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Abstract

Individuals with focal brain injury often display disorders of updating. For example, in spatial neglect, patients have
a bias to begin visual searches on their right, and moreover,even after engaging in a prolonged, fruitless search,
neglect patients persist in their repetitive, unproductive strategy. This is one example of an updating impairment
and updating is at the core of our ability to navigate a complex and changing world; we need to recognize static
circumstances so that we can employ efficient, automatic responses; we need to recognize change so that we can
adapt; and we need to be able to do all this without an explicitreward signal. In this paper, we develop the concept of
updating as a core part of the process of building and using mental models. We elaborate on the cerebral structures
(inferior parietal lobe, insula, and striatum) that seem tobe critical for normal updating performance, and we use
these ideas to suggest what sort of tasks would be good for assessing updating ability. Lastly, we elaborate on how
our use of the word updating fits with other related concepts.
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1. Introduction

The children’s game Rock, Paper, Scissors (RPS) is simple, enduring, and popular. Each player makes a gesture of
a fist (rock), two fingers (scissors), or their palm (paper) and the winner is rock> scissors> paper> rock. Versions
of RPS exist in many cultures, websites present strategies (Walker, 2004), and tournaments for cash prizes take
place (Maki, 2010). Despite its simplicity, RPS produces complicated dynamics (Sato et al., 2002) and relies on a
number of cognitive processes. The game requires performing a sequenced motor act under temporal constraints,
requires vision to see an opponent’s gesture, and requires the application of a rule to determine the result of a round
of play. For these reasons, RPS has been used to investigate motor systems (Shimada and Abe, 2010), set switching
(Matsubara et al., 2004), and transverse patterning (Leirer et al., 2010).

However, there are other aspects of playing RPS that are strategic and require a model of the opponent’s play. A
strategy of selecting uniformly and randomly from each of the three options guarantees a player 1/3 each of wins,
draws, and losses. If a player is engaged in repetitive play against an opponent, and wishes to improve his proportion
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of wins beyond 1/3, he must takes advantage of any regularities or biases in his opponent’s play. The player’s only
evidence of these biases and patterns is the history of play itself. However, when a player deviates from a uniform,
random strategy, he exposes himself to risk and must be alertto detect any change in the opponent’s play that would
signal a change in the opponent’s strategy. All this estimation needs to take place on a noisy background where any
individual outcome and opponent action could happen by chance one third of the time.

These aspects of the RPS game, which are distinct from the processes of gesture production and result evaluation,
capture a concept we call updating. These aspects of RPS makethe game a good empirical tool for probing the
cognitive processes and neural structures that support updating, and we return to the practical application of RPS as
a research tool below. First, we wish to develop at an abstract level the concept of updating and how it fits into our
competing needs for behavioral stability and behavioral flexibility in a complex world. After outlining our model of
updating, we give an example of an updating impairment. We focus on spatial neglect since it is the condition that
led us to consider this concept in the first place. Third, we discuss, based on lesion data from the neglect syndrome
patients, what might be the critical brain structures for updating. Fourth, we present examples of empirical tasks and
data that demonstrate how one might test the updating function. Lastly, we place our ideas in context by considering
other, related concepts.

2. The Concept of Updating and the Need for Mental Models

The metaphor of the brain as a builder of mental models is an old, persistent, and fecund one in psychology and
cognitive neuroscience (Craik, 1952; Churchland and Churchland, 2002; Friston, 2009). Mental models represent
an effort to instantiate the rules that govern the external world,in analogy to an orrery and the solar system. Orreys
are not made randomly, but are built to careful specifications. The specifications are computed based on careful
observations in combination with astronomical models. As aresult, an orrery can be used to make predictions
about the future positions of the planets. Those predictions will reflect both the data gathered and the model used.
Ptolemaic and Copernican conceptions will give rise to verydifferent machines, and, potentially, very different
predictions. Just the same, our predictions for future states of the world will reflect our mental model. But our world
is a variable place and our capacities are limited. Circumstances and goals change. How will we know when our
current mental model is inappropriate or incorrect? Updating as we define it refers to the processes of recognition
and revision. First, recognizing that our mental model no longer fits our observational data and second constructing
a new mental model that better fits our new observations. Gathering the sensory evidence that supports such a
recognition, and engaging in the motor behavior that reflects model revision are other components of the global
system, but they do not reflect updating per se.

The sensory data upon which mental models are built have a very definite character: they are probabilistic. Our
estimates of the world reflect repeated experience. This is consistent with the abundance of recent research that
has demonstrated our sensitivity to the statistical structure of our environments. For examples, animals and humans
reflect reward probability in their choice probability (Vulkan, 2000). We estimate the prior likelihood of events
and combine that with sensory evidence. Such considerations can account for data from the fields of sensori-motor
learning (Körding and Wolpert, 2004), to the metrics of inhibition of return (Farrell et al., 2010), and even to the
statistics of neural firing (Beck et al., 2008). Why isn’t a completely data driven, model-free method sufficient for
capturing the world’s regularities? Why should we need or benefit from mental models?

The principal reason is that the computational requirements of model-free mechanisms make them a poor match
to our most pressing needs. Model-free probability processes are iterative and accumulative. They are slow and
computationally demanding. Where, but in a Skinner box or a casino, would one face the consistent repeatable
experiences needed to fully shape behavior? We are frequently required to make decisions and to act in situations
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that are unique. These situations may resemble circumstances we have faced before, but neither we nor anyone else
may have faced exactly such a situation before, and how many examples are we likely to get? Once we make our
decision to act, the action itself frequently makes it impossible that we will ever face just such a situation again. This
is not mysticism. If I play a certain choice in RPS, you will see me, and the result will be known to us both. I cannot
repeat an identical play a few tens of times to estimate the probability for each of the actions you are able to play.
My repetition would alter exactly the probabilities I want to estimate.

The reason we need to build mental models is because our brains are puny and our lives are short. Similar consid-
erations drove the early statisticians to adopt model-based statistical tests. R. A. Fisher advocated for parametric
statistical tests not because he could not appreciate the asymptotian ideal of non-parametric statistics, but because
he recognized that their computational demands made them impractical. Similarly, refined by time, our brains may
have resolved to the same approach: assume a model for the data and act under that assumption; update your model
only when you reject the null hypothesis that random variation of the variety specified by your model explains the
variation in your sensory data. In this way we can still use and rely on experience to guide us, but we make sim-
plifications. This may, at times, lead us to inaccuracies or to adopt sub-optimal strategies, but we can still use the
iterative, Bayesian idea in those circumstances where similar events are frequently repeated; unfortunately these
circumstances are the exception. Gradualist characterizations of learning are insufficient to explain discontinuities
in problem solving behavior (Köhler, 1925/1999). Our own “Aha” experiences are evidence of the sudden switch in
perspective that are more easily reconciled with the updating of mental models (Tolman and Honzik, 1930; Epstein
et al., 1984) than the gradual modifications brought about byreinforcement learning.

Figure 1 is a schematic outline of our updating model. The world evolves according to unknown rules and with a
history dependence potentially extending all the way back to t = 0. Our knowledge of states of the world is indirect
and incomplete. Our observations are filtered through a tunable sensory apparatus. As an obvious example, what we
observe depends on where we look and where we look depends on where we think we are likely to see something
important. Our observations are constrained though by whatwe sample (e.g. we cannot see into the infrared) and
how much we sample. The tuning component of our model allows us to prioritize categories of input.

Our schema does include a role for accumulated observationsin building a probabilistic representation of our envi-
ronment, but we use a bell-curve (Figure 1) to symbolize thatwe are estimating parameters for a model. We are not
building a non-parametric distribution. The uses of such a mental model are three fold. First, it determines sensory
tuning (“look here”, “listen for that”, “pay attention to the red ‘X’s’ ”); second, it guides action selection by weight-
ing the likely consequences of possible actions; and third,and most critically to this paper, it provides the metric for
checking if the model is good enough or if it needs updating? Do our observations match our expectations? Are we
surprised by what we see? If not, then the current model is good enough. If so, then a model revision is required.

In Figure 1 we depict that surprising data can be built up in different ways: first, we might see an extremely unlikely
event (a in the Figure) that is individually so improbable as to provoke us to update our model, or second, we
might see repeated improbable events (b in the Figure) that in the aggregate, but not individually, are sufficiently,
collectively, unlikely that we are surprised and report a mismatch between our model and our observations.

What happens when we are surprised by data or detect a mismatch between expectations and observations? We
suggest that there are two functionally distinct responses. First, we can make subtle refinements in our expectations.
This is analogous to moving the mean of our bell-shaped curvea bit to the left or right; we may have, for this
example, assumed that a normal distribution is the right form for our model, but that we need to update our estimates
of the mean and variance parameters. A second response to surprising data may be the generation of a completely
new model; rather than fine tune parameters we abandon the normal distribution in favor of an exponential (depicted
in Figure 1 as point 2 of the mental model).
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Figure 1: Our model of updating is schematic. It includes a representation of the world that is recursive and obeys unknown laws (the beach
scene upper left). Our view of the world is built up from incomplete, filtered snapshots. We use this mental model to plan our actions, to direct
our sensory sampling, and as the substrate for self-diagnostics. How do we know if our mental model is adequate? We see if the sensory
data coming in is explained well by our current model. We presume that our model has a probabilistic representation (symbolized by the
bell-shaped curve) that allows us to test how surprising incoming sensory data is. As explained in the text, a mismatch between observations
and models can be triggered by individual extreme observations (lettera lower right), or an accumulation of improbable events (letterb lower
right). If a mismatch is detected, different degrees of model revision can take place: either a recalibration or substitution. Damage to different
model components will result in different deficits, and though not depicted here, these different elements are likely to be associated with
different structural brain regions.

Our model is highly schematic and overlaps with other cognitive processes. For example, we suggest that one signal
for mental model revision is an accumulation of data that is,in the aggregate, surprising. This process will depend
on working and recent memory. Also, we state that mental model updating can be either a revision or a replacement.
The former might show considerable overlap with systems supporting reinforcement learning. Below, we discuss
further the areas of overlap and uniqueness, but first we would like to make our notion as concrete as possible. To
do so, we will retrace the steps that led us to the idea of updating, that is, as an explanation for impairments seen in
people with brain injury. This example also makes it easier to see how updating is similar to and different from other
related cognitive processes.

3. Neglect — A Disorder of Updating?

It was our puzzling over the behavior of patients with the neglect syndrome that led us to our concept of an updating
impairment. In this section, we briefly introduce the classic neglect findings and more recent experimental results
of non-spatial impairments. We then consider the structures associated with neglect and highlight two that seem
particularly relevant to the function of mental model updating.
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The clinical syndrome of neglect has been recognized for more than 100 years (Langer, 2009) and two features are
particularly striking: the lack of concern and awareness many patients display and the pronounced spatial modulation
of their difficulties. The syndrome has been extensively studied and its basic features are well established (for two
recent reviews, see Danckert and Ferber, 2006; Adair and Barrett, 2008). The brain lesions producing neglect are
usually right sided with the behavioral impairment maximalon the left. Requested to bisect a line down the middle,
neglect patients err to the right. Shown a collection of short lines scattered across a page, and asked to cross-out each
one, the patient will concentrate on the right sided items tothe exclusion of others, often revisiting and re-marking
perseveratively previously cancelled items (Na et al., 1999). Even at a representational level, neglect patients are
impaired, often describing only the left side of imagined locations (Marshall and Halligan, 2002) and functionally
they may fail to shave the left side of their face or eat food onthe left side of their plate (Danckert and Ferber, 2006).
These findings naturally lead to the traditional emphasis onthe spatial aspects of the syndrome. More recently we,
and others, have been struck by the non-spatial impairmentsin neglect (e.g. Husain and Rorden, 2003).

The increased duration of the attentional blink seen with neglect is one robust example of a non-spatial deficit
(Husain et al., 1997). In a typical attentional blink task, the participant is shown a series of centrally presented targets
and distractors with instructions to report the targets. The attentional blink is a normal phenomenon that denotes
the decreased probability of accurately reporting a secondtarget when it appears shortly after a first, successful,
target detection (Shapiro et al., 1997). In neglect, the attentional blink is substantially prolonged even for centrally
presented stimuli that, individually, are detected normally. The loci of injury associated with a prolonged attentional
blink have been the inferior parietal, superior temporal lobe, and periopercular structures, and with damage to these
structures a prolonged attentional blink may occur in the absence of clinical neglect (Rizzo et al., 2001; Shapiro
et al., 2002).

A prolonged attentional blink implies slow or inefficient sampling in a region of space where basic detection is
normal. Other disorders of temporal processing that are distinctly non-spatial have also been found in neglect.
Danckert et al. (2007) studied eight participants with clinical neglect, six right brain damaged controls without
neglect and eight controls. All participants estimated intervals of five, fifteen, thirty and sixty seconds. While
participants in all groups tended to underestimate all intervals, the performance for the participants with neglect was
particularly striking, with a mean estimate of the sixty second interval of 8.89 seconds (SD= 3.18) while it was
49.26 (SD= 7.99) for the neurologically healthy controls. This impairment of temporal estimation is not vision
specific as auditory temporal estimation is also impaired neglect (Merrifield et al., 2010).

If updating involves accumulating sensory data and comparing estimates of its likelihood to an estimate of an internal
model, working memory would also seem to be an important functional component, and again, a working memory
impairment is seen in participants with the neglect syndrome. Ferber and Danckert (2006) assessed spatial working
memory in four neglect participants by presenting three squares on the participants’ right (good) side and then, after
a three second delay, probing with a circle. Participants were required to report if the circle appeared in a location
previously occupied by a square. A control verbal working memory task used sequences of single digit numerals and
a single test digit. The neglect participants were dramatically impaired compared to right brain damaged controls
without neglect and normal older healthy controls. A spatial working memory impairment also accounts for the
frequent repeated fixations of right sided target locationsthat patients with neglect make during visual searches
(Husain et al., 2001).

These spatial working memory impairments do not preclude the learning of environmental contingencies (e.g., we
know that neglect subjects show both color and location repetition priming in right and left space (Kristjánsson
et al., 2005), however these non-spatial deficits render neglect patients less sensitive to the statistical structure of
their environments. Shaqiri and Anderson (2010) tested three subjects with current or recent spatial neglect on a
simple visual discrimination task that required pressing one of two buttons to indicate the color of a small circle
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displayed on a computer screen. Two areas of the screen, one left and one right, were more likely to be target
locations than the rest of the screen and the left sided “hotspot” was three times as likely to be the target location
when compared to the similarly sized right sided region. While control subjects improved their speed to classify
targets from the left sided “hotspot,” the neglect subjectsdid not, although the neglect subjects did show some
improvement for the ipsilateral, right sided, higher probability region.

At this point we can return to consider a fundamental question for neglect: what is it that makes a person who has
spatial neglect so much more impaired than a person with onlya left hemianopia? Both may begin their searches on
the right, but the neglect patient never revises his estimate of where the object may be; he does not update his search
to consider other regions, other locations. He is is persistently in error. Certainly it is disadvantageous to have a
right sided bias for orienting and responding, but if, failing to find what was sought, the patient with neglect updated
his search accordingly there would not be the same severe functional consequences. Spatial impairments may drive
early orienting responses, but when those reactions are wrong it is the inability to benefit from this failure that makes
neglect so disabling. It is the inability to take a proper account of when things happened (temporal impairment,
prolonged attentional blink) and what has happened recently in what locations (spatial memory and environmental
statistics). As a result, even when one can change motor behavior one may not change performance. A picturesque
example is Ferber et al. (2003). Ferber et al. (2003) had patients with neglect view two vertically oriented chimeric
pictures. In each image, one half of the picture was a smilingface and the other half was emotionally neutral. One
image in each pair had the smiling half on the right and the other on the left. Their location, top or bottom, was
random. Subjects reported which picture seemed happier. Neglect subjects routinely only fixated the right half of
the pictures and always selected the image with the right half smiling as the happier picture. Next, neglect subjects
underwent prism adaptation after which they were shown to fixate both left and right sides of the images. Thus, their
ocular exploratory behavior was changed, but there was no change in the behavioral report. They still were almost
uniform in designating as happier that image with the right half smiling.

In trying to reconcile these findings, we have come to regard the additional source of failure seen in many neglect
subjects, that which separates them from an hemianopic, as an updating impairment. Either they fail to take account
of new information indicating the need to revise an internalmental model or they cannot use their recognition to
replace the current model. If these deductions are accurate, the locations of brain lesions that cause neglect may help
us identify the brain structures important for such updating functions.

The right inferior parietal lobe has been the classic site ofinjury associated with clinical neglect (Vallar and Perani,
1987). But, as in many others areas of clinical neuroanatomy, the lesions that yield neglect have become better
understood with MRI scanning. Subcortical, temporal lobe,and parietal lobe structures are all strongly linked to
clinical neglect.

Newer studies confirm a prominent role for parietal lobe damage in neglect (Mort et al., 2003; Verdon et al., 2010),
and thereby indicate a potential role for the parietal lobe in updating. Supportive evidence for a role of the parietal
lobe in updating is its connectivity. The parietal lobe receives both sensory and visual afferents (Andersen et al.,
1990; Lewis and Van Essen, 2000), Functionally there is parietal lobe activity during many memory tasks (Cabeza
et al., 2008), and evidence that the parietal lobe signals anexpectancy for upcoming sensory data (O’Connor et al.,
2010)

In addition to the parietal lobe, other structures have beenimplicated in causing neglect. The superior temporal
lobe has been emphasized by Karnath et al. (2001) though thisfinding has produced some controversy. Mort et al.
(2003) emphasizes that Karnath et al. (2001) excluded subjects with hemianopia, in an effort to define a purer
clinical population, and thereby may have induced biases. When Mort et al. (2003) looked at their clinical cohort,
without this selection criterion, they found that in about half of their cases of middle cerebral artery territory strokes
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producing neglect there was no lesion of the superior temporal gyrus.

In addition, most studies on lesion locations in neglect finddamage to subcortical structures. Karnath et al. (2004)
reviewed the lesions in 140 consecutive patients with righthemisphere strokes and used a voxel-wise statistical anal-
ysis to look for regions of the right hemisphere statistically associated with the neglect syndrome; he confirmed the
involvement of the superior temporal gyrus, and highlighted subcortical areas including the insula and the striatum.

While the insula has not traditionally been emphasized as a causative lesion in the neglect syndrome, it is frequently
damaged by the strokes that cause neglect (Karnath et al., 2002, 2001; Mort et al., 2003; Ferber and Danckert, 2006;
Danckert et al., 2007). Anterior insular involvement is especially prevalent in the minority of neglect cases where the
functional impairment is chronic (Doricchi and Tomaiuolo,2003; Bartolomeo et al., 2007). These findings prompt
consideration of the insula as a component of an updating network. Structurally, the insula denotes the neocortex
hidden (insulated) by the frontal, temporal and parietal opercula. The human insula possesses components that have
no clear correlate in the monkey and the anterior insula alsopossesses a variety of neuron, the von Economo neuron,
that has been found almost exclusively in higher primates (Allman et al., 2010). For many years the main functions
of the insula were held to be primarily interoceptive (Penfield and Faulk Jr, 1955), but more recently a role for the
insula in human awareness has been suggested (Critchley et al., 2004; Craig, 2009). The role of the insula in salient
target detection (Corbetta and Shulman, 2002) fits within our updating schema, and other research has shown that
the anterior insula is part of the system activated by the implementation of task sets (Dosenbach et al., 2006).

Connecting the roles played by the right inferior parietal lobe and the anterior insula in updating is a combined
functional and DTI study (Umarova et al., 2010). Umarova et al. (2010) used a Posner type cuing task to develop
seeds for a structural white matter connectivity study. Umarova et al. (2010) reported that the anterior insula and
parietal lobes were co-activated by the attentional tasks and linked by subcortical white matter tracts. Damage to the
same subcortical white matter pathways alone may cause neglect (Karnath et al., 2009), and neglect itself may arise
as a disconnection syndrome (He et al., 2007; Bartolomeo et al., 2007).

The anterior insula is near ventral striatal structures andthese structures, too, are often injured in the strokes that
cause neglect. They too deserve consideration as having a role in an updating impairment, especially as the stria-
tum (e.g. Balleine et al., 2007; Pennartz et al., 2009) has been repeatedly linked to the broad domain of reward
computation and decision making (Sutton and Barto, 1998).

The prevalent version of this model has a prediction error being signaled by dopaminergic neurons that project
from the midbrain to the striatum, with the striatal neuronsrepresenting an association of actions and states. The
conventional role for the striatum is therefore one of gradual, incremental change (Johnson et al., 2007). While the
role of striatal structures in procedural learning seems well established, the role of the striatum in planning processes
is less certain. Recently, van der Meer and Redish (2010) reported that ventral striatal neurons recorded from rats
running a T-maze increased their firing at the final choice point in the maze, consistent with a striatal role in planning
the action that will lead to reward. Using ensembles of neurons the authors were able to show a representation of
reward at the final choice point. Thus, there is good evidencefor striatal structures in decision making, associating
actions, states, and reward, and therefore striatal injurycould also be important for the updating impairment seen in
subjects with spatial neglect.

4. Assessments of Updating

The model outlined in Figure 1 has several sub-components that cooperate to implement a global updater. The
updating process needs to signal both when environmental statistics do not match mental model predictions (updating
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is required), and when environmental statistics match the current model (no model updating is required). A good
updating task should reveal these events, be simple enough for brain damaged participants, and flexible enough to
permit combining with other investigatory methods, such asfMRI.

There is a large literature demonstrating that people and animals can learn probability distributions (Estes, 1972) as
inferred by changes to patterns of reward. Modern versions of tasks frequently used to study decision making, such as
the multiarmed bandit problem (Zhang and Lee, in press), arebasically human Skinner boxes. Experimental subjects
make repeated choices from a finite set of selections where feedback is provided on each trial and the relationship
between choice and reward is typically probabilistic. Although solving such a task requires, in some sense, a model
of the world, (i.e. is the relations between states and actions), it seems impoverished in a few important ways. First,
is that it presumes that experience will provide a large number of stereotyped trials, however, the world is frequently
not so kind. Two, history is only important in the aggregate;it doesn’t matter exactly how I came to my present
state (Markov assumption), only that I am here and the numberof times I have been in StateS i, taken ActionA j,
and received RewardRk. This does not match common experience. Third, and most importantly, there is always a
clear, explicit reward, but frequently we learn about our world in the absence of reward (or via implicit judgments
of value).

It is worth reminding ourselves that learning does not require reinforcement (Tolman, 1948). Reinforcement is the
method we use to demonstrate that learning has occurred. Rats allowed to explore and become familiar with an empty
maze seem no different from other rats, but when reward (food) becomes available they reveal their knowledge.
Our concept of a mental model is like Tolman’s map; it is an abstraction that productively summarizes observable
behavioral results. Much of what we learn about the world in our daily life seems more like the period of a rat’s
purposeless meandering in a maze than it does the timed driven race to a food reward or massed sequential pulls
on one of two slot machines. Thus, while reinforcement learning might be a subset of what we have described as
updating, it does not subsume it.

A good task for assessing updating mechanisms needs to demonstrate the acquisition of new knowledge in response
to changing environmental contingencies. It also needs to be simple enough to be used in subjects with updating
impairments.

Demonstrating this approach, Geng and Behrmann (Geng and Behrmann, 2002, 2006, 2005) employed probability
cuing, by altering slightly the structure of a conventionalcuing task. In a conventional cuing task, a cue appears at the
center of a computer screen and indicates some aspect of the subsequent target, usually where it is likely to appear.
Subjects are quicker to report the target when it appears in the cued location (valid trials) then when it appears in
another location. What Geng and Behrmann (2002, 2006, 2005)reported was that probability could serve as the
cue. Subjects simply reported the presence of a target that appeared on a computer screen. There was no ambiguity
about action selection nor a variation in success. The task itself is trivial for normal participants (the authors also
tested subjects with brain damage; for this population success is not assured). When certain locations were selected
to be more likely as target locations, subjects reported targets at those locations more quickly. Others have also
used this approach, Walthew and Gilchrist (2006) have foundsimilar results, though Walthew and Gilchrist (2006)
have argued that the learning of the statistical relationships of positions with targets is the result of short time frame
repeats (e.g. the last 4 trials). We have also looked at the ability for environmental statistics to influence behavioral
performance in a similarly simple visual discrimination task (Druker and Anderson, 2010, and Figure 2). We too
find that subjects adapt to the statistical structure used toselect target locations, and thus respond more quickly and
no less accurately.

We also undertook to use this type of task in brain damaged patients (Shaqiri and Anderson, 2010), the types of
patients we asserted above have an updating deficit. We confirmed that older control participants could learn to
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Figure 2: Data from the “hotspot” experiment of Druker and Anderson (2010) is presented. In this task, participants madea simple color
classification: one button for a red spot and another button for a green spot. Unknown to the participants was the fact thatthe probability
for where a target could appear was not uniform across the screen. There was a point of maximal probability, the “hotspot”which declined
steeply, but continuously to a baseline value (see Druker and Anderson, 2010, for full methodological details). The consequences of using this
distribution for selecting target positions is shown in theupper left where the target positions for all participants across all trials is collapsed.
There is a central point of highest density and then target locations thin out. For analyses it is possible to look at the distance to this high
probability “hotspot” or to define screen regions equidistant from fixation for the selection of subsets of trials in highand low probability
regions (upper right panel). Showing that the effect of the probability manipulation is graded with probability, data from one participant is
plotted in the lower left panel. The RT for each correct trialfor this subject is plotted on the y axis and the distance to the point of maximal
probability is plotted on the x axis. There is a clear relation between the distance and response time measures, highlighted here by plotting
the linear regression line. In addition, across participants, there is a benefit in terms of both response time and accuracy of classification
for trials when targets appear in the high probability region of the screen are compared with trials in the low probability region (lower right
panel). These results are consistent with participants having a representation of the probability of where targets will appear and weighting the
perceptual evidence accordingly.

use the probability of target locations to aid classification and we also showed that this ability was impaired in
participants with a history of right hemisphere injury and neglect and that this probability cuing impairment was
spatially modulated (Figure 3 and (Shaqiri and Anderson, 2010).

Many other research groups have also developed tasks that manipulate attention via probability effects. (e.g. Lam-
bert, 1987; Hoffmann and Kunde, 1999; Ciaramitaro et al., 2001; Carreiro et al., 2003; Liston and Stone, 2008). As
examples Farrell et al. (2010) reported that manipulating the statistics of where participants will be directed to look,
influences the saccadic dynamics of an eye movement analogueof inhibition of return (Klein, 2000) and Eckstein
et al. (2006) used a visual search task to demonstrate that eye movements were consistent with a bias towards where
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Figure 3: Sixteen subjects where given a modified version of the “hotspot” task illustrated in Figure 2. Four of the participants had a history
of parietal lobe injury. When comparing trials where the target appeared in the high probability region of space with a similarly sized region
equidistant from fixation on the low probability side (upperpanel), we demonstrated a significant reaction time cost fortargets in the high
probability location for the patients compared to a slight benefit for the twelve healthy control participants (these data were collected in a
paradigm similar to (Shaqiri and Anderson, 2010), but have not been previously presented).

we expect things to be based on experience (e.g. chimneys belong on houses).These data fit into our updating schema
by showing that environmental statistics are reflected in performance, perhaps through the “tuning” of the sensory
apparatus.

Another tactic for investigating updating is to use a simplegame. Games have a long history in psychological
research. Examples of games include bandit problems (Zhangand Lee, in press) and choice paradigms (Brown and
Steyvers, 2009). One particular game popular in cognitive neuroscience research has been RPS. RPS has simple
rules, but can achieve complex, chaotic dynamics (Sato et al., 2002; Salvetti et al., 2007). RPS has been used in a
variety of functional imaging studies, but typically with the idea of studying gestures, set switching, and transverse
patterning (Dinstein et al., 2008; Matsubara et al., 2004; Kadota et al., 2009; Leirer et al., 2010).

Paulus and colleagues have reported two fMRI studies where subjects played RPS and which are directly relevant
for the issues being discussed (Paulus et al., 2004, 2005). Both studies used the same basic task: subjects were
allowed to choose their response by pressing one of three buttons. Subsequently, they received an auditory report
of the outcome and their choice and the computer’s choice were displayed visually. A running counter of wins and
losses was also presented incrementing, decrementing, or remaining the same depending on the outcome. Subjects
were not informed that there was a preferred, neutral, and anti-preferred action for blocks of trials (16 or 20 trials
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long). If the subject chose the preferred action, he would win 90% of the time or lose 90% of the time if choosing
the anti-preferred. Success was 50% with the neutral choice. The two studies differed slightly in the length of
blocks, the timing of feedback, and the total number of trials (96 or 120). Paulus et al. (2004) was able to observe
an effect on subject behavior. Subject choices of preferred stimuli increased in the second halves of blocks to 44%
and the choices of anti-preferred actions decreased. Correlating with the acquisition of the preferred choice was
an increase in activity in prefrontal cortex. Paulus et al. (2005) was not able to show any behavioral acquisition of
the preferred/anti-preferred choices. The authors attributed this to fewer trials overall and a slower pacing resulting
in more delayed feedback. However, when looking at their data based on whether the phase of the block required
assessment/action selection or outcome evaluation, the researchers found activation in the anterior insula and superior
temporal gyrus. For outcome evaluation there was greater activation in the inferior parietal and superior frontal
regions.

In addition, to these human based functional studies, neurophysiological responses have been recorded in monkeys
playing similar games, e.g matching pennies (Lee et al., 2004, 2005; Lee and Seo, 2007; Seo et al., 2009).

To make a version of RPS accessible to patients with brain damage we simplified the task demands. Instead of
making gestures, subjects pushed a button, or stated their choice verbally (and a technician pushed the button).
Blocks were long (200 trials) and self-paced, with choices displayed as pictures. The task did not require subjects
to adopt a non-traditional strategy (e.g. trying to lose) orto switch sets. No explicit feedback was given. Without
informing participants, we varied the computer’s strategyfrom selecting a choice uniformly (trials 1 - 200) to one
favoring one of the options 50% of the time (trials 201 - 400),and then to a more obvious favoritism where the
computer selected one particular option 80% of the time (trials 401 - 600; in each case of favoritism the other two
choices were equally likely).

The result was a heterogeneity of performance with a rather clear partition between the normal control subjects
and the subjects with focal right hemisphere injury. Figure4 provides an example of the diversity of performance
that we found. Normal controls subjects chose randomly, with some detecting the mild shift in computer strategy.
They typically detected the extreme shift in computer strategy within a few trials. Brain damage subjects revealed
very different performances. Some brain damaged subjects perseverated on particular choices. Sometimes this led
them to maximize their wins, their performance by this criterion exceeding the normal controls, and at other times
it resulted in substantially fewer wins than following a uniform random strategy. Many subjects seemed to persist
with a uniform random strategy without variation (Fig 4D).

The variety of responses provoked by the shifts in the computer’s strategy reveal the richness of this simple approach.
At present we cannot say if these examples represent points on a continuum of impairment or are examples of
subtypes of impairment. In our experience, it is rare to see control subjects adopt the maximizing strategy (Vulkan,
2000) that we have seen in participants with frontal injury.

The change in the control subjects’ choice probabilities when the computer uses a biased strategy, coupled with a
failure of the control subjects to adopt a maximizing strategy, suggests that the control subjects have a model for
their computer opponent that assumes more frequent variations in strategy than was in fact the case. This suggests
that our control participants are trying to adapt their playto what is, in fact, noise.

To examine this idea, and to gain another perspective on the flexibility of participant choice, we plot the empirical
entropy of the computer’s selections over short blocks of trials (Figure 5). Even though there is a fixed entropy
associated with each computer strategy, selecting small blocks of trials, (e.g., 20) will yield different empirical
estimates of the entropy. We also did the same computation for the sequences of choices made by the brain damaged
participants. Entropy is an information theoretic conceptwhich we use here as a proxy measure for randomness. The
greater the entropy the more random a sequence; lower entropy implies more structure (e.g. a series of 20 rocks in a
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Figure 4: RPS performance for one control and three patientsto demonstrate the heterogeneity of performance that can beseen with a fairly
simple paradigm. Proportion of responses is computed from asliding window of twenty trials. The control participant (upper left; A) shows
three principle results. First, when the computer selects uniformly so does the control. Second, when the computer begins to pick one item
50% of the time, the control participant takes over a 100 trials to begin responding to this shift. Many control participants never alter their
play when the computer chooses one option 50% of the time. Third, when the computer’s choices are more extreme, the control participant
rapidly exploits this strategy, within 10 - 20 trials. It is also typical that the control participants demonstrate a matching behavior rather than
a maximizing strategy (Vulkan, 2000). Three different patient participants are shown to highlight the variety of abnormal performance that
can be observed. First, one patient (upper right; B) uses a maximizing strategy. This leads to this participant winning more times than the
controls over the last 100 trials of the 80% condition. However, as is typical, this participant takes longer to discoverthis strategy (40 - 50
trials). Another participant (lower left; C) shows a tendency, similar to the participant in panel B, to select one item 100% of the time, but this
participant’s selections are largely unrelated to the computer’s strategy and do not result in an improvement in the number of wins. Lastly,
the most typical pattern seen in the impaired participants,is that they select their choices randomly, and never seem tochange their selections
as a result of the computer’s choices, even when the computermay choose the same item for many consecutive trials.

row is not “random” at all when compared to one that is a mixture of 7 rocks, 7 scissors and 6 papers). What we can
see in Figure 5 is that the brain damaged participants do not show any real correlation between the entropy of their
choice sequences and those of the computer (panels B, C, and D). However, the entropy of the control participant in
panel A, tracks rather closely the entropy of the computer’ssequence, implying that the control participant may be
trying to adapt his choices on a shorter time scale than we, asthe task designers, know is relevant. These data might
provide a method for probing the time scale over which updating is taking place.
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Figure 5: Short sequence entropy. Entropy is a metric of the randomness of a sequence and we compute it here with a simple histogram
method whereby the proportion of each response in the sequence of 20 trials is used as the probability for calculating entropy. This figure
presents each participant’s responses as one continuous sequence. The empirical entropy for each block of twenty trials (no overlap) is
presented against the block number. The three different computer choice conditions are shown by different shaded regions. The red shaded
region highlights the empirical entropy values that would be commonly observed (upper bound 95%; lower bound 5%) due to sampling
20 trials from the fixed distribution. The computer’s empiric entropy changes only modestly for the switch from uniform to 50%, and then
decreases further for the 80% condition. Due to the random sampling there is substantial variability in how “random” given sequences of trials
appear. For the control subject, (upper left; A) the estimated entropy of the control participant tracks the sawtooth course of the computer
entropy reasonably well. The patients (panels B, C, and D) are the same participants as in Figure 4.

The experiments described in this section are ongoing. Preliminary results (Danckert and Anderson, in preparation),
from participants with different locations of brain injury show that dividing participants into groups based on lobe
of injury does a poor job of partitioning performance (e.g. the number of wins) on this RPS task. If participants
are divided into those with and without neglect there is a substantially better separation. If we operationally define
subjects based on the performance of the controls, we see an overlap of lesions involving the insula, deep subcortical
white matter, and striatum (always on the right since subjects were selected for right hemisphere lesions).

Currently, we are exploring versions of the RPS game where the rate of change of the computer’s strategy can be
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manipulated from gradual to abrupt to explore the claim thatthere are two discrete and different systems for detecting
surprising departures from the current mental model. In addition, because the selection of the computer’s choice is
hidden from participants, we can also systematically vary the number of trials that participants win, lose, and draw,
to examine how the consequences of a given sequence of play interacts with environmental regularities to provoke
mental model updating.

5. Updating Updating

We settled on the word “updating” because its everyday meaning agreed with our sense of what we were attempting
to define and study. Other people working in other areas of human neuroscience have had the same experience. As
a result the term updating is used in multiple settings and for multiple functions. In this section, we highlight some
of the different ways the term is used.

Updating has been used to label an aspect of working memory. Shimamura (2000) describes updating as the mod-
ulation of information in short term memory to alter activation. For example, in an n-back memory task, the nth
item in short term memory is enhanced for making the comparison to the presently displayed item. The emphasis
here is on short term modulation of individual items for a particular purpose. Our notion of updating is of a longer
time frame process where we are more interested in whether the likelihood of certain items have changed or the
rules for transitioning between them have changed. While itseems likely that working memory would be necessary
for this, it does not sound like the same thing and one can imagine someone being able to report short term recall,
such as the neglect patients described by Ferber and Danckert (2006), but not be adequately able to update the large
scale structure relevant for a task, like the RPS scenario detailed above. Thus, while working memory might be a
necessary component in the system for detecting these departures from a predictable pattern, the updating of short
term memory denotes a distinct concept.

Another use of the term updating is in the area of reinforcement learning (Sutton and Barto, 1998; Daw et al., 2006).
Reinforcement learning ideas have been used for decades to model classical conditioning experiments (Rescorla
and Wagner, 1972; Miller et al., 1995) and are also useful formodeling many aspects of human decision making
(Schonberg et al., 2007). Adjusting a set of weights or a strategy for selecting actions in response to environmen-
tal feedback is certainly a reasonable use of the term updating. However, the situations to which reinforcement
learning is applicable differ from those where representational updating is useful. Reinforcement learning is applied
for procedures that require stereotyped, repetitive choices with frequent reward signals, (e.g., drawing cards from
decks with different probabilities of winning). The invocation of representational updating occurs in an unstructured
setting, with potentially no feedback, and where the data may be observational. Where reinforcement learning uses
the term updating in a dynamic programming sense of updatingweights and parameters of a specific model, we use
it to describe a more global process of recognizing the need to update the model.

Updating has also been used to describe executive functions. This is perhaps the oldest sense of the term in human
neuroscience (Eling et al., 2008). When one needs to switch from one task to another or to switch modes of re-
sponding within a task, one needs to do something which is well summarized as updating, and the term is used to
describe these scenarios (e.g. Barcelo et al., 2006). The prototypical example of this type of task is the Wisconsin
Card Sorting Task (WCST). In WCST-like tasks the signal for the need to switch is clear and unambiguous and the
feedback signal is overt and deterministic. But what about when it is not clear that the task or set require switching?
What about when the data is noisy? What about when you are not the actor, but the observer? These, too, are part
of human experience, arguably the greater part. There is also a need for a term to describe the revising of one’s
models of the rules and transformations that occur generally and always. The executive updater is the organizer for
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executing behavioral tactics, but there must also be a strategic updating that occurs as well, and it is not clear that
those two things must be the same at either the conceptual level or the neural level.

This discussion with its references to latent learning and the detection of surprising events defined by calculation
from mental models, prompts us to highlight some other recent studies. Strange et al. (2005) demonstrated that
there are behavioral and functional imaging correlates of the statistical concepts of surprise and entropy. These are
exactly the sorts of calculations that a concept of updatinglike the one we describe would require. Strange et al.
(2005) emphasized the hippocampus as the locus for the activations. While the hippocampus was not mentioned in
our review of locations above, we do not mean to imply that theonly locations relevant to our variety of updating
must be found to be damaged in spatial neglect. Another result showing that brains compute a surprise signal is that
of Mars et al. (2008). These researchers did not focus on location, but rather establishing if there was a quantitative
relation between different degrees of surprise and the neural activity giving rise to the P300. A point of emphasis
for us is that updating mental models will need to occur in situations without an explicit task or clear reward.
This type of latent learning is similar to the observationallearning studied by Burke et al. (2010). In their recent
functional imaging study they conducted a “bandit” type task, like those used for reinforcement learning modeling,
but in addition, incorporated the notion of an observation where the subject in the experiment had the chance to
gain information from observing another’s choice. This protocol presents an intermediate step between the classic
reinforcement learning paradigm and a completely unstructured observational setting.

No one of these is uniquely entitled to the term updating. Each use is consistent with common usage, but highlights
different aspects of an experimental technique or theoretical perspective. Until we know more about all of them, it
will not be possible to say exactly where they may be redundant. At the present, there seems to be space for the
additional sense of updating that we develop here.

6. Summary

We need to detect regularities in our environment and exploit them, but we also need to detect changes in our
environment and update our mental models to reflect our new circumstances. As a first step towards a concrete and
computational model of updating, we have offered a schematic of the updating process (Figure 1). This schematic
provides specific components whose functions are sufficiently specific to be the object of empirical testing. We
suggest some methods for this testing, and show how even simple tasks, like observing the sequence of choices
made while playing the RPS game, can afford a window on the dynamics of the updating process. In addition, we
compare our use of the term updating to other applications inhuman neuroscience. Combining these ideas with
clinical observations from brain damaged patients leads usto suggest that the right inferior parietal lobe and anterior
insula are two candidate structures likely to be central to an updating network.
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