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Abstract

Background

Interruption of vector-borne transmission ®fypanosoma cruzremains an unrealized
objective in many Latin American countries. The task of vector gbisticomplicated by the

emergence of vector insects in urban areas.

Methods

Utilizing data from a large-scale vector control program ieqiipa, Peru, we explored t

714

spatial patterns of infestation QAyiatoma infestansn an urban and peri-urban landscape.
Multilevel logistic regression was utilized to assess th@dasons between household

infestation and household- and locality-level socio-environmental measures.

Results

Of 37,229 households inspected for infestation, 6,982 (18.8%; 95% CI: 18.4 — 19.29
infested byT. infestans Eighty clusters of infestation were identified, ranging i@aairom
0.1 to 68.7 hectares and containing as few as one and as many as 1st88 hdasehold
Spatial dependence between infested households was significantaactelsup to 2,00
meters. Household. infestangnfestation was associated with household- and locality-
factors, including housing density, elevation, land surface temperature, ahty liype.

Conclusions

High levels ofT. infestansinfestation, characterized by spatial heterogeneity, were
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across extensive urban and peri-urban areas prior to vector comvelaSenvironmental

and social factors, which may directly or indirectly influetive biology and behavior d4f.
infestans were associated with infestation. Spatial clustering of mfiest in the urba

context may both challenge and inform surveillance and control ofrvetmergence after

insecticide intervention.

Keywords

Triatoma infestansChagas disease, Urban infestation, Vector control, Spatial analysis,
Multilevel logistic regression



Background

Chagas disease, also known as American trypanosomiasis, il dayisthe protozoan
parasite Trypanosoma cruziand is endemic in Latin America. Typicallyff,. cruzi is
transmitted to humans via the infected excretions of various bloodipathtomine insect
species, includingriatoma infestansLess commonly, infection may result from congenital
transmission, blood transfusion, organ transplantation, and incidentaliomgeft parasite-
contaminated food or drink [1]. Chagas disease is characterized bhgute phase, which
lasts 6 — 8 weeks, and a chronic phase, which persists for life. Incas®s, both the acute
and chronic phases of infection are asymptomatic. However, 10 — #6865, depending
on the geographic region, progress over a period of years to chronaseajisecluding
potentially fatal cardiac and gastrointestinal disorders [2]. @lgkaght million persons are
infected withT. cruzj resulting in 11,000 deaths and the loss of 430,000 disability-adjusted
life years (DALYs) annually [3,4].

Prevention and control of Chagas disease are achieved primarigrggascale insecticide
application initiatives [5], andriatoma infestanswhich lives predominantly in and around
human households, is a principal target for vector control [2]. WhileSthehern Cone
Initiative has succeeded in interruptifgcruzitransmission by. infestangn Brazil, Chile,
and Uruguay [6,7]T. infestangnediatedT. cruzitransmission persists in parts of Argentina,
Bolivia, Paraguay, and Peru [8,9]. Moreover, efforts to elimifaténfestanshave been
complicated by the expansion of this species from sparsely papulatal regions into
densely populated urban areas [10,11].

While the ecology ofT. infestansinfestation in rural environments has been studied
extensively, urban infestation by this insect has been investigatly preliminarily. To
advance understanding of vector infestation in the urban context, thig skamines
infestation byT. infestansacross an urban and peri-urban landscape prior to implementation
of vector control. Our study focuses on Arequipa, Peru, which lies areanwith extensive

T. infestansinfestation and epidemi€. cruzi transmission [8,12]. Utilizing data collected
from multiple sources at multiple spatial scales, we empayia point pattern analysis and
multilevel logistic regression to elucidate spatial pattemngfestation byT. infestansand to
assess associations between several environmental and sotwat fand T. infestans
infestation in an urban landscape. In particular, the effects of hodsimgity, land surface
temperature, and elevation were evaluated at the household leveljivehd&ects of urban
shantytowns, which have been identified as areas at higheroriskféstation by Chagas
diesease vectors and vector-borne transmission. @fuzi were evaluated at the locality
level [11,13-15].

Results

Triatoma infestansvere found in 6,982 (18.8%; 95% CI: 18.4 — 19.2%) of the 37,229 study
households. Prevalence of household infestation varied widely acrostuttyearea, with
spatially smoothed estimates ranging from 0.0 to 77.9% (Figure dhtyEareas were
identified that exceeded the upper limit of a 999-iteration randbeditey simulation of the
kernel density estimate ratio of infested households versus alf simaseholds. These
clusters of infestation, which ranged in area from 0.1 to 68.7 hectanmgtmined as few as 1
and as many as 1,139 infested households. In total, the clusters ersmiipa38 (46.9%)

of the 6,982 infested households. The K-function difference for infestsdsvaon-infested



households exceeded the upper limit of a 999-iteration random labefhotagon at all 100-
meter increments up to 2000 meters.

Figure 1 Kernel-smoothed prevalence of householdlriatoma infestans infestation.
Spatially smoothed prevalence of household infestation varied from T/00% across the
study area. Colored pixels outlined in black represent statigtisggnificant clusters of
infestation. A grayscale Landsat 5 Thematic Mapper (TM) banta8e (15 December 2008,
WGS 84 UTM 19S) shows landscapes encompassed by the six asealydistricts and
surrounding areas.

Univariate logistic regression showed statistically sigaific relationships between
household infestation and housing density, elevation, and land surface atmgeNo
significant correlation was found between housing density and elevatof.13), between
housing density and land surface temperature (r = 0.02), or betweeaticgieand land
surface temperature (r = 0.02). For housing density, odds of infestagi@napproximately
two times higher in the highest versus the lowest quintile. Featb®, odds of infestation
were higher only in the third and fourth quintiles. Odds of infestatioreased 8% with each
1 °C increase in land surface temperature. Covariates remaatistically significant in the
multivariate model, with a modest increase in the odds of ini@stassociated with land
surface temperature, and moderate decreases in the odds ddtimfiesissociated with
housing density and elevation (Table 1).

Table 1Results of univariate and multivariate logistic regression

Univariate logistic regression Multivariate logistic regression
Range Inspected Infested Odds ratio 95% ClI Odds ratio 95% ClI
Housing density (households/hectare) AIC = 32,993
2 - 24* 6,866 831 1.00 1.00
24 - 30 6,855 1,148 1.46 1.33-1.61 1.38 1.26 -1.53
30-34 6,848 1,434 1.92 1.75-2.11 1.79 1.63-1.97
34 -39 6,861 1,582 2.18 1.99 -2.39 2.02 1.84-2.22
39-77 6,845 1,534 2.10 1.91-2.30 1.90 1.73-2.09
Land surface temperature (°C) AIC = 33,300
26 - 40 34,275 6,529 1.08 1.06 -1.10 1.10 1.08-1.12
Elevation (meters above sea level) AIC = 33,134
2,120 - 2,260* 6,866 1,085 1.00 1.00
2,260 - 2,300 6,996 1,089 0.98 0.90-1.08 0.82 0.74-0.90
2,300 - 2,350 6,716 1,526 1.57 1.44-171 1.31 1.20-1.44
2,350 - 2,450 6,852 1,612 1.64 1.50-1.79 1.45 1.33-1.59
2,450 - 2,670 6,845 1,217 1.15 1.05-1.26 1.06 0.96-1.16

AIC =32,724

*Referent category.
95% CI: 95% confidence interval.
AIC: Akaike information criteria.

Multilevel logistic regression represented an improvement over oydiogistic regression,
and the data were best fit by a model including household-levetiates a locality-level
covariate, and locality-level random effects (Table 2):



Table 2 Results of multilevel logistic regression

Model 0 Model 1 Model 2
Household-level fixed effects: odds ratio (95% ClI)
Housing density (households/hectare)
2 - 24* 1.00 1.00
24-30 1.23(1.10-1.37) 1.22 (1.10-1.37)
30-34 1.44 (1.29 -1.61) 1.44 (1.29 -1.61)
34-39 1.57 (1.39 - 1.76) 1.56 (1.39 - 1.75)
39-77 1.74 (1.54 - 1.97) 1.73 (1.53 - 1.96)
Land surface temperature (°C)
26 — 40 1.10 (1.08 — 1.13) 1.10 (1.08 — 1.13)
Elevation (meters above sea level)
2120 — 2260* 1.00 1.00
2260 — 2300 1.44 (1.18 - 1.76) 1.48(1.21-1.82)
2300 — 2350 1.89 (1.49 — 2.41) 1.99 (1.57 — 2.53)
2350 — 2450 2.12 (1.63-2.76) 2.28 (1.75-2.98)
2450 — 2670 1.39 (1.07 - 1.82) 1.49 (1.14-1.94)

Locality-level fixed effects: odds ratio (95% CI)
Shantytown

Locality-level random effects
Variance (95% CI)
Change in variance

1.12 (0.84 — 1.49)

Median odds ratio 2.74
Likelihood ratio test (p-value)

v. logistic model < 0.0001
v. multilevel modél

AIC 30,467

1.03 (0.77 — 1.37)
-8.1%
2.63

< 0.0001
< 0.0001
30,269

1.75 (1.24 — 2.47)

IOR: (0.30 — 10.26)

0.95 (0.71 — 1.27)
-7.4
2.54

< 0.0001
0.0015
30,261

*Referent category.

"Multilevel versus ordinary logistic regression.
*Multilevel model n + 1 versus model n.

95% CI: 95% confidence interval.

IOR: interval odds ratio.

AIC: Akaike information criteria.

Spatial autocorrelation in deviance residuals was distinctly decreatea best-fit multilevel
model versus the ordinary multivariate model (Figure 2).

Figure 2 Spatial autocorrelation in deviance residuals for least- and Is¢-fit regression
models. Comparison of spatial autocorrelation in the deviance residuats thie ordinary
multivariate logistic regression model (upper panel) versus thefibenultilevel logistic

regression model (lower panel). The mark correlation functig) (Kay vary between -1
(negative spatial autocorrelation) and +1 (positive spatial ausdabon), with an expected
value of O for no spatial autocorrelation. Spatial autocorrelationswhstantially reduced,
albeit not eliminated, in the best- versus least-fit multivariate logisgression model.

Locality-level random effects were substantial. The median odids(MOR), which is the
median value of the odds ratio when comparing a higher to a losketogality, indicated
that the median odds of infestation were two and one-half timesegr@ahigher versus
lower risk localities (Table 2).

The effect of the locality-level covariate, locality typgas also significant. Households
located in shantytowns had 75% higher odds of infestation than househaédedsin other
locality types. However, the interval odds ratio (IOR), whichhesihterval between the 10th
and 80th percentile centered on the median value of the distribution ©fatdis for locality



type, included the value one. This indicates that the effect alithptype is not as strong as
the locality-level random effect (Table 2).

Household-level effects all remained statistically significaddds of infestation increased
10% with each 1°C increase in land surface temperature, wlashsimilar to the estimate
from ordinary multivariate logistic regression. The highest mmudensity quintile had 75%
higher odds of infestation relative to the lowest quintile, whiclslightly diminished
compared to results from the ordinary multivariate model. Thdahalevation quintile had
greater than twice the odds of infestation relative to the logemtile, but the highest
quintile showed only 50% higher odds of infestation relative to thediogentile. The effect
of elevation was substantially increased in the multilevel vettseisordinary multivariate
logistic regression model (Table 2).

Discussion

Infestation byT. infestanshas been found in many urban areas in Latin America, including
Santiago, Chile [13]; Cochabamba and Sucre, Bolivia [14]; and AreqBga, [11]. In
affected areas—urban as well as rural—prevention and control of €dégmase relies on
vector control [5]. While infestation by and control ©f infestanshas been extensively
examined in the rural context, infestation in the urban milieu $s leell understood.
Utilizing spatial and multilevel logistic regression analysisdata collected from multiple
sources at multiple spatial scales, we offer insights iht dynamics ofT. infestans
infestation in an urban landscape.

Prior to implementation of vector control, urban and peri-urban householdsqguipa were
extensively infested by. infestansThe intensity of infestation was spatially heterogeneous,
with areas of very low and very high prevalence of infestation. Moaumseclusters of
infestation, small and large, were found across the six studyctfistindicating that urban
and peri-urban areas are conducive to the proliferation and disperdiomédstansin rural
landscapes;T. infestanshave been shown to actively disperse by walking or flying at
distances up to approximately 100 or 2,000 meters, respectively [16,B/felparate study

in urban Arrequipa, streets were shown to be significant baroetbet dispersion off.
infestans and to strongly influence the spatial distribution of infestatit8].[In contrast,
flight has been observed as a main mechanism of infestatiorbam San Juan, Argentina
[19]. In the present study, spatial dependence between infestiseéholds was observed at
distances from 0 to 2,000 meters, suggesting that drberfestansnay disperse by walking

at shorter spans that do not cross city streets, as well fhgrigy at longer distances across
urban blocks.

Identifying extant clusters of infestation prior to vector contrody have critical
consequences for implementing effective surveillance of vectarerggence subsequent to
vector control. In an extensive but sparsely populated rural ar¢laeitsran Chaco of
Argentina, reinfestation by. infestanstended to cluster in areas where infestation was
aggregated prior to vector control [20]. Infestation clusters in aensixely and densely
populated urban area may be similarly problematic. The existnoamerous infestation
clusters in Arequipa, many encompassing large areas and mamnghbloss should be
priority areas for surveillance and control by the GRSA. Wheaesilble, utilization of a
geographic information system to monifiorinfestangeemergence—as well as other health



risks and outcomes—might be a cost effective investment for resoanstrained public
health institutions in Arequipa, and elsewhere in the developing world [21,22].

Spatial heterogeneity in urban infestation Dy infestansis likely influenced by myriad
factors operating at multiple spatial scales. We evaluated abféw features, which were
chosen based on ecological plausibility and data availability. dimany univariate and
multivariate logistic regression, housing density, elevation, and larfdceutemperature
were all positively, if not always linearly, associatedhwhousehold infestation. Housing
density may mediate vector dispersal. In higher density wabzas, new habitats and blood
sources found in nearby houses are located at short distances froamather, thereby
facilitating dispersal of refuge- or blood-seeking vectors. Adg¢waction to light influences
the dissemination of. infestansand the plentiful light sources in higher density urban areas
may promote insect dispersal [23]. Land surface temperatureaffesy vector biology and
behavior. Both laboratory and field experiments demonstratd thatestandlight initiation
increases at higher temperatures [17,24], thereby promoting \dsparsal in warmer urban
areas. Laboratory studies also indicate that higher temperatgreasd . infestandeeding
and development rates [25,26], and blood meal seeking is reportedlyrbiparcause for
dispersion of triatomines [23]. In warmer urban areas, increagelihfeand development
may result in increased vector dispersal. Elevation mayduectly through socioeconomic
circumstances, rather than directly through biophysical condtraint Arequipa, lower
socioeconomic status populations, often rural-to-urban migrants, typich#pit the higher
elevation hillsides, while higher socioeconomic status populationslyisealde in lower
elevation valleys [27]. As such, higher infestation at higher et@vah Arequipa may be
attributable to two factors: passive introduction of insects tiegulirom seasonal migration
to and from nearby rural areas whére infestansare prevalent, and substandard living
conditions that provide habitats suitable Torinfestangnfestation [27]. The slight decrease
in infestation at the highest elevations may result from tlaively recent inhabitation of
these areas, leaving little time for infestation to have ocguEkevation is unlikely to be a
biophysical constraint for infestation in the currently populatedsapéaArequipa, sincd .
infestanshave been found as high as 3,682 meters above sea level in Argsiinadll
above the elevation of the study area.

Multilevel logistic regression revealed the importance oflibekevel contextual effects and
substantially diminished spatial autocorrelation present in ordilgugtic regression. The
locality-level random effect, which estimates the influenceraibserved contextual effects
within each locality, indicates that these unmeasured faatersissociated, in median, with
substantially higher risk of household infestation. In Arequipa, andwleése, urban
shantytowns have been identified as areas with higher riskfistation by Chagas disease
vectors, and vector-borne transmissiormotruzi[11,13-15]. We offer further evidence that
shantytowns are at higher risk for infestation Tayinfestans Controlling for locality-level
effects, household-level effects for housing density, elevation, addslaface temperature
all remained statistically significant and substantial.

We recognize that our study is limited in many respectst,Fwwhile we believe that
household location and infestation status data are both precise angteggcmore detailed
data regarding the number, life stage, dndcruziinfection status of insects encountered
during the vector control campaign were unavailable. Nor did we hadepth data
regarding households (e.g., construction materials, domestic anianateeir occupants.
More detailed data would have likely improved the insights provideduryanalyses.
Second, we recognize that point-level household covariates are extractedrfrota sensing



data collected at a 30-meter scale (elevation, land surfaceetature) or are spatially
smoothed estimates (housing density). We also understand thatiféak Semperature data
do not capture fine-scale temporal variability that occurs a@dswvithin days of the year,
nor do they describe fine-scale spatial variation in ambient mloratic conditions. These
issues of scale could conceivably bias the relative magnitude of obsenats. 8fferd, at the
time of data collection, portions of the six study districts vagileundergoing vector control.
Future analyses of areas recently reached by the vector coatnplign, including districts
beyond the current study area, may provide deeper and broadersinstghirban and peri-
urbanT. infestansnfestation.

The geography and ecology af infestans-as well as vector species for many other
infectious diseases—are changing. Decreasing funding and poliititahnd increasing
insecticide resistance are endangering gains made towastsumtion of vector-borne
transmission of. cruzi[9]. For many vector-borne diseases in many parts of the workg the
are not only public health concerns but also social justice issuescom®mically and
politically marginalized populations may suffer disproportionatelyaniyl potentially
powerful tools (e.g., Google Earth, The R Project for StatlsGmanputing), data sources
(e.g., NASA, NOAA), and spatial and statistical methods are fne@ly available. Finding
novel uses for these resources in conjunction with local knowledgafanchation—as well
as increasing capacity to do so—could inspire new perspectives oolatidns to existing
and emerging public health problems and their social and environmemniaksc and
consequences.

Methods

Study area

Arequipa (population 864,250) is situated in southwestern Peru and is the sothitdy
most populous province. This study focuses on six of the province’s twerydistricts:
Jacobo Hunter, Jose Luis Bustamante y Rivero, Paucarpata, S&beaiagya, and Tiabaya.
The districts encompass a geographically contiguous area of 13@ &goareters adjacent
to the capital city of Arequipa, and include nearly forty peroérihe province’s population
[28] (Figure 3).

Figure 3 The Arequipa, Peru, study area.Satellite imagery of the six study area districts,
the city of Arequipa, and the surrounding area. The inset map showscdigons of
Arequipa, Peru, and bordering areas. The study area encompassss@ahurban and peri-
urban landscapes.

In 2003, theGerencia Regional de Salud de Arequifi@aRSA) initiated a vector control
program to eliminate household infestation Dy infestans The program is ongoing, is
implemented on a district-by-district basis, and consists aihplsistepwise process. First,
each household is assigned a unique alphanumeric code, and household codesi@msl loca
are catalogued on hand-drawn maps. Second, trained GRSA persmdoelr-do-door, spray

all domestic areas and peri-domestic animal enclosureshrnheasehold, and inspect for the
presence of triatomines, taking advantage of the flushing effie¢he insecticide. The
presence or absence @f infestansis recorded. Finally, the inspection and insecticide
application process is repeated approximately six months later.



Data collection

Household data

Maps of household locations, household unique identifier codes, and dates wdtsd afes
householdr. infestansnspections were provided by the GRSA. Within the study area 37,229
households had been inspected for infestatio .binfestansand sprayed with insecticide
during the period from September 2003 through December 2008. Using GRS# and
Google Earth imagery, we assigned geographic coordinates tdhiheseholds, as well as to
households within the six study districts that had not as yet been reached bydheorgcol
campaign as of December 2008. Household geographic coordinates, hodseh&ddtans
infestation status (0/1), and household unique identifier codes wegal stoia relational
database management system for subsequent analysis.

Remote sensing data

Advanced Spaceborne Thermal Admission and Reflection RadiometdE@SGlobal
Digital Elevation Model Version 2 (GDEM V2) 30-meter-resolutioragary of the study
area (ASTGTM2_S17WO072) was acquired from the National Aeronautics Spade
Administration (NASA) Earth Observing System Data and InfdionaSystem (EOSDIS)
[29]. Landsat 5 Thematic Mapper (TM) 120-meter resolution themmadery (band 6: 10.40
— 12.50um) and 30-meter resolution visible (band 3: 0.63 — QréPand near-infrared (band
4: 0.76 — 0.9um) imagery of the study area (WRS path 3 row 71) were obt&iaedthe
United States Geological Survey (USGS) EarthExplorer [30]. Clael images were
attained for nine dates in 2008: 18 March, 19 April, 21 May, 24 July, 25 AugGst
September, 12 October, 13 November, and 15 December. A Landsat 5 TM bange3 ima
acquired on 25 July 1987 was obtained from NASA'’s Global Orthoeectibndsat Data Set
as reference for geometric correction of 2008 images [31,32].

Census data

In Peru, census areas are subdivided into departments, provinces sdiatrictocalities. A
database of the locality in which each study household was losatedrovided by the
GRSA, and a census classification of locality types was olatdnoen the Peru National
Institute of Statistics and Informatics (INEI). Localtiype categories included citgigdad),
housing developmentufbanizacion, town @ueblg, shantytown gueblo joveh housing
associationgsociacion de viviend@shousing cooperativegoperativa de viviendasannex
(anexq, hamlet €aserig, and rural communitycomunidad campesing33]. The GRSA and
INEI databases were joined and each household was assignedgaricatevariable
specifying locality type for 34,275 of the 37,229 (92.1%) households with docesnEnt
infestangnspection data.

Data analysis
Spatial point pattern analysis
Spatial variation in household infestation By infestanswas evaluated by dividing the

kernel-smoothed density of infested households by the kernel-smooth&ty aé all study
households. An isotropic Gaussian smoothing kernel with a standard devigtioh45.7



meters was utilized for this analysis, whereas selected using a likelihood cross-validation
method. A 999-iteration random labeling simulation was performed tdifig@areas where
infestation byT. infestansvas significantly elevated [34,35]. The kernel-smoothed density of
all georeferenced households (n = 68,849), with 27.8 meters, was estimated for
evaluation as a covariate in logistic regression [35,36].

Spatial dependence between households infestdd iofestansvas assessed by computing
the difference in the K-function for infested households and non-infestednotdsat 100-
meter increments from 0 to 2000 meters. A 999-iteration random rgbginulation was
executed to identify distances at which spatial dependence aftadfdouseholds was
statistically significant [37].

Spatial statistical analyses were conducted using R (Th®jBcPfor Statistical Computing)
[38]. Maps of spatial variation in household infestation and household density
constructed using ArcGIS version 10 (ESRI) [39].

Remote sensing image analysis

Remote sensing data were utilized to derive and extract householdepeinéstimates of
elevation and land surface temperature for evaluation as covariates irt legsgission.

The ASTER GDEM V2 image was projected to the WGS 84 UTM d&8dinate system
and resampled to a 30-meter pixel size to match the projectionpatidl sesolution of
Landsat 5 TM imagery, and elevation data were extracted to household point locations

Landsat 5 TM and ASTER GDEM V2 images were cropped to a Gina by 474-row
area corresponding to the rectangle bounding the six studyiateetsl Landsat 5 TM band
3, 4, and 6 images from 2008 were geometrically corrected utilisgnple root mean
square error minimization routine and the Landsat 5 TM band 3 inrage 1985 as
reference [40]. Atmospheric correction of Landsat 5 TM band 3 anddesmwas performed
using a modified dark object subtraction method [41], followed by topbgracorrection
utilizing a Minnaert method [42]. The normalized difference vegetahdex (NDVI) was
calculated from Landsat 5 TM band 3 and 4 images [43], and land eswfiaissivity was
estimated from NDVI for each date in 2008 [44]. Land surface temperature masidesing
Landsat 5 TM band 6 thermal infrared images; land surface emnyssimages; and
coefficients for atmospheric transmissivity, upwelling atmospgheradiance, and
downwelling atmospheric radiance [45,46]. Land surface temperatugesmeere overlaid,
median land surface temperature was calculated for each pastérand these data were
extracted to household point locations.

Processing of ASTER GDEM V2 and Landsat 5 TM images was cadlusing the landsat
package version 1.0.8 in R version 2.15.2 [40]. Atmospheric coefficients waiaezbfrom
the Atmospheric Correction Parameter Calculator [47]. ArcGISime 10 was utilized to
create maps of elevation and land surface temperature, and tot exdhaes for these
variables to household point locations.

Statistical analysis

Prevalence of infestation was calculated for the 37,229 households @uspadtsprayed for
T. infestans Pearson’s correlation coefficient was utilized to assesslabon among



candidate continuous covariates for logistic regression modelingatiate and multivariate

logistic regression were used to evaluate the associationsdretwousehold infestation and
household-level variables, including housing density, elevation, and medianudades

temperature (Figure 4). To account for non-linearity in logistyregsion, housing density
and elevation were converted from continuous to categorical blesidbased on their
respective quintiles. Median land surface temperature was nm&dtas a continuous
variable.

Figure 4 Household- and locality-level variables associated witfriatoma infestans
infestation. Spatial distributions of three household-level variables (housing density
elevation, and land surface temperature) and one locality-levelblarflocality type) that
were evaluated in logistic regression modeling. These socio-enwraahvariables, each of
which influences urba. infestansnfestation, exhibit distinct spatial variation across the
study area.

To address spatial dependence among observations and to asdigddeebeffects, three
multilevel logistic regression models were evaluated: a miodkiding only locality-level
random effects (Model 0); a model including household-level covariaiddoaality-level
random effects (Model 1); and a model including household-level covaralesality-level
covariate, and locality-level random effects (Model 2). In aoldito standard odds ratios,
median odds ratios (MOR) was calculated for locality-leaeddom effects, and the interval
odds ratio (IOR) was calculated for the locality-level covariate [48,49].

The locality-level covariate is a dichotomous categorizatioloality type into shantytown
and other. Shantytowns are informal urban population centers composeldcks or
collection of substandard housing, often without urban infrastructure or basic s¢3@icds
contrast, the category other consists primarily of formal urban populeenters, including
cities, housing developments, housing associations, and housing cooperatines;
secondarily of formal rural population centers, including towns, hamlets communities,
and annexes [33]. In Peru, urban areas are defined as built ar¢dsasft 400 households
that are continuously occupied, whereas rural areas are siniplgdlas built areas outside
of urban areas [33]. Among urban locality types, cities correspocahtonon conceptions of
cities, housing developments resemble suburbs, housing associatiorsiceetied housing
developments with shared living spaces, and housing cooperatives idemtrals housing
developments with shared living spaces. Among rural locality tyjoees correspond to
common conceptions of rural towns, hamlets are smaller versionovais,t rural
communities are communal farming areas, and annexes corresporidcarporated areas.
Locality type information was unavailable for 2,954 (7.9%) of mapped housefdidse
were omitted from logistic regression modeling, leaving 34,725 houseloalat®d in 160
localities for regression analyses (Table 3).



Table 3 Categorization scheme for locality type

Category Locality type Households Localities
Number Percent Number Percent

Shantytown Shantytown 16,595 44.58 87 40.28
Other Housing development 13,293 35.71 51 23.61
City 2,308 6.20 2 0.93

Town 1,009 2.71 5 2.31

Hamlet 567 1.52 5 231

Housing cooperative 354 0.95 5 231

Annex 82 0.22 3 1.39

Rural community 52 0.14 1 0.46

Housing association 15 0.04 1 0.46

No data No data 2,954 7.93 56 25.93
37,229 100.00 216 100.00

Locality type was categorized into shantytown (h6:595 households in 87 localities) and other ¥#680 households in
73 localities). The 2,954 households without Idgalype data were omitted from logistic regressimalyses.

Model O Locality-level random effects only:
Iogit[Pr( Y, = 1)] =5+u

Model 1 Household-level effects and locality-level random effects:
Iogit[Pr( Y = 1)] =f, + B, density + 3, elevatign+ 5, temperatyre ;

Model 2 Household- and locality-level effects and locality-level randoetsff

Iogit[Pr( Y = 1)] =[5, + B, density + 3, elevatign+ B, temperatpre3, locality typayj

Logit is the link function; Py = 1) is the probability of household infestatianand j
indicate theith household and thgh locality, §; is the vector of regression coefficients for
density wheredensityis kernel-smoothed housing density (households/hectare) categorized
by quintiles;s, is the vector of regression coefficients &evation whereelevation(meters
above sea level) is categorized by quintifesis the regression coefficient fe@mperature
where temperatureis estimated annual median land surface temperature ;0¥ the
regression coefficient fdocality type wherelocality typeis a dichotomous categorization of
localities into shantytown and othé; is the household-level intercept; ands the locality-

level random effect.

Regression model goodness of fit was assessed using the likelgtmotest and the Akaike
information criteria (AIC). Spatial autocorrelation in deviancadeals of the least- and best-
fit models was evaluated utilizing the mark correlation function) @ 25-meter increments
from 0 to 500 meters. A 999-iteration random labeling simulationexasuted to identify
distances at which regression residual spatial autocorrelation wascsthyi significant [50].

Stata/IC 12.1 was utilized for statistical analyses [51], aneiRion 2.15.2 was used for
spatial analysis of regression residuals.
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