frontiersspi ) )

IN HUMAN NEUROSCIENCE

Updating Mental Models: Insights from Playing Rock, Paper, Scissors with
Stroke Patients

Britt Anderson and James Danckert

Journal Name: Frontiers in Human Neuroscience
ISSN: 1662-5161

Article type: Hypothesis & Theory Article
Received on: 09 Sep 2010

Frontiers website link: www.frontiersin.org



Updating Mental Models: Insights from Playing Rock, Paf@issors with Stroke
Patients

Britt Andersoid?1; James Danckért:

aDept. of Psychology, University of Waterloo

bCentre for Theoretical Neuroscience, University of Waterloo

Abstract

Individuals with focal brain injury often display disordeof updating. For example, in spatial neglect, patientg hav
a bias to begin visual searches on their right, and moreeven after engaging in a prolonged, fruitless search,
neglect patients persist in their repetitive, unprodécttwrategy. This is one example of an updating impairment
and updating is at the core of our ability to navigate a compled changing world; we need to recognize static
circumstances so that we can empldiiogent, automatic responses; we need to recognize chandetwe can
adapt; and we need to be able to do all this without an expéwiird signal. In this paper, we develop the concept of
updating as a core part of the process of building and usingahmodels. We elaborate on the cerebral structures
(inferior parietal lobe, insula, and striatum) that seenbeccritical for normal updating performance, and we use
these ideas to suggest what sort of tasks would be good fessiag updating ability. Lastly, we elaborate on how
our use of the word updating fits with other related concepts.
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1. Introduction

The children’s game Rock, Paper, Scissors (RPS) is simptijring, and popular. Each player makes a gesture of
a fist (rock), two fingers (scissors), or their palm (papep e winner is rock> scissors> paper> rock. Versions

of RPS exist in many cultures, websites present stratelfiedkér, 2004), and tournaments for cash prizes take
place (Maki, 2010). Despite its simplicity, RPS producesplicated dynamics (Sato et al., 2002) and relies on a
number of cognitive processes. The game requires perfgraisequenced motor act under temporal constraints,
requires vision to see an opponent’s gesture, and reghieesplication of a rule to determine the result of a round
of play. For these reasons, RPS has been used to investigaie systems (Shimada and Abe, 2010), set switching
(Matsubara et al., 2004), and transverse patterning (Leiral., 2010).

However, there are other aspects of playing RPS that ategitaand require a model of the opponent’s play. A
strategy of selecting uniformly and randomly from each @f three options guarantees a play& dach of wins,
draws, and losses. If a player is engaged in repetitive ainat an opponent, and wishes to improve his proportion
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of wins beyond 13, he must takes advantage of any regularities or biases iopmionent’s play. The player’s only
evidence of these biases and patterns is the history of tgdelf.iHowever, when a player deviates from a uniform,
random strategy, he exposes himself to risk and must betaldetect any change in the opponent’s play that would
signal a change in the opponent’s strategy. All this esfimateeds to take place on a noisy background where any
individual outcome and opponent action could happen byahane third of the time.

These aspects of the RPS game, which are distinct from tleegses of gesture production and result evaluation,
capture a concept we call updating. These aspects of RPS tmakgmme a good empirical tool for probing the
cognitive processes and neural structures that suppoatinggdand we return to the practical application of RPS as
a research tool below. First, we wish to develop at an alidtreel the concept of updating and how it fits into our
competing needs for behavioral stability and behavioraibilbty in a complex world. After outlining our model of
updating, we give an example of an updating impairment. Wadmn spatial neglect since it is the condition that
led us to consider this concept in the first place. Third, veewlis, based on lesion data from the neglect syndrome
patients, what might be the critical brain structures fatating. Fourth, we present examples of empirical tasks and
data that demonstrate how one might test the updating imdtiastly, we place our ideas in context by considering
other, related concepts.

2. The Concept of Updating and the Need for Mental Models

The metaphor of the brain as a builder of mental models is dnparsistent, and fecund one in psychology and
cognitive neuroscience (Craik, 1952; Churchland and Gtiancl, 2002; Friston, 2009). Mental models represent
an dfort to instantiate the rules that govern the external wanlédnalogy to an orrery and the solar system. Orreys
are not made randomly, but are built to careful specificatiofihe specifications are computed based on careful
observations in combination with astronomical models. Agsult, an orrery can be used to make predictions
about the future positions of the planets. Those predistigiti reflect both the data gathered and the model used.
Ptolemaic and Copernican conceptions will give rise to \different machines, and, potentially, veryfdrent
predictions. Just the same, our predictions for futureestat the world will reflect our mental model. But our world

is a variable place and our capacities are limited. Circantsts and goals change. How will we know when our
current mental model is inappropriate or incorrect? Updpés we define it refers to the processes of recognition
and revision. First, recognizing that our mental model mmy&r fits our observational data and second constructing
a new mental model that better fits our new observations. d@Baththe sensory evidence that supports such a
recognition, and engaging in the motor behavior that reflevvdel revision are other components of the global
system, but they do not reflect updating per se.

The sensory data upon which mental models are built haveyadedinite character: they are probabilistic. Our
estimates of the world reflect repeated experience. Thisnsistent with the abundance of recent research that
has demonstrated our sensitivity to the statistical strecdbf our environments. For examples, animals and humans
reflect reward probability in their choice probability (Wah, 2000). We estimate the prior likelihood of events
and combine that with sensory evidence. Such considesatian account for data from the fields of sensori-motor
learning (Kording and Wolpert, 2004), to the metrics ofibition of return (Farrell et al., 2010), and even to the
statistics of neural firing (Beck et al., 2008). Why isn't amquletely data driven, model-free methodfitient for
capturing the world’s regularities? Why should we need orefie from mental models?

The principal reason is that the computational requiresiehtmodel-free mechanisms make them a poor match
to our most pressing needs. Model-free probability proaeesse iterative and accumulative. They are slow and
computationally demanding. Where, but in a Skinner box oasino, would one face the consistent repeatable
experiences needed to fully shape behavior? We are frdguequired to make decisions and to act in situations
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that are unique. These situations may resemble circunestame have faced before, but neither we nor anyone else
may have faced exactly such a situation before, and how meam@es are we likely to get? Once we make our
decision to act, the action itself frequently makes it ingiole that we will ever face just such a situation again. This
is not mysticism. If | play a certain choice in RPS, you wilesae, and the result will be known to us both. | cannot
repeat an identical play a few tens of times to estimate thbatility for each of the actions you are able to play.
My repetition would alter exactly the probabilities | wantestimate.

The reason we need to build mental models is because ouslaa@rpuny and our lives are short. Similar consid-
erations drove the early statisticians to adopt modeldatatistical tests. R. A. Fisher advocated for parametric
statistical tests not because he could not appreciate ymepastian ideal of non-parametric statistics, but because
he recognized that their computational demands made th@maatical. Similarly, refined by time, our brains may
have resolved to the same approach: assume a model for thardhtaict under that assumption; update your model
only when you reject the null hypothesis that random vamatf the variety specified by your model explains the
variation in your sensory data. In this way we can still use ey on experience to guide us, but we make sim-
plifications. This may, at times, lead us to inaccuracie@dopt sub-optimal strategies, but we can still use the
iterative, Bayesian idea in those circumstances wherdasimvents are frequently repeated; unfortunately these
circumstances are the exception. Gradualist charadiienzaof learning are ingficient to explain discontinuities

in problem solving behavior (Kdhler, 192899). Our own “Aha” experiences are evidence of the suddéalsin
perspective that are more easily reconciled with the updaif mental models (Tolman and Honzik, 1930; Epstein
et al., 1984) than the gradual maodifications brought aboutmforcement learning.

Figure 1 is a schematic outline of our updating model. Thedvevolves according to unknown rules and with a
history dependence potentially extending all the way badk= 0. Our knowledge of states of the world is indirect
and incomplete. Our observations are filtered through aolersensory apparatus. As an obvious example, what we
observe depends on where we look and where we look dependbeane we think we are likely to see something
important. Our observations are constrained though by wikatample (e.g. we cannot see into the infrared) and
how much we sample. The tuning component of our model allsms prioritize categories of input.

Our schema does include a role for accumulated observatidnslding a probabilistic representation of our envi-
ronment, but we use a bell-curve (Figure 1) to symbolize weaare estimating parameters for a model. We are not
building a non-parametric distribution. The uses of sucheatal model are three fold. First, it determines sensory
tuning (“look here”, “listen for that”, “pay attention todred ‘X’s’ ”); second, it guides action selection by weight-
ing the likely consequences of possible actions; and taind, most critically to this paper, it provides the metric for
checking if the model is good enough or if it needs updating?Dr observations match our expectations? Are we
surprised by what we see? If not, then the current model id gnough. If so, then a model revision is required.

In Figure 1 we depict that surprising data can be built up ffedent ways: first, we might see an extremely unlikely
event @ in the Figure) that is individually so improbable as to prikeais to update our model, or second, we
might see repeated improbable evertitsn(the Figure) that in the aggregate, but not individualkg aufficiently,
collectively, unlikely that we are surprised and report ammtch between our model and our observations.

What happens when we are surprised by data or detect a misietiween expectations and observations? We
suggest that there are two functionally distinct respanBist, we can make subtle refinements in our expectations.
This is analogous to moving the mean of our bell-shaped carbé to the left or right; we may have, for this
example, assumed that a normal distribution is the righm flmr our model, but that we need to update our estimates
of the mean and variance parameters. A second responset@ssig data may be the generation of a completely
new model; rather than fine tune parameters we abandon thmahdistribution in favor of an exponential (depicted
in Figure 1 as point 2 of the mental model).
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Figure 1: Our model of updating is schematic. It includespaasentation of the world that is recursive and obeys unknlews (the beach
scene upper left). Our view of the world is built up from inqalete, filtered snapshots. We use this mental model to plaadaiions, to direct
our sensory sampling, and as the substrate for self-diigaodHow do we know if our mental model is adequate? We sdeeisensory
data coming in is explained well by our current model. We pnes that our model has a probabilistic representatigmifolized by the
bell-shaped curve) that allows us to test how surprisingriniag sensory data is. As explained in the text, a mismattlidsn observations
and models can be triggered by individual extreme obsemsfflettera lower right), or an accumulation of improbable events @idtlower
right). If a mismatch is detected,ftéérent degrees of model revision can take place: either éibsetéon or substitution. Damage tofférent
model components will result in flerent deficits, and though not depicted here, theferdint elements are likely to be associated with
different structural brain regions.

Our model is highly schematic and overlaps with other cagmjprocesses. For example, we suggest that one signal
for mental model revision is an accumulation of data thaihishe aggregate, surprising. This process will depend
on working and recent memory. Also, we state that mental ingat#ating can be either a revision or a replacement.
The former might show considerable overlap with systemgaeujng reinforcement learning. Below, we discuss
further the areas of overlap and uniqueness, but first wednid to make our notion as concrete as possible. To
do so, we will retrace the steps that led us to the idea of upglahat is, as an explanation for impairments seen in
people with brain injury. This example also makes it easiesele how updating is similar to andfdrent from other
related cognitive processes.

3. Neglect — A Disorder of Updating?

It was our puzzling over the behavior of patients with theleetgsyndrome that led us to our concept of an updating
impairment. In this section, we briefly introduce the clasgglect findings and more recent experimental results
of non-spatial impairments. We then consider the strustassociated with neglect and highlight two that seem
particularly relevant to the function of mental model uaigt
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The clinical syndrome of neglect has been recognized foerttan 100 years (Langer, 2009) and two features are
particularly striking: the lack of concern and awarenesaytients display and the pronounced spatial modulation
of their difficulties. The syndrome has been extensively studied andgis beatures are well established (for two
recent reviews, see Danckert and Ferber, 2006; Adair anak®Ba2008). The brain lesions producing neglect are
usually right sided with the behavioral impairment maximalthe left. Requested to bisect a line down the middle,
neglect patients err to the right. Shown a collection of sliwes scattered across a page, and asked to cross-out each
one, the patient will concentrate on the right sided itemthéoexclusion of others, often revisiting and re-marking
perseveratively previously cancelled items (Na et al.,.9)9%ven at a representational level, neglect patients are
impaired, often describing only the left side of imagineddtions (Marshall and Halligan, 2002) and functionally
they may fail to shave the left side of their face or eat foodhenleft side of their plate (Danckert and Ferber, 2006).
These findings naturally lead to the traditional emphasitherspatial aspects of the syndrome. More recently we,
and others, have been struck by the non-spatial impairnenieglect (e.g. Husain and Rorden, 2003).

The increased duration of the attentional blink seen withlew is one robust example of a non-spatial deficit
(Husain et al., 1997). In a typical attentional blink tasle participant is shown a series of centrally presenteetsirg
and distractors with instructions to report the targetse attentional blink is a normal phenomenon that denotes
the decreased probability of accurately reporting a se¢argkt when it appears shortly after a first, successful,
target detection (Shapiro et al., 1997). In neglect, thenéitinal blink is substantially prolonged even for ceryral
presented stimuli that, individually, are detected notyndlhe loci of injury associated with a prolonged attenéibn
blink have been the inferior parietal, superior temporbElocand periopercular structures, and with damage to these
structures a prolonged attentional blink may occur in theeabe of clinical neglect (Rizzo et al., 2001; Shapiro
et al., 2002).

A prolonged attentional blink implies slow or iffigient sampling in a region of space where basic detection is
normal. Other disorders of temporal processing that arindily non-spatial have also been found in neglect.
Danckert et al. (2007) studied eight participants with ichih neglect, six right brain damaged controls without
neglect and eight controls. All participants estimateenveils of five, fifteen, thirty and sixty seconds. While
participants in all groups tended to underestimate alhvais, the performance for the participants with neglect wa
particularly striking, with a mean estimate of the sixty @ed interval of 8.89 seconds (Sb 3.18) while it was
49.26 (SD= 7.99) for the neurologically healthy controls. This impaént of temporal estimation is not vision
specific as auditory temporal estimation is also impaireglawt (Merrifield et al., 2010).

If updating involves accumulating sensory data and compastimates of its likelihood to an estimate of an internal
model, working memory would also seem to be an importanttfanal component, and again, a working memory
impairment is seen in participants with the neglect syndroRerber and Danckert (2006) assessed spatial working
memory in four neglect participants by presenting threesggion the participants’ right (good) side and then, after
a three second delay, probing with a circle. Participanteewequired to report if the circle appeared in a location
previously occupied by a square. A control verbal workingmoey task used sequences of single digit numerals and
a single test digit. The neglect participants were draraliyiémpaired compared to right brain damaged controls
without neglect and normal older healthy controls. A spatiarking memory impairment also accounts for the
frequent repeated fixations of right sided target locatithvad patients with neglect make during visual searches
(Husain et al., 2001).

These spatial working memory impairments do not preclugdeahrning of environmental contingencies (e.g., we
know that neglect subjects show both color and locationtitége priming in right and left space (Kristjansson

et al., 2005), however these non-spatial deficits rendeleaepatients less sensitive to the statistical structdire o
their environments. Shagqiri and Anderson (2010) testegketsubjects with current or recent spatial neglect on a
simple visual discrimination task that required pressing of two buttons to indicate the color of a small circle



displayed on a computer screen. Two areas of the screengftirentl one right, were more likely to be target

locations than the rest of the screen and the left sided potitsvas three times as likely to be the target location
when compared to the similarly sized right sided region. &/bontrol subjects improved their speed to classify
targets from the left sided “hotspot,” the neglect subjatits not, although the neglect subjects did show some
improvement for the ipsilateral, right sided, higher pitibty region.

At this point we can return to consider a fundamental quedtio neglect: what is it that makes a person who has
spatial neglect so much more impaired than a person withatéft hemianopia? Both may begin their searches on
the right, but the neglect patient never revises his estirmfivhere the object may be; he does not update his search
to consider other regions, other locations. He is is pensibt in error. Certainly it is disadvantageous to have a
right sided bias for orienting and responding, but if, faglito find what was sought, the patient with neglect updated
his search accordingly there would not be the same sevectidnal consequences. Spatial impairments may drive
early orienting responses, but when those reactions anegitres the inability to benefit from this failure that makes
neglect so disabling. It is the inability to take a properagot of when things happened (temporal impairment,
prolonged attentional blink) and what has happened rgcentvhat locations (spatial memory and environmental
statistics). As a result, even when one can change motowriselmne may not change performance. A picturesque
example is Ferber et al. (2003). Ferber et al. (2003) haémtatiwith neglect view two vertically oriented chimeric
pictures. In each image, one half of the picture was a smiting and the other half was emotionally neutral. One
image in each pair had the smiling half on the right and therotin the left. Their location, top or bottom, was
random. Subjects reported which picture seemed happiaglebtesubjects routinely only fixated the right half of
the pictures and always selected the image with the riglfitshaling as the happier picture. Next, neglect subjects
underwent prism adaptation after which they were shown &adikoth left and right sides of the images. Thus, their
ocular exploratory behavior was changed, but there was angehin the behavioral report. They still were almost
uniform in designating as happier that image with the rigtif &miling.

In trying to reconcile these findings, we have come to redaedadditional source of failure seen in many neglect
subjects, that which separates them from an hemianopia agdating impairment. Either they fail to take account
of new information indicating the need to revise an intemantal model or they cannot use their recognition to
replace the current model. If these deductions are accuha&éocations of brain lesions that cause neglect may help
us identify the brain structures important for such upagpfimctions.

The right inferior parietal lobe has been the classic sit@jofy associated with clinical neglect (Vallar and Perani
1987). But, as in many others areas of clinical neuroanatdhgylesions that yield neglect have become better
understood with MRI scanning. Subcortical, temporal ladr&g parietal lobe structures are all strongly linked to
clinical neglect.

Newer studies confirm a prominent role for parietal lobe dgaria neglect (Mort et al., 2003; Verdon et al., 2010),
and thereby indicate a potential role for the parietal labapdating. Supportive evidence for a role of the parietal
lobe in updating is its connectivity. The parietal lobe iees both sensory and visuafferents (Andersen et al.,
1990; Lewis and Van Essen, 2000), Functionally there isspariobe activity during many memory tasks (Cabeza
et al., 2008), and evidence that the parietal lobe signakxpactancy for upcoming sensory data (O’Connor et al.,
2010)

In addition to the parietal lobe, other structures have bewlicated in causing neglect. The superior temporal
lobe has been emphasized by Karnath et al. (2001) thougfiriling has produced some controversy. Mort et al.
(2003) emphasizes that Karnath et al. (2001) excluded stgbjeith hemianopia, in anfiort to define a purer
clinical population, and thereby may have induced biasesemMMort et al. (2003) looked at their clinical cohort,
without this selection criterion, they found that in aboatftof their cases of middle cerebral artery territory seek



producing neglect there was no lesion of the superior teatgyrus.

In addition, most studies on lesion locations in neglect @athage to subcortical structures. Karnath et al. (2004)
reviewed the lesions in 140 consecutive patients with tigimisphere strokes and used a voxel-wise statistical anal-
ysis to look for regions of the right hemisphere statisljcaksociated with the neglect syndrome; he confirmed the
involvement of the superior temporal gyrus, and highlighgabcortical areas including the insula and the striatum.

While the insula has not traditionally been emphasized aiaative lesion in the neglect syndrome, it is frequently
damaged by the strokes that cause neglect (Karnath et@g, 2001; Mort et al., 2003; Ferber and Danckert, 2006;
Danckert et al., 2007). Anterior insular involvement isesplly prevalent in the minority of neglect cases where the
functional impairment is chronic (Doricchi and Tomaiuc2903; Bartolomeo et al., 2007). These findings prompt
consideration of the insula as a component of an updatingamket Structurally, the insula denotes the neocortex
hidden (insulated) by the frontal, temporal and pariet@ropla. The human insula possesses components that have
no clear correlate in the monkey and the anterior insula@dssesses a variety of neuron, the von Economo neuron,
that has been found almost exclusively in higher primatden@n et al., 2010). For many years the main functions
of the insula were held to be primarily interoceptive (Pddfeand Faulk Jr, 1955), but more recently a role for the
insula in human awareness has been suggested (Critchley28G#; Craig, 2009). The role of the insula in salient
target detection (Corbetta and Shulman, 2002) fits withinupgating schema, and other research has shown that
the anterior insula is part of the system activated by thdeémpntation of task sets (Dosenbach et al., 2006).

Connecting the roles played by the right inferior parietddd and the anterior insula in updating is a combined
functional and DTI study (Umarova et al., 2010). Umarovale(2010) used a Posner type cuing task to develop
seeds for a structural white matter connectivity study. thwa et al. (2010) reported that the anterior insula and
parietal lobes were co-activated by the attentional taslidiaked by subcortical white matter tracts. Damage to the
same subcortical white matter pathways alone may causeatéiflarnath et al., 2009), and neglect itself may arise
as a disconnection syndrome (He et al., 2007; Bartolomeb, &087).

The anterior insula is near ventral striatal structures thede structures, too, are often injured in the strokes that
cause neglect. They too deserve consideration as having aran updating impairment, especially as the stria-
tum (e.g. Balleine et al., 2007; Pennartz et al., 2009) has lbepeatedly linked to the broad domain of reward
computation and decision making (Sutton and Barto, 1998).

The prevalent version of this model has a prediction erramgosignaled by dopaminergic neurons that project
from the midbrain to the striatum, with the striatal neuroggresenting an association of actions and states. The
conventional role for the striatum is therefore one of geddimcremental change (Johnson et al., 2007). While the
role of striatal structures in procedural learning seenikesggablished, the role of the striatum in planning proesss

is less certain. Recently, van der Meer and Redish (201@xtexp that ventral striatal neurons recorded from rats
running a T-maze increased their firing at the final choicatdaithe maze, consistent with a striatal role in planning
the action that will lead to reward. Using ensembles of nesithe authors were able to show a representation of
reward at the final choice point. Thus, there is good evidéoicstriatal structures in decision making, associating
actions, states, and reward, and therefore striatal irgowd also be important for the updating impairment seen in
subjects with spatial neglect.

4. Assessments of Updating

The model outlined in Figure 1 has several sub-componeatscttoperate to implement a global updater. The
updating process needs to signal both when environmeatadtits do not match mental model predictions (updating



is required), and when environmental statistics match timeent model (no model updating is required). A good
updating task should reveal these events, be simple enoaudiidin damaged participants, and flexible enough to
permit combining with other investigatory methods, sucfMRI.

There is a large literature demonstrating that people amdads can learn probability distributions (Estes, 1972) as
inferred by changes to patterns of reward. Modern versibtasks frequently used to study decision making, such as
the multiarmed bandit problem (Zhang and Lee, in presshaseally human Skinner boxes. Experimental subjects
make repeated choices from a finite set of selections whedbéek is provided on each trial and the relationship
between choice and reward is typically probabilistic. Alilgh solving such a task requires, in some sense, a model
of the world, (i.e. is the relations between states and as}jdt seems impoverished in a few important ways. First,
is that it presumes that experience will provide a large remolb stereotyped trials, however, the world is frequently
not so kind. Two, history is only important in the aggregatejoesn’'t matter exactly how | came to my present
state (Markov assumption), only that | am here and the nurob&mes | have been in Stat, taken ActionA,,

and received Rewar8y. This does not match common experience. Third, and mostricpity, there is always a
clear, explicit reward, but frequently we learn about ourldiin the absence of reward (or via implicit judgments
of value).

It is worth reminding ourselves that learning does not negteinforcement (Tolman, 1948). Reinforcement is the
method we use to demonstrate that learning has occurreg aRated to explore and become familiar with an empty
maze seem no fierent from other rats, but when reward (food) becomes dilailtney reveal their knowledge.
Our concept of a mental model is like Tolman's map; it is antraletion that productively summarizes observable
behavioral results. Much of what we learn about the worldun aeily life seems more like the period of a rat’s
purposeless meandering in a maze than it does the timechdaee to a food reward or massed sequential pulls
on one of two slot machines. Thus, while reinforcement lisgrmight be a subset of what we have described as
updating, it does not subsume it.

A good task for assessing updating mechanisms needs to deaterthe acquisition of new knowledge in response
to changing environmental contingencies. It also need®tsifaple enough to be used in subjects with updating
impairments.

Demonstrating this approach, Geng and Behrmann (Geng amenaan, 2002, 2006, 2005) employed probability
cuing, by altering slightly the structure of a conventiooaing task. In a conventional cuing task, a cue appears at the
center of a computer screen and indicates some aspect aflikecgient target, usually where it is likely to appear.
Subjects are quicker to report the target when it appeatseirctied location (valid trials) then when it appears in
another location. What Geng and Behrmann (2002, 2006, 2@@®rted was that probability could serve as the
cue. Subjects simply reported the presence of a target ppaaaed on a computer screen. There was no ambiguity
about action selection nor a variation in success. The tasK is trivial for normal participants (the authors also
tested subjects with brain damage; for this populationesgds not assured). When certain locations were selected
to be more likely as target locations, subjects reportegetarat those locations more quickly. Others have also
used this approach, Walthew and Gilchrist (2006) have faimilar results, though Walthew and Gilchrist (2006)
have argued that the learning of the statistical relatissbf positions with targets is the result of short time feam
repeats (e.g. the last 4 trials). We have also looked at tifieydbr environmental statistics to influence behavioral
performance in a similarly simple visual discriminatioskgDruker and Anderson, 2010, and Figure 2). We too
find that subjects adapt to the statistical structure usselaxt target locations, and thus respond more quickly and
no less accurately.

We also undertook to use this type of task in brain damageeémat(Shagqiri and Anderson, 2010), the types of
patients we asserted above have an updating deficit. We maudfithat older control participants could learn to
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Figure 2: Data from the “hotspot” experiment of Druker anddarson (2010) is presented. In this task, participants raaslenple color
classification: one button for a red spot and another buthom fgreen spot. Unknown to the participants was the facttbeaprobability
for where a target could appear was not uniform across tleesciThere was a point of maximal probability, the “hotspetiich declined
steeply, but continuously to a baseline value (see DrukgPauderson, 2010, for full methodological details). Thesequences of using this
distribution for selecting target positions is shown in tipper left where the target positions for all participartas all trials is collapsed.
There is a central point of highest density and then targsttions thin out. For analyses it is possible to look at thetagice to this high
probability “hotspot” or to define screen regions equidistaom fixation for the selection of subsets of trials in higihd low probability
regions (upper right panel). Showing that tHeet of the probability manipulation is graded with probipildata from one participant is
plotted in the lower left panel. The RT for each correct tftalthis subject is plotted on the y axis and the distance ¢gothint of maximal
probability is plotted on the x axis. There is a clear relatietween the distance and response time measures, highligére by plotting
the linear regression line. In addition, across partidipathere is a benefit in terms of both response time and amcofeclassification
for trials when targets appear in the high probability ragib the screen are compared with trials in the low probabitgion (lower right
panel). These results are consistent with participantmbavrepresentation of the probability of where targetsaygpear and weighting the
perceptual evidence accordingly.

use the probability of target locations to aid classificatamd we also showed that this ability was impaired in
participants with a history of right hemisphere injury areflect and that this probability cuing impairment was
spatially modulated (Figure 3 and (Shagqiri and Andersotp20

Many other research groups have also developed tasks timgutee attention via probabilityfieects. (e.g. Lam-
bert, 1987; H&mann and Kunde, 1999; Ciaramitaro et al., 2001; Carreird.,2@03; Liston and Stone, 2008). As
examples Farrell et al. (2010) reported that manipulatiegstatistics of where participants will be directed to look
influences the saccadic dynamics of an eye movement anatdgakibition of return (Klein, 2000) and Eckstein

et al. (2006) used a visual search task to demonstrate thameyements were consistent with a bias towards where
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Figure 3: Sixteen subjects where given a modified versioh®fhotspot” task illustrated in Figure 2. Four of the papamnts had a history
of parietal lobe injury. When comparing trials where thg&drappeared in the high probability region of space withhalarly sized region
equidistant from fixation on the low probability side (upgemnel), we demonstrated a significant reaction time costafgets in the high
probability location for the patients compared to a sligah&fit for the twelve healthy control participants (thestdeere collected in a
paradigm similar to (Shagiri and Anderson, 2010), but hatebeen previously presented).

we expect things to be based on experience (e.g. chimneysgoeh houses).These data fit into our updating schema
by showing that environmental statistics are reflected nfopmance, perhaps through the “tuning” of the sensory
apparatus.

Another tactic for investigating updating is to use a simgéene. Games have a long history in psychological
research. Examples of games include bandit problems (Zhathd.ee, in press) and choice paradigms (Brown and
Steyvers, 2009). One particular game popular in cognitegrascience research has been RPS. RPS has simple
rules, but can achieve complex, chaotic dynamics (Sata,e2@02; Salvetti et al., 2007). RPS has been used in a
variety of functional imaging studies, but typically withetidea of studying gestures, set switching, and transverse
patterning (Dinstein et al., 2008; Matsubara et al., 200 dta et al., 2009; Leirer et al., 2010).

Paulus and colleagues have reported two fMRI studies whinjects played RPS and which are directly relevant
for the issues being discussed (Paulus et al., 2004, 2008th ®udies used the same basic task: subjects were
allowed to choose their response by pressing one of threensutSubsequently, they received an auditory report
of the outcome and their choice and the computer’s choice @displayed visually. A running counter of wins and
losses was also presented incrementing, decrementingmaiming the same depending on the outcome. Subjects
were not informed that there was a preferred, neutral, atiepegferred action for blocks of trials (16 or 20 trials
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long). If the subject chose the preferred action, he would 2@% of the time or lose 90% of the time if choosing
the anti-preferred. Success was 50% with the neutral choldee two studies diiered slightly in the length of
blocks, the timing of feedback, and the total number of4r{&6 or 120). Paulus et al. (2004) was able to observe
an dfect on subject behavior. Subject choices of preferred itimereased in the second halves of blocks to 44%
and the choices of anti-preferred actions decreased. I@tinge with the acquisition of the preferred choice was
an increase in activity in prefrontal cortex. Paulus et2006) was not able to show any behavioral acquisition of
the preferrefhnti-preferred choices. The authors attributed this teefawals overall and a slower pacing resulting
in more delayed feedback. However, when looking at theia thased on whether the phase of the block required
assessmefaction selection or outcome evaluation, the researcharsifactivation in the anterior insula and superior
temporal gyrus. For outcome evaluation there was greateation in the inferior parietal and superior frontal
regions.

In addition, to these human based functional studies, pdysiological responses have been recorded in monkeys
playing similar games, e.g matching pennies (Lee et al.42P005; Lee and Seo, 2007; Seo et al., 2009).

To make a version of RPS accessible to patients with brainadamve simplified the task demands. Instead of
making gestures, subjects pushed a button, or stated thaicecverbally (and a technician pushed the button).
Blocks were long (200 trials) and self-paced, with choicispldyed as pictures. The task did not require subjects
to adopt a non-traditional strategy (e.g. trying to losejooswitch sets. No explicit feedback was given. Without
informing participants, we varied the computer’s stratégyn selecting a choice uniformly (trials 1 - 200) to one
favoring one of the options 50% of the time (trials 201 - 4G)d then to a more obvious favoritism where the
computer selected one particular option 80% of the timal&t01 - 600; in each case of favoritism the other two
choices were equally likely).

The result was a heterogeneity of performance with a ratlesr partition between the normal control subjects

and the subjects with focal right hemisphere injury. Figliqgrovides an example of the diversity of performance

that we found. Normal controls subjects chose randomhh sdme detecting the mild shift in computer strategy.

They typically detected the extreme shift in computer strgtwithin a few trials. Brain damage subjects revealed
very different performances. Some brain damaged subjects petseleraparticular choices. Sometimes this led

them to maximize their wins, their performance by this ciite exceeding the normal controls, and at other times
it resulted in substantially fewer wins than following afanim random strategy. Many subjects seemed to persist
with a uniform random strategy without variation (Fig 4D).

The variety of responses provoked by the shifts in the coerfsugtrategy reveal the richness of this simple approach.
At present we cannot say if these examples represent paings aontinuum of impairment or are examples of
subtypes of impairment. In our experience, it is rare to serol subjects adopt the maximizing strategy (Vulkan,
2000) that we have seen in participants with frontal injury.

The change in the control subjects’ choice probabilitiegmvthe computer uses a biased strategy, coupled with a
failure of the control subjects to adopt a maximizing sggtesuggests that the control subjects have a model for
their computer opponent that assumes more frequent \@ariatn strategy than was in fact the case. This suggests
that our control participants are trying to adapt their gtayhat is, in fact, noise.

To examine this idea, and to gain another perspective ondRibifity of participant choice, we plot the empirical
entropy of the computer’s selections over short blocks iafstr(Figure 5). Even though there is a fixed entropy
associated with each computer strategy, selecting smatkslof trials, (e.g., 20) will yield dierent empirical
estimates of the entropy. We also did the same computatidhdasequences of choices made by the brain damaged
participants. Entropy is an information theoretic conagpich we use here as a proxy measure for randomness. The
greater the entropy the more random a sequence; lower gritngties more structure (e.g. a series of 20 rocks in a
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Figure 4: RPS performance for one control and three patterdemonstrate the heterogeneity of performance that caedrewith a fairly
simple paradigm. Proportion of responses is computed fretiding window of twenty trials. The control participantpfper left; A) shows
three principle results. First, when the computer seleciformly so does the control. Second, when the computemisemi pick one item
50% of the time, the control participant takes over a 100stti@ begin responding to this shift. Many control particitsanever alter their
play when the computer chooses one option 50% of the timed TWwhen the computer’s choices are more extreme, the dguarticipant
rapidly exploits this strategy, within 10 - 20 trials. It isa typical that the control participants demonstrate achiag behavior rather than
a maximizing strategy (Vulkan, 2000). Thredfdrent patient participants are shown to highlight the waré abnormal performance that
can be observed. First, one patient (upper right; B) usesxammng strategy. This leads to this participant winningnea times than the
controls over the last 100 trials of the 80% condition. Hogreas is typical, this participant takes longer to discdhés strategy (40 - 50
trials). Another participant (lower left; C) shows a tendgrsimilar to the participant in panel B, to select one it€d% of the time, but this
participant’s selections are largely unrelated to the agienfs strategy and do not result in an improvement in thelvemof wins. Lastly,
the most typical pattern seen in the impaired participasthat they select their choices randomly, and never seainaoge their selections
as a result of the computer’s choices, even when the compatgichoose the same item for many consecutive trials.

row is not “random” at all when compared to one that is a mixtir7 rocks, 7 scissors and 6 papers). What we can
see in Figure 5 is that the brain damaged participants dohwot any real correlation between the entropy of their
choice sequences and those of the computer (panels B, C,)aktb®ever, the entropy of the control participant in
panel A, tracks rather closely the entropy of the computsuence, implying that the control participant may be
trying to adapt his choices on a shorter time scale than wiheassk designers, know is relevant. These data might
provide a method for probing the time scale over which updgais taking place.
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Figure 5: Short sequence entropy. Entropy is a metric of dinddamness of a sequence and we compute it here with a singbbgtam
method whereby the proportion of each response in the sequrR0 trials is used as the probability for calculatingepy. This figure
presents each participant’s responses as one continuqusre®. The empirical entropy for each block of twenty sri@o overlap) is
presented against the block number. The thréemint computer choice conditions are shown kifedent shaded regions. The red shaded
region highlights the empirical entropy values that wouddmmmonly observed (upper bound 95%; lower bound 5%) duanpkng

20 trials from the fixed distribution. The computer's empientropy changes only modestly for the switch from unifo%®%, and then
decreases further for the 80% condition. Due to the randonpbiag there is substantial variability in how “random” givsequences of trials
appear. For the control subject, (upper left; A) the estadaintropy of the control participant tracks the sawtootlree of the computer
entropy reasonably well. The patients (panels B, C, and ®}la same participants as in Figure 4.

The experiments described in this section are ongoinginfirelry results (Danckert and Anderson, in preparation),
from participants with dferent locations of brain injury show that dividing partigigs into groups based on lobe
of injury does a poor job of partitioning performance (e.ge humber of wins) on this RPS task. If participants
are divided into those with and without neglect there is sstariially better separation. If we operationally define
subjects based on the performance of the controls, we segedaof lesions involving the insula, deep subcortical
white matter, and striatum (always on the right since subjeere selected for right hemisphere lesions).

Currently, we are exploring versions of the RPS game wheradte of change of the computer’s strategy can be
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manipulated from gradual to abrupt to explore the claimtierte are two discrete andidirent systems for detecting
surprising departures from the current mental model. Intadd because the selection of the computer’s choice is
hidden from participants, we can also systematically viaeyrtumber of trials that participants win, lose, and draw,
to examine how the consequences of a given sequence of pgigdts with environmental regularities to provoke
mental model updating.

5. Updating Updating

We settled on the word “updating” because its everyday nmgaajreed with our sense of what we were attempting
to define and study. Other people working in other areas ofamuneuroscience have had the same experience. As
a result the term updating is used in multiple settings andnfaltiple functions. In this section, we highlight some
of the diferent ways the term is used.

Updating has been used to label an aspect of working memaignanura (2000) describes updating as the mod-
ulation of information in short term memory to alter actisat For example, in an n-back memory task, the nth
item in short term memory is enhanced for making the comgparis the presently displayed item. The emphasis
here is on short term modulation of individual items for atigatar purpose. Our notion of updating is of a longer
time frame process where we are more interested in whetkdikdihood of certain items have changed or the
rules for transitioning between them have changed. Whéeéins likely that working memory would be necessary
for this, it does not sound like the same thing and one canimeagpmeone being able to report short term recall,
such as the neglect patients described by Ferber and Dali2@66), but not be adequately able to update the large
scale structure relevant for a task, like the RPS scenataileié above. Thus, while working memory might be a
necessary component in the system for detecting thesetdeggafrom a predictable pattern, the updating of short
term memory denotes a distinct concept.

Another use of the term updating is in the area of reinforagr@arning (Sutton and Barto, 1998; Daw et al., 2006).
Reinforcement learning ideas have been used for decadesdel mlassical conditioning experiments (Rescorla
and Wagner, 1972; Miller et al., 1995) and are also usefuhfodeling many aspects of human decision making
(Schonberg et al., 2007). Adjusting a set of weights or deggafor selecting actions in response to environmen-
tal feedback is certainly a reasonable use of the term upgdatHowever, the situations to which reinforcement
learning is applicable flier from those where representational updating is usefuhf&eement learning is applied
for procedures that require stereotyped, repetitive @sowith frequent reward signals, (e.g., drawing cards from
decks with diferent probabilities of winning). The invocation of repnetsional updating occurs in an unstructured
setting, with potentially no feedback, and where the datg beaobservational. Where reinforcement learning uses
the term updating in a dynamic programming sense of updatgights and parameters of a specific model, we use
it to describe a more global process of recognizing the neegdate the model.

Updating has also been used to describe executive funcfidiis is perhaps the oldest sense of the term in human
neuroscience (Eling et al., 2008). When one needs to switech bne task to another or to switch modes of re-
sponding within a task, one needs to do something which issmeimarized as updating, and the term is used to
describe these scenarios (e.g. Barcelo et al., 2006). Tdtetppical example of this type of task is the Wisconsin
Card Sorting Task (WCST). In WCST-like tasks the signal far heed to switch is clear and unambiguous and the
feedback signal is overt and deterministic. But what abdwmit is not clear that the task or set require switching?
What about when the data is noisy? What about when you ardeatctor, but the observer? These, too, are part
of human experience, arguably the greater part. There dsaalseed for a term to describe the revising of one’s
models of the rules and transformations that occur geyeaalll always. The executive updater is the organizer for
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executing behavioral tactics, but there must also be eegiratipdating that occurs as well, and it is not clear that
those two things must be the same at either the conceptwldethe neural level.

This discussion with its references to latent learning dneddetection of surprising events defined by calculation
from mental models, prompts us to highlight some other restrties. Strange et al. (2005) demonstrated that
there are behavioral and functional imaging correlatefi@fstatistical concepts of surprise and entropy. These are
exactly the sorts of calculations that a concept of upddtkegthe one we describe would require. Strange et al.
(2005) emphasized the hippocampus as the locus for thetiotis. While the hippocampus was not mentioned in
our review of locations above, we do not mean to imply thatahly locations relevant to our variety of updating
must be found to be damaged in spatial neglect. Anothertrgisolving that brains compute a surprise signal is that
of Mars et al. (2008). These researchers did not focus onidecaut rather establishing if there was a quantitative
relation between dlierent degrees of surprise and the neural activity giving iisthe P300. A point of emphasis
for us is that updating mental models will need to occur inaibns without an explicit task or clear reward.
This type of latent learning is similar to the observatioleglrning studied by Burke et al. (2010). In their recent
functional imaging study they conducted a “bandit” typektdike those used for reinforcement learning modeling,
but in addition, incorporated the notion of an observatidrere the subject in the experiment had the chance to
gain information from observing another’s choice. Thistpcol presents an intermediate step between the classic
reinforcement learning paradigm and a completely unsiradtobservational setting.

No one of these is uniquely entitled to the term updating.hEese is consistent with common usage, but highlights
different aspects of an experimental technique or theoretiappctive. Until we know more about all of them, it
will not be possible to say exactly where they may be redundanthe present, there seems to be space for the
additional sense of updating that we develop here.

6. Summary

We need to detect regularities in our environment and egh@m, but we also need to detect changes in our
environment and update our mental models to reflect our nenrostances. As a first step towards a concrete and
computational model of updating, we havéened a schematic of the updating process (Figure 1). Thiensatic
provides specific components whose functions afécéently specific to be the object of empirical testing. We
suggest some methods for this testing, and show how everlestagks, like observing the sequence of choices
made while playing the RPS game, cdfoed a window on the dynamics of the updating process. In mditve
compare our use of the term updating to other applicatiorteuman neuroscience. Combining these ideas with
clinical observations from brain damaged patients leads sgggest that the right inferior parietal lobe and anterio
insula are two candidate structures likely to be centrahtagdating network.
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