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Online inspection system for the
automatic detection of bolt defects
on a freight train

Caiqin Li, Zhenzhong Wei and Jing Xing

Abstract

Inspecting the condition of the key components of freight trains is an important task in the rail industry. Bolts on the

wheel bearings are key components of a bogie, and bolt defects, such as missing or broken bolts, can lead to serious

accidents. To improve the traditional manual inspection procedure, which is both laborious and inflexible, a novel method

of automatic image recognition for bolt defects is proposed in this paper. The main procedures are as follows. When a

freight train drives through the inspection station, images of the train’s wheels are captured by cameras installed along-

side the track. Based on the local binary pattern descriptor, a support vector machine classifier is trained to distinguish

between bolt and non-bolt images. The classifier is then combined with a rotate-and-slide window method to localize the

three bolt regions in the wheel image. Specifically, a self-updating method is proposed in the training phase to automat-

ically capture the various different situations experienced by bolts in real-life scenarios. After localization, we distinguish

defective bolts from normal bolts based on whether there is a hexagonal shape in the bolt region. As demonstrated by

real-life experiments, our proposed method can guarantee to find bolt defects and further work will be devoted to

reducing the false alarm rate.
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Introduction

The inspection of freight trains is a critical task that is
performed to ensure the safety of railway traffic. In
contrast with track inspection, it focuses on evaluat-
ing the real-time condition of train components, such
as fastening bolts, angle cocks and dust collectors.
Traditionally, the inspection of train components
has been laborious and inflexible; this has resulted
in the maximum speed of freight trains being limited.
Therefore, it is of great interest to replace the manual
inspection process by an automatic inspection system
using advanced computer vision technologies.

In recent years, an inspecting system called the
‘Trouble of Freight Car Detection System’ (TFDS)
has been widely utilized on Chinese railways. The
TFDS allows the online inspection of a train’s key
components, thereby preventing dangerous situations
from arising. The TFDS consists of two major parts: a
dynamic image gathering and transmitting module,
and an image recognition module.

As shown in Figure 1, five high-speed cameras are
used to inspect different parts of the freight train. Two
are installed on the side of the tracks and acquire the
profile of the freight train. The others are installed

along the centreline of the track and acquire images
of the underside of the train. Along the track, magnets
(C0–C10) are used to trigger cameras and capture
dynamic images. With the train in motion, images
of all carriages are obtained and transmitted to a
remote monitoring server where they are used as
input to the image recognition module that detects
defects in the components of the train.

A total of nearly 3000 images are taken for each
freight train, depending on the number of carriages
attached to the locomotive. Each image has a size of
1024� 1200 pixels. Figure 2 shows 59 images of a
carriage captured by TFDS. The top three rows dis-
play images captured by the bottom cameras, and the
last two rows display images captured by the trackside
cameras.
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As this paper is focussed on automatically detect-
ing bolt defects, the images shown in the red boxes in
Figure 2 are of key importance. Hexagonal-headed
bolts play an important role in fastening the wheel
bearing. The following three requirements render
bolt defect detection a challenging problem.

1. TFDS images are blurry due to the high speed of
freight trains. For dynamic detection, the low
resolution of the image, the blurred image of the
bolts, and uncertainties about the environment are
difficulties that must be considered.

2. Cameras are installed outdoors, so the texture of
the bolt will change due to changes in the illumin-
ation conditions. Additionally, the bolts can be
contaminated by leaked grease or dust, so it is a
challenging task to localize the three bolts in an
image size of 1024� 1200 pixels.

3. Difficulties also arise from the use of an online
detection process. Generally, the shortest interval
between freight trains is 5minutes; this timeframe
makes it difficult to apply complex pattern recog-
nition algorithms.

Related work in the literature

The inspection of tracks and freight trains is an
important task for the rail industry. For track inspec-
tions, visual recognition of fastening bolts is often
mentioned in the literature. Based on the shape, fas-
tening bolts can be divided into several categories,
such as an elastic rail clip, hook bolt and hexagonal-
headed bolt. Most of the literature is based on elastic
rail clips 1–4, whereas our research is about hexagonal-
headed bolts. Only two studies could be found that
discussed defect detection of this kind of bolt.5,6

Marino et al.5 proposed a fault inspection system
that could be used to automatically detect the absence
of hexagonal-headed bolts used to secure rails to slee-
pers. They used the techniques of wavelet transform-
ation and principal component analysis (PCA) to
pre-process images of the track. The converted data
were fed into a multilayer perceptron neural network
for classification and identification. De Ruvo et al.6

applied an error back-propagation algorithm to
model hexagonal-headed bolts. To achieve real-time
performance, they implemented the detection

Figure 1. Sketch of the TFDS.

Figure 2. Fifty-nine images captured by TFDS.
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algorithm on graphical processing units. However,
these two studies are only effective for good condi-
tions. They are not applicable to dynamic images
obtained from a complex environment.

For freight train inspection, methods for diagnos-
ing different components are discussed. Anderson7

proposed an acoustics-based fault diagnosis approach
for roller bearings. Hart et al.8 designed a detection
system for monitoring the condition of disc brakes
and the performance of its bearings. Kim and Kim9

used a binocular vision measurement system to accur-
ately measure the thickness of a brake shoe. TFDS is
a vision-based fault detection system for key compo-
nents of in-service freight trains. Using images taken
by TFDS, Zhou et al.10 combined a gradient-encoding
histogram and a support vector machine classifier to
inspect for missing handles on an angle cock. Nan
et al.11 proposed an automatic recognition method
for the loss of a bolt from the centre plate of a
bogie. Liu et al.12 used Hough transforms and sym-
metry validation to detect displacement faults in
a bearing’s weight saddle. Zhu et al.13 proposed a
novel approach to extract complex shapes from
TFDS images based on discrete-point sampling and
centreline grouping, however, they did not extend
their method for use in fault detection. As far as we
know, our method is the first to detect bolt defects in
complex environments, and it has the following three
advantages.

1. Bolts with various forms can be recognized.
Defects such as bearing cap loss, bolt loss and
broken bolts can be accurately recognized from
hundreds of thousands of images.

2. A self-updating strategy is proposed to better pre-
pare training samples.

3. The average processing time for one image is
118ms, which meets the system’s real-time
requirement.

Approach overview

When a train passes through a TFDS station, images
of its key components are obtained and transmitted to
remote computers for use as input data to the image
recognition module. As part of the image recognition
module, the proposed bolt defect detection method
will examine each wheel image, if any defect is
found the image will be marked and the situation
immediately reported.

The bolt defect detection method is composed of
three parts: extraction of the region of interest (ROI),
localization of the bolt regions, and identification of
defects. Overviews of these procedures are now
presented.

1. Extraction of the ROI. As the three bolt regions
occupy a small area in the 1024� 1200 pixel

image, it is essential to extract the wheel bearing’s
ROI. Here, we use a sub-window searching
method to extract the ROI.

2. Localization of the bolt region. We consider local
binary pattern (LBP) features to represent the bolt
and make use of a rotate-and-slide window
method to localize the three bolt regions.

3. Identification of defects. The detected bolt regions
are then transmitted to the identification module.
In this procedure, the geometrical relationships
between the three bolts are fully used, and a hex-
agonal pattern is proposed to further analyse the
three bolt regions.

Extraction of the ROI

We define the wheel bearing region as the ROI of the
image. As the distance between the freight train and
the installed camera is fixed, the size of the region
containing the wheel bearing is within a certain
range. As shown in Figure 3, the size of the ROI is
defined as 200� 200 pixels. To effectively extract the
ROI, an object detection approach that employs the
LBP descriptor and support vector machine (SVM) is
used. In the first part of this section, we give a brief
introduction to LBP. We then detail our ROI extrac-
tion method, which includes ROI localization and
alignment.

LBPs

Due to its grey-scale invariance and computational
efficiency, the LBP operator has been widely used in
various applications, for example, face recognition.14

The original LBP operator labels the pixels of an
image by adding the value of the centre pixel to the
3� 3 neighbourhood of each pixel and considering
the result as a binary number. Figure 4 shows an
example of an LBP calculation. The 256-bin histo-
gram of the labels computed over a region can be
used as a texture descriptor. Each bin (LBP code)
can be regarded as a micro-structure. Local primi-
tives, which are codified by these bins, include dif-
ferent types of curved edges, spots and flat areas.
That is why the LBP descriptor is highly
discriminative.

The LBP operator has been extended to consider
different sizes of the neighbourhood.15 In general, the
operator LBPP,R refers to a neighbourhood size of P
equally spaced pixels on a circle of radius R that
forms a circularly symmetric neighbour set. We use
the four-neighbour operator LBP4,1 for the ROI
detection.

ROI localization and alignment

To train the ROI classifier, we collected a set of
ROI images as the positive training set and a set of
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non-ROI images as the negative training set. The pro-
cedure for LBP feature extraction can be described as
follows. Each training sample is divided into nine
overlapping regions of 25� 25 pixels (overlap
size¼ 13 pixels). From each region, we compute a
16-bin histogram using the LBP4,1 operator and con-
catenate the results into a single 144-bin histogram.
Thus, an LBP feature vector of 144 degrees is
obtained. Using the features of the positive and nega-
tive samples, we train a second-degree polynomial
kernel SVM classifier.

The SVM classifier16 is extensively studied in stat-
istical learning theory and has been applied to various
tasks involving the detection of an object. Given train-
ing samples represented by their feature vectors, an
SVM classifier can find the separating hyper-plane
that has the maximum distance to the closest patterns.
To perform a nonlinear separation, the input space is
mapped onto a higher-dimensional space using a
kernel method.

Let xi be the LBP representation of the ith
training sample. yi has a value of 1 or �1 depending
on whether xi is a positive or negative sample,
and N be the number of samples. In a binary classifica-
tion problem, the decision function of the SVM is

f ðxÞ ¼ sgn

 XN
i¼1

yi�ikðxi, xÞ

!
þ b ð1Þ

where x is the LBP representation of the tested
sample, b is a scalar (bias), and kð�, �Þ the second-
degree polynomial kernel function defined by

k xi, xj
� �

¼ � xi, xj
� �

þ 1
� �2

ð2Þ

where �, �h i denotes the dot product in the feature
space, and � is the parameter of the polynomial
kernel function, which is fixed to 0.01 in our
experiment.

Here, �i is a Lagrange multiplier that corresponds
to the sample xi, recovered by solving the following
quadratic programming problem

mimimize

Wð�Þ ¼ �
XN
i¼1

�i þ
1

2

XN
i¼1

XN
j¼1

yiyj�i�jkðxi,xj Þ

ð3Þ

subject to

XN
i¼1

yi�i ¼ 0, 8i; 04�i4C ð4Þ

where C is the regularization parameter during the
training process, which is fixed to a value of one in
our experiment.

When the ROI classifier is constructed, we apply
the sliding window detection approach to the tested
image. The main procedure is described in Figure 5.
The ROI’s vertical position in the image is limited to
be within a certain range, because the trackside cam-
eras are installed at a fixed height. Therefore, we cut
the image and resize it before sliding window detec-
tion. Then, the image is closely scanned from the top
left to the bottom right using rectangular sliding win-
dows. For each sliding window, an LBP feature vec-
tor is extracted and fed to the trained classifier.

Figure 3. The ROI of the wheel image.

Figure 4. An example of the calculation of a LBP.
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This model classifies the sliding windows that bound
the ROI as positive and the others as negative. Thus,
the position of ROI in the original image is obtained.

After ROI localization, the region containing the
wheel bearing is aligned using the ED-circle method.17

When there is an error in the localization of the ROI,
such an alignment is essential for the subsequent
localization of the bolt region. This not only increases
the accuracy but also saves processing time.

Localization of the bolt region

As the wheel bearing rotates during movement of the
train, it is difficult to efficiently obtain accurate pos-
itions of the three bolts. In addition, the cameras are
installed in outdoor conditions, and images of the
bolts can occur at different textures and prototypes
subjected to varying illumination conditions. In par-
ticular, some bolts are contaminated by leaked grease
or dirt. Figure 6 shows some bolts under different
illumination conditions and contaminated by leaked
grease or dirt.

Bolt description using LBPs

We considered the LBP features as bolt representa-
tions. In addition to its grey-scale invariance, the idea
of using LBP operators is motivated by the fact that
bolt images have textures that can be seen as a

composition of micro-patterns described by LBPs.
In addition, the contours of bolts are apparent after
applying the LBPs. Figure 7 shows different bolt
images after the application of LBPs.

The size of the bolt region is defined as 60� 60
pixels. To avoid statistical unreliability due to large
histograms computed over small regions, we use over-
lapping regions and the LBP4,1 operator to obtain
local LBP histograms. As shown in Figure 8, each
sample is divided into nine regions of 30� 30 pixels
(overlap size¼ 15 pixels). From each region, we com-
pute a 16-bin histogram and concatenate the results.
Additionally, to enhance the holistic description of a
bolt, we calculate the global LBP histogram over the
whole image using the LBP8,1 operator. Thus, the
length of a bolt feature vector is 16� 9þ 256¼ 400.
Then, feature vectors of the training samples are
trained by the SVM to obtain a hyper-plane to distin-
guish bolt and non-bolt regions in an ROI image.

Bolt localization using rotate-and-slide windows

The sliding window method is widely used in object
detection; however, it takes a large time to generate
sub-windows in the 200� 200 pixel ROI. The distri-
bution of three bolts is an equilateral triangle. We
make full use of this information to be able to quickly
locate the three bolts. Compared with the traditional
method of sliding from the top left to the bottom

Figure 5. Main procedures of ROI localization.

Figure 6. Bolts under different illumination conditions and contaminated by leaked grease or dirt.
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right, we propose a rotate-and-slide window method.
The 60� 60 pixel sub-window slides around the centre
of the wheel bearing, and the incremental steps in the
angle and radius are set appropriately in advance. In
pictures obtained by TFDS, there are two types of
wheel bearings based on the size of the axis. Based
on empirical evidence, we set the range of the sliding
radius to be 40–65 pixels and the incremental step in
the angle and radius to 0.3 rad and 4 pixels,
respectively.

The procedure of the rotate- and-slide window can
be described as follows.

1. Let the centre of the ROI be the rotation centre
ðxc, ycÞ. With the radius ranging from 40 to 60
pixels, the sub-window rotates around ðxc, ycÞ
from 0� to 180� in steps of �� in a clockwise direc-
tion until the prediction of the classifier has a value
of one. The current position A (the centre of the
detected window) and radius, r, are then recorded.

2. For the given detected position A, we use the clas-
sifier to give predictions every 4 pixels and write
down the detected windows (represented by its
centre) within a neighbourhood of 16� 16 pixels.
Then, the centroid of the result is the position of
the first bolt.

3. Let the radius be r and the sub-window rotate
around ðxc, ycÞ from 0� to 180� in steps of �� in
an anticlockwise direction until the prediction of
classifier has a value of one. Record the current
position B.

4. For the given detected position B, we use the clas-
sifier to give predictions every 4 pixels and record
the detected windows within a neighbourhood of
16� 16 pixels. Then, the centroid of the result is
the position of the second bolt.

5. The rough position of the third bolt is calculated
through an equilateral triangle constraint. For the
rough position C, we use the classifier to give pre-
dictions every 4 pixels and write down the detected
windows within a neighbourhood of 16� 16
pixels. Then, the centroid of the result is the pos-
ition of the third bolt.

As shown in Figure 9, the green point denotes the
rotation centre of the sliding window. The red and
blue points form the neighbourhood of 16� 16
pixels. Red indicates that the prediction of the classi-
fier has a value of one, whereas blue means the
prediction has a value of zero. The bolt’s exact pos-
ition is the centroid of the region formed by the red
points.

Figure 8. Calculation of the LBP feature vector in a bolt region.

Figure 7. Bolt images after the application of LBPs.
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Self-updating using a nested classifier

The bolt region detector sometimes fails to locate the
three bolts for the following two reasons. One is that
the prototype of a normal bolt cannot be recognized
by the classifier. The other is that there is at least one
defective bolt that is classified as a non-bolt. In the
case of a defective bolt, we generate an alarm when
the bolt detector cannot locate the three bolts.
However, this behaviour may increase the false
alarm rate. In other words, a large number of
normal images are considered to be defective due to
the failure in bolt region localization. Therefore, it is
essential to improve the classifier’s performance.

In addition to the selection of discriminative features,
effective training is also critical to ensure a good per-
formance of the classifier. The bootstrap method 18 is a
typical method for effective training; however, it requires
the wrongly classified patterns to be found manually.
Because bootstrap is an iterative process, the prepar-
ation of a training set that covers sufficient variances
in bolt appearance is time-consuming. Therefore, it is
preferable to develop an approach that automatically
updates the classifier based on new samples.

The procedure of self-updating. A schematic representa-
tion of the training procedure, termed ‘self-
updating’, is presented in Figure 10. In practice,
when a freight train drives through a TFDS station,
the image recognition module is called to find
defective components on that train. The bolt detec-
tor is composed of a classifier L based on the LBP
descriptor and the rotate-and-slide window method.
If the detection rate of bolts is low, the proposed
self-updating procedure is called during the interval
before the next train arrives. A nested classifier H is
used to continuously classify incoming weakly
labelled samples.

The self-updating procedure can be summarized as
follows. Set0 is the initial training set of the labelled
data, wSet is the weakly labelled training set. T1,T2

are the thresholds related to the updating efficiency.
Acc is the bolt detection rate. L and H are classifiers
based on the LBP and histogram of the oriented gra-
dient (HOG)19 descriptors, respectively.

1. Construct L0 and H0 based on Set0, set values for
Acc, T1,T2.

2. For each image of the kth train (k51), locate the
three bolt regions using Lk�1.

Figure 10. Schematic representation of the self-updating procedure.

Figure 9. The application of the rotate-and-slide window strategy to the ROI.
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3. If the bolt detection rate<Acc, then slide the
window from the top left to the bottom right of
any ROI that failed to localize the three bolts and
collect image patches to wSetk when the prediction
of Lk�1 has a value of one.

4. Use H0 to predict samples in wSetk. If H0 predicts
a label for a certain example with a high confi-
dence, then that labelled example is added to the
training set Setk�1 to form Setk, otherwise the
example is ignored.

5. Construct Lk based on Setk and use it to localize
bolts for the previous n trains (if k4n, let n ¼ k).
Count the number of ROIs that failed to localize
the three bolts. dk�n, dk�nþ1, . . . , dk are the num-
bers of reductions of the failed ROI when using
Lk for the previous n trains, respectively.

6. If di 4T1ði ¼ k� n, k� nþ 1, : . . . , kÞ and dk�nþ
dk�nþ1 þ � � � þ dk 4T2, we adopt classifier Lk,
otherwise we refuse it.

7. Let k ¼ kþ 1, and go back to step 2.

Construction of the nested classifier. Generally, the repre-
sentative capability of the nested classifier H is higher
than classifier L, but its processing time is longer. We
combined these two classifiers to achieve a better per-
formance in both representative capability and pro-
cessing time.

The HOG descriptor is widely accepted as one of
the best methods to capture an edge or local shape
information. Classifier H is constructed based on the
HOG descriptor. We extract the HOG feature using
the procedure described in Yuen et al.20 Figure 11

shows the local region segmentation method for
HOG. The detection window (60� 60 pixels) is
divided into 6� 6 cells (100 pixels for each cell).
Then, we group 2� 2 adjacent cells into larger spatial
blocks and normalize each block separately. Because
the stride of each block is 10 pixels, there are 5� 5
blocks in total. The HOG descriptor is a concatenated
vector extracted from all of the blocks in the detection
window. Thus, the dimensions of the feature vector
are 36� 25¼ 900. Finally, we apply PCA to decrease
the dimensions to 100.

Limited by the performance of the nested classifier,
it is possible for incorrect samples to be collected in
the training set. A few incorrect samples cannot ‘cor-
rupt’ the model because SVMs are highly tolerant.
However, if the model is corrupted, we need to be
able to quickly realize that corruption has occurred,
so updating conditions are added. On the other hand,
we can make use of the structural constraint of the
three bolts to control the number of incorrect samples
in the training set.

Defect identification

After obtaining the three bolt regions, the next prob-
lem is to find defective bolts. Applying training-based
methods is a difficult task to perform due to an insuf-
ficient number of defective samples. We only obtained
28 defective images from hundreds of thousands of
TFDS images. Figure 12 shows some ROIs with
defective bolts. Compared with normal bolts, they
have no hexagonal pattern. Moreover, the differences
among the three bolts are apparent when there are
bolt defects.

We first use the Hough transform method19 to
extract a circle from the bolt regions. If a circle with
a radius smaller than 14 pixels is detected, there is a
missing bolt on the wheel bearing. Otherwise, we cal-
culate six features in the circle: radius, maximum
intensity, minimum intensity, difference between the
maximum and minimum intensity, average intensity,
and standard deviation. Then, a vector viði ¼ 1, 2, 3Þ
representing the bolt region is formed after weighting
and normalization. We use the Euclidean distance
dij ¼ jjvi � vj jj2ði, j ¼ 1, 2, 3, i 6¼ j Þ to describe the dif-
ference between the two vectors. There may be a
defective bolt if the difference between every two
Euclidean distances �d ¼ maxfd12 � d13,

Figure 12. Examples of defective bolts.

Figure 11. Local region segmentation method for HOG.
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d12 � d23, d13 � d23g is bigger than the threshold. Then,
it is necessary to go to the next step.

Based on the hexagonal pattern, we can efficiently
separate defective bolts from normal bolts. A hexagonal
pattern means that the edges of a normal bolt form a
hexagon. In real-world situations, some bolt images
have out-of-plane rotation due to the angle of the
camera. Therefore, if there are three edges satisfying
the hexagonal pattern shown in Figure 13, the bolt is
normal. To prevent the situation described in Figure
13(b), we add a distance constraint. The pseudo-code
of the algorithm is as follows.

The list of lines is obtained by a line segment detec-
tor (LSD) 21 that consists of three steps: finding the
line-support regions, taking a rectangular approxima-
tion of the regions, and line segment validation.
Although LSD gives accurate results and requires
no parameter-tuning, it is necessary to adjust the par-
ameter "(threshold of the number of false alarms) to
obtain clear edges for the bolt. We remove some short
lines based on the size of the bolt. Let HP be the
number of bolt regions that detected a hexagon pat-
tern. If HP¼ 3, the tested image is considered normal;
otherwise, it is considered to be defective.

Experimental results

Experiments on a larger number of images were con-
ducted to validate our proposed method. The training
set Imgtrain contains a total of 2872 original images
collected from six freight trains; each image in
Imgtrain has three normal bolts. The test set Imgtest is
composed of 10,248 original images from 26 freight
trains and 28 images with bolt defects.

Classifier training

For ROI extraction, we used the approach described in
the section ‘Extraction of the ROI’. We collected a set
of 2397 ROI images from Imgtrain as the positive train-
ing set. The negative training set, which included 2500
non-ROI images, was extracted from images without a
ROI. All of the 200� 200 pixel samples were resized to
50� 50 pixels. Based on the LBP descriptor, we trained
a second-degree polynomial kernel SVM classifier.
Then, we used the bootstrap method, which was per-
formed five times, until the detection rate of the ROI
was 100%. The final negative training set was com-
posed of 2797 non-ROI images. To decrease the
localization error in ROI detection, we applied the
ED-circle method to align the position of the wheel
bearing. As shown in Figure 14, the red rectangle indi-
cates the initial position of the ROI, and the green
indicates the position after alignment.

To reduce the effort required to prepare the train-
ing set, we implemented the self-updating approach to
construct the bolt detector. Initially, 2448 bolt sam-
ples and 2700 non-bolt samples were cut from
images of two trains in Imgtrain. Based on these sam-
ples, we constructed SVMs classified as L0 and H0 as
the starting point of our procedure. Then, we ran the
bolt detector combined with the self-updating strat-
egy. When a freight train drives through the TFDS
station, the bolt detector is called and outputs the
detection rate. In the experiment, we set Acc¼ 93%,
T1 ¼ �5,T2 ¼ 4, and acquired eight SVM models
L1,L2,L3,L4,L5,L6,L7,L8 by the self-updating
approach. Figure 15 shows the performance of these
models. A model trained in this manner can achieve
robust results for a large variety of trains.

Receiver operating characteristic (ROC) graphs are
useful for organizing classifiers and visualizing their
performance.22 We collected 10,000 bolts and 10,000
non-bolts from Imgtest as another test set. The ROC
curves for classifier L0 (blue) and L8 (red) in the test
set are shown in Figure 16. The figure shows the
improvement in performance and demonstrates the
effectiveness of the self-updating approach.

Defect detection results

After self-updating, the number of positive and nega-
tive samples reached 3918 and 3992, respectively.
Classifier L8 was constructed based on these samples.

Algorithm: search for line groups satisfying the hexagonal

pattern

Input: a list Line which include n lines, li ¼ ðxi1, yi1, xi2, yi2, �iÞ

output: line groups L

for each line li, lj ði 6¼ j Þ in Line do

If 50�5 �i � �j

�� ��5 70�

for each line lkðk 6¼ j, iÞ in Line do

ðx, yÞ ( intersection of li andlj
d( distance between lk and ðx, yÞ;

If 50�5 �j � �k

�� ��5 70�,110�5 �i � �kj j5 120�,195 d5 21

L( ½L; li, lj, lk�;

end

end

end

end

Figure 13. The hexagon pattern observed for normal bolts

(a) three edges satisfying the hexagonal pattern, and (b) four

edges satisfying the hexagonal pattern but the fourth one is not

the bolt edge.
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Figure 17 shows the experimental results of the rotate-
and-slide window. Failures in bolt localization are due
to bad image quality and overexposure.

In the three detected bolt regions, the Euclidean
distance and hexagonal pattern were used to exclude
normal bolts. As show in Figure 18(a), a normal bolt
was judged immediately by�d4 0:2. If �d4 0:2, the
next step was to find a hexagonal pattern in each bolt
region. As show in Figure 18(b), blue lines were
detected by LSD, and red lines created the hexagonal
pattern. The image was considered normal only when
HP¼ 3. As shown in Figure 18(c), the above principle
results in false alarms if the edge of the bolt appears to
be blurred, this is inevitable due to the image quality.

The whole recognition method was conducted on a
test set including 10,276 images. Figure 19 shows
some experimental results for images with bolt

defects. There are two situations that result in an
image being considered defective. One is a failure to
localize the three bolts in the ROI. The other is a
failure to find a hexagonal pattern in each bolt
region. This scheme results in false alarms. The test
results are listed in Table 1, where total images means
all of the tested images, including the normal ones and
defective ones; defective images means images with
bolt defects; total alarm is the number of images pre-
dicted as being defective by our proposed method;
correct alarm is the number of images correctly pre-
dicted as being defective. The value of defective
images is equal to correct alarm. This means that
the number of images predicted as being defective is
equal to the number of actual defective images.
In other words, there are no missing bolt defect
images. Defect detection rate and false alarm rate

Figure 15. Bolt detection rate for passing trains.

Figure 14. Some results after ROI extraction (a) large alignment by the ED-circle method, and (b) small alignment by the ED-circle

method.
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are defined as follows. Table 2 shows the results of the
three main modules.

defect detection rate ¼
correct alarm

actually defective images

ð5Þ

false alarm rate¼
total alarm� correct alarm

actually normal images
ð6Þ

Real-time processing is a necessary property in
TFDS. For 1400� 1024 pixel images, the average pro-
cessing time of our method is 118ms using the

Figure 16. ROC curve for the bolt localization classifier L.

Figure 17. Localization of the three bolts (a) results of correct localization, and (b) results of failed localization.
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Figure 18. Results of the defect identification module: (a) normal ROI determined by �d4 0:2; (b) normal ROI determined by

HP¼ 3; and (c) false alarms determined by HP< 3 due to blurry edges.

Figure 19. Experimental results for images with bolt defects.

Table 1. Test results of the proposed recognition method.

Total images

Defective

images Total alarm Correct alarm

Defect detection

rate (%) False alarm rate (%)

Average

time (ms)

10,276 28 860 28 100 8.1 106
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following configuration: 3.6 GHz Intel Xeon E5-1620
processor (four cores and eight threads), 8 GB RAM,
and Win7. The detailed computing time of each
module is listed in Table 3.

Conclusions

This paper introduced a novel method for recognizing
bolt defects under complex conditions via computer
vision techniques.

1. The proposed recognition method consists of two
main procedures: bolt localization and defect iden-
tification. To localize bolt regions effectively, we
apply a coarse-to-fine strategy and make full use
of the distribution of the three bolts on the wheel
bearing. The defect identification procedure is
based on further analysing the bolt regions. We
combined the similarity of bolt regions in normal
ROI and a hexagonal pattern to find defective
bolts among a number of normal bolts.

2. Our self-updating strategy in classifier training has
the advantage of avoiding the need to manually
find the wrongly classified patterns, which
improves the training efficiency.

3. In this paper, we focused on improving the defect
detection rate. Some false alarms occurred in the
defect identification module because of blurred
edges. Further work will be devoted to improving
the quality of raw images and reducing the false
alarm rate.
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