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Abstract

This paper reviews and summarizes existing linkage learning techniques for genetic and
evolutionary algorithms in the literature. It first introduces the definition of linkage in both
biological systems and genetic algorithms. Then, it discusses the importance for genetic and
evolutionary algorithms to be capable of learning linkage, which is referred to as the relationship
between decision variables. Existing linkage learning methods proposed in the literature are
reviewed according to different facets of genetic and evolutionary algorithms, including the
means to distinguish between good linkage and bad linkage, the methods to express or represent
linkage, and the ways to store linkage information. Studies related to these linkage learning
methods and techniques are also investigated in this survey.

1 Introduction

Genetic and evolutionary algorithms have been broadly and successfully applied to solving prob-
lems in numerous domains since they were proposed by Holland (Holland, 1973; Holland, 1975).
As the scale and complexity of problems handled by genetic and evolutionary algorithms increase,
researchers begin to realize that for practical use, certain crucial mechanisms have to be integrated
into the framework of evolutionary computation. Among these crucial mechanisms suggested by
practitioners is the ability to learn linkage, referred to as the relationship between variables. In
the past few decades, there has been growing recognition that effective genetic and evolutionary
computation demands understanding of linkage in order to tackle complicated, large scale prob-
lems (Holland, 1975; Goldberg, 2002). Studies have shown that easy problems can be solved by any
ordinary genetic and evolutionary algorithms, but when harder problems are considered, scalability
has been elusive. As indicated by the results presented in the literature (Goldberg, Korb, & Deb,
1989; Goldberg, Deb, & Thierens, 1993), even separable problems could be exponentially hard if
the knowledge of the variable groups were not available.

2



In order to resolve the issue which is raised because the knowledge of the relationship between
variables is unavailable, a variety of linkage learning techniques have been proposed and developed
to handle the linkage problem, which refers to the need of good building-block linkage. These linkage
learning techniques are so diverse, sophisticated, and highly integrated with the genetic algorithms
that it is a difficult task to review all of them from a simple, unified, and straightforward point of
view. Furthermore, given the importance of linkage learning in genetic and evolutionary algorithms
and the amount of the effort made in this area, an up-to-date global overview of existing linkage
learning techniques is needed not only for reviewing the current status of this field but also for
revealing the potential future direction of research. As a consequence, a comprehensive survey is
in order to serve as a milestone for the progress of research on linkage learning.

The purpose of this survey is to provide different facetwise views of existing linkage learning
techniques as well as to gather the growing literature under a uniform classification. In particular,
the paper reviews existing linkage learning techniques according to following different facets of
genetic and evolutionary algorithms:

• the means to distinguish between good and bad linkage;

• the methods to express or represent linkage;

• the ways to store linkage information.

Moreover, research which are precursors or closely related to these linkage learning techniques are
also investigated.

The next section gives the definition of linkage in both biological systems and genetic algorithms.
It also discusses the importance for genetic algorithms to learn linkage such that the coding traps
can be avoided. Sections 3, 4, and 5 review existing linkage learning techniques according to the
different viewpoints mentioned above. Related research are included in Section 6. Finally, Section 7
summarizes and concludes this paper.

2 Linkage: Definition and Importance

This section first introduces the definition of linkage in both fields of biology and evolutionary
computation. Then, the need to employ the techniques for learning linkage when applying a genetic
algorithm to solve problems is presented.

2.1 What Is Linkage?

The genetic algorithm is a powerful search methodology inspired by natural evolution. It imitates
the procreation process and operates on the principle of the survival of the fittest. Therefore,
understanding the bond and resemblance between the (natural) biology system and the (artificial)
genetic and evolutionary algorithm may be helpful to realize the role and importance of learning
linkage.

In biological systems, linkage refers to the level of association in inheritance of two or more
non-allelic genes that is higher than to be expected from independent assortment (Hartl & Jones,
1998). During meiosis, crossover events might occur between strands of the chromosome that
genetic materials are recombined as shown in Figure 1. Therefore, if two genes are closer to each
other on a chromosome, there is a higher probability that they will be inherited by the offspring
together. Genes are said to be linked when they reside on the same chromosome, and the distance
between each other determines the level of their linkage. Figure 2 gives an illustrative example of
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Figure 1: Meiosis and crossover. The upper part shows meiosis without crossover, and the lower
part shows a crossover event occurs during meiosis.

different genetic linkage between two genes. The closer together a set of genes is on a chromosome;
the more probable it will not be split by chromosomal crossover during meiosis.

When applying genetic algorithms, we usually use strings of characters drawn from a finite al-
phabets as chromosomes and genetic operators to manipulate these artificial chromosomes. Holland
(Holland, 1975) suggested that genetic operators which can learn linkage information for recombin-
ing alleles might be necessary for genetic and evolutionary algorithms to succeed. Many well known
and widely employed crossover operators, including one-point crossover and two-point crossover,
work under the similar situation subject to the linkage embedded in the chromosome representa-
tion as their biological counterparts do. For example, if we have a 6-bit function consisting of two
independent 3-bit subfunctions, three possible coding schemes for the 6-bit chromosome are

C1(A) = a00 a01 a02 a13 a14 a15;

C2(A) = a00 a11 a02 a13 a04 a15;

C3(A) = a00 a01 a12 a13 a14 a05,

where Cn(A) is the coding scheme n for an individual A, and aj
i is the ith gene of A and belongs

to the jth subfunction.
Taking one-point crossover as an example, it is easy to see that genes belonging to the same

subfunction of individuals encoded with C1 are unlikely to be separated by crossover events. How-
ever, if the individuals are encoded with C2, genes of the same subfunction are split almost in
every crossover event. For C3, genes of subfunction 0 are easily to be disconnected, while genes of
subfunction 1 are likely to stay or to be transferred together.

From the viewpoint of genetic algorithms, linkage is used to describe and measure how close
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Figure 2: The different genetic linkage between two genes. The upper part shows that if the genes
are closer, they are likely to maintain the allele configuration. The lower part shows that if the
genes are far away from each other, it is likely for a crossover event to separate them and to change
the configuration.

those genes that belong to a building block are on a chromosome. In addition to pointing out the
linkage phenomenon, Holland (Holland, 1975) also suggested that the chromosome representation
should adapt during the evolutionary process to avoid the potential difficulty directly caused by
the coding scheme, which was identified as coding traps—the combination of loose linkage and
deception among lower order schemata (Goldberg, 1987).

2.2 Linkage Learning as an Ordering Problem

Because encoding the solutions as fixed strings of characters is common in genetic algorithm prac-
tice, it is easy to see that linkage can be identified as the ordering of the loci of genes as the examples
given in the previous section. Furthermore, early genetic algorithm researchers used to consider
the linkage problem as an ordering problem of the chromosome representation and addressed to
the same issue of building-block identification or linkage learning. That is, if a genetic algorithm
is capable of rearranging the positions of genes on the fly during the evolutionary process, the
responsibility of the user to choose a good coding scheme can be alleviated or even eliminated. To
achieve this goal, Bagley (Bagley, 1967) used the (gene number, allele) coding scheme to study the
inversion operator for linkage learning by reversing the order of a chromosome segment but did
not conclude in favor of the use of inversion. Frantz (Frantz, 1972) further investigated the utility
of inversion and reported that inversion was too slow and not very effective.

Goldberg and Bridges (Goldberg & Bridges, 1990) analyzed the performance of a genetic al-
gorithm with an idealized reordering operator. They showed that with an idealized reordering
operator, the coding traps—the combination of loose linkage and deception among lower order
schemata (Goldberg, 1987)—of a fixed chromosome representation can be overcome, and there-
fore, linkage learning can be achieved by an idealized reordering operator. This analysis was later
extended to the tournament selection family, including pairwise tournament selection, S-ary tour-
nament selection, and probabilistic tournament selection (Chen & Goldberg, 2003a). The upper
bound of the probability to apply an idealized reordering operator found in the previous analysis
on proportional selection did not exist when a tournament selection operator was used.

2.3 Why Is Learning Linkage Important?

These genetic algorithms either explicitly or implicitly act on an assumption of a good coding scheme
which can provide tight linkage for genes of a building block on the chromosome. Goldberg, Korb,
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and Deb (Goldberg, Korb, & Deb, 1989) conducted an experiment to demonstrate how linkage
dictated the success of a simple genetic algorithm. They used an objective function composed of
10 uniformly scaled copies of an order-3 fully deceptive function (Ackley, 1987; Goldberg, 1989a;
Goldberg, 1989b; Deb & Goldberg, 1993; Deb, Horn, & Goldberg, 1993; Deb & Goldberg, 1994).
Three types of codings schemes were tested: tightly ordering, loosely ordering, and randomly
ordering. The tightly ordering coding scheme is similar to C1 described in the previous section.
Genes of the same subfunction are arranged adjacent to one another on the chromosome. The
loosely ordering coding scheme is like C2, all genes are distributed evenly so that an overall loosest
linkage can be achieved. The randomly ordering coding scheme arranges the genes according to
an arbitrary order. The obtained results showed that the success of a simple genetic algorithm
depends very much on the degree of linkage of building blocks. If the chromosome representation
provides tight linkage, a simple genetic algorithm can solve difficult problems. Otherwise, simple
genetic algorithms can easily fail. Therefore, for simple genetic algorithms, tight linkage or a good
coding scheme is indeed far more important than it is usually considered.

In addition to the experiment done by Goldberg, Korb, and Deb (Goldberg, Korb, & Deb,
1989), some other studies (Thierens, 1995; Goldberg, Deb, & Thierens, 1993; Goldberg, 1989c)
also showed that genetic algorithms work very well if the genes belonging to the same building
block are tightly linked together on the chromosome. Otherwise, if these genes spread all over
the chromosome, building blocks are very hard to be created and easy to be destroyed by the
recombination operator. Genetic algorithms cannot perform well under such circumstances. In
practice, without prior knowledge to the problem and linkage information, it is difficult to guarantee
that the coding scheme defined by the user always provides tight building blocks, although it is a
key to the success of genetic algorithms.

It is clear that for simple genetic algorithms with fixed genetic operators and chromosome
representations, one of the essential keys to success is a good coding scheme that puts genes
belonging to the same building blocks together on the chromosome to provide tight linkage of
building blocks. The linkage of building blocks dominates all kinds of building-block processing,
including creation, identification, separation, preservation, and mixing. However, in the real world,
it is usually difficult to know such information a priori. As a consequence, handling linkage for
genetic algorithms to succeed is very important.

3 Unimetric Approach vs. Multimetric Approach

In this section and the following two sections, we will review existing linkage learning techniques
according to different facets and aspects, including the means to distinguish between good link-
age and bad linkage, the methods to express or represent linkage, and the ways to store linkage
information. First, we start with classifying the linkage learning techniques based on the means
employed in the algorithm to distinguish between good linkage and bad linkage in this section.

As a part of evolutionary computation, biologically inspired linkage learning techniques grow out
of “fitness only” measures and try to make use of only what is provided by the problem. However,
computer science and data mining approaches strive to best describe the population statistics, and
therefore, artificial criteria which are not directly related to the problem are usually employed to
judge the quality of the linkage configuration. The ways of thinking behind these two kinds of
approaches are fundamentally different, and it is the reason we propose this classification criterion.

According to the means to distinguish between good linkage and bad linkage, we can roughly
classify existing genetic and evolutionary approaches into the following two categories:

• Unimetric approach. A unimetric approach acts solely on the fitness value given by the
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fitness function. No extra criteria or measurements are involved for deciding whether an
individual or a model is better.

• Multimetric approach. In contrast to unimetric approaches, a multimetric approach em-
ploys extra criteria or measurements other than the fitness function given by the problem for
judging the quality of individuals or models.

Unimetric approaches, loosely modeled after natural environments, are believed to be more biolog-
ically plausible, while multimetric approaches are of artificial design and employ certain bias which
does not come from the problem at hand to guide the search. Specifically, the reasons and motiva-
tion to propose this classification to discriminate unimetric approaches and multimetric approaches
are two-fold:

1. Biological plausibility: One of the most important reasons to propose this classification is
that we believe nature appears unimetric. Because the “fitness” of an individual in nature
depends on whether or not it can adapt to its environment and survive in its environment,
there is obviously no other extra measurement or criterion to enforce or guide the evolution of
the species to go to certain direction, such as becoming as simple as it can be. However, given
the current research results in this field that most good evolutionary approaches are multi-
metric ones, which utilize one or more user-defined measurements to determine the solution
quality, such as preference for simpler models, we would like to separate unimetric approaches
from multimetric ones and to know if there are limits to performance of unimetric methods.
The theoretical results obtained on unimetric approaches might be of some significance or
interests in biology, although the computational models are highly simplified.

2. Technological motivations: In addition to the biological viewpoints, there are also techno-
logical motivations to classify existing linkage learning techniques into unimetric approaches
and multimetric approaches. For most multimetric methods, the algorithmic operations are
serial in design, while unimetric methods are oftentimes easy to parallelize. The multimetric
algorithms usually require access to all or a large part of the individuals in the population at
the same time. This kind of requirement removes potential parallel advantages because it ei-
ther incurs a high communication cost due to the necessary information exchange or demands
a completely connected network topology to lower the communication latency. Therefore, it
may be a foreseeable bottleneck when handling problems of a large number of variables. On
the other hand, although many unimetric methods, such as the linkage learning genetic algo-
rithm, do not perform as well as multimetric ones, they oftentimes use pairwise operators or
operators that operate on only a few individuals. Hence, they are relatively easy to parallelize,
and a wide range of parallelization methods are applicable.

According to these motivations, the means to distinguish between good linkage and bad linkage is
adopted to classify existing linkage learning techniques.

For example, because all the simple genetic algorithms (Holland, 1975; De Jong, 1975; Goldberg,
1989c) and the linkage learning genetic algorithm (LLGA) (Harik & Goldberg, 1996; Harik, 1997;
Lobo, Deb, Goldberg, Harik, & Wang, 1998; Lobo, Harik, & Goldberg, 1998; Harik & Goldberg,
2000; Chen & Goldberg, 2002; Chen & Goldberg, 2003b; Chen & Goldberg, 2004; Chen, 2004) use
only fitness values to operate, they are definitely considered as unimetric approaches. Moreover, the
simple genetic algorithms with inversion (Bagley, 1967; Rosenberg, 1967; Kennedy & Osborn, 2001;
Sehitoglu & Üçoluk, 2003; Simōes & Erensto, 1999), punctuation marks (Schaffer & Morishima,
1987), masked crossover (MX) (Louis & Rawlins, 1991), shuffle crossover (SHX) (Eshelman &
Schaffer, 1994), adaptive uniform crossover (AUX) (White & Oppacher, 1994), metabits (Levenick,
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1995), selective crossover (SX) (Vekaria & Clack, 1998; Vekaria & Clack, 1999b; Vekaria & Clack,
1999a), or linkage evolving genetic operator (LEGO) (Smith & Fogarty, 1995; Smith & Fogarty,
1996; Smith, 1998), are also included in unimetric approaches because no extra measurements
are utilized in these algorithms for comparing the solution or model quality. A more detailed
introduction for the adaptive crossover operators mentioned above can be found elsewhere (Spears,
1997). Furthermore, introducing non-coding segments, which was previously called introns, into the
chromosome representation can also achieve linkage learning (Levenick, 1991; Forrest & Mitchell,
1993; Wu, Lindsay, & Smith, 1994; Wu & Lindsay, 1995; Wu & Lindsay, 1996; Wu & Lindsay,
1997; Mayer, 1999; Burke, De Jong, Grefenstette, Ramsey, & Wu, 1999; Lee & Antonsson, 2000;
Haynes, 1999), and the approaches with non-coding segments are usually unimetric. As a side note,
adaptive crossover and non-segments are also widely used in genetic programming (Angeline, 1996;
Iba & de Garis, 1996; Wineberg & Oppacher, 1996; Andre & Teller, 1996; Nordin, Francone, &
Banzhaf, 1996; Levenick, 1999; Iba & Terao, 2000).

On the other hand, most advanced genetic algorithms today, including the gene expression
genetic algorithm (gemGA) (Kargupta, 1996a; Kargupta, 1996b; Kargupta & Goldberg, 1996;
Kargupta, 1997; Kargupta, Goldberg, & Wang, 1997; Kargupta & Bandyopadhyay, 1998; Bandy-
opadhyay, Kargupta, & Wang, 1998), the estimation of distribution algorithms (EDAs) (Mühlenbein
& Paaß, 1996; Mühlenbein, 1997; Mühlenbein, Mahnig, & Ochoa, 1999), the mutual-information-
maximizing input clustering (MIMIC) algorithm (Bonet, Isbell, & Viola, 1996), the combining
optimizers with mutual information trees (COMIT) method (Baluja & Davies, 1997; Baluja &
Davies, 1998; Baluja, 1997), the bivariate marginal distribution algorithm (BMDA) (Pelikan &
Mühlenbein, 1999), the Bayesian optimization algorithm (BOA) (Pelikan, Goldberg, & Cantú-Paz,
1999; Pelikan, Goldberg, & Cantú-Paz, 2000; Pelikan & Goldberg, 2001; Pelikan, 2002), the factor-
ized distribution algorithm (FDA) (Mühlenbein & Mahnig, 1999b; Mühlenbein, Mahnig, & Ochoa,
1999; Mühlenbein & Mahnig, 1999a; Santana, Ochoa-Rodriguez, & Soto, 2001), the mixed IDEA
(Bosman & Thierens, 1999; Bosman & Thierens, 2000; Bosman & Thierens, 2002a; Bosman &
Thierens, 2001a; Bosman & Thierens, 2001b; Bosman & Thierens, 2002b), the extended compact
genetic algorithm (ECGA) (Harik, 1999; Lobo & Harik, 1999; Sastry & Goldberg, 2000; Sastry,
2001), the extended compact genetic programming (ECGP) (Sastry & Goldberg, 2003), edge his-
togram based sampling algorithm (EHBSA) (Tsutsui, Pelikan, & Goldberg, 2001; Tsutsui, 2002),
and the like, are classified as multimetric approaches because they explicitly employ extra mecha-
nisms or measurements for discriminating between good linkage and bad linkage. In addition to the
obvious classification, approaches such as the messy genetic algorithm (mGA) (Goldberg, Korb,
& Deb, 1989; Goldberg, Deb, & Korb, 1990; Deb, 1991; Deb & Goldberg, 1991), the fast messy
genetic algorithm (fmGA) (Goldberg, Deb, Kargupta, & Harik, 1993; Kargupta, 1995; Merkle,
1996), the ordering messy genetic algorithm (OmeGA) (Knjazew, 2000a; Knjazew, 2000b; Knjazew
& Goldberg, 2000a; Knjazew & Goldberg, 2000b; Knjazew, 2002), the structured messy genetic
algorithm (Halhal, Walters, Savic, & Ouazar, 1999), and the incremental commitment genetic algo-
rithm (Watson & Pollack, 1999) are in between the two classes. The members of the messy genetic
algorithm family compare individuals with the fitness value, but the use of building-block filtering
indeed builds an implicit extra mechanism that prefers shorter building blocks into these genetic
and evolutionary algorithms.

4 Physical Linkage vs. Virtual Linkage

After classifying the linkage learning techniques according to the facet of how they distinguish
between good linkage and bad linkage, in this section, we discuss the aspect of the methods these
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algorithms use to express or represent linkage.
As the development of evolutionary computation progresses, early linkage learning schemes

that were biologically inspired usually represent linkage physically with the representation, such as
proximity of genes on a chromosome. When computer science and data mining techniques start
to get involved in the linkage learning mechanism, linkage are quite often expressed in a virtual
way, such as probabilistic models. We adopt this classification criterion because such different
designs indicate the trade-off between the biological inspiration and the quest for the algorithmic
improvement.

According to the methods to represent linkage, we can broadly classify existing genetic and
evolutionary approaches into the following two categories:

• Physical linkage. A genetic and evolutionary algorithm is said to use physical linkage
if in this algorithm, linkage emerges from physical locations of two or more genes on the
chromosome.

• Virtual linkage. On the other hand, if a genetic and evolutionary algorithm uses graphs,
groupings, matrices, pointers, or other data structures that control the subsequent pairing or
clustering organization of decision variables, it is said to use virtual linkage.

Physical linkage is closer to biological plausibility and inspired directly by it, while virtual linkage
is an engineering or computer science approach to achieve the desired effect most expeditely. In
particular, similar to the reasons that were discussed in the previous section, the motivations to
look into this classification are also two-fold:

1. Biological plausibility: Because genetic and evolutionary algorithms are search techniques
based on principles of evolution, it is one of our main interests to learn from nature and
to borrow useful insights, inspirations, or mechanisms from genetics or biology. Given that
the natural evolution apparently proceeds via genetic operations on the genotypic structures
of all creatures, genetic and evolutionary algorithms that employ the mechanisms which
are close to that in nature should be recognized and emphasized. By pointing out this
feature or characteristic of the genetic and evolutionary algorithms that use the mechanisms
existing in biological systems, we might be able to theorize certain genetic operations in
biological systems with those genetic algorithms using physical linkage, such as the messy
genetic algorithm and the linkage learning genetic algorithm.

2. Algorithmic improvement: From a standpoint of efficient or effective computation, genetic
and evolutionary algorithms using virtual linkage usually yield better performance than those
using physical linkage. Together with the biological point of view, this might imply two
possible situations:

(a) Using virtual linkage in genetic algorithms can achieve a better performance. This kind
of artificial systems can do better than their biological counterparts on conducting search
and optimization;

(b) The power of natural systems has not been fully understood and utilized yet. More
critical and essential mechanisms existing in genetics and biology should be further
examined and integrated into the algorithms to improve the performance.

Hence, for the purpose of search and optimization, in the first situation, we should focus on de-
veloping better algorithms that employ virtual linkage, such as the probabilistic model-building
genetic algorithms (PMBGAs) or EDAs (Larrañaga & Lozano, 2001; Pelikan, Goldberg, &
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Lobo, 2002). In the other situation, we should appropriately choose useful genetic mechanisms
and integrate these mechanisms into the algorithms.

According to these motivations, the methods to express or represent linkage is used to classify
existing linkage learning techniques in this section.

For example, all the genetic algorithms use fixed chromosome representations without any
extra graph, grouping, matrix, pointer, or data structure to describe linkage in principle fall into
the category of physical linkage. These algorithms include the ones using binary strings, integer
strings, or real-variable strings as chromosomes as long as they use the chromosome alone for
operations and evolution. Another major set of algorithms belonging to the category of physical
linkage is the genetic algorithms that use the (gene number, allele) coding scheme (Bagley, 1967;
Rosenberg, 1967). This set of genetic algorithms includes inversion (Bagley, 1967; Rosenberg,
1967; Kennedy & Osborn, 2001; Sehitoglu & Üçoluk, 2003; Simōes & Erensto, 1999), the messy
genetic algorithm (Goldberg, Korb, & Deb, 1989; Goldberg, Deb, & Korb, 1990; Deb, 1991; Deb
& Goldberg, 1991), the fast messy genetic algorithm (Goldberg, Deb, Kargupta, & Harik, 1993;
Kargupta, 1995; Merkle, 1996), and the linkage learning genetic algorithm (Harik & Goldberg,
1996; Harik, 1997; Lobo, Deb, Goldberg, Harik, & Wang, 1998; Lobo, Harik, & Goldberg, 1998;
Harik & Goldberg, 2000; Chen & Goldberg, 2002; Chen & Goldberg, 2003b; Chen & Goldberg,
2004; Chen, 2004).

Furthermore, because probabilistic models are employed to represent linkage of variables in
PMBGAs and EDAs, the category of virtual linkage includes all PMBGAs and EDAs (Mühlenbein
& Paaß, 1996; Mühlenbein, 1997; Mühlenbein, Mahnig, & Ochoa, 1999; Larrañaga & Lozano, 2001;
Pelikan, Goldberg, & Lobo, 2002), such as the mutual-information-maximizing input clustering al-
gorithm (Bonet, Isbell, & Viola, 1996), the combining optimizers with mutual information trees
method (Baluja & Davies, 1997; Baluja & Davies, 1998; Baluja, 1997), the bivariate marginal dis-
tribution algorithm (Pelikan & Mühlenbein, 1999), the Bayesian optimization algorithm (Pelikan,
Goldberg, & Cantú-Paz, 1999; Pelikan, Goldberg, & Cantú-Paz, 2000; Pelikan & Goldberg, 2001;
Pelikan, 2002), the factorized distribution algorithm (Mühlenbein & Mahnig, 1999b; Mühlenbein,
Mahnig, & Ochoa, 1999; Mühlenbein & Mahnig, 1999a; Santana, Ochoa-Rodriguez, & Soto, 2001),
the mixed IDEA (Bosman & Thierens, 1999; Bosman & Thierens, 2000; Bosman & Thierens, 2002a;
Bosman & Thierens, 2001a; Bosman & Thierens, 2001b; Bosman & Thierens, 2002b), and the ex-
tended compact genetic algorithm (Harik, 1999; Lobo & Harik, 1999; Sastry & Goldberg, 2000;
Sastry, 2001). It also contains the probabilistic inference framework for modeling crossover opera-
tors (Salman, Mehrotra, & Mohan, 1998; Salman, Mehrotra, & Mohan, 1999; Salman, Mehrotra, &
Mohan, 2000), such as general linkage crossover (GLinX) and adaptive linkage crossover (ALinX),
and the linkless self-distancing GA (Greene, 2003).

5 Distributed Model vs. Centralized Model

The last facet of the genetic and evolutionary algorithm we explore in this work for classifying the
linkage learning techniques is the ways for these approaches to store linkage information. For the
biologically inspired linkage learning schemes, the evolved linkage models tend to be distributed in
each individual, which are similar to those observed in nature. However, in order to facilitate the
computational process, the linkage models generated by the methods utilizing computer science
and data mining approaches are usually centralized as global models. To gain further insights into
the nature and property of linkage, we propose this criterion to classify existing linkage learning
methods.
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Based on the ways to store linkage information, we can divide existing genetic and evolutionary
approaches into the following two categories:

• Distributed Model. If a genetic and evolutionary algorithm has no centralized storage of
linkage information and maintains the genetic-linkage model in a distributed manner, we call
such a genetic algorithm a distributed-model approach.

• Centralized Model. In contrast to distributed-model approaches, a centralized-model ap-
proach utilizes a centralized storage of linkage information, such as a global probabilistic
vector or dependency table, to handle and process linkage.

Similar to the unimetric approach, distributed-model approaches are also loosely modeled after evo-
lutionary conditions in nature and more biologically plausible, while centralized-model approaches
are developed to achieve the maximum information exchange and to obtain the desired results. The
reasons to propose this classification to show the difference between distributed-model approaches
and centralized-mode approaches are presented as follows:

1. Biological plausibility: Once more, we propose this classification in order to put an em-
phasis on the similarities as well as the dissimilarities between the genetic algorithms and
the biological systems. Apparently, there exists no centralized genetic-linkage model in na-
ture. Genotypes are distributed on all creatures or individuals. As described in the previous
sections, genetic algorithms fall in the category of distributed model might serve as highly
simplified computation models which can give insight of the way nature or evolution works.

2. Computational motivations: On the other hand, based on the classification, centralized-
model approaches should be expected to have better performance when executing compu-
tation, such as search or optimization, because by centralizing the genetic-linkage model,
genetic-linkage information existing in the population gets well mixed and exchanged in very
little time compared to that in a distributed-model approach. Therefore, centralized-model
approaches have such an edge to outperform distributed-model. However, this advantage
might also be a disadvantage for centralized-model approaches. Centralized-model approaches
are serial in nature, and they are very hard to parallelize. Distributed-model approaches are
parallel by design. Thus, distributed-model approaches might have better scalability when
handling large-scale problems.

According to these reasons, the ways to store linkage information is adopted to classify the linkage
learning techniques.

For example, simple genetic algorithms are distributed-model approaches because any informa-
tion existing in the population is stored in a distributed manner over the individuals. The linkage
learning genetic algorithm (Harik & Goldberg, 1996; Harik, 1997; Lobo, Deb, Goldberg, Harik, &
Wang, 1998; Lobo, Harik, & Goldberg, 1998; Harik & Goldberg, 2000; Chen & Goldberg, 2002;
Chen & Goldberg, 2003b; Chen & Goldberg, 2004; Chen, 2004), the messy genetic algorithm (Gold-
berg, Korb, & Deb, 1989; Goldberg, Deb, & Korb, 1990; Deb, 1991; Deb & Goldberg, 1991), the
fast messy genetic algorithm (Goldberg, Deb, Kargupta, & Harik, 1993; Kargupta, 1995; Merkle,
1996), and the gene expression messy genetic algorithm (gemGA) (Kargupta, 1996a; Kargupta,
1996b; Kargupta & Goldberg, 1996; Kargupta, 1997; Kargupta, Goldberg, & Wang, 1997; Kar-
gupta & Bandyopadhyay, 1998; Bandyopadhyay, Kargupta, & Wang, 1998) also belong to this
category for the same reason. Moreover, the linkage identification procedures proposed in the
literature, including the linkage identification by nonlinearity check (LINC) (Munetomo & Gold-
berg, 1998b; Munetomo & Goldberg, 1998a), the Identifying composability using group perturbation
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(gLINC) (Coffin & Clack, 2006), the linkage identification by non-monotonicity detection (LIMD)
(Munetomo & Goldberg, 1999a; Munetomo & Goldberg, 1999b), the linkage identification based
on epistasis measures (LIEM) (Munetomo, 2002a; Munetomo, Tsuji, & Akama, 2002; Munetomo,
Murao, & Akama, 2003), the linkage identification with epistasis measure considering monotonicity
conditions (LIEM2) (Munetomo, 2002b), the Linkage identification by nonlinearity check for real-
coded genetic algorithms (LINC-R) (Tezuka, Munetomo, & Akama, 2004), and the Dependency
detection for distribution derived from df (DDDDD or D5) (Tsuji, Munetomo, & Akama, 2004;
Tsuji, Munetomo, & Akama, 2005; Tsuji, Munetomo, & Akama, 2006) as well as the collective
learning genetic algorithm (CLGA) (Riopka & Bock, 2000; Riopka, 2002) are in this class.

Furthermore, similar to the category of virtual linkage, the centralized-model approaches include
most PMBGAs and EDAs (Mühlenbein & Paaß, 1996; Mühlenbein, 1997; Mühlenbein, Mahnig, &
Ochoa, 1999; Larrañaga & Lozano, 2001; Pelikan, Goldberg, & Lobo, 2002), such as the mutual-
information-maximizing input clustering algorithm (Bonet, Isbell, & Viola, 1996), the combining
optimizers with mutual information trees method (Baluja & Davies, 1997; Baluja & Davies, 1998;
Baluja, 1997), the bivariate marginal distribution algorithm (Pelikan & Mühlenbein, 1999), the
Bayesian optimization algorithm (Pelikan, Goldberg, & Cantú-Paz, 1999; Pelikan, Goldberg, &
Cantú-Paz, 2000; Pelikan & Goldberg, 2001; Pelikan, 2002), the factorized distribution algorithm
(Mühlenbein & Mahnig, 1999b; Mühlenbein, Mahnig, & Ochoa, 1999; Mühlenbein & Mahnig,
1999a; Santana, Ochoa-Rodriguez, & Soto, 2001), the mixed IDEA (Bosman & Thierens, 1999;
Bosman & Thierens, 2000; Bosman & Thierens, 2002a; Bosman & Thierens, 2001a; Bosman &
Thierens, 2001b; Bosman & Thierens, 2002b), and the extended compact genetic algorithm (Harik,
1999; Lobo & Harik, 1999; Sastry & Goldberg, 2000; Sastry, 2001), and the like. The proba-
bilistic inference framework for modeling crossover operators (Salman, Mehrotra, & Mohan, 1998;
Salman, Mehrotra, & Mohan, 1999; Salman, Mehrotra, & Mohan, 2000), such as the general linkage
crossover and the adaptive linkage crossover, the dependency structure matrix driven genetic algo-
rithm (DSMGA) (Yu, Goldberg, Yassine, & Chen, 2003a; Yu, Goldberg, Yassine, & Chen, 2003b;
Yu & Goldberg, 2004), and the linkless self-distancing genetic algorithm (Greene, 2003), are also
considered as centralized-model approaches.

6 Related Research

In this section, research related to the linkage learning techniques classified in the previous sections
of this paper are presented. These mechanisms, operators, or theoretical frameworks might be
applied in genetic and evolutionary algorithms to learn linkage in the future or give a better
understanding of linkage learning in theory.

First of all, based on the idea of using the inversion operator with the (gene number, allele)
coding scheme, permutation-based operators or methods can potentially be utilized for learning
linkage. These operators and methods include partially mapped crossover (PMX) (Goldberg &
Lingle, 1985), order crossover (OX) (Davis, 1985), cycle crossover (CX) (Davis, 1985), edge re-
combination (ER) (Whitley, Starkweather, & Fuquay, 1989), enhanced edge recombination (EER)
(Starkweather, McDaniel, Mathias, Whitley, & Whitley, 1991), uniform ordering crossover (UOX)
(Davis, 1991), relative ordering crossover (ROX) (Kargupta, Deb, & Goldberg, 1992), and the
random keys (Bean, 1994). With the (gene number, allele)-style coding or other appropriate per-
mutation coding schemes, these genetic operators might help genetic and evolutionary algorithms
to achieve linkage learning.

Many linkage learning techniques presented in the previous sections employ certain kinds of
grouping or clustering methodologies in order to identify building blocks. For tackling the clus-
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tering problem, Falkenauer (Falkenauer, 1991; Falkenauer, 1994b) proposed the grouping genetic
algorithm (GGA) specifically for solving clustering problems. GGA uses a specially designed chro-
mosome representation and the grouping crossover operator such that clustering problem can be
naturally handled. Although GGA has no linkage learning mechanism in the context of this sur-
vey, potentially, GGA can be employed as a linkage group identifying method for learning linkage.
Because of its nature, GGA has been applied to grouping-oriented problems, including the bin
packing problem (Falkenauer & Delchambre, 1992; Falkenauer, 1994a; Falkenauer, 1996), the equal
pile problem (Falkenauer, 1995), and other real-world problems (Falkenauer, 1999).

Other than methods and operators, theoretical research regarding linkage can be found in the lit-
erature. Heckendorn and Alden proposed a series of theories on identifying linkage via limited prob-
ing (Heckendorn & Wright, 2003; Heckendorn & Wright, 2004). Prügel-Bennett (Prügel-Bennett,
2001) presented a statistical framework to model the linkage dynamics of a genetic algorithm with
ranking selection, two-point crossover, and mutation on the Onemax problem. Auto-correlation
and cross-correlation among genes were utilized to construct the linkage dynamics. Analyses of
applying a reordering operator with different selection schemes on a GA-hard problem were also
provided elsewhere (Goldberg & Bridges, 1990; Chen & Goldberg, 2003a). An idealized reordering
operator and the genetic algorithm were modeled and analyzed with a set of difference equations.
For studying the inversion operator, (Hill & O’Riordan, 2003) proposed the use of problem gen-
erators to observe the probability for inversion. Finally, previous surveys related to linkage and
linkage learning are available in the literature (Kargupta & Bandyopadhyay, 2000; Smith, 2002).

If the problem domain knowledge is available for creating appropriate chromosome represen-
tations or designing suitable genetic operators, research can also be found in the literature to
incorporate the priori knowledge in the genetic and evolutionary algorithms. Bui and Moon (Bui &
Moon, 1993) proposed the Hyperplane Synthesis procedure, which employs the depth-first-search
(DFS) and the breadth-first-search (BFS) tree traversal algorithms on the graph representation
of the problem for defining good chromosome representations (Bui & Moon, 1994a; Bui & Moon,
1995; Moon & Kim, 1997). The proposed DFS/BFS gene arrangement procedure has been suc-
cessfully applied to a variety of problems, including the traveling salesman problem (TSP) (Bui &
Moon, 1994b), graph partitioning (Bui & Moon, 1996), circuit ratio-cut partitioning (Bui & Moon,
1998), and VLSI circuit partitioner (Moon & Kim, 1998; Moon, Lee, & Kim, 1998). In additional
to creating an appropriate chromosome encoding scheme, natural crossover was proposed (Kahng
& Moon, 1995) for problems that have strong geographical linkage. Natural crossover has been
used to optimize the artificial neural networks (Kim & Moon, 2002), the vehicle routing problem
(Jung & Moon, 2002a), the fixed channel assignment problem (Park, Kim, & Moon, 2002), and
TSP (Jung & Moon, 2000; Jung & Moon, 2002b) as well. Similar to natural crossover, Voronoi
quantized crossover (VQX) was proposed to solve TSP (Seo & Moon, 2002) and the sequential
ordering problem (Seo & Moon, 2003a). Instead of using free curves, VQX uses the concept of
Voronoi diagrams to swap the geographical regions in order to preserve the geographical linkage
within the underlying problem. A more complete survey on chromosomal structures that exploit
topological linkage can be found elsewhere (Seo & Moon, 2003b).

7 Conclusions

As pointed out by Holland and verified by a number of studies, learning linkage is essential to
the success of genetic and evolutionary algorithms if the prior knowledge to the problem is not
available for designing a chromosome representation that provides good building block linkage.
Recognizing the importance of solving the linkage problem, many linkage learning techniques have
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been proposed in the literature to tackle the linkage problem. These methods adopt a variety of
mechanisms for linkage detecting, learning, and utilization. In this paper, we reviewed these linkage
learning techniques from three different aspects: (1) the means to distinguish between good linkage
and bad linkage; (2) the methods to express or represent linkage; (3) the ways to store linkage
information. Research closely related these linkage learning techniques were also included.

In addition to the classification proposed in this paper, according to the time line on which the
techniques included in this paper were proposed, we can observe two directions: (1) using the simple
chromosome representation with the extra information about linkage groups; (2) using the complex
model builders to capture linkage in probabilistic models. On the one hand, fixed representations
are easier for genetic operators to manipulate. As long as the linkage groups are flexible enough
to express the interaction among genes of the problem, using a simple representation with flexible
linkage groups may be a good choice between cost and effectiveness. On the other hand, if the
problem is too complicated for a simple representation, those complex model builders may be the
only way to solve such difficult problems.

The research field of genetic and evolutionary computation is deeply inspired by nature, biology,
and evolution. Every technique or methodology proposed in this field serves the following purposes:
achieving excellent computational performance and/or gaining better understandings of nature.
Integrating the concept of genetic linkage into evolutionary algorithms creates the research branch
of linkage learning methodologies as well as leads us to investigate the applicability of observed
phenomena in biology to computation. Overall, from nature, we may learn to develop general
computational frameworks which can handle a broad rage of problems, and from the development of
these frameworks, perhaps we can also further human knowledge to nature, biology, and evolution.
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