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Abstract: The main problem addressed in this paper is the
quaternion-based, attitude tracking control of rigid spacecraft
without angular velocity measurements and in the presence of
an unknown inertia matrix. As a stepping-stone, we Þrst de-
sign an adaptive, full-state feedback controller that compensates
for parametric uncertainty while ensuring asymptotic attitude
tracking errors. The adaptive, full-state feedback controller is
then redesigned such that the need for angular velocity measure-
ments is eliminated. The proposed adaptive, output feedback
controller ensures asymptotic attitude tracking.

1 Introduction

The attitude control of rigid bodies has important appli-
cations ranging from rigid aircraft and spacecraft systems
to coordinated robot manipulators (see [18] for a literature
review of the many different types of applications). For
example, rigid spacecraft applications in particular (e.g.,
satellite surveillance and communication) often have need
of highly accurate slewing and/or pointing maneuvers that
require the spacecraft to rotate along a relatively large angle
amplitude trajectory. As noted in [1], these requirements
necessitate the use of a nonlinear dynamic spacecraft model
for control system synthesis. The control problem is further
complicated by the uncertainty of the spacecraft mass and
inertia properties due to fuel consumption, payload varia-
tion, appendage deployment, etc.

The attitude motion of a rigid body is basically represented
by a set of two equations [7, 8, 18]: (i) Euler�s dynamic
equation, which describes the time evolution of the angu-
lar velocity vector, and (ii) the kinematic equation, which
relates the time derivatives of the orientation angles to the
angular velocity vector. Several kinematic parametrizations
exist to represent the orientation angles, including singu-
lar, three-parameter representations (e.g., the Euler angles,
Gibbs vector, Cayley-Rodrigues parameters, and modiÞed
Rodrigues parameters) and the nonsingular, four-parameter
representation given by the unit quaternion (i.e., the Euler
parameters). Whereas the three-parameter representations
always exhibit singular orientations (i.e., the Jacobian ma-
trix in the kinematic equation is singular for some orien-
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tations), the unit quaternion globally represents the space-
craft attitude without singularities; however, an additional
constraint equation is introduced through the use of the
four-parameter representation.

Several solutions to the attitude control problem have been
presented in the literature since the early 1970�s [12]. See
[18] for a comprehensive literature review of earlier work. In
[18], the authors presented a general attitude control design
framework which includes PD, model-based, and adaptive
set-point controllers. Adaptive tracking control schemes
based on three-parameter, kinematic representations were
presented in [14, 16] to compensate for the unknown, space-
craft inertia matrix. In [1], an adaptive attitude tracking
controller based on the unit quaternion was proposed that
identiÞed the inertia matrix via periodic command signals.
The work of [1] was later applied to the angular velocity
tracking problem in [2]. An H∞-suboptimal state feedback
controller was developed for the quaternion representation
in [5]. In [9], the authors designed an inverse optimal control
law for attitude regulation using the backstepping method
for a three-parameter representation. Recently, [3] pre-
sented a variable structure tracking controller using quater-
nions in the presence of spacecraft inertia uncertainties and
external disturbances.

A typical feature in all the above-mentioned attitude con-
trol schemes is that angular velocity measurements are re-
quired. Unfortunately, this requirement is not always sat-
isÞed in reality. Thus, a common practice is to approx-
imate the angular velocity signal through an ad-hoc nu-
merical differentiation of the attitude angles, and directly
use this surrogate signal for control design with no guaran-
tee of closed-loop stability. With this in mind, an angular
velocity observer was developed in [13] for the quaternion
representation; however, the observer was based on an un-
proven separation principle argument. In [11], a passivity
approach was used to develop an asymptotically stabilizing
setpoint controller that eliminated velocity measurements
via the Þltering of the unit quaternion. The passivity-based,
velocity-free setpoint controller of [11] was later applied to
the simpler, three-parameter problem in [17]. Recently in
Wong et al. [19], an adaptive attitude tracking controller
without angular velocity measurements was proposed using
the modiÞed Rodrigues parameters.

In this paper, we provide an adaptive control solution to the
quaternion-based, attitude tracking control problem that



eliminates angular velocity measurements and compensates
for parametric uncertainty. SpeciÞcally, we Þrst apply a
novel transformation to the open-loop, quaternion tracking
error dynamics developed in [1]. The transformed tracking
error dynamics are then used to design a new adaptive, full-
state feedback controller that compensates for uncertainties
in the inertia matrix. A non-standard, Lyapunov-like func-
tion, which exploits the quaternion constraint equation, is
used to prove asymptotic attitude tracking. To achieve the
goal of elimination of velocity measurements, we then ex-
ploit the structure of the adaptive, full-state feedback con-
troller and its corresponding stability argument. SpeciÞ-
cally, we utilize a Þlter, whose structure is motivated by
the Lyapunov-like stability analysis, to generate a velocity-
related signal from attitude measurements. The proposed
output feedback controller is shown to guarantee asymp-
totic attitude tracking. To the best of our knowledge, this
represents the Þrst solution to the adaptive, output feed-
back, attitude tracking control problem for the quaternion
representation (note that the adaptive output feedback re-
sult of Wong was done for the simpler 3-parameter case).
Note that this is an intricate problem due to the non-square
(i.e., 4 × 3) nature of the original Jacobian matrix in the
kinematic equation. As a result, a judicious error system
development, control design, and Lyapunov-like stability
analysis, which make appropriate use of the quaternion con-
straint equation, are crucial to the solution of the problem.

The paper is organized as follows. Section 2 contains the
derivation of the spacecraft model. The adaptive, full-state
feedback controller is presented in Section 3 while the out-
put feedback controller is developed in Section 4. Section 5
presents some concluding remarks.

2 Model Formulation

2.1 Spacecraft Dynamics
We consider the problem of a rigid spacecraft with actuators
that provide body-Þxed torques about a body-Þxed refer-
ence frame B located at some point on the spacecraft [1].
The body-Þxed torques can be applied to each axis by a pair
of equal but opposite forces that act in a direction perpen-
dicular to the line joining the actuators. We then translate
this body-Þxed frame B to another body-Þxed frame F with
the same orientation, but located at the center of mass of
the spacecraft. The dynamic model for the described rigid
spacecraft can be expressed as follows [7, 8]

J úω = −ω×Jω + u (1)

úq =
1

2

¡
q×ω + q0ω

¢
(2)

úq0 = −1
2
qTω (3)

where J ∈ <3×3 represents the constant, positive-deÞnite,
symmetric inertia matrix, ω(t) ∈ <3 is the angular veloc-
ity of the body-Þxed reference frame F with respect to an
inertial reference frame I, u(t) ∈ <3 is a vector of con-
trol torques, and the notation ζ×, ∀ζ = £ ζ1 ζ2 ζ3

¤T
,

denotes the following skew-symmetric matrix

ζ× ,

 0 −ζ3 ζ2

ζ3 0 −ζ1

−ζ2 ζ1 0

 . (4)

In (2) and (3), q(t) , {q0(t), q(t)} ∈ <× <3 represents the
unit quaternion [7] describing the orientation of the body-
Þxed frame F (see Figure 1) with respect to the inertial

frame I, which are subject to the constraint
qT q + q2

0 = 1. (5)

The rotation matrix that brings I onto F , denoted by

I
Fd
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Figure 1: Relationship between coordinate frames.

R(q, q0) ∈ <3×3, is deÞned as follows

R ,
³
q2

0 − qT q
´
I3 + 2qq

T − 2q0q
× (6)

where I3 denotes the 3×3 identity matrix, and the angular
velocity of F with respect to I expressed in F , denoted by
ω(t), can be computed from (2) and (3) as follows

ω = 2 (q0 úq − q úq0)− 2q× úq. (7)

2.2 Open-Loop Tracking Error System Develop-
ment
Similar to [1], we assume that the desired attitude of the
spacecraft can be described by a desired, body-Þxed ref-
erence frame Fd whose orientation with respect to the in-
ertial frame I is speciÞed by the desired unit quaternion
qd(t) , {q0d(t), qd(t)} ∈ <× <3 that is constructed to sat-
isfy

qT
d qd + q

2
0d = 1. (8)

The corresponding rotation matrix, denoted by
Rd(qd, q0d) ∈ <3×3, that brings I onto Fd is then
deÞned as follows

Rd ,
³
q2

0d − qT
d qd

´
I3 + 2qdq

T
d − 2q0dq

×
d . (9)

The desired quaternion is related to the desired angular
velocity of Fd with respect to I expressed in Fd, denoted
by ωd(t) ∈ <3, through the following dynamic equations

úqd =
1

2

¡
q×d ωd + q0dωd

¢
(10)

úq0d = −1
2
qT

d ωd. (11)

Note that (10) and (11) can be used to explicitly compute
an expression for ωd as shown below

ωd = 2 (q0d úqd − qd úq0d)− 2q×d úqd. (12)

To quantify the mismatch between the actual and de-
sired spacecraft attitudes, we deÞne the rotation matrix
�R(e, e0) ∈ <3×3 that brings Fd onto F as follows

�R , RRT
d =

³
e2

0 − eT e
´
I3 + 2ee

T − 2e0e
× (13)

where R(q, q0) and Rd(qd, q0d) were deÞned in (6) and
(9), respectively, and the quaternion tracking error e(t) ,
{e0(t), e(t)} ∈ <× <3 is deÞned as shown below

e0 , q0q0d + q
T qd (14)

e , q0dq − q0qd + q
×qd. (15)



Note that, based on the deÞnition given by (13), the atti-
tude control objective can be stated as follows

lim
t→∞

�R(e(t), e0(t)) = I3. (16)

Based on the above tracking error formulation, we deÞne
the angular velocity of F with respect to Fd expressed in
F , denoted by �ω(t) ∈ <3, as follows

�ω , ω − �Rωd. (17)

We can now use (1), (2), (3), (10), (11), (14), (15), and
(17) to compute the open-loop tracking error dynamics as
follows

J
·
�ω= −

³
�ω + �Rωd

´×
J
³
�ω + �Rωd

´
+J

³
�ω× �Rωd − �R úωd

´
+ u

(18)

úe = 1
2

¡
e× + e0I3

¢
�ω (19)

úe0 = − 1
2
eT �ω (20)

where we have used the fact that
·
�R= −�ω× �R.

Remark 1 We will assume that q0d(t), qd(t), and their Þrst
three time derivatives are bounded for all time. Note that this as-
sumption ensures that ωd(t) of (12) and its Þrst two time deriv-
atives are bounded for all time.

Remark 2 The relations given in (14) and (15) can be explic-
itly calculated via quaternion algebra by noticing that the quater-
nion equivalent of (13) is the quaternion product (see [20] and
Theorem 5.3 of [10])

e = q∗dq (21)

where the unit quaternions e and q were deÞned above, and
q∗d(t) , {q0d(t),−qd(t)} ∈ <×<3 is the unit quaternion rep-
resenting the rotation matrix RT

d .

Remark 3 After utilizing (5), (8), (14), and (15), it is not
difficult to show that the quaternion tracking error variables sat-
isfy the following constraint

eT e+ e2
0 = 1. (22)

Based on the constraint given by (22), we can see that

0 ≤ ke(t)k ≤ 1 0 ≤ |e0(t)| ≤ 1 (23)

for all time, where k·k represents the standard Euclidean norm.
It is also easy to see from (22) that

if lim
t→∞

e(t) = 0, then lim
t→∞

|e0(t)| = 1, (24)

and hence, we can see from (13) that if lim
t→∞

e(t) = 0 then the
control objective deÞned by (16) will be achieved.

2.3 Transformed Open-Loop Tracking Error Sys-
tem
In order to express the open-loop tracking error dynamics
given in (18)-(20) in a more convenient manner, we Þrst
rewrite (19) as follows

úe =
1

2
T �ω (25)

where the Jacobian-type matrix T (e, e0) ∈ <3×3 is deÞned
as follows

T , e× + e0I. (26)

After taking the time derivative of (25) and premultiply-
ing both sides of the resulting expression by T−TJT−1, we
obtain the following

J∗ë =
1

2
J∗ úT �ω +

1

2
PTJ

·
�ω (27)

where J∗(e, e0) ∈ <3×3 is an auxiliary matrix deÞned as

J∗ , PTJP (28)

and P (e, e0) ∈ <3×3 is deÞned as

P , T−1. (29)

After substituting (18) into the right-hand side of (27), we
can obtain the following expression for the open-loop track-
ing error dynamics

J∗(e, e0)ë+ C∗ (e, e0, úe) úe+N∗ (e, e0, úe,ωd, úωd) = u
∗ (30)

where the new control input u∗(t) ∈ <3 is deÞned as

u∗ , 1

2
PTu, (31)

and the auxiliary dynamic terms C∗ (e, e0, úe) ∈ <3×3,
N∗ (e, e0, úe,ωd, úωd) ∈ <3 are deÞned as follows

C∗ , −J∗ úP−1P − 2PT (JP úe)× P (32)

N∗ , PT
³
(P úe)× J �Rωd

´
+ PT

µ³
�Rωd

´×
JP úe

¶
+
1

2
PT

µ³
�Rωd

´×
J �Rωd

¶
−1
2
PT J

³
(2P úe)× �Rωd − �R úωd

´
.

(33)

The dynamic model given in (30) is characterized by the fol-
lowing two properties that will be utilized in the subsequent
control development and analysis.

Property 1: The inertia and Centripetal-Coriolis matrices
satisfy the following skew-symmetric relationship

ξT

µ
1

2
úJ∗ − C∗

¶
ξ = 0 ∀ξ ∈ <3. (34)

Property 2: The inertia matrix can be lower and upper
bounded as follows

j1 kξk2 ≤ ξTJξ ≤ j2 kξk2 ∀ξ ∈ <n (35)

where j1, j2 ∈ < are some positive constants.

Remark 4 In order to ensure that T (e, e0) deÞned in (26) is
invertible, it is a straightforward matter to show that we must
guarantee that

det(T ) = e0(t) 6= 0, ∀t ∈ [0,∞). (36)

To ensure that (36) remains valid, we will require that the initial
conditions be restricted such that e0(0) 6= 0, and that the subse-
quent control strategies be designed to guarantee that e0(t) 6= 0
for all time. With regard to the restriction on the initial con-
ditions, it is easy to see from (24) and (14) that the desired
trajectory can always be initialized to guarantee that e0(0) 6= 0;
hence, the initial conditions restriction is actually a very mild
restriction on the desired trajectory signals.

3 Adaptive Full-State Feedback Control
Development

In this section, our control objective is to design an adaptive
attitude controller for the open-loop tracking error dynam-
ics given by (30) under the constraint that the spacecraft
inertia matrix, J , is unknown. In order to quantify the
parametric mismatch, we deÞne the parameter estimation
error, �θ(t) ∈ <6, as follows

�θ(t) , θ − �θ(t) (37)



where θ ∈ <6 is a constant, unknown vector of inertia pa-
rameters deÞned as follows

θ ,
£
J11 J12 J13 J22 J23 J33

¤T
(38)

with Jij being the elements of J , and �θ(t) ∈ <6 being a dy-
namic estimate for θ which is yet to be deÞned. To facilitate
the controller design, we also deÞne the Þltered tracking er-
ror, denoted by r(t) ∈ <3, as follows

r , úe+ αe (39)

where e(t) and úe(t) were deÞned in (15) and (19), respec-
tively, and α ∈ <3×3 is a constant, positive-deÞnite, diago-
nal, control gain matrix.

3.1 Control Torque Input Design
Based on the open-loop tracking error system given by (30)
and the subsequent stability analysis, we design the control
input u∗(t) as follows

u∗ = −Y (e, e0, úe,ωd, úωd) �θ −Kr − e

(1−eT e)2 (40)

where Y (e, e0, úe,ωd, úωd) ∈ <3×6 is a known regression ma-
trix constructed according to the following parametrization

Y (·) θ = J∗α úe+ C∗αe−N∗, (41)

θ was deÞned in (38), K ∈ <3×3 is a constant, positive-
deÞnite, diagonal, control gain matrix, �θ(t) is generated via
the following dynamic update law

·
�θ= ΓY T (·) r, (42)

and Γ ∈ <6×6 is a constant, positive-deÞnite, diagonal,
adaptation gain matrix. To develop the closed-loop track-
ing error system, we take the time derivative of (39) and
then premultiply both sides of the resulting equation by J∗

to obtain the following expression

J∗ úr = J∗ë+ J∗α úe. (43)

After substituting (30) into (43), we obtain

J∗ úr = −C∗r + Y θ + u∗ (44)

where (39) and (41) were utilized. After substituting (40)
for u∗(t), we obtain the Þnal expression for the closed-loop
tracking error system

J∗ úr = −C∗r + Y �θ −Kr − e

(1− eT e)2
(45)

where �θ(t) was deÞned in (37).

3.2 Stability Analysis

Theorem 1 Given the closed-loop dynamics given in (39)
and (45), the adaptive controller of (40) and (42) ensures
asymptotic attitude tracking in the sense that

lim
t→∞

e (t) = 0 and lim
t→∞

�ω(t) = 0, (46)

provided that the initial conditions are selected such that

ke0 (0)k 6= 0 (47)

Proof: In order to prove Theorem 1, we deÞne the non-
negative function

V (t) , 1

2

µ
eT e

1− eT e

¶
+
1

2
yTJy +

1

2
�θ

T
Γ−1�θ (48)

where y(t) ∈ <3 is deÞned as

y , Pr (49)

and P (e, e0) was deÞned in (29). After taking the time
derivative of (48), and then making the appropriate substi-
tutions from (28), (42), (45), and (49), we obtain

úV (t) = eT ė−eT eeT ė+eT eeT ė

(1−eT e)2
− rTC∗r + rTY �θ

−rTKr − rT e

(1−eT e)2
+ 1

2
rT úJ∗r − �θT

Y T (·) r. (50)

After substituting (39) into (50) for úe(t) and then canceling
common terms, we have that

úV (t) =
−eTαe

(1− eT e)2
− rTKr (51)

where Property 1 has been utilized.

Given (22), (23), and (47), it is clear that ke(0)k < 1. From
(48) and (51), it is straightforward to see that

0 ≤ V (t) ≤ V (0) <∞; (52)

hence, we can see from (48) that y(t), �θ (t) ∈ L∞ and
ke(t)k < 1 for all time. Since ke(t)k < 1 for all time, we can
conclude from (22) that ke0 (t)k 6= 0 for all time; hence, we
know from (36) that P deÞned in (29) has full rank for all
time. Since y(t) ∈ L∞ and P has full rank for all time, we
can use (49) to show that r(t) ∈ L∞. Since r(t) ∈ L∞, we
can use (39) to show that e(t), úe(t) ∈ L∞ [6]. Standard sig-
nal chasing arguments can now be employed to show that
all other signals remain bounded. From (51) and (52), we
know that r(t) ∈ L2 while from (45) it is easy to show that
úr(t) ∈ L∞. We can now utilize Barbalat�s Lemma [16, 6] to
prove that

lim
t→∞

r (t) = 0. (53)

Given the result of (53), we can use (39) to obtain the Þrst
result of (46), and also show that lim

t→∞
úe (t) = 0 [6]. Hence,

from (25) and the fact that P has full rank, we can prove
the second result of (46) . ¤

4 Adaptive Output Feedback Controller

In this section, we redesign the adaptive controller under
the constraint that velocity measurements are not available.
In order to facilitate the subsequent stability analysis, we
deÞne an auxiliary error signal, denoted by η(t) ∈ <3, as
follows

η , úe+ e+ ef (54)

where ef (t) ∈ <3 is a Þlter signal which is yet to be de-
signed.

4.1 Control Torque Input Design
Motivated by the desire to design a control torque input
that is independent of velocity measurements, we construct
the Þlter signal, ef (t), as follows

ef = −ke+ p (55)

where k ∈ < is a positive, constant control gain, and p(t) ∈
<3 is generated via the following dynamic expression

úp = − (k + 1) p+ k2e+ e

(1−eT e)2 , p (0) = ke (0) . (56)



Based on the subsequent stability analysis and structure of
(30), we design the control input as follows

u∗ = −Wd
�θ + kef − e

(1− eT e)2
(57)

whereWd(ωd, úωd) ∈ <3×6 is a known regression matrix con-
structed according to the following parametrization

Wdθ = −J úωd − 1

2
ω×d Jωd, (58)

�θ(t) is the dynamic update law now designed as·
�θ= ΓWT

d η, (59)
and k is the same control gain deÞned in (55), which is
selected as follows

k =
1

j1
(kN + 1) (60)

where j1 was deÞned in (35), and kN ∈ < is an additional,
positive, constant control gain.

Remark 5 In order to illustrate that �θ(t) can be calculated us-
ing only measurable signals, we Þrst rewrite (59) as the following
integral expression
�θ (t) = �θ(0)

+Γ
R t

0 W
T
d (ωd (σ) , úωd (σ))

¡
úe (σ) + e (σ) + ef (σ)

¢
dσ (61)

After performing integration by parts, (61) can be written in the
following velocity-independent form

�θ (t) = ΓWT
d e+

�θ(0)

+Γ
R t

0

h
WT

d (·) ¡e (σ) + ef (σ)
¢ − úWT

d (·) e (σ)
i
dσ.

(62)

To determine the dynamics for ef (t), we take the time deriv-
ative of (55) and then substitute (56) into the resulting ex-
pression to obtain

úef = −k úe− (k + 1) p+ k2e+
e

(1− eT e)2
. (63)

After rearranging (55), we can substitute for p(t) in (63)
and then simplify the resulting expression to obtain the
following

úef = −kη − ef +
e

(1− eT e)2
(64)

where (54) was utilized. To develop the open-loop expres-
sion for η(t), we take the time derivative of (54), premultiply
the resulting expression by J∗, and then substitute (30) for
J∗ë to obtain

J∗ úη = u∗ −C∗ úe−N∗ + J∗ úe+ J∗ úef . (65)

After utilizing (54) and (64), we can rewrite (65) as follows
J∗ úη = u∗ + (1− k) J∗η − 2J∗ef − J∗e− C∗η

+J∗ e

(1−eT e)2
+ C∗ef + C

∗e−N∗. (66)

After adding and subtracting Wdθ to the right-side of (66)
and substituting (57) for u∗(t), we can obtain the following
expression for the closed-loop error system for η(t)

J∗ úη = χ+Wd
�θ + kef − e

(1− eT e)2
− kJ∗η − C∗η (67)

where �θ(t) was deÞned in (37), and the auxiliary signal
χ(e, e0, ef , η,ωd, úωd) ∈ <3 is deÞned as follows

χ , C∗
¡
ef + e

¢
+ J∗

µ
η − e+ e

(1−eT e)2

¶
−2J∗ef −Wdθ −N∗.

(68)

Remark 6 To facilitate the subsequent stability analysis, we
utilize (68) and (29) to construct the following auxiliary variable

χ , P−Tχ. (69)
Based on the assumptions on the boundedness of the desired tra-
jectory and the structure of (69), we can show that χ can be
upper bounded as follows

χ ≤ ρ (kzk) kzk (70)
where ρ(·) is a positive, nondecreasing function, and the auxil-
iary signals z(t) ∈ <9 and y(t) ∈ <3 are now deÞned as follows

z ,
"

eTp
1− eT e

eT
f yT

#T

(71)
y , Pη. (72)

4.2 Stability Analysis

Theorem 2 Given closed-loop error systems of (54), (59),
(64), and (67), the adaptive controller of (55), (56), (57),
and (62) ensures asymptotic attitude tracking in the sense
that

lim
t→∞

e (t) = 0 and lim
t→∞

�ω(t) = 0, (73)

provided that the initial conditions are selected such that
(47) is satisÞed, and the control gain kN introduced in (60)
is selected according to the following inequality

kN > ρ2

Ãr
λ2

λ1
kx (0)k

!
(74)

where ρ(·) was deÞned in (70), x(t) ∈ <12 is deÞned as
follows

x ,
h
zT �θ

T
iT

, (75)

λ1, λ2 are positive constants deÞned as

λ1 , 1
2 min

©
1, j1,λmin

©
Γ−1

ªª
λ2 , 1

2
max

©
1, j2,λmax

©
Γ−1

ªª
,

(76)

and λmin {·} and λmax {·} represent the minimum and max-
imum eigenvalue of a matrix, respectively.

Proof: To prove the above theorem, we deÞne the non-
negative function

V , 1

2

µ
eT e

1− eT e

¶
+
1

2
eT

f ef +
1

2
yTJy +

1

2
�θ

T
Γ−1�θ. (77)

Based upon the structure of (77) and Property 2, we can
lower and upper bound V (t) as follows

λ1 kxk2 ≤ V ≤ λ2 kxk2 (78)

where x(t) was deÞned in (75). After taking the time deriv-
ative of (77), substituting (72) for y(t), using the deÞnition
of J∗ from (28), substituting (67), and then simplifying the
resulting expression, we obtain

úV =
eT úe

(1− eT e)2
+ eT

f úef +
1

2
ηT úJ∗η + �θT

Γ−1
·
�θ

+ηT

Ã
χ+Wd

�θ + kef − e

(1− eT e)2
− kJ∗η − C∗η

!
.
(79)

After utilizing (54), (64), (69), (72), and Property 1, we can
rewrite (79) as follows

úV = − eT e

(1−eT e)2
− eT

f ef + y
Tχ

−ηT kJ∗η + �θT

Ã
WT

d η + Γ
−1

·
�θ

!
.

(80)

After utilizing (28), (59), and (72), the expression in (80)
can be upper bounded as follows

úV ≤ − eT e

(1− eT e)2
− eT

f ef − kj1 kyk2 + kyk kχk . (81)

After substituting (60), (70), and (71) into (81), we obtain
the following expression

úV ≤ − kzk2 +
£kyk kzk ρ (kzk)− kN kyk2¤ . (82)

After applying the nonlinear damping tool [6] to the brack-
eted term in (82), we obtain

úV ≤ −
µ
1− ρ2 (kzk)

kN

¶
kzk2 . (83)

Note that from (83) we can write

úV ≤ −β kzk2 for kN > ρ2 (kxk) (84)



where β is some positive constant, and we have used the
fact that kxk ≥ kzk , as indicated by (75). Upon utilization
of (78), we can develop a sufficient condition for (84) as
follows

úV ≤ −β kzk2 for kN > ρ2

Ãr
V (t)

λ1

!
. (85)

From (78) and (85), we can see that V (t) is nonnegative
and úV (t) ≤ 0; hence, we can conclude that

0 ≤ V (t) ≤ V (0) <∞. (86)

We now use (78) and (86) to develop a sufficient condition
for (85) as follows

úV ≤ −β kzk2 for kN > ρ2

Ãr
λ2

λ1
kx (0)k

!
. (87)

Given (22), (23), and (47), it is clear that ke(0)k < 1. From
(86) and (51), it is straightforward to see from (77) that
y(t), �θ (t), ef (t) ∈ L∞ and ke(t)k < 1 for all time. Since
ke(t)k < 1 for all time, we can conclude from (22) that
ke0 (t)k 6= 0 for all time; hence, we know from (36) that P
deÞned in (29) has full rank for all time. Since y(t) ∈ L∞
and P has full rank for all time, we can use (72) to show
that η(t) ∈ L∞. We can now utilize the above information
and (54) to show that úe(t) ∈ L∞. Standard signal chas-
ing arguments can now be employed to show that all other
signals remain bounded.

From (84) and (86), we know that z (t) ∈ L2. Given that
all signals are bounded and the fact that ke(t)k < 1 for all
time, we can use (71), (54), (64), and (67) to show that
úz(t) ∈ L∞. We can now utilize Barbalat�s Lemma to prove
that

lim
t→∞

z (t) = 0 for kN > ρ2

Ãr
λ2

λ1
kx (0)k

!
. (88)

Given the result of (88), we can use (25), (54), (71), (72),
and the fact that P has full rank to obtain (73). ¤

5 Conclusion

In this paper, we have presented two adaptive controllers
which address the attitude tracking problem for rigid space-
craft based on the unit quaternion, kinematic representa-
tion. The Þrst controller is a full-state feedback controller
that adapts for the unknown spacecraft inertia matrix and
achieves asymptotic attitude tracking. The adaptive con-
troller is then redesigned to eliminate the need for angu-
lar velocity measurements and still obtains asymptotic at-
titude tracking. Since the proposed controller is based on
Lyapunov stability analysis, several extensions to the pro-
posed work are straightforward. For example, one could
easily use the full-state feedback controller structure to de-
velop variable structure or high-gain/high-frequency robust
controllers that compensate for parametric uncertainty and
additive bounded disturbances, while producing exponen-
tial tracking and uniform ultimate boundedness tracking,
respectively. In addition, one could easily use the out-
put feedback controller structure to develop model-based or
high-gain robust controllers that compensate for parametric
uncertainty and additive bounded disturbances while pro-
ducing exponential tracking and uniform ultimate bound-
edness tracking, respectively. Future plans for this research
will include experimental veriÞcation on a gyroscopic test-
bed.
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