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Abstract—The two key limiting factors facing wireless systems
today are multipath interference and multiuser interference. In
this context, a challenging signal processing problem is the joint Y
space-time equalization of multiple digital signals transmitted P
over multipath channels. We propose a blind approach that does T —
not use training sets to estimate the transmitted signals and V Yf
the space-time channel. Instead, this approach takes advantage s, , \/ space | .3,
of spatial and temporal oversampling techniques and the finite {11} time
alphabet property of digital signals to determine the user symbol : equalizer
sequences. The problem of channels with largely differing and Y \/// YM

9alt)

T

ill-defined delay spreads is discussed. The proposed approach is Sqg.« — S0,k

tested on actual channel data. {1}

L

I. INTRODUCTION /

challenging problem in signal processing is the blind Fig. 1. Multiray scenario in wireless communications.
A joint space-time equalization of multiple digital signals

transmitted over multipath channels. An important area whetgywever, in recent years, it became gradually known that
such a problem arises is wireless (mobile) communicatiortﬁgim signals can also be separated and equalideily,
Consider a scenario where several users are trying to talk tp& ithout the aid of training sequences, by exploiting
central base station, which has several antennas (viz., Fig. ik underlying structure of the signals. Although the use
A space-time equalizer at the base station combines two Sigafa'training sequences is an inherently more robust way to
processing aspectsqualization(or echo canceling) to combatestimate the channel, there are several reasons for studying
the intersymbol interference due to large-delay multipath apginqg algorithms, aside from the obvious academic and military
source separatioto combat cochannel interference (CCI). Th,stivations. Most notably, adding unnecessary training bits is
CCI might be interfering signals at the same frequency frofgjrect waste of the available bandwidth. In addition, training
neighboring communication cells, or we might intentionallys ot efficient in rapidly time-varying channels or in protocols
allow multiple users at the same fr_equency in order to increggy, very small data packages, such as the uplink of wireless
the system capacity. The latter IS known_ as space d'V'S'f’é]etypes in PCS or in distributed networks. Training requires
multiple access (SDMA) because it essentially separates uss%;ﬁchronization, which is not always available or feasible

based on differences in location. in multiuser scenarios. Finally, the insights gained are also

Cu_rrent communication systems such as IS-54 and G plicable to other systems such as CDMA, where it might be
require some amount of equalization (up to five symbol perio ed to improve the near-far resistance

n GSM and up to one symbol period in IS'5.4) “but are Blind algorithms have now become a very active research
not designed to handle cochannel users. To assist “classic

single-user channel identification algorithms, a fair numb oo In particular in the context of digital communication
gie-u . gon ' eéllgnals, where there are several leverages for solving the blind
of training symbols are incorporated in the data packe

Wﬁite impulse response, multiple inputs, multiple outputs (FIR-
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of digital signals. For equalization, this has been exploitetbmparing the proposed approach to a similar technique in
in decision-directed adaptive algorithms [10]-[13] as well aghich the channel is identified first and subsequently inverted
in joint channel estimation and sequence detection [14], [1%¢f. [7]) and addressing the case with differing and ill-defined
Several iterative algorithms for the separation of instantaneatigannel lengths.
superpositions of multiple finite alphabet signals (I-MIMO)
were originally proposed by Talwaat al. [16]-[18]; an algo- B. Notation
rithm based on gxpectan.on maX|m|z§1t|on appeareq n [19]'Lower-case bold, as i, denotes vectors. For a matrik,
The two properties are in fact readily combined into on
algorithm to solve the FIR-MIMO problem, as was discovere:a
independently by Liu and Xu [20], [21] and the present autho
[1], [2]. Related work on blind FIR-MIMO identification was
carried out in pa_rallel by Abeq-Merauat al.as well [22]. . that stacks all columns afl in a single vector, an@ is the
Many other signal properties can also be used for bl
L . . ronecker product.
estimation, for example, source independence and high-order
statistical properties and constant modulus properties. In addi-

T is the transposed* is the complex conjugate transpose,
t is the Moore—Penrose pseudo-inverse(4dland row( A)
{note the column span and row spanAfand || Al|r is
the Frobenius norm afi. vec (A4) is the “vectoring” operation

tion, the spatial properties of the receiving antenna array might IIl. DATA MODEL
be known, which allows signal separation based on differencesAn array of M sensors, with outputs:(¢),-- -, zm(t),
in directions of arrival, provided the number of antennas igeceivesd digital signalssi(t),---,sq(t), each of which is

large enough [23]. Assuming a multiray propagation scenariescribed as a sequence of dirac pulse®) = E?’:_OO
knowledge of both the pulse-shape function and the array,é(¢t — kT'). For convenience, we assume the symbol rate
manifold allows a joint delay and angle estimation of all” is normalized to7 = 1, and the digital symbols;;
propagation paths (viz. [24], [25]). belong to a known finite alphabt = {+1,+3,...,+(Ng —
1)} for real signals, o2 = {&1,£3,...,+(Nqg — 1)} &
o {+4,£343,...,+j(Ng — 1)} for complex signals. The wave-
A. Contributions form received at the array consists of multiple paths per signal,
In this paper, we consider the FIR-MIMO source separatiomth echos arriving from different angles, with different delays
and equalization problem. We assume all sources trans@iiid attenuations. The impulse response of the channel from
digital communication signals with the same symbol rate aride jth source to theth sensorh;;(t) is a convolution of the
alphabet, both of which are knovenpriori. The measured datapulse shaping filteg;(¢) and the actual channel fromy (%)
is obtained from a cluster of fractionally sampled antennas. We z;(t). We include any propagation delays and delays due
do not assume knowledge of the antenna array mainly becat&e@synchronous signals in;;(¢). The data model is written
we do not attempt to resolve the individual directions of theompactly as the convolutior(t) = H(t) = s(t), where

Incoming rays. . xl(t) hll(t) . hld(t)
The proposed methods are subspace-based block-algorithms : } )

and attempt to provide a structured factorization of the data x(t) = : , H(t) = : : ’

matrix into a channel matrix times a symbol matrix. The zn(t) hari(t) - hagal(t)

constant symbol rate translates to a block-Toeplitz structure of s1(t)

the symbol matrix, which is sufficient for equalization. We rely  s(t) = :

strongly on the finite alphabet property for the separation of the sq(t)

individual signals and to some extent also for the equalization.

The outline of the paper is as follows. The data model g} 1S common to assume at this point that &l channelshi; (t)

the FIR-MIMO scenario is presented in Section II. Maximum?2'® FIR filters of length at most; € N :

I|keI|hood. techmque; for blind sequence estimation are nof,.(1) =0, ¢¢[0,L;), i=1,---,M; j=1,---,d.

computationally feasible. As an alternative, a subspace-base

approach is presented in Section Ill. A proof of identifiabilityrhe maximal channel length among all sources is denoted

and some insight into the underlying subspace intersectibpy L = max; L;. An immediate consequence of the FIR

method is given in Section IV, as well as a comparisomssumption is that, at any given moment, at mbstcon-

among a few alternative methods via computer simulatiosecutive symbols of signgl play a role inx(¢). Indeed, for

In Section V, we indicate problems that occur with subspa¢e= n + 7, wheren € Z and0 < 7 < 1, the convolution

intersection techniques if the channel lengths are not well;(t) = >_, hi; * s;(t) can be expressed as

defined and suggest a possible solution. Finally, in Section . aet

VI, the proposed algorithm is tested on simulated data based -

on actual wireless indoor channels. i) = Z hir (A7) $1 et - +Z hia(h7)sa.n-k. (1)
The paper encompasses preliminary short versions [1], [2]. k=0 k=0

During review, the full version of Liu and Xu’'s approachFor simplicity of the exposition, we initially assume that all

[20], [21] appeared in [26]. Although the original methodghannels have the same lendthand generalize later on.

used are quite identical, the present paper extends beyond [26uppose we sample each(t) at a rateP € N , whereP is

by providing a significantly more efficient implementationthe oversampling factor, and collect samples dukgymbol
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periods; then, we can construct a data maftixas an equalizer length measured in symbol periods), we obtain
X = [xo - Xy_i] oo Xt XNem
©  x(1) - x(V-1) X, = % %o
x(5)  x(1+3) : - L xN=2

= . . . Xm—1 XN—=2 XN
: : mMPx(N—-m+1).

Pr—1 P-1
=2 . N-14+452 . . o
%) x( + 5 This augmented data matriX,,, has a factorization
The kth columnx;, of X contains the\/ P spatial and temporal
samples taken during thigh interval. Based on the model of
x;(t) in (1), it follows that X has a factorization

Xrn = HrnSL-l—rn—l

0 H Sm—1 . sn—2 SN-1
X = HSL SN_2
- H(0) H(1) -~ H(L-1) = _ .
H(%) : : H S—L+2 S—I43
H = : : H 0 S_Lu S_I+2 - SN-L-mh
r—-1 1
:H(T) . H(L-%) Hyp : mMP x d(L+m —1),
So 1 "+ SN-—2 SN-1 (2) Stpm—1:dL+m—-1)x(N-m+1) @
. . . . 4
S, = : : : - SN2 (them shifts of H to the left are each ovetpositions) and the
S_ri2 S_r43 - s objective becomes, for gived’, to determine factorg{ and
< < . . < S of the indicated structure such that the entriesSdfelong
0P« gfj:? Sp dLxN. ¢ to the finite alphabet. As we show in the sequel, identification

is possible if this is a minimal-rank factorizatioNecessary

The matrixH represents the unknown space-time channel, af@nditions ‘:0”1: to have a unique fac'f‘or?za:[,ioﬁ{ =HS are
the block-Toeplitz matrixS = S, contains the transmitted that is a “tall” matrix and thats is a *wide” matrix, which
symbols! For generality, we have assumed that the measuri@j £ > 1 leads to

block of data starts while the transmission of each of the MP >
signals was already in progress, i.&, is determined by m > AL-d (5)
previous symbolss_z,1,---,s_1 as well assg. A similar -

- MP
assumption is made ory_;. Note that if the channels do N > dL+(d+1)(m —1).
not all have the same length, then certain columns off  Gjyen sufficient data, only/P > d poses a fundamental
are equal to zero. GIVGK., our goal in bllqd esuma‘uon is to identifiability restriction.
find H and S such thatS is a block-Toeplitz matrix, and the  Note that these conditions anet sufficientfor 4 andS to
symbols inS satisfy the finite alphabet property. have full rank. One case whefé does not have full rank is

If the source alphabet is real, then it is customary to Wotkhen the channels do not have equal lengths, in which case
with a real-valued data model by redefining (with some abug§s rank of t is at mosty L; + d(m — 1). ll-conditioned

of notation) cases might occur when the channels are bandwidth limited
so that sampling faster than the Nyquist rate does not provide
— {rea(X)} — {real(H) } (3) independent linear combinations of the same symbols. In

imagX) |’ imag(H) principle, the maximal effectivé® is given by the ratio of the

Nyquist rate and the symbol rate [27]. (There may be other
This effectively doubles the number of observahlés” while  practical reasons to select a largere.g., to correct for errors
halving the noise power on each entry. in carrier recovery. This is not considered here.)

The algorithms we consider in this paper rely on the For SISO models, the condition that,, is of full rank
existence of a “filtering matrixW such thatW.X = S. s ysually formulated in terms of “common zeros”; if the
This implies that the row span & is equal to (or contained transformsh;(z) of the rows of H do not have a root in
in) the row span ofX. For this to be true, it is necessarycommon, ther,,, has full column rank for at least aih, > L
that H has full column rank, which implies tha P > dL. (viz., e.g., [7], [26]). For arbitrary channels, this technical
This may put undue requirements on the number of antengsndition holds almost surely. In the FIR-MIMO case, the

or oversampling rate. However, it is possible to ease thigrresponding requirement is thaf(z) is “irreducible and
condition by making use of time-invariance and the structut®jumn reduced” (viz. [22]).

of S§. ExtendingX to a block-Hankel matrix by left shifting
and stackingn times (as discussed latern, can be viewed as . SUBSPACE.BASEDAPPROACHES

1The subscriptL denotes the number of block rows & We usually omit A(;cordlng '['0 the previous sec'uon,. the basp prOblem n
the subscript if this does not lead to confusion. solving the blind FIR-MIMO problem is, for a given matrix
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Fig. 2. Multistage equalization/separation filter.

X, to find a factorizationX = HS, whereS = Sy, is block- A. Step 1: Estimating the Row Span®f

Toeplitz with entries(S);; € Q. If we assume that the data \ye work with the extended matrit’ = X.. in (4). The
matrix X is corrupted by additive white Gaussian noise, thelﬂst step in the direct algorithms is the estimation of an
the maximum likelihood criterion yields the nonlinear Ieas(torthonormal) basis of the row span f = Sp.m_1 from
squares minimization problem the row span ofY. Suppose, as before, that the channels
min X - HS||%. (6) have equal lengths, (5) holds, aftd has full coll_Jmn rank.
H, S€: block-Toeplitz Then, rowWX’) = row(S) so that we can determine the row
i . . . L span ofS from that of X. This requires the computation of
To find an exact solution of this nonlinear optimization prob- SVD of X, X = USV wherel,V are unitary matrices

. . : ) : n
lem is computationally formidable. It is possible to approac% dY is a diagonal matrix containing the singular values in

the optimum via iterative techniques that alternatingly estlma?e . . : ; .
H andS, starting from some initial estimate fdf [28]. This nonincreasing order [29]. Without noise, the raii of A" is

approach is still computationally expensive due to the repeat%%luaI to the number of nonzero singular values, and we can

enumeration of all possible sequences of lenfthsing the wiite ¥ = ULV, wherel/ consists of the firsty columns of

Viterbi algorithm. In addition, the initial point has to be quiteU_’ % is a diagonabi.y x dx m_atrlx consisting of the nonzero
gular values, andl” is the firstdy rows of V', forming an

accurate in order to converge to the global minimum, rathal : ..
than one of the numerous local minima. orthonormal basis for ropt’). For well-conditioned problems

The subspace-based approaches derived in this section é’émt‘ equal channel lengths, we expectly = d(L +m —1).

plify the problem by breaking it up into two subproblems!’ ¥ iS corrupted by noise, then the numerical rafk of X

Suppose that the channels have equal lengti@d that the is estimated by deciding how many singularAvaIueonare
conditions (5) are satisfied. Then above the noise level. The estimated row spais given by

the firstdy rows of V.

Hfull columnrank = row(x) =row (S) If the noise on¥ is white and i.i.d., with covariance matrix
S full row rank =  col(x) = col (H). 021, thenU asymptotically converges to a basis for the column
. _ .. - i *
To factor & into X = HS, the strategy is to find eithas, - o of the noise-free datds. Forild. signals,y 55" = I

. Lal 2 .
which is a block-Toeplitz matrix with a specified row span, Opr a multiple thereof) so tha}%E asymptotically converges

M, which is a block-Hankel matrix with a specified columr{® 3 + 0?1, whereX,, contains the singular values 6f.
span. In the scalar casé £ 1 signal), a number of algorithms -Note. thatV does not converge to its noise-free value since
have been proposed for doing the latter, in particular, [7] aff§ dimension grows along wittV. However, we can write
[8], and it is straightforward to extend these algorithms to thé = .[E_IU*]X so that each column oV is determined
vector cased > 1), presuming the channel lengths are alpy a linear combination of the corresppndmg column/‘\(_if
equal. However, fod > 1, subspace information alone lead$ecause of the Hankel structure af, this c_olumn contains
to an ambiguity:X = (HD~1)(DS) is a factorization with the samples fr.on.]m-consecutlve- symbol perlods_. Hence, the
same subspaces f@ = diag4, - - -, A] and A any invertible Matrix multiplication can be viewed as an FIR filter, where
d x d matrix. This ambiguity is resolved in a second step by the equalizer length, and the rows1ofcan be viewed as a
taking advantage of the finite-alphabet property of the signa€W, filtered data set. This is depicted in Fig. 2, where we have
We outline three approaches: one that directly estimategust covered the first stage gof three). The filter coefficients are
from its row span, as was originally proposed in [20], [1]given by the entries of2~'U*]. The main purpose of such a
and [2], then an entirely equivalent but computationally morgubspace filter is dimensionality reduction, although we will
attractive version, and finally, an approach in whithis use the orthonormality oV as well.
estimated first. In the absence of noise, all approaches givécomputing the SVD of amM P x (N —m) matrix requires
exact results. Note that none of these approaches provideabaut3(mM P)?(N —m)+ 10(mM P)? operations [29]. It is
factorization X = HS in which both factors are forced to possible to replace the SVD by computationally more efficient
have the required Toeplitz or Hankel structure so that they adaptive subspace tracking algorithms, which update the filter
suboptimal in that respect. coefficients as increasingly more columnsM®fare taken into
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account. Several updating algorithms are available; see, $atisfiesy Gry = 0. GivenGy(r), we takeY to be a matrix

example, [30]-[32]. whose rows form a basis fdter (G, L)). Hence, the Toeplitz
matrix S is determined uniquely up to multiplication at the
B. Step 2: Forcing the Toeplitz Property &f right by D = diagT, - --,T]. Now, to identify S, we have to

The next step in computing the structured factorizatioerrOI the factorizationy” = AS, which, in the case of finite

X = HS is to find a description of all possible matric8s= a phabe_t signals_, can be don_e ”Siﬂg a sqitable I-MIMO signal
Si4m_1 that have a block-Toeplitz structure with+ m — 1 separation algor_lthm, as outlined in Section IlI-C.
block rows and are such that r¢$) = row(X). The latter The computation oker(Gi7, 1)) calls for an SVD ofty (),

condition can be true only if each row ofis in the row span Which is a matrix with dimensions of orde¥ x N(L +m).
of x: Hence, this approach requires ord®f(L + m) operations,

which is not feasible for¥ > 50 or so. It is possible to

[Sm—1 Sm.o sy-1] € row() alleviate the computational requirements as we need only the

[Sm_2  Sme1 - sn—2] € row(d) d basis vectors in the null space, which does not require
: (7) a full SVD. For example, a “spherical subspace” updating

[S_r+1 S—r42 + SN—(L4m-1)] € TOW(X). algorithm, if applicable, would yield a complexity of roughly

dN%(L + m). )
Row Span IntersectionsiWe again consider (7) and |éf

TheseL +m—1 conditions can be aligned to apply to a singl%e a basis for rog®t’) as determined in the first step. Define

block vector in several ways. We choose to work with

S =8 =[s_r41 S—r+2 - Sn—1], o V o
V(k) = Ik—l 0 0 (9)

which is the generator of the Toeplitz matdx Hence,S is 0 0 I
n—k

in theintersectionof the row span oft’ and shifts of this row

span (suitably embedded with zeros). Alternatively, we can

say thatS is orthogonal to theunion of the complements of where we taken = L + m — 1 for now, although we will

these row spans. This leads to a standard procedure to enfe@esider other values for later. The conditions in (7) can be

the Toeplitz property o§ and was originally used in [20] andrealigned into

[1]. We will briefly describe the method for reference and then

show how row span intersections are computationally more ) ) v 0

efficient in producing exactly the same result. S € rowV®, Vv = [0 } ;
1) Null Space Union:Let G be a matrix whose columns 0

constitute a basis fok_er(X), i.e., G is the complement of o rowl’ @ 7@ = |

V" and can be determined from the SVD &f If H has full 0

column rank, thew? has dimension&N —m+1) x (N —m+1—

d(L+m—1)) =: mg X Ng. Moreover, YG =0= SG =0. : .

Using the fact thatS is block-Toeplitz, we obtain S < rOWf/(L+m—1)7 vV (L+m—1) — [ 0 v

IL—l—rn—Q 0
SG=0 & SGru=0, (10)

Indeed, the identity matrices in eadh(®) reflect the fact
that, at that point, there are no range conditions on the
a corresponding columns of. Thus, S is in the intersection

. of the row spans o) until V(Z+m=1) and the problem
L . : is one of determining a basis for the intersection of a set of
' given subspaces. One approach, as we saw in the previous
subsection, is to compute the union of the complements of
0 G the subspaces and take the complement again. However, it
is possible to compute subspace intersections without forming
- - complements. To this end, we use the fact thabftihonormal
(N+£¢—1)x Ng(¢+m—1). (8) basesV’ ) in (9), precisely the same subspace intersection is
obtained by computing the right singular vectors of a matrix

The number of block columns @ () is equal to/ +m —1, formed by stacking the basis vectors (see Appendix A), i.e.,
where/ is a parameter chosen equal to the channel ledgthpy computing an SVD of

(or maybe smaller, as we will propose later). The blocks are
each shifted down over one position.

GT(Z) =

(1)
If Gr(r) is a wide matrix (this gives additional conditions V_
on m and N), then ker(G;_;(L)) determinesS, but only up o : X (12)
to a left invertibled x d matrix A, because” = AS also y(Ltm=1)
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More conveniently, (fom intersectionsp = L +m — 1), we d-dimensional. This implies the8 = 7Y for some invertible
can compute the SVD of where thecopies ofV are each d x d matrix 7.
With noise, we follow the same procedure. We would like
to solve

H % | o .
| ; | S = Yol dist (row(S), row( X))

where “dist” denotes the distance between two subspaces [29].
Vi =1 _0 v ’ Directly finding a solution to this optimization problem is not
feasible. Instead, we find a generafbfor the Toeplitz matrix

by solving

0 J2 L+m—1 .
. S=argmin Y dist(row(S), row(V*)) (14)
(12) o k=1

which determines a matri§ such that the row span of each
shifted over one entry and segment ofS is as close to the row span &f as possible.
=1 01 The two optimization problems are not precisely the same.
. The solution of (14) is given in terms of the SVD (.,
J1= ' V2 , and is equal to the right singular vectors corresponding to the
largestds singular values of this matrix: those that are close to
i +/n and larger than/n — 1. Thus, the proposed intersection
algorithm solves the second optimization problem.
Jo = . . In Fig. 2, the second stage indicates hdyy,,) is formed
' V=1 from V andn —1 delays ofV and that the basi¥ is obtained
N by linear combinations of the rows &f(,,). The coefficients
The matrices/;, J» summarize the identity matrices presentf the filter are obtained from thié- andX-matrix of the SVD
in {V®}, which is possible because we are only interested V7, which is similar to the first stage. The matricés .J
in the singular values and right singular vectorsigt,,), and are ignored in the figure as they only play a role in the first
these do not change by replacing the stack of identity matricasd last few columns of a block of data and not during the
by J1, J>. This is immediately seen by looking o Ve filtering process itself.
and observing that it is the same as the square of (11). If we taken = L +m — 1, then V() has dimensions
The estimated basis for the intersectibnis given by the (d(L+m—1)?>+2(L+m—2))x(N+L—-1). Using an SVD,
right singular vectors o¥/7(,, that correspond to thkargest this gives the subspace intersection algorithm a complexity of
singular values o¥(,,):by Appendix A, those that are equal toO(d?(L+m)*N), which is linear in/V. Similar to stage 1, we
+/n (if there is no noise). As we will motivate later in Sectiorcan consider an updating implementation of this stage as well,
IV-D, the next largest singular values are closeta. — 1. although the required orthonormality of the input signals to this
Thus, the ISI filtering process is based on distinguishirgiage gives rise to some interesting complications. A spherical
singular values betweegn and+/n — 1. It is clear that for subspace tracker, if applicable, would yield a complexity of
large n, this becomes a delicate matter. This motivates us eoderd?(L +m)2N. An investigation of the details is beyond
keepn = L +m — 1 small, i.e., not to make the stackingthe scope of the paper.
parametenn larger than necessary. If the complexity of the intersection step is too large, it may
The relation betweel; andG7 in (8) is (cf. Appendix A) be interesting to consider a multistage intersection approach.
Instead of computing the joint intersection &f + m — 1
Vi Vrwy + GroGrey=nl  (n=£+m—1). (13) gypspaces, which requires a stacknot= L + m — 1 shifts
of V, we may place, e.g., two intersection stages in cascade,
ach consisting of a joint intersection of= %(L +m-1)
subspaces. Likewise, it is ultimately possible to hawemn —1
ages, each consisting of one pairwise intersection. This
reduces the complexity t@(d?(L + m)3N), and without

bases of complementary subspaces. Hence, the null span u oA th?\l resul_t ITI precgsel_¥hthe_ san;]e mdepe?r:jent ofltt_he
method is just as delicate: The two methods give exactly tReeme. aumerically and with Nnoise, NOWEVer, the resuft Is

same results and have the same robustness and sensitiviti utl%opnm_al hecause It Is sensitive to the order in which the
noise tersections are performed.

We Ietcfs denote the dimension af, which is the estimated ] o
basis of the intersection. Under the (noise-free) conditiofs SteP 3: Forcing the Finite Alphabet Property
specified in Section IV-A, witm = L +m — 1 intersections, At this point, we have only obtained laasisY" of a ds-
we obtainds = d, i.e., the intersecting subspace is precisel§imensional subspace that contaifis= [s_r4+1 - sy—1].

Hence, the right singular vectors &f(,y,,—1) and G:}(Z)
are pairwise identical, except for a reversal in ordering.
addition, their squared singular values pairwise add up.to
This is independent of any noise influence and is entire
caused by the fact that we todk and G* to be orthonormal
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To find S, we have to determine which linear combinations of TABLE |
the rows ofY give a finite alphabet structure. This problemis a ILSF ALGORITHM
structured factorization of the forf = AS, S;; € ©, which
is interpreted as separating an instantaneous linear mixture of In: ¥, out: §s.t.§5€ Q, §=TY
finite alphabet signals. Several algorithms have been proposed| (hoose 7%

to solve such problems. In particular, a maximum-likelihood

(ML) formulation of the problem leads to fork=1,2,---
_min__[|Y - 45| as) a. $ = projg[T17Y]
A,S5:5:;€0 b. T(k) _ S(k>Yr

which is precisely the problem studied in [16] and [17]. In that
paper, two iterative block algorithms are introduced—ILSE
and ILSP—which are summarized below. Starting from an until 7K — 11 — (.
initial estimateA(®, the algorithms proceed as follows:

c. Ensure 7% is full rank (see text)

ILSE matrix since the rows of become orthogonal for largh' (as
fork=1,2,--- the signals are uncorrelated). In addition, silices orthogonal
a) s§k> = argming cq ||y; — A®s;||, Vi as well, T is close to unitary (up to a scaling). It rotates one
b) AGk+D = ys®Ei orthogonal basis into another. Hen@g,is the solution to an
ILSP orthogonal Procrustegproblem [29]. ForcingZ’ to be close
fork=1,2,.-- to unitary provides one way of enforcing independent signals
a) S® = Proj,[AMTY] in S. Note that for a unitary matri’, the criteria (16) and
b) A®+D = ysHE1, (15) are the same; therefore, the performance of ILSF is quite

The operator Prgj denotes element-wise projection on to th&imilar to ILSP. o .
alphabet. The ILSE algorithm converges to the ML estimate 1h€ ILSF step is the last stage of the filter in Fig. 2, with
of the pair(A, S), provided the initial estimate fad is close »? = 1 (p > 1 is considered in Section V-C). The coefficients
to the true value. Solving stepin ILSE involves enumeration ©f the filter in this stage are the entries’5f Similar to ILSP

over all possible combinations of symbols. The ILSP algorithff} [17], it is straightforward to replace ILSF by an updating
avoids the enumeration by replacing it with a least-squar¥&rsion, which operates in a decision directed feedback mode.
solve for S followed by a projection onto the alphabet.

This is computationally cheaper but suboptimal. Unless tie Alternative: Computation of{ First

alphabet is BPSK and the number of rowsfis small, it

S N . Instead of estimating directly, we can also first estimate
is important to have a reasonably accurate initial estimate §f ¢ y

and invert the resulting channel to estimaie This is
otentially interesting since the dimensionstéfdo not grow
with N; therefore, it can be estimated consistently. We briefly
agscribe the procedure, which is basically an extension of [7]
P multiple signals.

'Let @ be a basis of the left null space af,,. AssumingS

be of full rank, we hav&?’ X =0 = G'H,, = 0. Write

A. Good initial points are obtained by the recently introduce
“analytical constant modulus algorithm” (ACMA) [33], which
is readily specialized to give closed-form eigenvalue-bas
solutions for simple finite alphabets such as BPSK and M%
[34]. Depending on the matrix dimensions and noise leve
ILSE and ILSP usually converge to a fixed point in less the}
5-10 iterations [16]. As mentioned in the introduction, severa
other I-MIMO source separation algorithms are described in
the literature, some based on different properties such as sourcg,
independence or constant modulus [18], [19], [35][38].
Alternatively, we can minimize the MMSE criterion

= [Ho "'HL—l]a HZMPXd
— [G - G], G :(mMP—dy)x MP.

ThenG'H,, = 0 <

in |S—-1Y|? (16)
T full rank,ScQ _G;n 01

which essentially fits the subspageto a FA matrix S. An —_—
iterative algorithm to solve this problem is called iterative least : ' H,
squares with subspace fitting (ILSF) and is listed in Table : G, . -0
I. It is very similar to ILSP but has the advantage that the Vel : : o
pseudoinverse of thith iterateS*) is avoided and replaced ! Hr-
by a pseudoinverse df’, which is constant. Sinc& is an :
orthonormal basis, this inverse is simply equal to the complex Y 1
conjugate transposg’ = Y*. For a small number of sources,
each iteration require8Nd? flops. If the matrix on the left is “tall” (this gives minimal conditions

One aspect of the problem (16) that is different from (6) isnm), then generically its right null space specifigsup to a
that we explicitly requiré” to be full rank in order to guaranteeright block-diagonal factor didgt,--- , A]. For any solution

independent rows df. Indeed.T” should be a well-conditioned H, the basist” = [Y_r41 - -- Yx—1] is found from an inverse
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filter associated withH as Lemmal:Forl <n < L+m-1, let V be an orthonormal
Yy_1 basis of row.t,,), and define?V® as in (9). Under the
: — 1t conditions of Theorem 1, ro# ) N .. Nnrow(V™) is a
’ N subspace of dimensio#( L + m — n) and containsSy4,,—n
Yor (1<n<L+m-=-1).

wherex = ved X) = &x is a stack of all input data. At Proof of the Lemma:The rank condition omt,,; implies
this point, we are back at the mod& = AS, and the thatSry,, has full row rank. In turn, this implies tha, has
ILSE/P/F algorithm is employed to remove the ambiguity thditill row rank equal tadk for 1 < k < L+m (since any subset

A represents. of the rows ofSp,,, has full row ranlf as well). X
For the estimation ofY, it is only required thatS be of full Suppose: = 2. In investigating row’ () nrow(V®)), we

row rank, which is a mild condition. In particular, it is notmay as well look a5y, instead ofl” since they span the
necessary that all channels have equal length, although cersame space. Consider
modifications are in order (see [22], which also contains some

identifiability results). Shtm—1 * _
It is unclear whether a direct estimation 6f is to be * Si4m-1
preferred over an indirect estimation viH. The former | Sm-1 Sm o SN2 SN—1 1
initially forces only the structure of, neglecting that of{, Sm—2  Sm—1 - SN-3 SN—2
whereas the latter does the opposite. In general, estimating .. *

‘H is computationally easier for larg&/ and can be done
consistently. Our experience with simulations, however, is that —=+2  S-L+3
estimatingS directly might be more accurate in the presences_r.1 s_ri2 . SN_Loma1 *
of model mismatch (see Section IV-E). In addition, if th

channel lengths are not well defined (i.e., the FIR assumptign Sm—1 - - SN-2 SN-1
is only approximately true), row span methods can potentially =
obtain a better model fit. This is because they do not forge . S_Li2 S_pis SN_Lomil  SN—Lmi2

zeros in the lower right block o but have the freedom to )
insert the actual (nonzero) coefficients instead. Finally, withodt * S—Lt  S-Ly2 : SN-L-m  SN-—L-mtl

going into details, we mention that the row span method o . .
. . . ere %" stands for an arbitrary extension as enabled by the
are almost immediately applicable to more general ARM . . . ) : :
identity matrices in the{V\*)}. The intersection removes all

gsastfr?;l()j channel models, in which a state space model r'dc'ws that are not linearly dependent on the rows of the opposite

block. With suitable extensions, this means only the first and
last rows are candidates for removal. Note that they cannot be
linearly dependent on the other rows because the submatrix
T of the above matrix obtained by removing the first and last
A. Identifiability column has the same set of rows &g,.,,,, which has full

Does the intersection/FA algorithm provide a unique esew rank. Hence, both rows are removed, and the result of
timate of S? This identifiability issue is the subject of thethe intersection is a space with preciselyess rows and is
following theorem. Similar results fod = 1 were presented generated by the rows af;,,._» (since it is of full row
in [7] but from the point of view of estimating{ from its rank). The result for larger. is obtained by repeating the
Hankel structure. An alternative proof appears in [26]. same argumerst.

Theorem 1: Consider the FIR-MIMO scenario withd Proof of the Theorem:Settingn = L +m — 1 in the above
sources and channels of equal lendgth= L. Suppose that lemma gives an intersection subspace of dimengiowhich
the dimension conditions (5) are satisfied for somend that is spanned by the rows of S = &;. Hence,S; is unique
the rankX),,) = d(L +m — 1) and rank&,,,11) = d(L+m). up to left multiplication by some invertibld x d matrix 7}

Let &,, = H,,Sr.+m—1 be a structured factorization df,,. consequentlySy,,,_; is unique up to left multiplication by
Taking only the Toeplitz structure into accoudiyi,,—1 is D = diad7,---,T].
uniquely specified by the condition r¢w.,,) = row(Sr4,,—1) Taking the FA property into account as well, [17, theorem
up to a left block-diagonal factab = diag7,---,77], where 3.2] claims that for sufficiently diverse symbolS, is unique

IV. ASPECTS OF THEALGORITHM

T is an invertibled x d matrix. up to permutation and scaling hyl, +7 .
Taking also the FA property into account, under condi-
tions of [17, Theorem 3.2},S14,,—1 is unique up toD = 3The rank condition onY,,, is necessary to avoid pathological cases:

diadT,---,T], whereT can take the form of a permutationConsider, e.g., a periodic symbol matrix
and a diagonal scaling by1, 4.

We first derive the following lemma, where can be any 52 S0 8182 S0 81
- . Sz3=|s;y s2 sg s1 s2 sg|.
number of intersections between 1 ahdt m — 1. sg S1 Sz Sy 81 82

2This theorem basically requires thSitcontains all possibld-dimensional
columns that can be generated by the finite alphabet. This is a sufficient buthis case the intersections do not remove any row. Note&hdtas rank
pessimistically large condition ofY. < 3d; therefore, it is not of full rank.
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B. Detection ofd and L rank of the intersecting subspacelitess than the rank of,,,.

If % and S have full column rank and row rank, respecjl'he next.intersection removes the secgnd row and drops the
tively, then the rank oft,, is dxy = d(L-+m—1). The number rank agalr;C b_yd, etc. This continues until the rank _of one or
of signalsd can be estimated by increasing by one and MOre of§( )_ls exhausted, in which case, the drop in rank per
looking at the increase in rank of,,. This property provides mtersec_tlon is now less. The latter starts to happen once more
a very effective detection mechanism even if the noise leViyan 7 intersections are taken, and the drop in rank follows
is quite high since it is independent of the actual (observabl@€ rank profiler(¢). In general, aften. > m intersections, the
channel length. Furthermore, it still holds if all channels dEnK Of the resulting intersecting subspace is
not have equal lengths (see Section IV-C). In case they do, rank[m’f row(f/(k))]
then L can be determined from the estimated rankafdy _ n—m
and the estimated number of signdl®y L = dy /d —m +1. _ %mtj dm ~ 1)2 ~ ldlm =142 ()]

It is interesting to note that there is an efficient updating - ot -
algorithm for estimating the rank of; and the corresponding |, principle, this allows one to determine the rank profi{é)
column span for alk from 1 tom at once, without requiring and, hence, the individual channel lengths.

SVD's and using only the full-sizet;,,. The SSE-1 subspace |n an approach outlined by Liu and Xu in [21], a technique
estimator derived in [32] is a technique for computing thgy estimating source signals with unequal channel lengths is
number of singular values of a matri that are larger than a presented. Essentially, the idea is to compute all intersecting
given thresholdy, and a basis for a subspace that4islose to subspaces fon = m to n = m + L — 1. Starting with the

the column span of the matrix in some norm. The algorithgmallest dimensional subspace (i#.= m + L — 1), first,

is such that at the same time, this information is produceg the multiple signals that are in this subspace are separated
on all principal submatrices ak as well. Applied tot,,, it (by ILSF), which are precisely the(L) signals with channel
produces the ranks of alty, & < m, with respect to a given |ength ,; = L. With these signals known, the next higher

threshold at the complexity of a QR factorization. dimensional intersection (smallet) is computed, and the
signals in it are separated, using the signals that were already
C. Unequal Channel Lengths found (and their shifts) as partial initial conditions fBrin the
For simplicity of presentation, we have only consideret-SF algorithm. In this way, it is in theory possible to unwind
channels with equal length up to now; = L, = 1,---,4. the separation problem.

In general, however, the lengttis; may be different. In that  If, instead of the SVD, we apply the SSE-1 subspace

case, it is perhaps more natural to write the factorizatigtimator [32] to the full-size¥r(z 1), we obtain rank
X = HynSmyr—1 With a rank-deficient,,, as and subspace information of all principal submatrices of this

. y matrix as well. Since these principal submatrices are equal
X = H,(,PaniLl_l +--+ Hﬁ,‘f)aniLd_l (17) to the smaller size/p(,y, n = 1,---,L +m — 1 (ignoring
the effect of./; ), this gives sufficient information to find the

where eachH'y) and S*) correspond to the channel anccomplete rank profile at once, as well as a way to reconstruct
symbol matrix of sourcé only. Generically, these factors areg|| intersections.

of full rank L; +m —1. The rank ofk, is thus expected to be
d D. Singular Value Model of Intersections
rank( Xy, ) = Lot + d(m — 1), Liot = Z Ly Under noise-free conditions, we already know (by Appendix
1 A) that the largestd singular values ofVy(p4,,—1) are

assuming the terms in (17) are linearly independemrecisely equal tov/'L 4+ m — 1. What is the magnitude of
To obtain rowx,,) equal to the linear envelopeother singular values? It is straightforward to give an answer
row(SW)4 ... Frow(S@), it is necessary thaimMP > for N — .

Liot + d(m — 1), i.e., SinceV is a basis of ro{S), we haveV = QS for some
Lo — d square matrix). HenceVy(,) can be factored as (18), shown
MP>d, m > ot 7 % at the bottom of the next page, wherg” “denotes entries
MP-d that are not of interest. For larg¥ and i.i.d. signals, the
To describe the result of the subspace intersections, we ne@ds of S are approximately orthogonal to each other, that
to define a “rank profile® is, £8S* — I, which implies thatv/NQ is close to a
) unitary matrix. In that case, it follows that the columns of
r(0) =35 Ly 2 43 Qr(n) are asymptotically orthogonal to each other. Ignoring

g?e second term in the factorization (18) for the moment,
the factorization of the first term directly translates into the
SVD of Vr. In particular, the singular values &f; are the
orms of the columns of/NQ; and, thus, are equal to
voovn—1,4/n,v/n—1,---,1 each repeatedtimes. The
left singular vectors are just normalizations of the columns
“4For a setF, #(F) denotes the number of elementsfh of Qr, and the right singular vectors are normalizations of

i.e., r(¢) is equal to the number of sources with a chann
length L; > £. Thus,»(¢) is monotonically decreasing froph
(¢=1)1t00 (> L) and Y r(¢) = Liot.

If we perform intersections step by step, then the firﬁ
intersection removes the top row of eve‘ﬁ‘%}rLk_l, and the
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the rows ofS.;,. The latter normalization is in the order Singular values of X, m=2,-.-,8
of \/% For large N, it is clear that rows of the second - ; A
term (containingJ; 2) become orthogonal teﬁsm since

the inner product is proportional t017 Obviously, the ; : -7 i
columns of this term are orthogonal €. Hence, the second 10 RIS RS TR i s g
term contributes additional singular values - - ,/n — 1 each N ARSI R ST
repeated two times. Altogether, asymptotically and under :
noise-free conditionsyr(,,y for n = L +m — 1 hasd singular
values equal tq/n and groups o2d+ 2 singular values equal _
to /71—1,"',1. |f we takeTL < L+m_ 1, then Sim“a”y, ............... VAV DU PRt DIV VR S
we can show that there arg; := d(L+m — 1) —d(n — 1) : ' ‘
singular values equal tgn, followed by the groups od+2 [, 5 S
singular values equal ta/n —1,---,1. The right singular
vectors corresponding to thés largest singular values are mp
a basis forS; ., —1—(n—1); then intersections have removed 10" tN.
n — 1 echos of each signal.

If N is not large and if there is noise, then obviously, the , ,
singular values start to deviate from these asymptotic valu&?' 3. Singular values oft,, (noise-free) for a range of. The dashed

. . . més indicate which singular values will be masked by the noise.
and in particular, the gap between the singular values aroun

vn and/n — 1 closes. The assessment of these deviationsdgual channel lengths. The dashed lines in the graph indicate
subject to future research. Such an analysis would give pointggSyhich noise level the small singular values &f, will
to suitable minimal values faW (in relation to the noise level) pe opscured. This level increases wighm, but the singular

SNR=0 dB

sv value
\
\

5 10 15 20
sv index

such that there still can be a gap. values of X, do not; therefore, it is advantageous to keep
small. Below 10 dB, the true rank &, is no longer visible,
E. Comparison by Simulation and in practice, we would estimate the rankAjf, too low.

To assess and compare the performance of the propo?eahe singular valtt:]es oVy(n) are ;:o;s_l(:erfhd next (I|:|g. 4)|'
algorithms, we consider a simple but unrealistic scenario r convenience, they aré converted nto the singuiar values

i 2\1/2
which all assumptions on the model are satisfied. A mof} G by computing(nl — s\(Vz(,))*)!/2. (Recall from (13)

challenging test case is deferred to Section VI. We to&pat the singul_ar values ofy and GT_ squared, add up to
d = 2 real-valued BPSK sources and a randomly select_@dby construction.) After transformation, we expect for full

complex channel matrix with/P = 4 observables and INtersections# = L +m — 1) a total ofd = 2 zero singular

equal channel lengthd, = 3. (M and P are equivalent Values corresponding to the sources and groupief 2 = 6
in this example because there is no modulation functigiPgular values around, v/2, -, vz (as indicated by the
and no multiray model.) We added complex white Gaussi&®tted lines in the figure). For SNR's of 10 dB or more, this
ii.d. noise with variances?. The number of snapshots wad$ indeed the case, but for SNRS dB, the second source is no
N = 50. The signal-to-noise ratio (SNR) is defined alonger present after intersections (Fig. 4(b)). If we take- 2
| HSy, ||%/(dM PNo?), which is the average SNR per signafnd truncate the rank ot at 7, which is its observable rank,
per observable. The relative power of both sources was §&n the rank equation produces an estimated channel length
equal. L = 3%. Setting L = 2 instead, we can only take = 2

The singular values at,, are displayed in Fig. 3. Without intersections, and we are left witls = dyv — d(L + m —
noise, the rank oft,, is expected to bey = d(L +m — 1), 1)+d = 3 signals/echos. As seen in Fig. 4(c), this number of
which turns out to be the case. The number of soutogen be remaining signals is still well visible, even in the SNR5 dB
identified from the graph by looking at the increase in rank @fase. This indicates that for the row span intersection method,
X, asm increases. In additior?, can be estimated, assuminghere is an advantage in underestimatingnd d.y.

VT(L+mfl ) Q!(' 1) Sext _
R AR e v
4 0l 00| | AN .
= B +
0 1% 0 Q
bl o o ‘0 I
I o el 77 | ]

(18)
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Transformed singular values of VT(n) Flg 5(b) shows the case where the rankXfis under-
estimated, which would happen in practice below 10 dB.
SNR=10dB e In that case, underestimating as well (hence, taking less
10°F et 1 intersections: = 3) leads tods = 3 remaining signals after
+ intersections, which are separated by ILSE. As shown by the
+ m=2[=3,dy=8 dotted lines, this greatly improves the performance. We even
10! ; ‘ =4 intersect. go below the blind CRLB for the second signal, which is
0 5 10 15 20 possible because the estimators are not necessarily unbiased
@) and because the FA structure is used more strongly now but
is not considered in the bound. This holds for the row span
method. Using similar techniques, we were not able to to
SNR = 5 dB e improve the performance of column span method. Instead, it
210° ;;..¥.,¥..+..+..*_5¥“*'*"*"' collapsed on rank-truncated data.
8 + The conclusions of the simulation can be summarized as
zZ + . . follows:
. : ;,";42;;;,53(;3’_“8  The current and proposed blind equalization/separation
10, 5 10 15 20 methods force only one structural property out of three:
(b) the Hankel structure of{, the Toeplitz structure o,
and its finite alphabet structure. For the assumed model,
, , i each of these properties by itself is approximately equally
SNR =5 dB T str_ong. As §hown by. the thec_)retical bounds, si.gnificant
100 | . _+"+_+__+_+;‘+'+‘+'+‘* : | gains can still be obtained by simultaneously forcing more
; than one property.
+ . . e The performance of the row span method can be sig-
o Tjszf rﬁ;szégf =7 nificantly improved by truncating the rank of at the
107 — S — noise level, underestimating the channel lendgthand
0 5 10 15 20 i - .
sv index separating the remaining signals plus echos based on
© the finite alphabet property. The column span method is
_ _ ] apparently not robust on truncated data.
Fig. 4. Transformed singular values o¥7(,), namely, (n — sv
(VT(n))Q)V?. Small values indicate the number of remaining signals
after intersections. (a) SNR 10 dB, full intersections. (b) SNR: 5 dB, full V. ILL-DEFINED CHANNEL LENGTHS
intersections (second source not resolved). (c) SAR dB, underestimating . .
dx and taking less intersections. After intersectiohs,= 3 signals remain. In reality, channels do not have well-defined channel

lengths. Multipath echos with a long delay generally have a

This is confirmed by Fig. 5, which shows the bit error ratesmaller amplitude; therefore, the channel responses trail down
(BER,) for varying SNR for various choices of the parametete zero rather than filling out a sharply defined interval in time.
L anddy. Here, we compare the directly estimati§gnethod In such casesk is ill conditioned, and subspace intersections
(row span intersection) with the estimatiftgfirst method cannot be used to precisely cancel all the echos. lll-conditioned
(column nullspace union). If the exact parameters are usefgannel matrices are also expected for bandlimited signals
in the identification, the performance of both methods {87].
approximately the same.

In [26], a Cramer—Rao lower bound (CRLB) is derived foA. Effect on Intersections

the blind equalization of one source if only the Toeplitz/Hankel 14 jlustrate the effect of ill-conditioned channels on the
structure ofS andH is taken into account but not the finite-computation of the intersecting subspace, consider the impulse
alphabet property. The result is readily generalized t9 1. responseh(t) shown in Fig. 6(a). This is the convolution
However, a correction to [26] by about a factor 2 is in ordepf an actual line-of-sight indoor channel at 2.4 GHz with a
which is discussed in Appendix B. raised cosine pulsel{= 10 ns, modulation indexs = 0.5,

As seen in Fig. 5(a), the methods do not reach the appr@ersampling rateP = 5). The main peak has a width of
imate blind CRLB (22) because they only force one of thghout two symbols, but there are several smaller peaks as
factors to have structure (eithed or 7) but not both. For well. For this example, we consider the data obtained from
comparison, we also show the CRLB for estimatiorSaf H A7 = 2 antennas, withl = 1 signal present, which is already
is known (the performance for a zero-forcing equalizer), whigkufficient to make our point. The singular values?éf, are
has a better performance, especially for the second signal. Bewn in Fig. 6(b). The rank df, is not clear; it is certainly
“ILSE” curves are obtained by running the ILSE algorithm omot of low rank in a mathematical sense, and the numerical
X, initialized by the exac# so that it gives the ML estimate rank depends on the truncation level we choose. To avoid an
of the factorSy, if its Toeplitz structure is ignored. As its BER excessively large inverse @f, we would in this case decide a
is well above that of the blind CRLB, this indicates that usingank of dy = 12 or so, corresponding to an estimated channel
the Toeplitz structure is relevant. length of L = 3.
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o BER performance 2 BPSK S|gnals o BER performance, 2 BPSK signals
10 signal 1 ' 10 T " : - . .
Fommng T L=3 | @il I-9----Qeel g
R i D N G - o
107k 0 10 R 29
..... 9
w107} w107}
-3| Lo ™ 3 m, I:, ci,y |
10 m.L.dy}- 10— row(2,2,8) | i
+—row(2,3,8) | . 1--row(2,2,7) :
nonl “CRLB: AR 3
6—col(4,3,12) J 1 blind 2.} % ©-col(42,11)1. “CRLBY, biind *
joilozilse 2. T CRLB 4 %\ jo¢leoeol43.11) =¥ %S CRL?
-2 0 2 4 6 8 10 -2 0 2 4 6 8 10
SNR [dB] SNR [dB]

(@) (b)

Fig. 5. BER performance foid = 2 BPSK signals. (a) Using exact valuds= L, dy = dy = d(L + m — 1). (b) Using approximate values. For

comparison, the CRLB for a zero-forcing equallié‘l(‘ is indicated, assuming perfect knowledge &f the CRLB for the blind scenario (not using
the FA property), and the performance of ILSE initialized with the ex#ct

For large N, the signals are approximately orthogonal tone large entry. However, it is seen that the top row has at
their shifts, and in that case, the singular valued(aire equal least eight large entries; therefore, the vector in the intersection
to the singular values of—X In fact, letH = Uy 2@ be s still a linear combination of at least eight symbols. Thus,
an SVD of H. Then the intersection did not produce the desired effect of removing

all ISI. The “A” structure of this figure is very characteristic
A =HS = [UnEnQ]S = UxExV and shows how the intersections work. Indeed, small singular
so that, for orthogona$, Sy = VN andV = \/NQS if values ofVT (or Qr) correspond to the top aqd botFom rows
. L of &, since these are repeated only a few time&/in The
we approximatet’ by truncating its SVD to some rank, large singular values correspond to rows in the middle of
then Sext, Which are repeated up totimes. The width of the legs
X = [UHiHQ]S =USaV. of “A” is nearly constant. For well-defined channel lengths,
the width of the legs is expected to be 1 because the right
Ideally, H is full rank, and@ is square, but for ill-defined singular vectors corresponding to a singular value are specific
channel lengthsy) has sizely x (L+m —1), whereL is the echos (rows ofS,.,; cf. (18)). The widening of the second
“actual” (large and fuzzy) channel length. Fig. 6(c) shows theg of the “A” in our example shows the influence of the
magnitude of the entries @) (up to the first 24 rows of)). structured noise that is introduced by truncating the rank of
The first 10 rows ofQ have 11 large entries; thus, the firsty at 12, Qualitatively, it can be attributed to the second peak
10 rows of V' are a linear combination of 11 rows &f plus in h(t), which is partly (but not entirely) eliminated by the
some weaker ISI from other rows. The reason for this is thglincation of % to rank 12. The truncated data matrix still
h(t) contains a sharp peak, which is smeared byrthe- 10  contains one or a few linear combinations of echos, but since
shifts over 11 symbols. The next few rows 6f show the there are fewer combinations than symbols that play a role
influence of the smaller peaks i(¢): An increasing number after truncation, the echos cannot be removed by intersections.
of rows of S get involved. The conclusion drawn from this experiment is that for actual

For large N, we may write, as in (18), channels the SVD-based intersection scheme may not remove

all the ISI if the rank ofH is ill-defined.

VT(n) ~ QT(n)Sext

neglecting the edge effects caused.hy,. Since the rows of

S... are close to orthogonal, the SVD B can be written as B- Effect of Taking Fewer Intersections

the SVD of Q7 timesS,.;. Fig. 6(d) shows the singular values What happens if we take less than+m — 1 intersections?
of Qpeny whenn = dy = 12. There is one singular valueWe provide an intuitive analysis. Let us say that is the
close toy/12 and two aroundy/11,/10,---, as expected. true rank of ¥ and that the resulting approximation error is
Hence, there is one vector in the intersection. This vectimped into the noise term. Sindé = [£~10*]|x, it is seen
is given by the product of the corresponding right singuldhat the noise on the rows &f is not uniform:£~! amplifies
vector of Q@ timesS. ;. The right singular vectors are showrthe noise at the top rows @f* X less than at the later rows.
in Fig. 6(e). Since we expect the result to be basically or@onsider a simple example whete= 1 andQ = I. If we take
symbol sequence out &, the top row should have only n < dy intersections, then the basis of singular vectors of
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Fig. 6. (a) Channel impulse responkét). (b) Singular values of{,o: the numerical rank of,o is about 12. (C)Q, i.e., right singular vectors of{ig
(magnitude of entries). (d) Singular values @fy(,2), with dy = 12. (€) Right singular vectors a1 (1) and (f) of Q(10)-

Vr(n) corresponding to singular values closentstill contains others is still often observed. This is illustrated in Fig. 6(f),
ds = dy—(n—1) > 1 echos of each signal. A straightforwarthere_ we have_takezm =m=10 intersectiong rather thar_w 12_.
generalization of the singular value model (18) in Section [VLhe first two singular vectors are each a linear combination

Dton < L +m — 1 shows that withQ — J. each row of of only three symbols, rather than eight, as we had before
’ ' with full row span intersectiond” hasds = 3 rows, and the

third singular vector is indeed noisy; it is seen to be a linear
combination of nine symbols.

Y is an average of, out of cZX rows of V. Rows of Y that
are formed by combining the top rows of V' contain less
noise than others.

In general,V is some other combination of the symbol€. Multistage Intersections
(Q # I andd > 1). However, the effect that, with fewer inter- Motivated by the preceding subsection, we propose a mul-
sections, some rows df are less contaminated by noise thatistage intersection scheme. The first intersection stage only
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TABLE 1
BLIND FIR-MIMO | DENTIFICATION ALGORITHM g ot
In: X, out: generator of S s.t. X = HS, w. S Toeplitz+FA % _10}/
1. Estimate row(X): o ’ '
a. Compute SVD(X): X =: UZV % -201 ﬂ
b. Estimate dy = rank(X) from X s l'l

|
w
o

c. V = first dy rows of V 2.2 2.3 2.4 25 26

. Frequency [GHZz]
(d. Estimate d from rank (X, ;1)) @
a

2. Partial time-equalization: do n subspace intersections:

a. Setn=m+L—1, with L = 1 or L = min(L,) g 1
b. Construct Vr(,y in equation (12) i =
c. Compute SVD(Vr () =
d. Set ds = dy—d(n—1) B 0.5 ]
e. Y:= largest ds right singular vectors %
3. Separate signals based on FA property: ; ~ "\', X )
a. Select p <[4 2 %o 50 100 150

Time [ns]
(b)

) . . ] Fig. 7. (a) Relative power and (b) response to a raised-cosine plilseq
keep d independent signals with lowest variance ns, 3 = 0.5) of two measured indoor channels.

b. Do ILSF on Toeplitz matrix Yr(,) from ¥

c. Detect echos by symbol sequence comparison,

takes the well-defined intersections: At most, = m +
min;(L;) — 1, whereL; is an underestimate of the channel
length of signalj, but without prior knowledge of channel
lengths, perhaps even only = m. This produces a basig
which is too large. In fact, it containds = dy — d(n — 1)
rows and is a basis f&#r,,—,. The second intersection stage
has to remove the remaining ISI. Instead of using an SVD, we
combine this stage with the separation stage (ILSF or some
other I-MIMO algorithm), i.e., the finite alphabet property is
used to do the remaining equalization and the signal separation
as well.

In principle, we can apply ILSF directly olr’. We could
recover all rows ofS;4.,—, and select those rows that are : ,’-
not shifts of each other and that have the smallest deviation o 1‘0 2‘0 20 10~ 50
from the alphabet. However, since the rowsYofare a basis sv index
for the Toeplitz matrixSAS, it is more general to prepare for
a subspace intersection step, i.e., augm€énto a Toeplitz

matrix YT_(P>’ V\;hel’(?p IS some small number. ilmnar :(O the The resulting algorithm has the general structure of Fig. 2
construction ofVz from V', we constructi’y(,) by stacking 5, s jisted in Table II. The significance of takipg> 1 will

p shifted copies oft” (omitting ./1,/>). However, instead of po cjear from the simulation results in Section VI.

applying an SVD toY7, we apply ILSF so that signals and

echos are separated based on finite alphabet properties. The

resulting variance on the symbol estimates should be lower VI. SIMULATION RESULTS

since ILSF has the same degrees of freedom as the SVD buf, s section, we report on a test of the algorithm in an

is not blind to symbol variance. The value fprcould vary o jine experiment, in which we simulate the reception of a

betweenl and dy/d — n. A larger p will always result in - \mper of BPSK signals through an indoor wireless channel
symbol estimates with lower variance. In the latter extremg > 4 GHz. The channel impulse responses are derived from
case, we act on the same data that a secondary SVD-basgthrimental data measured in an office at FEL-TNO, which

subspace intersection stage would use. Howepecannot s in The Hague, The Netherlands, in 1992 [39].
be too large because the complexity and the reliability of ' '

convergence of ILSF to the global minimum deteriorates withsye 4¢ grateful to G. J. M. Janssen (now at TU Delft) for sharing his
growing dimensions. measurement data.

sv value
(@]

. poise level]

-

Fig. 8. Singular values oft,, for m = 2,..-.10.
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The office has dimensions 5.6 m 5.0 m and height 3.5 environment. The algorithm uses information from multiple
m. The actual measurement set-up had a transmit antennaénsors, oversampling to exploit the constant symbol period,
the center of the room at a height of 3.0 m and a receiviragd the finite alphabet property of digital signals. It is set
antenna cluster located at varying positions at a height of irba deterministic framework and uses subspace properties
m. The cluster consisted of six wideband antennas spated of the underlying structured matrix factorization problem.
in a circular array. This approach is effective in situations where the channel

Assuming reciprocity (not quite true), we can pretend tiengths are well determined. We have indicated some problems
simulate a central basestation antenna array of up to #mat may arise in subspace intersections algorithms when
elements, receiving a superposition of signals from a numb&e channel lengths are not well defined and suggested a
of user locations. We have used data from two such locatiomsodification that should give improvements for channels with
one with a direct line of sight (RMS delay spread 7.3 well-defined peaks.
ns) and one without LOS (RMS delay spread16.7 ns).
The relative powers in the frequency domain are plotted
in Fig. 7(a). Fig. 7(b) shows the amplitude of the impulse
responses to a raised-cosine pulgé £ 6 ns, 5 = 0.5
demodulated to baseband from a carrier frequency of 2.4lLet H,, Hs be subspaces i6™ with orthogonal comple-
GHz), each normalized to unit power. We do not have amgentsk; = Hi-, Ko = Ha. Then,
application in mind with these numbers; they are chosen to
provide an ambitious test case that uses all of the measured Hi NHy = (K1 + K2)t
bandwidth.

In the experiment, we toof = 2 BPSK sources, transmitted The computation of the intersection via this equation requires
over the above channeld/ = 3 antennas,” = 3 times the formation of three orthogonal complements. Wifh, K>
oversampling, andV = 300 samples. The received powematrices whose columns form orthonormal baseskoy Ko,
of both signals was scaled to be equal, and we added compl@x can obtain a basis for the intersectiontof and -, from
white Gaussian noise with varianeg such that the signal-to- the kernel of[K; K,]. With noisy data, this requires the
noise ratio SNR= ||.X||%./(dM PNo?) = 15 dB per antenna computation of an SVD ofK; K>]: A basis of the estimated
per sample per signal. The singular valuestbhre plotted in kernel is given by the singular vectors that correspond to small
Fig. 8 for a range of values of.. It is seen that the numericalsingular values.
rank of X' (= dy) cannot be estimated very well, but clearly, In our application, the dimension of th; is independent
d =2, as deduced from the horizontal shifts for increasing of N so that the dimension of the complements grows with
Form =7, it seems reasonable to s&t in the range 20-30, N. This means that for largeV, it is not attractive to
which makes the “observable channel lengthequal to 4-9, compute the intersection in this manner. We show in the
if the channels had equal lengths. As in the single-user cdeflowing proposition that precisely the same information may
(Fig. 6(a) and (b)), the actual channel lengths cannot really be gleaned from the large singular values and corresponding
deduced from the data. singular vectors of a matrixd; Hs], where Hy, H, are

Fig. 9 shows the standard deviations of the symbol estimatathonormal bases of{;, H.-.

(before classification a%1) for a range of parameter settings: Proposition 1: Let H;, H» be subspaces i€" with or-
estimated ranki, number of intersections, and secondary thonormal basedd;, Hs, and let[H1 Hz] = UygZyVy
equalizerp. ILSF initialized with 7(°) = I was used as finite be an SVD. Suppose thak, K, are orthonormal bases
alphabet separation algorithm. The values of these paramefersi-, Hs. Then,[K; K] has an SVD[K; K] =
have a deliberate impact on the performance, but precisély; (2] — ¥2,)/2V;: for some unitary matrix/s .

how to find the best settings priori is an open problem. As Proof: SinceHHf + K1 K{ =1, HoH; + Ko K5 =1,

a general observation, it is possible to underestirdatebut we have

in that case, it is essential thatis taken small 4 ~ m) and

APPENDIX A
INTERSECTION OF SUBSPACES

that ILSF is used as an equalizer as wellx 1). However, [Hi Hol[Hi Ho*+[K1 KK K»|* =2I
p should not be taken too large because then, the matrices on
which ILSF acts become too big, leading to an abundance Sfibstituting [H1 Hs] = UypXgVj and multiplying the

local minima. To put the graphs into perspective, note that aibove equation witli/% (- - -)U, we obtain

this noise level, the standard deviations of the symbol estimates

in an ISl-free scenario, wherd, = 1 and the antennas Y2 UKL Ko|[K1 K»]*Uy =21I.

and oversampling produc® P independent observations per

symbol would bes/v2M P = 0.04. (The factor 2 is due to Since bothx%, and2I are diagonal, this implies that there is

the transformation ofX to a real matrix, as in (3).) a unitary matrixVx such thatUs[K, K»]|Vk is diagonal.

This, however, constitutes precisely an SVD &, K,]. O
This result is readily generalized to the joint intersection

of n subspace$t;, ¢ = 1,---,n. Likewise, we compute an
We have presented an algorithm for blind sequence VD of [H; --- H,] but now look for singular values that

timation of multiple digital sources in a general multipatiare close to,/n.

VII. CONCLUSION
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Fig. 9. Standard deviations of signal estimates#or= 7 and varying settings oy, n, p.

APPENDIX B an invertibled x d matrix A. Indeed, the dimension of the null
APPROXIMATE CRAMER—RAO BOUNDS space of® is observed to be? in generic examples. To fix
SupposeX = HS; + E, where E is a white i.i.d. A, one has to assume that certain symbols are known.

complex Gaussian noise process with covariance mafix 0" d = 1, knowing the value of one symbol & suffices,
For simplicity of future notation, let us specialize to th@nd the variance of the remaining estlmates/|s obtained by
case of real signals (e.g., BPSK signfls= {+1}). Define deleting the corresponding column ®fy. Let H’, be equal
vectors of unknown parameteds := vec(H) ands := to H with the column corresponding to the known symbol
5%, - sT,.,]T. We assume that the number of sourcdaken out, and defing and ' accordingly. Then, the CRLB

4 is known and that the channels have equal known chan/@8) the covariance o’ is

length L. If we do not take into account that the entries of¢’ = (‘1’/_1)1,1 = {HEHy — HiEecTo) e H 1t

s belong to a finite alphabet, then the concentrated Fisher (19)

information matrix foré = [s',h”]? is derived in [26] as  (the subscript1, 1’ denotes the (1,1) block o'~ following
the partitioning of®’) so that, in particular,

d=—
o2

1 [HEHN HEC
{C%Hﬁ cre } , C=8] @hup var(s') > diag(C’)  [CRLB with "training,” no FA].

(20)
(originally for a single signal, but the results are readiljhis is basically the result in [26], where it is also noted
generalized forl > 1 and adapted here for a real data model§hat although the bound is dependent on b#thand S, its
The CRLB that describes the lower bound on the covariance@gpendence of is only weak in practice. However, a number
any unbiased estimator ferandh is obtained by invertinge.  Of remarks that go beyond [26] are in order.

However, as noted in [26], this matrix turns out to be singular 1) It makes a differencevhich symbol is assumed to be
because there is ambiguity in the parameter values: Without known. Not surprisingly, knowing one of the center sym-
forcing the FA property, we can only identif{f andS up to bols gives significantly lower variances than knowing
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one of the first or lasL. — 1 symbols because these playn which the known symbols have zero variance gives the
a less significant role i%;,. Additionally, the variances modified estimate$’ for which the CRLB (20) holds as

of the symbols in the range,---,N — L are usually
approximately equal to each other, but the first and last
L — 1 symbols have a significantly larger variance. In

the computation of the expected bit error rates, we have
taken these tail symbols out of consideration.
The result (20) strictly speaking applies to a scenario i,.
which we have a “training sequence” of lengthlt is

S = 8.(S.+E.)YS +E)
S.STHI — E.STH(S' + EY)
S'—E.ST1S'+ E.

~
~
~
~

Note thatS~! can actually amplify the noise contribution by

In estimating the correction on the bound, assume (not

entirely correctly) that the columns & = [E, E’| are inde-

readily generalized for training sequences longer thanpkndent, zero mean, and have equal distributi¢e;& ) =:

by leaving out more columns off .
The above remark implies that in th&ctual blind

Re.

algorithm, the above lower bound on the variance E((éi

Let s; be theith column ofS’, and then

—si)(8i=8:)" ) A Rel|S7 ' sil|? + Re =Re(1+(15 i)

too large by about a factor 2. Indeed, (20) is valid f0fq |ef-hand side of this expression is given by the uncor-

estimates where the variance of one symbplsay, is
made zero. This is conceptually done by estimating a

the estimated sequence by the estimated valug ahd
multiplication by its desired value. Assuming relatively
small variances, the division causes the variance of all
other symbol estimates to be enlarged by the variance of
the estimate of,..% In the actual blind scheme, we do not
normalize on a single symbs). but normaliz€|S|| . In

rected CRLB, namely(?, which is thed x d submatrix of

- e "W in (20) corresponding te;. It follows that an estimate of
sequence and then normalizing th entry by dividing R. and an a

pproximate lower bound on {&kying) can be

obtained as

~ i <
Re ~ median { LS5 s P2 }

L - (22)
var(s; piind) ~ C} — RellS;tsil|?.

For d = 2 BPSK signals||S;-'s;|| = 1 always, and the above

that case, the lower bound (20) is too high and formallgxpression reduces to (21).

not applicable. To attempt to correct for this, we have to
estimate the variance @f., e.g., asimedian diagC’)

and subtract to get [1]

var(sying) % diagC") — smedian diagC”)

21
[approx. blind CRLB, no FAd=11]. (21)

[2]
(We take the median instead of the mean to avoid thél
influence of outliers at the tails of the sequence.) This igy
the (approximate) CRLB for a blind scheme that relies
on a structured factorizatioX = HSy, not taking the [5]
finite alphabet into account other than for removing the
ambiguity. If all estimates have approximately equal
variance, the originally derived bound (20) is about od°
factor 2 too high. 7]

For d > 1, roughly the same derivation holds, except that
we have to pretend that more symbols are known because tls
ambiguity factorA now hasd? degrees of freedom. Hence, we
have to fixd symbols ofd signals, i.e., @ x d submatrixs,. of
S somewhere in the center 6f An extra complication is that
this submatrixS,. has to be full rank or else some ambiguity i 1
A remains. Hence, in computing the bound, we have to sel c(%]
d independent columns &f, which are located somewhere in

the center, and delete the corresponding columng{gf to

[11]

obtain H’,;. After this, the bound (20) is derived as before.
The correction for the unnatural normalization as assumed [#2]
that bound is somewhat more intricate now. Indeed, before

normalization, let us say we have symbol estimates

S, and S’ are the exact symbols, ard. and E’ represent the

[13]
Splind =[S S|+ [E. E']. [14]

[15]

noise on the estimates. Normalization to arrive at an estimate

[16]

6Here, the first-order approximatian (s, +e, ) "' (s+e) & s—ers; ts+
e is used, as well as the BPSK assumptjey] = 1.
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