astronomy.swin.edu.au/~pbourke/stereographics/lenticular/index.html
http://www.research.ibm.com/journal/sj/073/ibmsj3a4N.pdf
http://www.research.ibm.com/journal/sj/073/ibmsj3a4N.pdf
http://portal.acm.org/citation.cfm?id=317169&dl=ACM&coll=portal
http://portal.acm.org/citation.cfm?id=317169&dl=ACM&coll=portal

BIBLIOGRAPHY 54

guages, pages 207�212. ACM, 1982. URL http://pag.csail.mit.edu/
6.883/readings/p207-damas.pdf. 2.3.1

[8] Melvin E. Dickover, Clement L. McGowan, and Douglas T.
Ross. Software design using: Sadt. Proceedings of the
1977 ACM Annual Conference, pages 125�133, 1977. URL
http://portal.acm.org/ft_gateway.cfm?id=810192&type=
pdf&coll=GUIDE&dl=GUIDE&CFID=76205547&CFTOKEN=8189622. 2.3

[9] Tim Dwyer. Three-dimensional uml using force directed
layout. In Eades and Eds Tim Pattison, editors, Con-
ferences in Research and Practice in Information Technol-
ogy, volume 9, 2001. URL http://citeseer.ist.psu.edu/
cache/papers/cs/26540/http:zSzzSzwww.jrpit.flinders.edu.
auzSzconfpaperszSzCRPITV9Dwyer.pdf/dwyer01three.pdf. 1.1

[10] Christian Geiger, Wolfgang Muller, and Waldemar Rosenbach. SAM
- an animated 3d programming language. In Visual Languages, pages
228�235, 1998. URL http://jerry.c-lab.de/~wolfgang/vl98a.pdf.
2.3

[11] Ken Kahn. Toontalk - an animated programming environment for chil-
dren. In The Journal of Visual Languages and Computing, volume 7,
number 2, 1996. URL http://www.toontalk.com/Papers/jvlc96.pdf.
2.3

[12] Jana Koehler, Rainer Hauser, Shane Sendall, and Michael Wahler.
Declarative techniques for model-driven business process integration.
IBM SYSTEMS JOURNAL, 44(1), 2005. URL http://www.research.
ibm.com/journal/sj/441/koehler.pdf. 1.1

[13] Ray Kurzweil. The singularity is near. Penguin, 2005. ISBN 0-7156-
3561-1. 1.1

[14] Paul McIntosh, Margaret Hamilton, and Ron van Schyndel. X3d-uml:
Enabling advanced uml visualisation through x3d. Association for Com-
puting Machinery, Inc., 2005. URL http://goanna.cs.rmit.edu.au/
~ronvs/papers/WEB3D05.PDF. 1.1

http://pag.csail.mit.edu/6.883/readings/p207-damas.pdf
http://pag.csail.mit.edu/6.883/readings/p207-damas.pdf
http://portal.acm.org/ft_gateway.cfm?id=810192&type=pdf&coll=GUIDE&dl=GUIDE&CFID=76205547&CFTOKEN=8189622
http://portal.acm.org/ft_gateway.cfm?id=810192&type=pdf&coll=GUIDE&dl=GUIDE&CFID=76205547&CFTOKEN=8189622
http://citeseer.ist.psu.edu/cache/papers/cs/26540/http:zSzzSzwww.jrpit.flinders.edu.auzSzconfpaperszSzCRPITV9Dwyer.pdf/dwyer01three.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/26540/http:zSzzSzwww.jrpit.flinders.edu.auzSzconfpaperszSzCRPITV9Dwyer.pdf/dwyer01three.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/26540/http:zSzzSzwww.jrpit.flinders.edu.auzSzconfpaperszSzCRPITV9Dwyer.pdf/dwyer01three.pdf
http://jerry.c-lab.de/~wolfgang/vl98a.pdf
http://www.toontalk.com/Papers/jvlc96.pdf
http://www.research.ibm.com/journal/sj/441/koehler.pdf
http://www.research.ibm.com/journal/sj/441/koehler.pdf
http://goanna.cs.rmit.edu.au/~ronvs/papers/WEB3D05.PDF
http://goanna.cs.rmit.edu.au/~ronvs/papers/WEB3D05.PDF

BIBLIOGRAPHY 55

[15] Marc A. Najork. Programming in Three Dimensions. Technical report,
Univ. of Illinois, Dept. of Computer Science, October 1993. URL http:
//research.microsoft.com/~najork/thesis.pdf. 2.3.1

[16] Marc A. Najork. Programming in three dimensions. Journal of Visual
Languages and Computing, 7(2):219�242, June 1996. 2.3.1

[17] Marc A. Najork and Simon M. Kaplan. The cube language.
1991 IEEE Workshop on Visual Languages, pages 218�224, October
1991. URL http://ieeexplore.ieee.org/iel2/376/6139/00238829.
pdf?isnumber=&arnumber=238829. 2.3, 2.3.1

[18] Takashi Oshiba and Jiro Tanaka. �3d-pp�: Visual programming system
with three-dimensional representation. In Proceeding of International
Symposium on Future Software Technology (ISFST '99), pages 61�66,
October 1999. URL http://www.iplab.cs.tsukuba.ac.jp/~ohshiba/
paper.lnk/isfst99-ohshiba.pdf. 2.3

[19] Ken Perlin. Princess leia, in a beam of light. Website. URL http:
//mrl.nyu.edu/~perlin/experiments/holodust/index.html. 2.5.2

[20] Ken Perlin, Salvatore Paxia, and Joel S. Kollin. An autostereo-
scopic display. In SIGGRAPH 2000 Conference Proceedings. Me-
dia Research Laboratory, Dept. of Computer Science, New York Uni-
versity, July 2000. URL http://www.mrl.nyu.edu/publications/
autostereo/autostereo.pdf. 3.1

[21] Chris Raistrick, Paul Francis, John Wright, Colin Carter, and Ian
Wilkie. Model Driven Architecture with Executable UML. Library of
Congress, 2004. ISBN 0521537711. 1.1

[22] Frank Van Reeth and Eddy Flerackers. Three-dimensional
graphical programming in cael. IEEE 1993, 1993. URL
http://ieeexplore.ieee.org/iel2/467/6709/00269554.pdf?
isnumber=&arnumber=269554. 2.3

[23] Ben Shneiderman. Direct manipulation: A step beyond programming

http://research.microsoft.com/~najork/thesis.pdf
http://research.microsoft.com/~najork/thesis.pdf
http://ieeexplore.ieee.org/iel2/376/6139/00238829.pdf?isnumber=&arnumber=238829
http://ieeexplore.ieee.org/iel2/376/6139/00238829.pdf?isnumber=&arnumber=238829
http://www.iplab.cs.tsukuba.ac.jp/~ohshiba/paper.lnk/isfst99-ohshiba.pdf
http://www.iplab.cs.tsukuba.ac.jp/~ohshiba/paper.lnk/isfst99-ohshiba.pdf
http://mrl.nyu.edu/~perlin/experiments/holodust/index.html
http://mrl.nyu.edu/~perlin/experiments/holodust/index.html
http://www.mrl.nyu.edu/publications/autostereo/autostereo.pdf
http://www.mrl.nyu.edu/publications/autostereo/autostereo.pdf
http://ieeexplore.ieee.org/iel2/467/6709/00269554.pdf?isnumber=&arnumber=269554
http://ieeexplore.ieee.org/iel2/467/6709/00269554.pdf?isnumber=&arnumber=269554

BIBLIOGRAPHY 56

languages. In Proceedings of the joint conference on Easier and more
productive use of computer systems, page 143. ACM Press, 1981. 2.3.3

[24] Randy Stiles and Michael Pontecorvo. Lingua graphica: A vi-
sual language for virtual environments. IEEE 1992, 1992.
URL http://ieeexplore.ieee.org/iel2/895/6833/00275759.pdf?
arnumber=275759. 2.3

[25] Sabine Volbracht, K. Shahrbabaki, Gitta Domik, and Gregor Fels.
Perspective viewing, anaglyph stereo or shutter glass stereo? In
Proceedings of the 1996 IEEE Symposium on Visual Languages (VL
'96), 1996. URL http://csdl2.computer.org/comp/proceedings/
vl/1996/7508/00/75080192.pdf. 1.1

[26] Kakuya Yamamoto. 3d-visulan: A 3d programming language for 3d
applications. In Paci�c Workshop on Distributed Multimedia Sys-
tems (DMS96), pages 199�206, 1996. URL http://www.yuasa.kuis.
kyoto-u.ac.jp/ylab/yamakaku/Dms96/dms96.html. 2.3

http://ieeexplore.ieee.org/iel2/895/6833/00275759.pdf?arnumber=275759
http://ieeexplore.ieee.org/iel2/895/6833/00275759.pdf?arnumber=275759
http://csdl2.computer.org/comp/proceedings/vl/1996/7508/00/75080192.pdf
http://csdl2.computer.org/comp/proceedings/vl/1996/7508/00/75080192.pdf
http://www.yuasa.kuis.kyoto-u.ac.jp/ylab/yamakaku/Dms96/dms96.html
http://www.yuasa.kuis.kyoto-u.ac.jp/ylab/yamakaku/Dms96/dms96.html

	Preanalysis
	Motivation
	Problem Statement
	Success Criteria
	Delimitation

	Analysis
	Introduction
	Visual programming languages
	Three-dimensional programming languages
	The Cube language
	The 3D-Visulan language
	The 3D-PP language

	Sub-conclusion
	3D displays
	Parallactic displays
	Volumetric displays

	Sub-conclusion

	Design
	Introduction
	Concept
	Model
	Delimiting the effective zone
	Parameters
	The dgap parameter
	The dBF parameter
	The dbar parameter

	Architecture of the simulator
	The Render-method
	The View-method

	Implementation
	Introduction
	The choice of programming language
	Implementing the proposed design

	Experiments and results

	Evaluation
	An evaluation of the proposed design
	Comparison to other display types
	Hardware and software requirements

	Conclusion
	Conclusion

	Source code of the simulator
	The frmSimulator code
	The clsHead code
	The clsFront code

	Résumé

