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A Subspace Approach to Blind Space-Time Signal
Processing for Wireless Communication Systems
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Abstract—The two key limiting factors facing wireless systems
today are multipath interference and multiuser interference. In
this context, a challenging signal processing problem is the joint
space-time equalization of multiple digital signals transmitted
over multipath channels. We propose a blind approach that does
not use training sets to estimate the transmitted signals and
the space-time channel. Instead, this approach takes advantage
of spatial and temporal oversampling techniques and the finite
alphabet property of digital signals to determine the user symbol
sequences. The problem of channels with largely differing and
ill-defined delay spreads is discussed. The proposed approach is
tested on actual channel data.

I. INTRODUCTION

A challenging problem in signal processing is the blind
joint space-time equalization of multiple digital signals

transmitted over multipath channels. An important area where
such a problem arises is wireless (mobile) communications.
Consider a scenario where several users are trying to talk to a
central base station, which has several antennas (viz., Fig. 1).
A space-time equalizer at the base station combines two signal
processing aspects:equalization(or echo canceling) to combat
the intersymbol interference due to large-delay multipath and
source separationto combat cochannel interference (CCI). The
CCI might be interfering signals at the same frequency from
neighboring communication cells, or we might intentionally
allow multiple users at the same frequency in order to increase
the system capacity. The latter is known as space division
multiple access (SDMA) because it essentially separates users
based on differences in location.

Current communication systems such as IS-54 and GSM
require some amount of equalization (up to five symbol periods
in GSM and up to one symbol period in IS-54) but are
not designed to handle cochannel users. To assist “classical”
single-user channel identification algorithms, a fair number
of training symbols are incorporated in the data packets.
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Fig. 1. Multiray scenario in wireless communications.

However, in recent years, it became gradually known that
digital signals can also be separated and equalizedblindly,
i.e., without the aid of training sequences, by exploiting
the underlying structure of the signals. Although the use
of training sequences is an inherently more robust way to
estimate the channel, there are several reasons for studying
blind algorithms, aside from the obvious academic and military
motivations. Most notably, adding unnecessary training bits is
a direct waste of the available bandwidth. In addition, training
is not efficient in rapidly time-varying channels or in protocols
with very small data packages, such as the uplink of wireless
teletypes in PCS or in distributed networks. Training requires
synchronization, which is not always available or feasible
in multiuser scenarios. Finally, the insights gained are also
applicable to other systems such as CDMA, where it might be
used to improve the near-far resistance.

Blind algorithms have now become a very active research
area, in particular in the context of digital communication
signals, where there are several leverages for solving the blind
finite impulse response, multiple inputs, multiple outputs (FIR-
MIMO) identification problem considered in this paper. For
example, thefixed symbol rateof digital signals in combination
with linear channels, multiple antennas, and oversampling
allows us to blindly synchronize and equalize (but not sep-
arate) such signals. Statistically, oversampling digital signals
gives rise to cyclostationarity of the spectrum [3]. Tonget
al. were the first to realize that cyclostationarity allows the
identification of nonminimum phase FIR-SISO channels from
second-order statistics [4], [5]. In a deterministic discrete-time
setting, the property leads to structured (Toeplitz) matrices
and has inspired several subspace-based algorithms [6]–[9].
A second useful property is thefinite alphabet(FA) structure
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of digital signals. For equalization, this has been exploited
in decision-directed adaptive algorithms [10]–[13] as well as
in joint channel estimation and sequence detection [14], [15].
Several iterative algorithms for the separation of instantaneous
superpositions of multiple finite alphabet signals (I-MIMO)
were originally proposed by Talwaret al. [16]–[18]; an algo-
rithm based on expectation maximization appeared in [19].
The two properties are in fact readily combined into one
algorithm to solve the FIR-MIMO problem, as was discovered
independently by Liu and Xu [20], [21] and the present authors
[1], [2]. Related work on blind FIR-MIMO identification was
carried out in parallel by Abed-Meraimet al. as well [22].

Many other signal properties can also be used for blind
estimation, for example, source independence and high-order
statistical properties and constant modulus properties. In addi-
tion, the spatial properties of the receiving antenna array might
be known, which allows signal separation based on differences
in directions of arrival, provided the number of antennas is
large enough [23]. Assuming a multiray propagation scenario,
knowledge of both the pulse-shape function and the array
manifold allows a joint delay and angle estimation of all
propagation paths (viz. [24], [25]).

A. Contributions

In this paper, we consider the FIR-MIMO source separation
and equalization problem. We assume all sources transmit
digital communication signals with the same symbol rate and
alphabet, both of which are knowna priori. The measured data
is obtained from a cluster of fractionally sampled antennas. We
do not assume knowledge of the antenna array mainly because
we do not attempt to resolve the individual directions of the
incoming rays.

The proposed methods are subspace-based block-algorithms
and attempt to provide a structured factorization of the data
matrix into a channel matrix times a symbol matrix. The
constant symbol rate translates to a block-Toeplitz structure of
the symbol matrix, which is sufficient for equalization. We rely
strongly on the finite alphabet property for the separation of the
individual signals and to some extent also for the equalization.

The outline of the paper is as follows. The data model for
the FIR-MIMO scenario is presented in Section II. Maximum-
likelihood techniques for blind sequence estimation are not
computationally feasible. As an alternative, a subspace-based
approach is presented in Section III. A proof of identifiability
and some insight into the underlying subspace intersection
method is given in Section IV, as well as a comparison
among a few alternative methods via computer simulation.
In Section V, we indicate problems that occur with subspace
intersection techniques if the channel lengths are not well-
defined and suggest a possible solution. Finally, in Section
VI, the proposed algorithm is tested on simulated data based
on actual wireless indoor channels.

The paper encompasses preliminary short versions [1], [2].
During review, the full version of Liu and Xu’s approach
[20], [21] appeared in [26]. Although the original methods
used are quite identical, the present paper extends beyond [26]
by providing a significantly more efficient implementation,

comparing the proposed approach to a similar technique in
which the channel is identified first and subsequently inverted
(cf. [7]) and addressing the case with differing and ill-defined
channel lengths.

B. Notation

Lower-case bold, as in, denotes vectors. For a matrix,
is the transpose, is the complex conjugate transpose,
is the Moore–Penrose pseudo-inverse, coland row

denote the column span and row span of, and is
the Frobenius norm of vec is the “vectoring” operation
that stacks all columns of in a single vector, and is the
Kronecker product.

II. DATA MODEL

An array of sensors, with outputs ,
receives digital signals , each of which is
described as a sequence of dirac pulses

For convenience, we assume the symbol rate
is normalized to , and the digital symbols

belong to a known finite alphabet
for real signals, or

for complex signals. The wave-
form received at the array consists of multiple paths per signal,
with echos arriving from different angles, with different delays
and attenuations. The impulse response of the channel from
the th source to theth sensor is a convolution of the
pulse shaping filter and the actual channel from
to . We include any propagation delays and delays due
to asynchronous signals in . The data model is written
compactly as the convolution where

...
...

...

...

It is common to assume at this point that all channels
are FIR filters of length at most N :

The maximal channel length among all sources is denoted
by . An immediate consequence of the FIR
assumption is that, at any given moment, at mostcon-
secutive symbols of signal play a role in . Indeed, for

, where Z and , the convolution
can be expressed as

(1)

For simplicity of the exposition, we initially assume that all
channels have the same lengthand generalize later on.

Suppose we sample each at a rate N , where is
the oversampling factor, and collect samples duringsymbol
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periods; then, we can construct a data matrixas

...
...

The th column of contains the spatial and temporal
samples taken during theth interval. Based on the model of

in (1), it follows that has a factorization

...
...

...
...

...
...

...
...

...
...

...
...

(2)

The matrix represents the unknown space-time channel, and
the block-Toeplitz matrix contains the transmitted
symbols.1 For generality, we have assumed that the measured
block of data starts while the transmission of each of the
signals was already in progress, i.e., is determined by
previous symbols as well as . A similar
assumption is made on . Note that if the channels do
not all have the same length, then certain columns of
are equal to zero. Given , our goal in blind estimation is to
find and such that is a block-Toeplitz matrix, and the
symbols in satisfy the finite alphabet property.

If the source alphabet is real, then it is customary to work
with a real-valued data model by redefining (with some abuse
of notation)

real
imag

real
imag

(3)

This effectively doubles the number of observables while
halving the noise power on each entry.

The algorithms we consider in this paper rely on the
existence of a “filtering matrix” such that .
This implies that the row span of is equal to (or contained
in) the row span of . For this to be true, it is necessary
that has full column rank, which implies that .
This may put undue requirements on the number of antennas
or oversampling rate. However, it is possible to ease this
condition by making use of time-invariance and the structure
of . Extending to a block-Hankel matrix by left shifting
and stacking times (as discussed later, can be viewed as

1The subscriptL denotes the number of block rows inS. We usually omit
the subscript if this does not lead to confusion.

an equalizer length measured in symbol periods), we obtain

..
.

..
.

..
.

..
.

..
.

..
.

..
.

This augmented data matrix has a factorization

0

..
.
..

.

0

...
...

...
...
...

...
...

(4)
(the shifts of to the left are each overpositions) and the
objective becomes, for given , to determine factors and

of the indicated structure such that the entries ofbelong
to the finite alphabet. As we show in the sequel, identification
is possible if this is a minimal-rank factorization.Necessary
conditions for to have a unique factorization are
that is a “tall” matrix and that is a “wide” matrix, which
for leads to

(5)

Given sufficient data, only poses a fundamental
identifiability restriction.

Note that these conditions arenot sufficientfor and to
have full rank. One case where does not have full rank is
when the channels do not have equal lengths, in which case
the rank of is at most . Ill-conditioned
cases might occur when the channels are bandwidth limited
so that sampling faster than the Nyquist rate does not provide
independent linear combinations of the same symbols. In
principle, the maximal effective is given by the ratio of the
Nyquist rate and the symbol rate [27]. (There may be other
practical reasons to select a larger, e.g., to correct for errors
in carrier recovery. This is not considered here.)

For SISO models, the condition that is of full rank
is usually formulated in terms of “common zeros”; if the-
transforms of the rows of do not have a root in
common, then has full column rank for at least all
(viz., e.g., [7], [26]). For arbitrary channels, this technical
condition holds almost surely. In the FIR-MIMO case, the
corresponding requirement is that is “irreducible and
column reduced” (viz. [22]).

III. SUBSPACE-BASEDAPPROACHES

According to the previous section, the basic problem in
solving the blind FIR-MIMO problem is, for a given matrix
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Fig. 2. Multistage equalization/separation filter.

, to find a factorization , where is block-
Toeplitz with entries . If we assume that the data
matrix is corrupted by additive white Gaussian noise, then
the maximum likelihood criterion yields the nonlinear least
squares minimization problem

block-Toeplitz
(6)

To find an exact solution of this nonlinear optimization prob-
lem is computationally formidable. It is possible to approach
the optimum via iterative techniques that alternatingly estimate

and , starting from some initial estimate for [28]. This
approach is still computationally expensive due to the repeated
enumeration of all possible sequences of lengthusing the
Viterbi algorithm. In addition, the initial point has to be quite
accurate in order to converge to the global minimum, rather
than one of the numerous local minima.

The subspace-based approaches derived in this section sim-
plify the problem by breaking it up into two subproblems.
Suppose that the channels have equal lengthsand that the
conditions (5) are satisfied. Then,

full column rank row row
full row rank col col

To factor into , the strategy is to find either ,
which is a block-Toeplitz matrix with a specified row span, or

, which is a block-Hankel matrix with a specified column
span. In the scalar case ( signal), a number of algorithms
have been proposed for doing the latter, in particular, [7] and
[8], and it is straightforward to extend these algorithms to the
vector case ( ), presuming the channel lengths are all
equal. However, for , subspace information alone leads
to an ambiguity: is a factorization with the
same subspaces for diag and any invertible

matrix. This ambiguity is resolved in a second step by
taking advantage of the finite-alphabet property of the signals.

We outline three approaches: one that directly estimates
from its row span, as was originally proposed in [20], [1],
and [2], then an entirely equivalent but computationally more
attractive version, and finally, an approach in which is
estimated first. In the absence of noise, all approaches give
exact results. Note that none of these approaches provides a
factorization in which both factors are forced to
have the required Toeplitz or Hankel structure so that they are
suboptimal in that respect.

A. Step 1: Estimating the Row Span of

We work with the extended matrix in (4). The
first step in the direct algorithms is the estimation of an
(orthonormal) basis of the row span of from
the row span of . Suppose, as before, that the channels
have equal lengths, (5) holds, and has full column rank.
Then, row row so that we can determine the row
span of from that of . This requires the computation of
an SVD of , where are unitary matrices,
and is a diagonal matrix containing the singular values in
nonincreasing order [29]. Without noise, the rank of is
equal to the number of nonzero singular values, and we can
write , where consists of the first columns of

, is a diagonal matrix consisting of the nonzero
singular values, and is the first rows of , forming an
orthonormal basis for row . For well-conditioned problems
with equal channel lengths, we expect .
If is corrupted by noise, then the numerical rank of
is estimated by deciding how many singular values ofare
above the noise level. The estimated row spanis given by
the first rows of .

If the noise on is white and i.i.d., with covariance matrix
, then asymptotically converges to a basis for the column

span of the noise-free data . For i.i.d. signals,
(or a multiple thereof) so that asymptotically converges
to , where contains the singular values of.
Note that does not converge to its noise-free value since
its dimension grows along with . However, we can write

so that each column of is determined
by a linear combination of the corresponding column of.
Because of the Hankel structure of, this column contains
samples from consecutive symbol periods. Hence, the
matrix multiplication can be viewed as an FIR filter, where
is the equalizer length, and the rows ofcan be viewed as a
new, filtered data set. This is depicted in Fig. 2, where we have
just covered the first stage (of three). The filter coefficients are
given by the entries of . The main purpose of such a
subspace filter is dimensionality reduction, although we will
use the orthonormality of as well.

Computing the SVD of an matrix requires
about operations [29]. It is
possible to replace the SVD by computationally more efficient
adaptive subspace tracking algorithms, which update the filter
coefficients as increasingly more columns ofare taken into
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account. Several updating algorithms are available; see, for
example, [30]–[32].

B. Step 2: Forcing the Toeplitz Property of

The next step in computing the structured factorization
is to find a description of all possible matrices
that have a block-Toeplitz structure with

block rows and are such that row row . The latter
condition can be true only if each row of is in the row span
of :

row
row

...
row

(7)

These conditions can be aligned to apply to a single
block vector in several ways. We choose to work with

which is the generator of the Toeplitz matrix. Hence, is
in the intersectionof the row span of and shifts of this row
span (suitably embedded with zeros). Alternatively, we can
say that is orthogonal to theunion of the complements of
these row spans. This leads to a standard procedure to enforce
the Toeplitz property of and was originally used in [20] and
[1]. We will briefly describe the method for reference and then
show how row span intersections are computationally more
efficient in producing exactly the same result.

1) Null Space Union:Let be a matrix whose columns
constitute a basis for , i.e., is the complement of

and can be determined from the SVD of. If has full
column rank, then has dimensions

. Moreover, .
Using the fact that is block-Toeplitz, we obtain

0

...

...

...
0

(8)

The number of block columns of is equal to ,
where is a parameter chosen equal to the channel length
(or maybe smaller, as we will propose later). The blocks are
each shifted down over one position.

If is a wide matrix (this gives additional conditions
on and ), then determines , but only up
to a left invertible matrix , because also

satisfies . Given , we take to be a matrix
whose rows form a basis for . Hence, the Toeplitz
matrix is determined uniquely up to multiplication at the
right by diag . Now, to identify , we have to
find the factorization , which, in the case of finite
alphabet signals, can be done using a suitable I-MIMO signal
separation algorithm, as outlined in Section III-C.

The computation of calls for an SVD of ,
which is a matrix with dimensions of order .
Hence, this approach requires order operations,
which is not feasible for or so. It is possible to
alleviate the computational requirements as we need only the

basis vectors in the null space, which does not require
a full SVD. For example, a “spherical subspace” updating
algorithm, if applicable, would yield a complexity of roughly

.
Row Span Intersections:We again consider (7) and let

be a basis for row as determined in the first step. Define

(9)

where we take for now, although we will
consider other values for later. The conditions in (7) can be
realigned into

row

row

...

row

(10)

Indeed, the identity matrices in each reflect the fact
that, at that point, there are no range conditions on the
corresponding columns of . Thus, is in the intersection
of the row spans of until , and the problem
is one of determining a basis for the intersection of a set of
given subspaces. One approach, as we saw in the previous
subsection, is to compute the union of the complements of
the subspaces and take the complement again. However, it
is possible to compute subspace intersections without forming
complements. To this end, we use the fact that fororthonormal
bases in (9), precisely the same subspace intersection is
obtained by computing the right singular vectors of a matrix
formed by stacking the basis vectors (see Appendix A), i.e.,
by computing an SVD of

... (11)



178 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 1, JANUARY 1997

More conveniently, (for intersections, ), we
can compute the SVD of where thecopies of are each

(12)

shifted over one entry and

...

...

The matrices summarize the identity matrices present
in , which is possible because we are only interested
in the singular values and right singular vectors of , and
these do not change by replacing the stack of identity matrices
by . This is immediately seen by looking at
and observing that it is the same as the square of (11).

The estimated basis for the intersectionis given by the
right singular vectors of that correspond to thelargest
singular values of :by Appendix A, those that are equal to

(if there is no noise). As we will motivate later in Section
IV-D, the next largest singular values are close to .
Thus, the ISI filtering process is based on distinguishing
singular values between and . It is clear that for
large , this becomes a delicate matter. This motivates us to
keep small, i.e., not to make the stacking
parameter larger than necessary.

The relation between and in (8) is (cf. Appendix A)

(13)

Hence, the right singular vectors of and
are pairwise identical, except for a reversal in ordering. In
addition, their squared singular values pairwise add up to.
This is independent of any noise influence and is entirely
caused by the fact that we took and to beorthonormal
bases of complementary subspaces. Hence, the null span union
method is just as delicate: The two methods give exactly the
same results and have the same robustness and sensitivity to
noise.

We let denote the dimension of, which is the estimated
basis of the intersection. Under the (noise-free) conditions
specified in Section IV-A, with intersections,
we obtain , i.e., the intersecting subspace is precisely

-dimensional. This implies that for some invertible
matrix .

With noise, we follow the same procedure. We would like
to solve

arg
block Toeplitz

dist row row

where “dist” denotes the distance between two subspaces [29].
Directly finding a solution to this optimization problem is not
feasible. Instead, we find a generatorfor the Toeplitz matrix
by solving

arg dist row row (14)

which determines a matrix such that the row span of each
segment of is as close to the row span of as possible.
The two optimization problems are not precisely the same.
The solution of (14) is given in terms of the SVD of
and is equal to the right singular vectors corresponding to the
largest singular values of this matrix: those that are close to

and larger than . Thus, the proposed intersection
algorithm solves the second optimization problem.

In Fig. 2, the second stage indicates how is formed
from and delays of and that the basis is obtained
by linear combinations of the rows of . The coefficients
of the filter are obtained from the- and -matrix of the SVD
of , which is similar to the first stage. The matrices
are ignored in the figure as they only play a role in the first
and last few columns of a block of data and not during the
filtering process itself.

If we take , then has dimensions
. Using an SVD,

this gives the subspace intersection algorithm a complexity of
, which is linear in . Similar to stage 1, we

can consider an updating implementation of this stage as well,
although the required orthonormality of the input signals to this
stage gives rise to some interesting complications. A spherical
subspace tracker, if applicable, would yield a complexity of
order . An investigation of the details is beyond
the scope of the paper.

If the complexity of the intersection step is too large, it may
be interesting to consider a multistage intersection approach.
Instead of computing the joint intersection of
subspaces, which requires a stack of shifts
of , we may place, e.g., two intersection stages in cascade,
each consisting of a joint intersection of
subspaces. Likewise, it is ultimately possible to have
stages, each consisting of one pairwise intersection. This
reduces the complexity to , and without
noise, the result is precisely the same independent of the
scheme. Numerically and with noise, however, the result is
suboptimal because it is sensitive to the order in which the
intersections are performed.

C. Step 3: Forcing the Finite Alphabet Property

At this point, we have only obtained abasis of a -
dimensional subspace that contains .
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To find , we have to determine which linear combinations of
the rows of give a finite alphabet structure. This problem is a
structured factorization of the form , which
is interpreted as separating an instantaneous linear mixture of
finite alphabet signals. Several algorithms have been proposed
to solve such problems. In particular, a maximum-likelihood
(ML) formulation of the problem leads to

(15)

which is precisely the problem studied in [16] and [17]. In that
paper, two iterative block algorithms are introduced—ILSE
and ILSP—which are summarized below. Starting from an
initial estimate , the algorithms proceed as follows:

ILSE
for

a) arg
b)

ILSP
for

a) Proj
b)

The operator Proj denotes element-wise projection on to the
alphabet . The ILSE algorithm converges to the ML estimate
of the pair , provided the initial estimate for is close
to the true value. Solving stepin ILSE involves enumeration
over all possible combinations of symbols. The ILSP algorithm
avoids the enumeration by replacing it with a least-squares
solve for followed by a projection onto the alphabet.
This is computationally cheaper but suboptimal. Unless the
alphabet is BPSK and the number of rows ofis small, it
is important to have a reasonably accurate initial estimate of

. Good initial points are obtained by the recently introduced
“analytical constant modulus algorithm” (ACMA) [33], which
is readily specialized to give closed-form eigenvalue-based
solutions for simple finite alphabets such as BPSK and MSK
[34]. Depending on the matrix dimensions and noise level,
ILSE and ILSP usually converge to a fixed point in less than
5–10 iterations [16]. As mentioned in the introduction, several
other I-MIMO source separation algorithms are described in
the literature, some based on different properties such as source
independence or constant modulus [18], [19], [35]–[38].

Alternatively, we can minimize the MMSE criterion

full rank
(16)

which essentially fits the subspace to a FA matrix . An
iterative algorithm to solve this problem is called iterative least
squares with subspace fitting (ILSF) and is listed in Table
I. It is very similar to ILSP but has the advantage that the
pseudoinverse of theth iterate is avoided and replaced
by a pseudoinverse of , which is constant. Since is an
orthonormal basis, this inverse is simply equal to the complex
conjugate transpose . For a small number of sources,
each iteration requires flops.

One aspect of the problem (16) that is different from (6) is
that we explicitly require to be full rank in order to guarantee
independent rows of . Indeed, should be a well-conditioned

TABLE I
ILSF ALGORITHM

matrix since the rows of become orthogonal for large (as
the signals are uncorrelated). In addition, sinceis orthogonal
as well, is close to unitary (up to a scaling). It rotates one
orthogonal basis into another. Hence,is the solution to an
orthogonal Procrustesproblem [29]. Forcing to be close
to unitary provides one way of enforcing independent signals
in . Note that for a unitary matrix , the criteria (16) and
(15) are the same; therefore, the performance of ILSF is quite
similar to ILSP.

The ILSF step is the last stage of the filter in Fig. 2, with
( is considered in Section V-C). The coefficients

of the filter in this stage are the entries of. Similar to ILSP
in [17], it is straightforward to replace ILSF by an updating
version, which operates in a decision directed feedback mode.

D. Alternative: Computation of First

Instead of estimating directly, we can also first estimate
and invert the resulting channel to estimate. This is

potentially interesting since the dimensions ofdo not grow
with ; therefore, it can be estimated consistently. We briefly
describe the procedure, which is basically an extension of [7]
to multiple signals.

Let be a basis of the left null space of . Assuming
to be of full rank, we have . Write

Then

0
...

...
...

...
...

...
0

...

If the matrix on the left is “tall” (this gives minimal conditions
on ), then generically its right null space specifiesup to a
right block-diagonal factor diag . For any solution

, the basis is found from an inverse
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filter associated with as

...

where vec is a stack of all input data. At
this point, we are back at the model , and the
ILSE/P/F algorithm is employed to remove the ambiguity that

represents.
For the estimation of , it is only required that be of full

row rank, which is a mild condition. In particular, it is not
necessary that all channels have equal length, although certain
modifications are in order (see [22], which also contains some
identifiability results).

It is unclear whether a direct estimation of is to be
preferred over an indirect estimation via . The former
initially forces only the structure of , neglecting that of ,
whereas the latter does the opposite. In general, estimating

is computationally easier for large and can be done
consistently. Our experience with simulations, however, is that
estimating directly might be more accurate in the presence
of model mismatch (see Section IV-E). In addition, if the
channel lengths are not well defined (i.e., the FIR assumption
is only approximately true), row span methods can potentially
obtain a better model fit. This is because they do not force
zeros in the lower right block of but have the freedom to
insert the actual (nonzero) coefficients instead. Finally, without
going into details, we mention that the row span methods
are almost immediately applicable to more general ARMA
(rational) channel models, in which a state space model is
assumed.

IV. A SPECTS OF THEALGORITHM

A. Identifiability

Does the intersection/FA algorithm provide a unique es-
timate of ? This identifiability issue is the subject of the
following theorem. Similar results for were presented
in [7] but from the point of view of estimating from its
Hankel structure. An alternative proof appears in [26].

Theorem 1: Consider the FIR-MIMO scenario with
sources and channels of equal length . Suppose that
the dimension conditions (5) are satisfied for someand that
the rank and rank .

Let be a structured factorization of .
Taking only the Toeplitz structure into account, is
uniquely specified by the condition row row
up to a left block-diagonal factor diag , where

is an invertible matrix.
Taking also the FA property into account, under condi-

tions of [17, Theorem 3.2],2 is unique up to
diag , where can take the form of a permutation
and a diagonal scaling by .

We first derive the following lemma, where can be any
number of intersections between 1 and .

2This theorem basically requires thatS contains all possibled-dimensional
columns that can be generated by the finite alphabet. This is a sufficient but
pessimistically large condition onN .

Lemma 1: For , let be an orthonormal
basis of row , and define as in (9). Under the
conditions of Theorem 1, row row is a
subspace of dimension and contains
( ).

Proof of the Lemma:The rank condition on implies
that has full row rank. In turn, this implies that has
full row rank equal to for (since any subset
of the rows of has full row rank as well).

Suppose . In investigating row row , we
may as well look at instead of since they span the
same space. Consider

...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

...

where “ ” stands for an arbitrary extension as enabled by the
identity matrices in the . The intersection removes all
rows that are not linearly dependent on the rows of the opposite
block. With suitable extensions, this means only the first and
last rows are candidates for removal. Note that they cannot be
linearly dependent on the other rows because the submatrix
of the above matrix obtained by removing the first and last
column has the same set of rows as , which has full
row rank. Hence, both rows are removed, and the result of
the intersection is a space with preciselyless rows and is
generated by the rows of (since it is of full row
rank). The result for larger is obtained by repeating the
same argument.3

Proof of the Theorem:Setting in the above
lemma gives an intersection subspace of dimension, which
is spanned by the rows of . Hence, is unique
up to left multiplication by some invertible matrix ;
consequently, is unique up to left multiplication by

diag .
Taking the FA property into account as well, [17, theorem

3.2] claims that for sufficiently diverse symbols, is unique
up to permutation and scaling by .

3The rank condition onXm+1 is necessary to avoid pathological cases:
Consider, e.g., a periodic symbol matrix

S3 =

s2 s0 s1 s2 s0 s1

s1 s2 s0 s1 s2 s0

s0 s1 s2 s0 s1 s2

:

In this case the intersections do not remove any row. Note thatS4 has rank
� 3d; therefore, it is not of full rank.
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B. Detection of and

If and have full column rank and row rank, respec-
tively, then the rank of is . The number
of signals can be estimated by increasing by one and
looking at the increase in rank of . This property provides
a very effective detection mechanism even if the noise level
is quite high since it is independent of the actual (observable)
channel length. Furthermore, it still holds if all channels do
not have equal lengths (see Section IV-C). In case they do,
then can be determined from the estimated rank of
and the estimated number of signalsby .

It is interesting to note that there is an efficient updating
algorithm for estimating the rank of and the corresponding
column span for all from 1 to at once, without requiring
SVD’s and using only the full-size . The SSE-1 subspace
estimator derived in [32] is a technique for computing the
number of singular values of a matrix that are larger than a
given threshold , and a basis for a subspace that is-close to
the column span of the matrix in some norm. The algorithm
is such that at the same time, this information is produced
on all principal submatrices of as well. Applied to , it
produces the ranks of all , with respect to a given
threshold at the complexity of a QR factorization.

C. Unequal Channel Lengths

For simplicity of presentation, we have only considered
channels with equal length up to now: .
In general, however, the lengths may be different. In that
case, it is perhaps more natural to write the factorization

with a rank-deficient as

(17)

where each and correspond to the channel and
symbol matrix of source only. Generically, these factors are
of full rank . The rank of is thus expected to be

rank tot tot

assuming the terms in (17) are linearly independent.
To obtain row equal to the linear envelope
row row , it is necessary that

tot , i.e.,

tot

To describe the result of the subspace intersections, we need
to define a “rank profile”4

i.e., is equal to the number of sources with a channel
length . Thus, is monotonically decreasing from
( ) to ( ), and tot.

If we perform intersections step by step, then the first
intersection removes the top row of every , and the

4For a setE; #(E) denotes the number of elements inE.

rank of the intersecting subspace isless than the rank of .
The next intersection removes the second row and drops the
rank again by , etc. This continues until the rank of one or
more of is exhausted, in which case, the drop in rank per
intersection is now less. The latter starts to happen once more
than intersections are taken, and the drop in rank follows
the rank profile . In general, after intersections, the
rank of the resulting intersecting subspace is

rank row

tot

tot

In principle, this allows one to determine the rank profile
and, hence, the individual channel lengths.

In an approach outlined by Liu and Xu in [21], a technique
for estimating source signals with unequal channel lengths is
presented. Essentially, the idea is to compute all intersecting
subspaces for to . Starting with the
smallest dimensional subspace (i.e., ), first,
all the multiple signals that are in this subspace are separated
(by ILSF), which are precisely the signals with channel
length . With these signals known, the next higher
dimensional intersection (smaller) is computed, and the
signals in it are separated, using the signals that were already
found (and their shifts) as partial initial conditions forin the
ILSF algorithm. In this way, it is in theory possible to unwind
the separation problem.

If, instead of the SVD, we apply the SSE-1 subspace
estimator [32] to the full-size , we obtain rank
and subspace information of all principal submatrices of this
matrix as well. Since these principal submatrices are equal
to the smaller size (ignoring
the effect of ), this gives sufficient information to find the
complete rank profile at once, as well as a way to reconstruct
all intersections.

D. Singular Value Model of Intersections

Under noise-free conditions, we already know (by Appendix
A) that the largest singular values of are
precisely equal to . What is the magnitude of
other singular values? It is straightforward to give an answer
for .

Since is a basis of row , we have for some
square matrix . Hence can be factored as (18), shown
at the bottom of the next page, where “” denotes entries
that are not of interest. For large and i.i.d. signals, the
rows of are approximately orthogonal to each other, that
is, , which implies that is close to a
unitary matrix. In that case, it follows that the columns of

are asymptotically orthogonal to each other. Ignoring
the second term in the factorization (18) for the moment,
the factorization of the first term directly translates into the
SVD of . In particular, the singular values of are the
norms of the columns of and, thus, are equal to

each repeatedtimes. The
left singular vectors are just normalizations of the columns
of , and the right singular vectors are normalizations of
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the rows of . The latter normalization is in the order
of . For large , it is clear that rows of the second

term (containing ) become orthogonal to since

the inner product is proportional to . Obviously, the
columns of this term are orthogonal to . Hence, the second
term contributes additional singular values each
repeated two times. Altogether, asymptotically and under
noise-free conditions, for has singular
values equal to and groups of singular values equal
to . If we take , then similarly,
we can show that there are
singular values equal to , followed by the groups of
singular values equal to . The right singular
vectors corresponding to the largest singular values are
a basis for ; the intersections have removed

echos of each signal.
If is not large and if there is noise, then obviously, the

singular values start to deviate from these asymptotic values,
and in particular, the gap between the singular values around

and closes. The assessment of these deviations is
subject to future research. Such an analysis would give pointers
to suitable minimal values for (in relation to the noise level)
such that there still can be a gap.

E. Comparison by Simulation

To assess and compare the performance of the proposed
algorithms, we consider a simple but unrealistic scenario in
which all assumptions on the model are satisfied. A more
challenging test case is deferred to Section VI. We took

real-valued BPSK sources and a randomly selected
complex channel matrix with observables and
equal channel lengths . ( and are equivalent
in this example because there is no modulation function
and no multiray model.) We added complex white Gaussian
i.i.d. noise with variance . The number of snapshots was

. The signal-to-noise ratio (SNR) is defined as
, which is the average SNR per signal

per observable. The relative power of both sources was set
equal.

The singular values of are displayed in Fig. 3. Without
noise, the rank of is expected to be ,
which turns out to be the case. The number of sourcescan be
identified from the graph by looking at the increase in rank of

as increases. In addition, can be estimated, assuming

Fig. 3. Singular values ofXm (noise-free) for a range ofm. The dashed
lines indicate which singular values will be masked by the noise.

equal channel lengths. The dashed lines in the graph indicate
at which noise level the small singular values of will
be obscured. This level increases with , but the singular
values of do not; therefore, it is advantageous to keep
small. Below 10 dB, the true rank of is no longer visible,
and in practice, we would estimate the rank of too low.

The singular values of are considered next (Fig. 4).
For convenience, they are converted into the singular values
of by computing sv . (Recall from (13)
that the singular values of and squared, add up to

by construction.) After transformation, we expect for full
intersections ( a total of zero singular
values corresponding to the sources and groups of
singular values around (as indicated by the
dotted lines in the figure). For SNR’s of 10 dB or more, this
is indeed the case, but for SNR5 dB, the second source is no
longer present after intersections (Fig. 4(b)). If we take
and truncate the rank of at 7, which is its observable rank,
then the rank equation produces an estimated channel length

. Setting instead, we can only take
intersections, and we are left with

signals/echos. As seen in Fig. 4(c), this number of
remaining signals is still well visible, even in the SNR5 dB
case. This indicates that for the row span intersection method,
there is an advantage in underestimatingand .

(18)
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(a)

(b)

(c)

Fig. 4. Transformed singular values ofVT (n), namely, (n � sv
(VT (n))

2)1=2. Small values indicate the number of remaining signals
after intersections. (a) SNR= 10 dB, full intersections. (b) SNR= 5 dB, full
intersections (second source not resolved). (c) SNR= 5 dB, underestimating
dX and taking less intersections. After intersections,d̂S = 3 signals remain.

This is confirmed by Fig. 5, which shows the bit error rates
(BER) for varying SNR for various choices of the parameters

and . Here, we compare the directly estimating-method
(row span intersection) with the estimating--first method
(column nullspace union). If the exact parameters are used
in the identification, the performance of both methods is
approximately the same.

In [26], a Cramer–Rao lower bound (CRLB) is derived for
the blind equalization of one source if only the Toeplitz/Hankel
structure of and is taken into account but not the finite-
alphabet property. The result is readily generalized to .
However, a correction to [26] by about a factor 2 is in order,
which is discussed in Appendix B.

As seen in Fig. 5(a), the methods do not reach the approx-
imate blind CRLB (22) because they only force one of the
factors to have structure (either or ) but not both. For
comparison, we also show the CRLB for estimation ofif
is known (the performance for a zero-forcing equalizer), which
has a better performance, especially for the second signal. The
“ILSE” curves are obtained by running the ILSE algorithm on

, initialized by the exact so that it gives the ML estimate
of the factor if its Toeplitz structure is ignored. As its BER
is well above that of the blind CRLB, this indicates that using
the Toeplitz structure is relevant.

Fig. 5(b) shows the case where the rank of is under-
estimated, which would happen in practice below 10 dB.
In that case, underestimating as well (hence, taking less
intersections ) leads to remaining signals after
intersections, which are separated by ILSE. As shown by the
dotted lines, this greatly improves the performance. We even
go below the blind CRLB for the second signal, which is
possible because the estimators are not necessarily unbiased
and because the FA structure is used more strongly now but
is not considered in the bound. This holds for the row span
method. Using similar techniques, we were not able to to
improve the performance of column span method. Instead, it
collapsed on rank-truncated data.

The conclusions of the simulation can be summarized as
follows:

• The current and proposed blind equalization/separation
methods force only one structural property out of three:
the Hankel structure of , the Toeplitz structure of ,
and its finite alphabet structure. For the assumed model,
each of these properties by itself is approximately equally
strong. As shown by the theoretical bounds, significant
gains can still be obtained by simultaneously forcing more
than one property.

• The performance of the row span method can be sig-
nificantly improved by truncating the rank of at the
noise level, underestimating the channel length, and
separating the remaining signals plus echos based on
the finite alphabet property. The column span method is
apparently not robust on truncated data.

V. ILL-DEFINED CHANNEL LENGTHS

In reality, channels do not have well-defined channel
lengths. Multipath echos with a long delay generally have a
smaller amplitude; therefore, the channel responses trail down
to zero rather than filling out a sharply defined interval in time.
In such cases, is ill conditioned, and subspace intersections
cannot be used to precisely cancel all the echos. Ill-conditioned
channel matrices are also expected for bandlimited signals
[27].

A. Effect on Intersections

To illustrate the effect of ill-conditioned channels on the
computation of the intersecting subspace, consider the impulse
response shown in Fig. 6(a). This is the convolution
of an actual line-of-sight indoor channel at 2.4 GHz with a
raised cosine pulse ( ns, modulation index ,
oversampling rate ). The main peak has a width of
about two symbols, but there are several smaller peaks as
well. For this example, we consider the data obtained from

antennas, with signal present, which is already
sufficient to make our point. The singular values of are
shown in Fig. 6(b). The rank of is not clear; it is certainly
not of low rank in a mathematical sense, and the numerical
rank depends on the truncation level we choose. To avoid an
excessively large inverse of, we would in this case decide a
rank of or so, corresponding to an estimated channel
length of .
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(a) (b)

Fig. 5. BER performance ford = 2 BPSK signals. (a) Using exact valueŝL = L; d̂X = dX = d(L + m � 1): (b) Using approximate values. For
comparison, the CRLB for a zero-forcing equalizer(H

y
N
) is indicated, assuming perfect knowledge ofH, the CRLB for the blind scenario (not using

the FA property), and the performance of ILSE initialized with the exactH.

For large , the signals are approximately orthogonal to
their shifts, and in that case, the singular values ofare equal
to the singular values of . In fact, let be
an SVD of . Then

so that, for orthogonal and . If

we approximate by truncating its SVD to some rank ,
then

Ideally, is full rank, and is square, but for ill-defined
channel lengths, has size , where is the
“actual” (large and fuzzy) channel length. Fig. 6(c) shows the
magnitude of the entries of (up to the first 24 rows of ).
The first 10 rows of have 11 large entries; thus, the first
10 rows of are a linear combination of 11 rows of, plus
some weaker ISI from other rows. The reason for this is that

contains a sharp peak, which is smeared by the
shifts over 11 symbols. The next few rows of show the
influence of the smaller peaks in : An increasing number
of rows of get involved.

For large , we may write, as in (18),

neglecting the edge effects caused by . Since the rows of
are close to orthogonal, the SVD of can be written as

the SVD of times . Fig. 6(d) shows the singular values
of when . There is one singular value
close to and two around , as expected.
Hence, there is one vector in the intersection. This vector
is given by the product of the corresponding right singular
vector of times . The right singular vectors are shown
in Fig. 6(e). Since we expect the result to be basically one
symbol sequence out of , the top row should have only

one large entry. However, it is seen that the top row has at
least eight large entries; therefore, the vector in the intersection
is still a linear combination of at least eight symbols. Thus,
the intersection did not produce the desired effect of removing
all ISI. The “ ” structure of this figure is very characteristic
and shows how the intersections work. Indeed, small singular
values of (or ) correspond to the top and bottom rows
of since these are repeated only a few times in. The
large singular values correspond to rows in the middle of

, which are repeated up to times. The width of the legs
of “ ” is nearly constant. For well-defined channel lengths,
the width of the legs is expected to be 1 because the right
singular vectors corresponding to a singular value are specific
echos (rows of ; cf. (18)). The widening of the second
leg of the “ ” in our example shows the influence of the
structured noise that is introduced by truncating the rank of

at 12. Qualitatively, it can be attributed to the second peak
in , which is partly (but not entirely) eliminated by the
truncation of to rank 12. The truncated data matrix still
contains one or a few linear combinations of echos, but since
there are fewer combinations than symbols that play a role
after truncation, the echos cannot be removed by intersections.

The conclusion drawn from this experiment is that for actual
channels the SVD-based intersection scheme may not remove
all the ISI if the rank of is ill-defined.

B. Effect of Taking Fewer Intersections

What happens if we take less than intersections?
We provide an intuitive analysis. Let us say that is the
true rank of and that the resulting approximation error is
lumped into the noise term. Since , it is seen
that the noise on the rows of is not uniform: amplifies
the noise at the top rows of less than at the later rows.
Consider a simple example where and . If we take

intersections, then the basis of singular vectors of
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(a) (d)

(b) (e)

(c) (f)

Fig. 6. (a) Channel impulse responseh(t): (b) Singular values ofH10: the numerical rank ofH10 is about 12. (c)Q̂, i.e., right singular vectors ofH10

(magnitude of entries). (d) Singular values ofQT (12), with d̂X = 12. (e) Right singular vectors ofQT (12) and (f) of QT (10).

corresponding to singular values close tostill contains
echos of each signal. A straightforward

generalization of the singular value model (18) in Section IV-
D to shows that, with , each row of

is an average of out of rows of . Rows of that
are formed by combining the top rows of contain less
noise than others.

In general, is some other combination of the symbols
( and ). However, the effect that, with fewer inter-
sections, some rows of are less contaminated by noise than

others is still often observed. This is illustrated in Fig. 6(f),
where we have taken intersections rather than 12.
The first two singular vectors are each a linear combination
of only three symbols, rather than eight, as we had before
with full row span intersections. has rows, and the
third singular vector is indeed noisy; it is seen to be a linear
combination of nine symbols.

C. Multistage Intersections

Motivated by the preceding subsection, we propose a mul-
tistage intersection scheme. The first intersection stage only
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TABLE II
BLIND FIR-MIMO IDENTIFICATION ALGORITHM

takes the well-defined intersections: At most,
, where is an underestimate of the channel

length of signal , but without prior knowledge of channel
lengths, perhaps even only . This produces a basis
which is too large. In fact, it contains
rows and is a basis for . The second intersection stage
has to remove the remaining ISI. Instead of using an SVD, we
combine this stage with the separation stage (ILSF or some
other I-MIMO algorithm), i.e., the finite alphabet property is
used to do the remaining equalization and the signal separation
as well.

In principle, we can apply ILSF directly on . We could
recover all rows of and select those rows that are
not shifts of each other and that have the smallest deviation
from the alphabet. However, since the rows ofare a basis
for the Toeplitz matrix , it is more general to prepare for
a subspace intersection step, i.e., augmentto a Toeplitz
matrix , where is some small number. Similar to the
construction of from , we construct by stacking

shifted copies of (omitting , ). However, instead of
applying an SVD to , we apply ILSF so that signals and
echos are separated based on finite alphabet properties. The
resulting variance on the symbol estimates should be lower
since ILSF has the same degrees of freedom as the SVD but
is not blind to symbol variance. The value forcould vary
between and . A larger will always result in
symbol estimates with lower variance. In the latter extreme
case, we act on the same data that a secondary SVD-based
subspace intersection stage would use. However,cannot
be too large because the complexity and the reliability of
convergence of ILSF to the global minimum deteriorates with
growing dimensions.

(a)

(b)

Fig. 7. (a) Relative power and (b) response to a raised-cosine pulse (T = 6

ns, � = 0:5) of two measured indoor channels.

Fig. 8. Singular values ofXm for m = 2; � � � ; 10.

The resulting algorithm has the general structure of Fig. 2
and is listed in Table II. The significance of taking will
be clear from the simulation results in Section VI.

VI. SIMULATION RESULTS

In this section, we report on a test of the algorithm in an
off-line experiment, in which we simulate the reception of a
number of BPSK signals through an indoor wireless channel
at 2.4 GHz. The channel impulse responses are derived from
experimental data measured in an office at FEL-TNO, which
is in The Hague, The Netherlands, in 1992 [39].5

5We are grateful to G. J. M. Janssen (now at TU Delft) for sharing his
measurement data.
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The office has dimensions 5.6 m 5.0 m and height 3.5
m. The actual measurement set-up had a transmit antenna in
the center of the room at a height of 3.0 m and a receiving
antenna cluster located at varying positions at a height of 1.5
m. The cluster consisted of six wideband antennas spaced
in a circular array.

Assuming reciprocity (not quite true), we can pretend to
simulate a central basestation antenna array of up to six
elements, receiving a superposition of signals from a number
of user locations. We have used data from two such locations:
one with a direct line of sight (RMS delay spread 7.3
ns) and one without LOS (RMS delay spread 16.7 ns).
The relative powers in the frequency domain are plotted
in Fig. 7(a). Fig. 7(b) shows the amplitude of the impulse
responses to a raised-cosine pulse ( ns,
demodulated to baseband from a carrier frequency of 2.4
GHz), each normalized to unit power. We do not have any
application in mind with these numbers; they are chosen to
provide an ambitious test case that uses all of the measured
bandwidth.

In the experiment, we took BPSK sources, transmitted
over the above channels, antennas, times
oversampling, and samples. The received power
of both signals was scaled to be equal, and we added complex
white Gaussian noise with variance such that the signal-to-
noise ratio SNR 15 dB per antenna
per sample per signal. The singular values ofare plotted in
Fig. 8 for a range of values of . It is seen that the numerical
rank of ( ) cannot be estimated very well, but clearly,

, as deduced from the horizontal shifts for increasing.
For , it seems reasonable to set in the range 20–30,
which makes the “observable channel length”equal to 4–9,
if the channels had equal lengths. As in the single-user case
(Fig. 6(a) and (b)), the actual channel lengths cannot really be
deduced from the data.

Fig. 9 shows the standard deviations of the symbol estimates
(before classification as ) for a range of parameter settings:
estimated rank , number of intersections, and secondary
equalizer . ILSF initialized with was used as finite
alphabet separation algorithm. The values of these parameters
have a deliberate impact on the performance, but precisely
how to find the best settingsa priori is an open problem. As
a general observation, it is possible to underestimate, but
in that case, it is essential thatis taken small ( ) and
that ILSF is used as an equalizer as well ( ). However,

should not be taken too large because then, the matrices on
which ILSF acts become too big, leading to an abundance of
local minima. To put the graphs into perspective, note that at
this noise level, the standard deviations of the symbol estimates
in an ISI-free scenario, where and the antennas
and oversampling produce independent observations per
symbol would be . (The factor 2 is due to
the transformation of to a real matrix, as in (3).)

VII. CONCLUSION

We have presented an algorithm for blind sequence es-
timation of multiple digital sources in a general multipath

environment. The algorithm uses information from multiple
sensors, oversampling to exploit the constant symbol period,
and the finite alphabet property of digital signals. It is set
in a deterministic framework and uses subspace properties
of the underlying structured matrix factorization problem.
This approach is effective in situations where the channel
lengths are well determined. We have indicated some problems
that may arise in subspace intersections algorithms when
the channel lengths are not well defined and suggested a
modification that should give improvements for channels with
well-defined peaks.

APPENDIX A
INTERSECTION OFSUBSPACES

Let be subspaces inC with orthogonal comple-
ments . Then,

The computation of the intersection via this equation requires
the formation of three orthogonal complements. With
matrices whose columns form orthonormal bases for ,
we can obtain a basis for the intersection of and from
the kernel of . With noisy data, this requires the
computation of an SVD of : A basis of the estimated
kernel is given by the singular vectors that correspond to small
singular values.

In our application, the dimension of the is independent
of so that the dimension of the complements grows with

. This means that for large , it is not attractive to
compute the intersection in this manner. We show in the
following proposition that precisely the same information may
be gleaned from the large singular values and corresponding
singular vectors of a matrix , where are
orthonormal bases of .

Proposition 1: Let be subspaces inC with or-
thonormal bases , and let
be an SVD. Suppose that are orthonormal bases
for , . Then, has an SVD

for some unitary matrix .
Proof: Since ,

we have

Substituting and multiplying the
above equation with , we obtain

Since both and are diagonal, this implies that there is
a unitary matrix such that is diagonal.
This, however, constitutes precisely an SVD for

This result is readily generalized to the joint intersection
of subspaces . Likewise, we compute an
SVD of but now look for singular values that
are close to .
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(a) (b)

(c) (d)

Fig. 9. Standard deviations of signal estimates form = 7 and varying settings of̂dX ; n; p.

APPENDIX B
APPROXIMATE CRAMER–RAO BOUNDS

Suppose , where is a white i.i.d.
complex Gaussian noise process with covariance matrix.
For simplicity of future notation, let us specialize to the
case of real signals (e.g., BPSK signals ). Define
vectors of unknown parameters vec and

. We assume that the number of sources
is known and that the channels have equal known channel

length . If we do not take into account that the entries of
belong to a finite alphabet, then the concentrated Fisher

information matrix for is derived in [26] as

(originally for a single signal, but the results are readily
generalized for and adapted here for a real data model).
The CRLB that describes the lower bound on the covariance of
any unbiased estimator forand is obtained by inverting .
However, as noted in [26], this matrix turns out to be singular
because there is ambiguity in the parameter values: Without
forcing the FA property, we can only identify and up to

an invertible matrix . Indeed, the dimension of the null
space of is observed to be in generic examples. To fix

, one has to assume that certain symbols are known.
For , knowing the value of one symbol of suffices,

and the variance of the remaining estimates is obtained by
deleting the corresponding column of . Let be equal
to with the column corresponding to the known symbol
taken out, and define and accordingly. Then, the CRLB
on the covariance of is

(19)
(the subscript ‘ ’ denotes the (1,1) block of following
the partitioning of ) so that, in particular,

var diag [CRLB with ”training,” no FA]
(20)

This is basically the result in [26], where it is also noted
that although the bound is dependent on bothand , its
dependence on is only weak in practice. However, a number
of remarks that go beyond [26] are in order.

1) It makes a differencewhich symbol is assumed to be
known. Not surprisingly, knowing one of the center sym-
bols gives significantly lower variances than knowing
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one of the first or last symbols because these play
a less significant role in . Additionally, the variances
of the symbols in the range are usually
approximately equal to each other, but the first and last

symbols have a significantly larger variance. In
the computation of the expected bit error rates, we have
taken these tail symbols out of consideration.

2) The result (20) strictly speaking applies to a scenario in
which we have a “training sequence” of length. It is
readily generalized for training sequences longer than 1
by leaving out more columns of .

3) The above remark implies that in theactual blind
algorithm, the above lower bound on the variance is
too large by about a factor 2. Indeed, (20) is valid for
estimates where the variance of one symbol,say, is
made zero. This is conceptually done by estimating any
sequence and then normalizing theth entry by dividing
the estimated sequence by the estimated value ofand
multiplication by its desired value. Assuming relatively
small variances, the division causes the variance of all
other symbol estimates to be enlarged by the variance of
the estimate of .6 In the actual blind scheme, we do not
normalize on a single symbol but normalize . In
that case, the lower bound (20) is too high and formally
not applicable. To attempt to correct for this, we have to
estimate the variance of , e.g., as median diag
and subtract to get

var blind diag median diag
[approx. blind CRLB, no FA, ]

(21)

(We take the median instead of the mean to avoid the
influence of outliers at the tails of the sequence.) This is
the (approximate) CRLB for a blind scheme that relies
on a structured factorization , not taking the
finite alphabet into account other than for removing the
ambiguity. If all estimates have approximately equal
variance, the originally derived bound (20) is about a
factor 2 too high.

For , roughly the same derivation holds, except that
we have to pretend that more symbols are known because the
ambiguity factor now has degrees of freedom. Hence, we
have to fix symbols of signals, i.e., a submatrix of

somewhere in the center of. An extra complication is that
this submatrix has to be full rank or else some ambiguity in

remains. Hence, in computing the bound, we have to select
independent columns of, which are located somewhere in

the center, and delete the corresponding columns of to
obtain . After this, the bound (20) is derived as before.
The correction for the unnatural normalization as assumed in
that bound is somewhat more intricate now. Indeed, before
normalization, let us say we have symbol estimates

blind

and are the exact symbols, and and represent the
noise on the estimates. Normalization to arrive at an estimate

6Here, the first-order approximationsr(sr+er)�1(s+e) � s�ers
�1

r
s+

e is used, as well as the BPSK assumptionjsij = 1.

in which the known symbols have zero variance gives the
modified estimates for which the CRLB (20) holds as

Note that can actually amplify the noise contribution by
. In estimating the correction on the bound, assume (not

entirely correctly) that the columns of are inde-
pendent, zero mean, and have equal distribution E

. Let be the th column of , and then

E

The left-hand side of this expression is given by the uncor-
rected CRLB, namely, , which is the submatrix of

in (20) corresponding to . It follows that an estimate of
and an approximate lower bound on varblind can be

obtained as

median

var blind

(22)

For BPSK signals, always, and the above
expression reduces to (21).
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