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It has been recently proposed that adults might solve single-digit addition and subtraction problems by
rapidly moving through an ordered representation of numbers. In the present study, we tested whether
these movements manifest themselves by on-line shifts of attention during arithmetic problem-solving.
In two experiments, adult participants were presented with single-digit addition, subtraction and multi-
plication problems. Operands and operator were presented sequentially on the screen. Although both the
first operand and the operator were presented at the center of the screen, the second operand was pre-
sented either to the left or to the right side of space. We found that addition problems were solved faster
when the second operand appeared to the right than to the left side (Experiments 1 & 2). In contrast, sub-
traction problems were solved faster when the second operand appeared to the left than to the right side
(Experiment 1). No operation-dependent spatial bias was observed in the same time window when the
second operand was zero (Experiment 1), and no bias was observed when the operation was a multipli-
cation (Experiment 2). Therefore, our results demonstrate that solving single-digit addition and subtrac-
tion, but not multiplication, is associated with horizontal shifts of attention. Our findings support the idea
that mental movements to the left or right of a sequential representation of numbers are elicited during
single-digit arithmetic.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Mastering basic arithmetic is a major goal of elementary educa-
tion and an essential first step toward higher-level mathematical
abilities. Therefore, the strategies used by skilled adults to solve
simple arithmetic problems have been the focus of a large body
of literature over the past 40 years (Ashcraft and Guillaume,
2009, for a recent review). Using verbal reports and chronometric
data, studies have converged to indicate that answers of simple
arithmetic problems (such as single-digit addition, subtraction
and multiplication) can either be retrieved from long-term mem-
ory (Campbell & Xue, 2001; Geary, Frensch, & Wiley, 1993;
LeFevre, Sadesky, & Bisanz, 1996) or calculated using algorithmic
procedures (e.g., counting, decomposition) (Barrouillet, Mignon, &
Thevenot, 2008; Cooney, Swanson, & Ladd, 1988; Robinson,
2001; Seyler, Kirk, & Ashcraft, 2003). Typically, algorithmic
procedures are seen as slow and effortful, whereas direct retrieval
is considered fast and efficient. Therefore, there is a relative con-
sensus in the literature that effective arithmetic learning is charac-
terized by a shift from procedural to retrieval strategies (Ashcraft,
1982, 1992; Ashcraft & Guillaume, 2009; Geary, 1994; Siegler,
1996; Siegler & Shrager, 1984). In other words, the repetitive
co-occurrence of a given problem with its answer during childhood
would lead to a progressive association between that particular
problem and answer in long-term memory (Geary & Burlingham-
Dubree, 1989; Logan, 1988; Siegler & Shipley, 1995). The result is
that skilled adults would not recruit procedural knowledge but
largely rely on direct retrieval when solving simple arithmetic
problems (Campbell & Xue, 2001; Geary et al., 1993). Algorithmic
procedures would be mostly engaged when solving less practiced
problems for which there is weak association between operands
and answer (e.g., large problems) (LeFevre et al., 1996; Núñez-P
eña, Gracia-Bafalluy, & Tubau, 2011; Thevenot, Barrouillet, &
Fayol, 2001; Thevenot, Fanget, & Fayol, 2007).

Recently, a study cast doubt on this consensus. Using a priming
paradigm, Fayol and Thevenot (2012) showed that skilled adults
were faster at solving even very simple addition and subtraction
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problems (e.g., 3 + 2, 3 � 2) when the operation sign was presented
150 ms prior to the operands than when it was presented at the
same time (see also Roussel, Fayol, & Barrouillet, 2002). Because
no such priming was observed for single-digit multiplication,
the effect appears to be operation-specific and may reflect the
pre-activation of fast and automated procedures that could
subsequently be used to solve addition and subtraction (but not
multiplication) problems. Therefore, unlike what has been widely
assumed in the past decades, procedural knowledge may still be
recruited for solving even very simple addition and subtraction
problems in skilled adults. Such procedural knowledge might not
be recruited when solving multiplication problems, most likely
because associations between operands and answers are explicitly
learned by rote in school and only retrieved from long-term mem-
ory (Dehaene & Cohen, 1995).

A fundamental question arising from the findings of Fayol and
Thevenot (2012) concerns the nature of the automated procedures
that would be associated with single-digit addition and subtrac-
tion. It has been recently proposed that such procedures could take
the form of a ‘‘process of rapid scrolling through an easily accessi-
ble and overlearned representation stored in long-term memory”
(Barrouillet & Thevenot, 2013, p. 43). This proposal is consistent
with the fact that solution times of even very small addition prob-
lems linearly increase as a function of operand size in adults (i.e.,
solution time increases with the distance between the original
value and the value corresponding to the sum) (Barrouillet &
Thevenot, 2013; Groen & Parkman, 1972). It suggests that the
step-by-step counting procedures used by children when learning
arithmetic might not totally disappear but instead be replaced by
automatized counting procedures in adults (Barrouillet &
Thevenot, 2013; Fayol & Thevenot, 2012). More generally, this pro-
posal harks back to the idea that a key change in acquiring arith-
metic efficiency may involve a shift from slow informal counting
procedures to compiled procedural knowledge (Baroody, 1983,
1984, 1994). Because such internalized procedures do not neces-
sarily reach consciousness, it could lead participants to mistakenly
report using retrieval (Anderson, 1983; Ric & Muller, 2012).

If solving simple addition and subtraction problems does indeed
involve rapid movement along an ordered representation of num-
bers, there are good reasons to assume that this process and repre-
sentation are spatial in nature. Indeed, a growing number of
studies document a link between numerical cognition and space
(for a recent review, see Fischer & Shaki, 2014a). For example, stud-
ies have found that numbers are associated with a spatial bias in
manual responses: When participants compare the magnitude of
numbers (or classify them as even or odd), small numbers are pro-
cessed faster with the left hand than with the right hand whereas
large numbers are processed faster with the right hand than with
the left hand (Dehaene, Bossini, & Giraux, 1993; Wood, Willmes,
Nuerk, & Fischer, 2008). Numbers also automatically induce spatial
shifts of attention. Specifically, small numbers facilitate the detec-
tion of a subsequent target in the left half of visual field (hereafter
referred to as left hemifield) while large numbers facilitate the
detection of a subsequent target in the right half of visual field
(hereafter referred to as right hemifield) (Fischer, Castel, Dodd, &
Pratt, 2003). Overall, these effects indicate that participants may
represent numbers as spatially ordered items along a mental num-
ber line (MNL), with smaller magnitudes on the left side and larger
magnitudes on the right side (Dehaene et al., 1993; Hubbard,
Piazza, Pinel, & Dehaene, 2005).

More recently, studies have suggested that such spatial biases
are not restricted to numbers but might also be present in symbolic
arithmetic (Fischer & Shaki, 2014a, 2014b). Most evidence for a link
between symbolic arithmetic and space comes from studies on
complex arithmetic (i.e., problems involving multi-digit numbers
that are typically not thought to be retrieved from memory). For
example, Knops, Viarouge, and Dehaene (2009) showed that adults
generally overestimate the result of complex symbolic addition
while they underestimate the results of complex symbolic subtrac-
tion, an effect called operational momentum (OM) effect. As sug-
gested by some (Hubbard et al., 2005; Knops, Dehaene, Berteletti,
& Zorzi, 2014; Knops, Zitzmann, & McCrink, 2013; Knops et al.,
2009), the OM effect might indicate that participants solve addi-
tion and subtraction problems by shifting their attention rightward
or leftward along the MNL. The OM effect might stem from the fact
that participants might move ‘‘too far” to the right (or to the left)
along the MNL when solving an addition (or a subtraction) prob-
lem, leading to an overestimation (or an underestimation) of the
actual result. Two studies provide further support for this atten-
tional shift hypothesis. First, using functional magnetic resonance
imaging (fMRI), Knops, Thirion, Hubbard, Michel, and Dehaene
(2009) showed that multi-digit addition and subtraction problems
are associated with different patterns of brain activation in the
posterior superior parietal lobule (PSPL), a region involved in
visuo-spatial processing. They further showed that the pattern of
brain activation associated with multi-digit addition in that region
is similar to the pattern of activation associated with rightward
saccades (in line with the idea that participants shift their atten-
tion to the right of the MNL when solving multi-digit addition
problems). Second, Klein, Huber, Nuerk, and Möller (2014)
recorded eye movements of participants while they had to locate
the results of (predominantly) multi-digit addition and subtraction
results on a given number line. Consistent with the attentional
shift hypothesis, the authors found that participants moved their
eyes to the right of their first fixation on the line when they located
the results of addition problems, while they moved their eyes to
the left of their first fixation when they located the results of sub-
traction problems. Overall, these studies suggest that the proce-
dures used by skilled adults to solve complex arithmetic
problems might involve mentally moving along a spatial MNL.

The idea that addition and subtraction would involve asymmet-
ric shifts of attention along the MNL is broadly consistent with
Barrouillet and Thevenot’s proposal of moving along a representa-
tion of numbers (Barrouillet & Thevenot, 2013). Yet, it remains
unknown whether these attentional shifts are elicited on-line
during the resolution of simple arithmetic problems (i.e., problems
involving single-digit numbers that are typically thought to be
retrieved) and could provide the basis for the fast and automatic
procedures hypothesized by Barrouillet and Thevenot (2013) and
Fayol and Thevenot (2012). To our knowledge, only a few studies
have investigated the link between space and simple arithmetic
problem-solving.

First, Pinhas and Fischer (2008) asked participants to point to
the results of single-digit arithmetic problems on a number line
that was visually presented. For a same result (e.g., ‘‘6”), partici-
pants’ pointing was biased to the right for an addition (e.g., 4 + 2)
and to the left for a subtraction (e.g., 8 � 2). Therefore, this study
indicates the presence of an OM in simple arithmetic. However,
problems containing zero were associated with an even larger
OM than other problems. This is inconsistent with the idea that
the OM in that study stems from shifts of attention elicited by
arithmetic calculation because addition and subtraction problems
containing zero should not require any differential movement
along the MNL. Thus, the authors proposed a ‘‘spatial competition
account” according to which each component of an arithmetic
problem (i.e., the operands, the operator and the result) leads to
competing spatial activations along the MNL (Pinhas & Fischer,
2008). Another account posits that the OM might be accounted
for by the heuristic ‘‘accepting more than the first operand” for
addition and ‘‘accepting less than the first operand” for subtraction
(Knops et al., 2009; McCrink & Wynn, 2009). Other alternative
accounts that do not involve shifts along the MNL have been proposed
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as well (Chen & Verguts, 2012; Knops et al., 2009; McCrink,
Dehaene, & Dehaene-Lambertz, 2007; Pinhas & Fischer, 2008).

Second, Masson and Pesenti (2014) asked participants to detect
a target that was flashed either to the left or to the right of a central
fixation point immediately after participants had provided the
answer of a subtraction or addition problem. The results provide
mixed evidence regarding a link between single-digit arithmetic
and space. On the one hand, targets in the left hemifield were bet-
ter detected than targets in the right hemifield after solving single-
digit subtraction problems. This is consistent with the idea that
subtraction problems are associated with leftward shifts of atten-
tion. On the other hand, no difference was found between hemi-
fields after single-digit addition problems. This suggests that
single-digit addition might not be associated with any shifts of
attention. However, these results need to be interpreted with cau-
tion. First, the target always appeared after calculation was over
(i.e., 450 ms after participants had provided the answer to the
problem). Thus, the design might not be well suited for capturing
a rapid shift of attention that would occur during the calculation
process (i.e., before participants provide the answer). Second, the
result size of arithmetic problems was small overall, and even
smaller for subtraction (3.9 on average) than for addition (6.1 on
average). Because small numbers are associated with the left side
of space and the target was presented after participants provided
the answer (Fischer et al., 2003), the leftward bias observed for
subtraction might be due to the small magnitude of the result
rather than to the calculation process.

Third, two recent studies attempted to demonstrate a link
between single-digit arithmetic and space by examining interac-
tions with hand or eye movements. Marghetis, Núñez, and
Bergen (2014) measured hand trajectories of participants selecting
the correct result of single-digit addition or subtraction problems
on a computer screen with a mouse cursor. Correct results were
displayed either to the left or to the right of the center of the
screen. Compared to trajectories of hand movements performed
when results were congruent to the predicted direction (i.e., left
for subtraction and right for addition), overall trajectories of hand
movements that were performed when results were incongruent
(i.e., right for subtraction and left for addition) were deflected in
the opposite direction. Because the authors directly compared con-
gruent versus incongruent problems without distinguishing
between addition and subtraction, it is unknown whether this bias
was driven by one or the other operation (or both). Nonetheless,
this study provides some important support for an association
between single-digit arithmetic and space. Recently, Hartmann,
Mast, and Fischer (2015) attempted to more directly measure on-
line shifts of attention during simple arithmetic problem-solving.
This was done by tracking eye movements of participants while
they solved single-digit addition and subtraction problems. Unlike
Marghetis et al. (2014), the results did not show any significant dif-
ference between addition and subtraction in the horizontal dimen-
sion (relative differences between operations were only observed
in the vertical dimension and appeared to be mostly driven by a
downward bias for subtraction, see their Fig. 2B). Therefore, to
our knowledge, there is no clear-cut evidence that horizontal shifts
of attention occur during simple arithmetic problem-solving.

The goal of the present study was to test the hypothesis that
simple arithmetic problem-solving is associated with horizontal
shifts of attention that may reflect rapid shifts along the MNL
(Barrouillet & Thevenot, 2013). We asked adult participants to
solve single-digit arithmetic problems in which operands and
arithmetic sign were displayed sequentially on a screen (see
Fig. 1). In each trial, the first operand (O1) and the arithmetic sign
were presented one after the other at the center of the screen. The
arithmetic sign then disappeared and was followed by the second
operand (O2), which was presented either to the left or to the right
of the center of the screen. Participants were asked to verbally
solve the problem as fast and accurately as they could. The position
of O2 on the screen was irrelevant for the task. Nonetheless, if sim-
ple arithmetic problem-solving is associated with horizontal shifts
of attention, performance should be facilitated when O2 appears in
the hemifield congruent to the attentional shift. More specifically,
if addition problems are accompanied by rightward shifts of atten-
tion, response time (RT) should be faster when O2 appears in the
right compared to the left hemifield. Inversely, if subtraction prob-
lems are accompanied by leftward shifts of attention, RT should be
faster when O2 appears in the left compared to the right hemifield.
2. Experiment 1

2.1. Method

2.1.1. Participants
Forty students from the University of Lyon volunteered to par-

ticipate in this experiment. All were native French speakers and
had normal or corrected-to-normal vision. Four participants were
excluded from further analysis because of technical recording
issues (n = 2) or non-compliance with the instructions during the
whole experiment (n = 2). Data from two participants were further
removed because they were outliers (as determined by overall
dRTs that differed by more than 2 Standard Deviation [SD] from
the mean of all participants, see below). The remaining 34 partici-
pants (20 females; 30 right-handed) were aged between 19 and
31 years (M = 21.8, SD = 2.7 years). The experiment was performed
in accordance with the ethical standards established by the Decla-
ration of Helsinki.

2.1.2. Stimuli
The main arithmetic problems were constructed following the

criteria used by Fayol and Thevenot (2012). All pairs of non-
identical operands between 1 and 5 [(2,1); (3,1); (3,2); (4,1);
(4,2); (4,3); (5,1); (5,2); (5,3); (5,4)] were used to construct small
addition and subtraction problems. All pairs of non-identical oper-
ands between 5 and 9 [(6,5); (7,5); (7,6); (8,5); (8,6); (8,7); (9,5);
(9,6); (9,7); (9,8)] were used to construct large addition and sub-
traction problems. The number 5 was used in both categories to
ensure that there were as many small problems as there were large
problems. The largest operand was O1 in all addition and subtrac-
tion problems. This ensured that (i) the results of subtraction prob-
lems were always positive and that (ii) the type of operation could
not be predicted from the first operand (because of the sequential
presentation of the problems, see below). There were 20 addition
problems (10 small/10 large) and 20 subtraction problems (10
small/10 large). Following a reviewer’s suggestion, some partici-
pants (n = 15 in the final sample) were also presented with 18
problems involving zero as O2 (9 addition and 9 subtraction prob-
lems). These zero-problems were constructed with the following
pairs of operands: (1,0); (2,0); (3,0); (4,0); (5,0); (6,0); (7,0);
(8,0); (9,0). Solving a problem with zero as O2 should not require
any shift along the MNL. Thus, any operation-dependent spatial
bias observed for the main problems that would be due to differen-
tial movements along the MNL should not be found with zero-
problems. See Appendix A for a full list of arithmetic problems.

2.1.3. Task and procedure
Participants were asked to solve arithmetic problems displayed

on a computer screen. For each problem, operands and arithmetic
signwerepresented sequentially (Fig. 1). A trial startedwith thepre-
sentation of awhite central fixationdot for 500 ms, immediately fol-
lowed by O1 for an additional 500 ms. After a first delay of 500 ms,
the arithmetic sign (+ or �) was flashed for 150 ms at the center of



Fig. 1. Sequence and timing of a sample trial. Arithmetic problems were presented sequentially on a screen. Both the first operand and the operator were presented at the
center of the screen. The second operand was flashed either in the left or the right hemifield. Participants had a maximum of 3000 ms to give aloud their response through a
headset microphone. Response time corresponded to the delay between the onset of the second operand and the onset of the oral answer.

Table 1
Mean RT (and SD) as a function of Operation, Problem size and SOA for main
arithmetic problems in Experiment 1.

Addition Subtraction

150 ms 300 ms 450 ms 150 ms 300 ms 450 ms

Small 796
(129)

783
(131)

782
(119)

875
(156)

841
(146)

848
(141)

Large 1326
(349)

1270
(345)

1267
(340)

946
(186)

922
(196)

906
(171)

Table 2
Mean RT (and SD) as a function of Operation and SOA for zero-problems in
Experiment 1.

Addition Subtraction

150 ms 300 ms 450 ms 150 ms 300 ms 450 ms

Zero 729
(111)

714
(105)

727
(113)

748
(120)

730
(116)

745
(111)
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the screen. Thiswas followed by a seconddelay separating the arith-
metic sign fromO2,whichwasflashed for 150 mseither 5� to the left
or 5� to the right of the center of the screen. Previous studies have
found priming effects associated with arithmetic signs using stimu-
lus onset asynchronies (SOAs) of 150 ms (Fayol & Thevenot, 2012)
and 300 ms (Roussel et al., 2002). Interactions between arithmetic
processing and space have further been observed with SOAs of
450 ms (Masson & Pesenti, 2014). Therefore, we varied the delay
between the arithmetic sign and O2 in the present experiment, such
that the SOA was of 150, 300, or 450 ms. Participants were given
3000 ms to say their answer aloud as quickly and accurately as pos-
sible before the beginning of the next trial.

Each problem was presented once for each SOA (150, 300,
450 ms) and once for each side of appearance of O2 (left, right).
Therefore, each problem was presented 6 times across the whole
experiment. Participants performed the task in 4 successive blocks,
with an equal number of trials in each. In each block, trials were
pseudorandomly ordered so that no more than three problems of
the same type could appear consecutively. The order of blocks
was counter-balanced between subjects. The experiment started
with 8 practice trials. These practice trials included tie problems
(e.g., 2 + 2) and problems involving both small and large digits
(e.g., 3 + 9). For those participants who were not presented with
zero-problems in the main experiment, zero-problems (e.g.,
5 � 0) were also included in the practice session. The whole exper-
iment lasted between 25 and 35 min.

During the entire experiment, participants were seated at 44 cm
from a 1500 computer screenwith their head stabilized by a chin rest
and frontal support to minimize head movements. Problems were
displayed inwhite TimesNewRoman 36-point font on a black back-
ground. Participants were instructed to keep their eyes fixated on
the center of the screen andnot tomake any eyemovements. Aweb-
camwas positioned at the top of the computer screen. Although this
was not true, participants were told that eye position will be moni-
toredduring the entire experiment to ensure that they keepfixation.
The experiment was controlled by the DmDX software (Forster &
Forster, 2003). Response times (RTs) were recorded through a head-
setmicrophoneandcorresponded to theperiodbetween thepresen-
tation of O2 and the onset of the answer. For each trial and
participant, RTwas checked off-line andmanually adjusted if neces-
sary with CheckVocal (Protopapas, 2007).

2.2. Results

RT data were normalized using a logarithmic transformation
prior all analyses to improve the conformity of the data to the stan-
dard assumptions of parametric testing (Howell, 2011). The analy-
sis was performed on correct trials only (i.e., 94.9% of the trials).
Trials in which the answer was not recorded and outlier trials (tri-
als with a RT smaller than 200 ms or a RT greater than 2 SDs from
the mean for each participant) were removed from the analyses
(this corresponded to a further 4.7% of the trials). For each partic-
ipant, operation and problem size, we subtracted the mean RT of
trials in which O2 appeared on the right from the mean RT of trials
in which O2 appeared on the left. This difference in RT (dRT) served
as dependent variable in the following analyses. However, for the
sake of completeness, raw mean RTs as a function of Problem size
and SOA are also presented in Tables 1 and 2. In what follows, we



Fig. 2. dRT as a function of Operation (Subtraction, Addition) for main arithmetic problems with the 150 ms SOA (A), 300 ms SOA (B) and 450 ms SOA (C) in Experiment 1.
Error bars represent standard error of the mean (SEM). ⁄p < .05; ⁄⁄ p < .01.
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present findings regarding the main arithmetic problems (i.e.,
problems involving pairs of non-zero operands) in all participants,
before examining zero-problems in a subset of the participants.
Data were analyzed using repeated-measures ANOVAs. For
follow-up t-tests, one-tailed p values are reported because our
hypotheses were directional (i.e., we anticipated a rightward bias
for addition and a leftward bias for subtraction). P values less than
0.05 were considered to be significant.
2.2.1. Main problems
dRTs associated with all main problems were entered into a

2 � 2 � 3 analysis of variance (ANOVA) with the within-subject
factors Operation (Addition, Subtraction), Problem size (Small,
Large), and SOA (150 ms, 300 ms, 450 ms). Although the interac-
tion between Operation and SOA was not reliable (F(2,66) = 2.23,
MSe = .009, g2 = .014, p = .115), the main effect of Operation was
significant (F(1,33) = 4.33, MSe = .006, g2 = .009, p < .05). Across
all SOAs, dRT was more positive for addition (15 ms) than for sub-
traction (�3 ms). Follow-up ANOVAs conducted separately for
each SOA (with the within-subject factors Operation and Problem
size) revealed that this effect was driven by the 150 ms and
300 ms SOAs. With the 150 ms SOA, although the main effect of
Operation was not significant (F(1,33) = .33, MSe = .008, g2 = .003,
p = .57), dRT tended to be positive for addition problems
(dRT = 12 ms; t33 = 1.40, Cohen’s dz = .24, p = .08) whereas it was
not different from 0 for subtraction (dRT = 5 ms; t33 = .39, Cohen’s
dz = .07, p = .35) (Fig. 2A). Therefore, 150 ms after the arithmetic
sign, addition problems tended to be solved faster when O2 was
presented to the right than to the left, whereas no bias was
observed for subtraction problems. With the 300 ms SOA, the main
effect of Operation was significant (F(1,33) = 11.16, MSe = .006,
g2 = .094, p < .01). Specifically, dRT was reliably positive for addi-
tion (dRT = 34 ms; t33 = 2.67, Cohen’s dz = .46, p < .01) and reliably
negative for subtraction (dRT = �19 ms; t33 = 2.10, Cohen’s
dz = .36, p < .05) (Fig. 2B). Therefore, 300 ms after the arithmetic
sign, addition problems were solved faster when O2 was presented
to the right than to the left, whereas subtraction problems were
solved faster when O2 was presented to the left than to the right.
Finally, with the 450 ms SOA, the main effect of Operation did not
reach significance (F(1,33) = .03, MSe = .012, g2 = .0005, p = .86):
dRT differed from 0 neither for addition nor for subtraction (addi-
tion: dRT = �2 ms; t33 = .01, Cohen’s dz = .002, p = .50; subtraction:
dRT = 4 ms; t33 = .30, Cohen’s dz = .05, p = .38) (Fig. 2C). Overall,
then, a rightward bias was observed for addition problems as early
as 150 ms after the arithmetic sign, whereas a leftward bias was
observed for subtraction problems as early as 300 ms after the sign.
These biases appear to have faded away 450 ms after the sign.

Finally, the 2 � 2 � 3 ANOVA did not reveal any main effect of
Problem size (F(1,33) = .30, MSe = .005, g2 = .0005, p = .59), but
the interaction between Operation and Problem size was signifi-
cant (F(1,33) = 4.74, MSe = .010, g2 = .015, p < .05). This indicated
that dRT was more negative for large (�14 ms) than small (8 ms)
subtraction problems (t33 = 2.29, Cohen’s dz = .39, p < .05), whereas
there was no difference between large (27 ms) and small (3 ms)
addition problems (t33 = 1.31, Cohen’s dz = .22, p = .10). However,
this interaction was only observed across all SOAs: Follow-up
ANOVAs conducted separately for each SOA did not reveal any sig-
nificant (or near-significant) interaction between Problem size and
Operation (or main effect of Problem size) in any of the SOA.

2.2.2. Zero-problems
If the dRT difference observed between main addition and main

subtraction problems 300 ms after the sign is due to differential
movements along the MNL, it should not be observed when O2 is
equal to zero (because no movement along the MNL should be eli-
cited in this case). To test this hypothesis, we presented a subset of
participants (n = 15) with problems in which O2 was zero (i.e.,
zero-problems). Unlike for the main arithmetic problems, we did
not find any dRT difference between zero addition (24 ms) and
zero subtraction (25 ms) problems with the 300 ms SOA
(t14 = .22, Cohen’s dz = .06, p = .41). This lack of effect was not due
to a lack of power because dRT was more positive for main addition
(12 ms) than main subtraction (�20 ms) problems in the exact
same participants (t14 = 1.46, Cohen’s dz = .38, p = .08). Thus, the
operation-dependent spatial bias observed 300 ms after the arith-
metic sign for the main problems appears to be restricted to prob-
lems in which O2 is greater than 0.

Interestingly, although there was no dRT difference between
zero addition (�3 ms) and zero subtraction (�9 ms) problems with
the 150 ms SOA (t14 = .33, Cohen’s dz = .09, p = .37), we found a sig-
nificant difference for the 450 ms SOA (t14 = 1.96, Cohen’s dz = .51,
p < .05). With that SOA, dRT was reliably positive for addition prob-
lems (dRT = 22 ms; t14 = 2.67, Cohen’s dz = .69, p < .01), but did not
differ from 0 for subtraction problems (dRT = �2 ms; t14 = .05,
Cohen’s dz = .01, p = .48). This effect was specific to zero problems
because it was not observed for the main problems in the same
participants (as in the whole group). Overall, these results indicate
that zero-problems may be associated with an operation-
dependent spatial bias to some extent. However, unlike for the
main arithmetic problems, this effect is late developing and was
only found 450 ms after the arithmetic sign.
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2.3. Discussion

It has been recently proposed that adults might solve single-
digit addition and subtraction problems by rapidly moving to the
right or left of a MNL (Barrouillet & Thevenot, 2013). The purpose
of this first experiment was to test whether solving single-digit
addition and subtraction problems is associated with covert shifts
of attention toward the right or left side of space. We designed a
task in which operands and arithmetic sign were presented
sequentially on a screen. Both O1 and the arithmetic sign were pre-
sented at the center of the screen. O2 was presented either in the
left or in the right hemifield. Even though the location of O2 on
the screen was irrelevant for the task, participants were faster at
solving single-digit addition when O2 was presented in the right
hemifield compared to the left. Conversely, participants were fas-
ter at solving single-digit subtraction when O2 was presented in
the left hemifield compared to the right. These effects were rela-
tively early developing (i.e., they were observed as early as
150 ms after the onset of the operator for addition and as early
as 300 ms after the onset of the operator for subtraction) and
had faded away 450 ms after the arithmetic sign. Up to 300 ms
after the sign, the operation-dependent spatial bias was also
restricted to operations that did not involve zero as O2.

Overall, these results demonstrate that solving single-digit
addition and subtraction problems is associated with on-line hor-
izontal shifts of attention. This is consistent with the idea that
these problems activate procedures that may involve shifts to the
right or left of a MNL (Barrouillet & Thevenot, 2013). Two previous
studies suggest that such procedural knowledge is likely cued by
the arithmetic sign (Fayol & Thevenot, 2012; Roussel et al.,
2002). Fayol and Thevenot (2012) and Roussel et al. (2002) showed
that the simple perception of the arithmetic sign 150 ms or 300 ms
before a problem (addition or subtraction) could facilitate subse-
quent problem-solving, presumably by priming automatic proce-
dures that would be used to solve these problems. It is possible
that the arithmetic sign might cue the activation of a MNL, along
which participants can shift their attention to move to the right
or left of O1 (for addition and subtraction, respectively). Such
shifts, however, should naturally only occur when O2 is greater
than zero. In line with this claim, we did not find any differential
association between operation and side of O2 for zero-problems
within the time window in which we found effects for the main
arithmetic problems (150 ms and 300 ms after the sign). Thus,
the early spatial biases captured here are likely to reflect proce-
dures relying on shifts along the MNL that would be engaged when
computing the result of arithmetic problems.

There are two other aspects of our results that are worth dis-
cussing here. First, we found that the leftward bias associated with
subtraction did not appear to emerge as early as the rightward bias
associated with addition (300 ms after the sign for subtraction and
150 ms after the sign for addition). We speculate that the earlier
onset of rightward versus leftward movements along the MNL
may be due to the fact that addition may be more practiced than
subtraction over the course of arithmetic education (e.g., addition
is typically learned and practiced before subtraction in school), or
even in everyday life. Thus, the rightward movements associated
with addition problem-solving might end up being elicited slightly
earlier than the leftward movements associated with subtraction
problem-solving in adults. This superiority for rightward over left-
ward shifts might be further enhanced by reading habits (i.e., all of
our participants read from left to right). Second, although there
was no differential association between operation and side of O2
for zero-problems within the time window in which we found
the effects for the main problems (150 ms and 300 ms after the
sign), there was a greater rightward bias for zero addition than
zero subtraction problems 450 ms after the arithmetic sign (where
no effect was found for the main arithmetic problems). The lack of
temporal overlap between this effect and the operation-dependent
spatial bias observed for the main problems most likely indicate
that they have a different origin. One possibility for explaining this
effect is suggested by the spatial competition account proposed by
Pinhas and Fischer (2008) (see also Pinhas, Shaki, & Fischer, 2014,
2015). There is accumulating evidence that both numbers (Fischer
et al., 2003) and operators (Marghetis et al., 2014; Pinhas et al.,
2014) have spatial associations, which seem to appear around
400 ms (at least for numbers, see Fischer et al., 2003). Thus, the
effect observed here for zero problems 450 ms after the sign may
be due to a late association between addition signs and the right
side of space. This effect might be diluted in main arithmetic prob-
lems because non-zero numbers might induce a spatial activation
that might compete with the spatial activation associated with the
sign (Pinhas & Fischer, 2008). But such a competition should be
absent for zero-problems because zero is not thought to be repre-
sented in the MNL (Brysbaert, 1995; Tzelgov, Ganor-Stern, &
Maymon-Schreiber, 2009). Finally, the lack of leftward association
for non-zero subtraction problems might be explained by the rela-
tively weak association between subtraction signs and left side of
space (see Pinhas et al., 2014, Experiment 1).

Overall, shifts along the MNL appear to be a good explanation
for the effects observed 150 ms and 300 ms after the sign. We
see, however, at least two other possible explanations for these
effects. First, it is possible that with time and practice, participants
associate arithmetic signs with simple heuristics. For example,
Hartmann et al. (2015) proposed that ‘‘the principal role of space
during mental arithmetic might be the activation of metaphorical
magnitude concepts” (Hartmann et al. (2015), p. 6), such as ‘‘more
is right” and ‘‘less is left”. In other words, participants might shift
their attention to the left or right side of space not because they
move along the MNL, but simply because the appearance of the
addition or subtraction sign makes them anticipate that the result
of the problem will be smaller or larger than the first operand. This
could ‘‘provide an intuitive check on rote or algorithmic calcula-
tion” (Marghetis et al., 2014). Second, it is also possible that these
horizontal biases are due to differences in the size of the results
between addition and subtraction. Indeed, results of addition prob-
lems were larger overall than results of subtraction problems and
larger numbers are more strongly associated with the right side
of space than smaller numbers. Thus, it remains conceivable that
number-space associations might have driven the effect (Fischer
et al., 2003).

Interestingly, examining whether multiplication problems are
associated with attentional biases could be very informative for
distinguishing between our main interpretation and these two
other accounts. If attentional biases are due to movements along
the MNL, no bias should be observed for multiplication problems.
Fayol and Thevenot (2012) did not find any facilitation of
problem-solving when a multiplication sign was presented before
the occurrence of a multiplication problem. This indicates that
multiplication signs do not activate any procedural knowledge
and that the results of such problems are likely retrieved from
long-term memory, as suggested by a large body of literature
(Ashcraft, 1992; Campbell & Xue, 2001; Galfano, Rusconi, &
Umiltà, 2003; Ischebeck et al., 2006; Rusconi, Galfano, Speriani, &
Umiltà, 2004; Thibodeau, Lefevre, & Bisanz, 1996). In contrast, if
participants have developed an association between the addition
sign and a heuristic such as ‘‘more than the first operand”, one
should observe the same rightward bias for multiplication as for
addition. This is because results of multiplication problems are
always larger than the first operand (at least when the second
operand is greater than 1). A similar rightward bias for multiplica-
tion should also be observed if attentional biases are driven by the
size of the results. Indeed, when the same operands are used,



Fig. 3. dRT as a function of Operation (Multiplication, Addition) in Experiment 2.
Error bars represent standard error of the mean (SEM). ⁄⁄ p < .01.
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results of multiplication problems are significantly larger than
results of addition problems and should be even more strongly
associated with the right side of space. In Experiment 2, we aimed
to test between these hypotheses by presenting participants with
single-digit multiplication problems using the same paradigm as
in Experiment 1. Because the extension to multiplication problems
leads to a large number of trials by participant, only addition and
multiplication problems were presented to participants in this sec-
ond experiment (both types of problems consisted in the exact
same operands).

3. Experiment 2

3.1. Method

3.1.1. Participants
Twenty-four students from the University of Lyon volunteered

to participate in this experiment. All were native French speakers
and had normal or corrected-to-normal vision. Two participants
were excluded from further analysis (one because of technical
recording issues and one because of an error rate greater than
40%). The remaining 22 participants (10 females; all right-
handed) were aged between 18 and 27 years (M = 21.8,
SD = 2.3 years). The experiment was performed in accordance with
the ethical standards established by the Declaration of Helsinki.

3.1.2. Stimuli
The same pairs of operands as those used in the main arithmetic

problems of Experiment 1 (i.e., problems involving pairs of non-
zero operands) were used to construct addition and multiplication
problems. Unlike in Experiment 1, however, the absence of sub-
traction problems and of problems involving zero allowed us to
present the largest operand as either first or second operand (see
below). See Appendix B for a full list of arithmetic problems.

3.1.3. Task and procedure
The task, apparatus, and stimulus timing were identical to those

in Experiment 1. However, because the largest rightward bias for
addition problems was found with the 300 ms SOA in Experiment
1, we only presented problems with that particular SOA in Exper-
iment 2. Each problem was presented once for each order of pre-
sentation of operand (first versus second position) and once for
each side of appearance of O2 (left, right). Therefore, each problem
was presented 4 times across the whole experiment for a total of
180 trials distributed in 3 successive blocks of 60 pseudorandomly
ordered trials. The order of blocks was counter-balanced between
subjects. The experiment started with 8 practice trials (constructed
in the same manner as in Experiment 1) and lasted less than
20 min.

3.2. Results

As for Experiment 1, RT data were normalized using a logarith-
mic transformation prior all analyses (Howell, 2011). The analysis
was performed on correct trials only (i.e., 89.4% of the trials). Trials
in which the answer was not recorded and outlier trials (defined in
the same was as in Experiment 1) were also removed from the
Table 3
Mean RT (and SD) as a function of Operation and Problem size in Experiment 2.

Addition Multiplication

Small 826 811
(108) (97)

Large 1359 1268
(331) (215)
analyses (this corresponded to a further 4.9% of the trials). dRT (dif-
ference in RT between problems in which O2 was on the left and
problems in which O2 was on the right) served as dependent vari-
able. However, for the sake of completeness, raw mean RTs as a
function of Problem size and Operation are also reported in Table 3.
Data were analyzed using repeated-measures ANOVAs. For follow-
up t-tests, one-tailed p values are reported because our hypotheses
were directional (i.e., we anticipated a rightward bias for addition
and either a rightward or no bias for multiplication). P values less
than 0.05 were considered to be significant.

dRTs were entered into a 2 � 2 � 2 analysis of variance
(ANOVA) with the within-subject factors Operation (Addition,
Multiplication), Problem size (Small, Large), and Position of small-
est operand (First, Second). The ANOVA only revealed a main effect
of Operation (F(1,21) = 6.69, MSe = .010, g2 = .046, p < .05) (Fig. 3).
Follow-up t-tests revealed that dRT was positive for addition
(dRT = 36 ms; t21 = 3.01, Cohen’s dz = .64, p < .01), whereas it did
not differ from 0 for multiplication (dRT = �12 ms; t21 = 0.79,
Cohen’s dz = .17, p = .22). No other main effect or interaction
reached significance. Overall, these results clearly indicate that
addition problems were solved faster when O2 was presented to
the right than to the left, whereas the side of presentation of O2
did not affect the solving time of multiplication problems.

3.3. Discussion

The second experiment successfully replicated the results of the
first experiment regarding addition problems. Specifically, partici-
pants were faster at solving single-digit addition when O2
appeared in the right hemifield compared to the left hemifield.
However, the position of O2 did not appear to affect the solving
time of multiplication problems. This is inconsistent with the pro-
posal that attentional biases in addition problems are due to asso-
ciations between arithmetic signs and a heuristic such as ‘‘more
than the first operand”, because results of multiplication problems
are also larger than (or at least as large as) the first operand and the
same heuristic could be applied. This is also inconsistent with the
hypothesis that attentional biases are driven by the magnitude of
the result because results of multiplication problems are larger
than those of addition problems and should be even more strongly
associated with the right side of space. Therefore, the attentional
biases observed for the main (i.e., non-zero) subtraction (in Exper-
iment 1) and addition (in Experiments 1 and 2) problems are more
likely due to movements along the MNL that do not occur with
multiplication problems. The results of the two experiments are
discussed in details below.
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4. General discussion

Several recent studies suggest that fast and automatized count-
ing procedures are elicited when solving very simple addition and
subtraction problems (Barrouillet & Thevenot, 2013; Fayol &
Thevenot, 2012; Ric & Muller, 2012). These procedures have been
posited to take the form of a ‘‘rapid scrolling through an easily
accessible and overlearned representation stored in long-term
memory” (Barrouillet & Thevenot, 2013; Fayol & Thevenot, 2012).
The goal of the present experiments was to test whether such pro-
cedures might manifest themselves by on-line horizontal shifts of
attention during problem-solving. In two experiments, adult par-
ticipants were asked to verbally solve single-digit addition, sub-
traction and multiplication problems. Operands and arithmetic
signs were presented sequentially. Although both O1 and arith-
metic sign were presented at the center of the screen, O2 was dis-
played either in the left or right hemifield. We found that addition
problems were solved faster when O2 was on the right than on the
left side, whereas subtraction problems were solved faster when
O2 was on the left than on the right side. These effects were
observed up to 300 ms after the arithmetic sign. Within that time
window, we did not find any operation-dependent spatial bias
when O2 was equal to zero. No spatial bias was also observed
when the operation was a multiplication problem. Therefore, our
results demonstrate the presence of horizontal shifts of attention
that are specific to single-digit (and non-zero) addition and sub-
traction problems.
4.1. Mental movements along the MNL

Overall, our findings are consistent with the idea that single-
digit arithmetic problem-solving is associated with the activation
of procedures that require moving to the right or left of a MNL.
These procedures are likely to originate from the arithmetic sign
itself. Indeed, both Fayol and Thevenot (2012) and Roussel et al.
(2002) showed that previewing an addition or a subtraction sign
speeds up the processing of a subsequent single-digit addition or
subtraction problem, suggesting that these signs might recruit
arithmetic procedures. We propose that arithmetic signs may acti-
vate a representation of the MNL, along which attention can be
shifted rightward or leftward depending on the operator (addition
or subtraction). Of course, movement along the MNL is entirely
dependent upon O2. That is, no movement is necessary if O2 is
equal to zero. We think that this explains why, 150 ms and
300 ms after the sign, no operation-dependent spatial bias could
be observed when O2 is zero. Thus, the spatial biases captured here
very likely arise from the combined processing of the arithmetic
sign and O2.
4.2. Alternative explanations

Although our findings appear consistent with the idea of mental
movements along the MNL, we review here several potential
explanations for these effects. First, one might wonder whether
the effects might be due to differences in the size of the operands
across operations. This is impossible because we used the exact
same operands for addition and subtraction problems in Experi-
ment 1, as well as for addition and multiplication problems in
Experiment 2. Thus, the differences in horizontal shifts of attention
cannot stem from differences in the magnitude of operands across
operations.

Second, it could be argued that differences in the size of the
results contribute to the biases observed in Experiment 1 (i.e.,
results of subtraction problems were overall smaller than results
of addition problems). However, this explanation is ruled out by
Experiment 2. Indeed, we found a larger rightward bias for addi-
tion than multiplication problems, despite the fact that addition
problems were associated with results of smaller sizes than multi-
plication problems. Furthermore, associations between numbers
and space appear to occur later than the biases observed here
(i.e., around 400 ms in Fischer et al., 2003) whereas our effects
can be observed as early as 150 ms), also arguing against that
explanation.

Third, it could be claimed that a simple association between
arithmetic signs and space might account for our results. For
instance, Pinhas et al. (2014) recently demonstrated that partici-
pants show a preference for the right (compared to the left) hand
when classifying plus signs whereas they show a preference (albeit
weaker) for the left (compared to the right) hand when evaluating
minus signs, an effect termed operation sign spatial association
(OSSA). Marghetis et al. (2014) further reported that arithmetic
operators influenced horizontal hand trajectories when partici-
pants were required to choose the result of a problem with a
mouse cursor. This explanation can also be ruled out. Indeed, if
simple associations between arithmetic signs and space could
explain the operation-dependent spatial bias observed for main
arithmetic problems up to 300 ms after the arithmetic sign, it
should also be observed with zero-problems within the same time
window. However, we did not observe any such effect with these
problems. Therefore, it is very unlikely that the biases observed
for the main problems can be explained by simple associations
between arithmetic signs and space. Note, however, that such an
explanation may account for the effect observed for zero problems
450 ms after the sign (see Discussion of Experience 1).

Fourth, it has been speculated that arithmetic signs might be
associated with generic metaphorical associations such as ‘‘more
is right” and ‘‘less is left” (Hartmann et al., 2015; McCrink &
Wynn, 2009). Such associations would arise with arithmetic prac-
tice and might provide a heuristic way to check whether a result
obtained by rote or calculation ‘‘feels right” (i.e., results of addition
problems should be larger than O1 and results of subtraction prob-
lems should be smaller than O1) (Hartmann et al., 2015; Marghetis
et al., 2014). It might thus be argued that arithmetic signs might
activate those heuristics, which in turn might lead to the effects
we observe. This possibility is inconsistent with Experiment 2.
Indeed, given that results of multiplication problems are also larger
than (or at least as large as) O1, this view would predict that mul-
tiplication problems would also be associated with the right side of
space. Our results did not show any rightward shift of attention
associated with multiplication problems. Thus, our findings indi-
cate that horizontal shifts of attention during addition and subtrac-
tion may reflect specific calculation procedures rather than generic
intuitions about what type of result should be accepted or not.

4.3. Origin of movements along the MNL

Clearly, the idea that mental arithmetic is associated with spa-
tial biases and that these biases reflect movements along the MNL
has been suggested in several prior studies (Knops et al., 2009;
Marghetis et al., 2014; Masson & Pesenti, 2014; Wiemers,
Bekkering, & Lindemann, 2014). Yet, most of these studies investi-
gated more complex arithmetic problems (e.g., double-digit)
(Knops et al., 2009; Wiemers et al., 2014). Furthermore, the few
studies that investigated spatial biases in single-digit problems
have provided conflicting evidence for the presence of horizontal
spatial biases during simple addition and subtraction (see Introduc-
tion) (Hartmann et al., 2015; Marghetis et al., 2014; Masson &
Pesenti, 2014; Pinhas & Fischer, 2008). Our study contributes to
this literature by showing that horizontal shifts of attention are eli-
cited during problem-solving when participant solve single-digit
addition and subtraction.
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Whywould arithmetic single-digit arithmetic problems be asso-
ciated with mental movements along the MNL? One possibility is
that thesemovementsoriginate fromthe repeatedpracticeof count-
ing during arithmetic learning. For example, Baroody proposed that
explicit procedures are progressively compacted and replaced by
automatized ones through repetitive practice of arithmetic
(Baroody, 1983, 1984, 1994). This hypothesis is in line with the idea
that some cognitive procedures are compiled and implemented
automatically and unconsciously (Anderson, 1982, 1983, 1987).
Through practice, abstract procedures may become increasingly
efficient and engaged automatically as soon as participants know
the nature of the task to perform (Fayol & Thevenot, 2012; Roussel
et al., 2002). In an arithmetic context, it is plausible that some algo-
rithmic procedures (e.g., step-by-step internal counting) explicitly
used by children when learning arithmetic are progressively inter-
nalized into rapid left–right attentional movement of the MNL.

4.4. Relevance for the debate about strategies in simple arithmetic

It is important to note that our study only demonstrates that
procedures relying on movements along the MNL are activated dur-
ing single-digit addition and subtraction problem-solving. It does
not indicate whether these procedures are necessarily used by par-
ticipants to solve these problems. In other words, our data do not
directly speak to the question of whether single-digit addition
and subtraction problems are solved by means of procedural or
retrieval strategies. Nevertheless, activation of procedural strate-
gies is of course a necessary condition for their subsequent use,
and increasing evidence suggests that such procedures are indeed
employed when solving even very simple problems. For example,
Fayol and Thevenot (2012) and Roussel et al. (2002) demonstrated
that the simple perception of an arithmetic sign before a single-
digit addition and subtraction problem facilitates subsequent
problem-solving, indicating that any procedural knowledge that
is activated by these signs is used to solve these problems. More
recently, Barrouillet and Thevenot (2013) showed that response
times of addition problems involving operands from 1 to 4 increase
linearly with the magnitude of the operands, suggesting that par-
ticipants may use step-by-step counting procedures that would
be fast and automatized (see also Groen and Parkman (1972) for
data showing that adults solve single-digit addition problems with
a slope of 20 ms per increment). Because such abstract procedures
may be implemented automatically without ever reaching con-
sciousness by adults, participants may be unable to report using
them (Barrouillet & Thevenot, 2013; Fayol & Thevenot, 2012).

Our study further shows that the presence of procedural strate-
gies during single-digit arithmetic is not restricted to experts, as
suggested by some (Campbell, Chen, & Maslany, 2013; Chen &
Campbell, 2015). Indeed, Fayol and Thevenot (2012) tested partic-
ipants who were highly proficient in arithmetic: All of their partic-
ipants scored between 70 and 145 (mean = 90; SD = 19.30) on the
French kit, a test measuring arithmetic fluency for which the mean
in a population is 59 (French, Ekstrom, & Price, 1963; Thevenot,
Barrouillet, Castel, & Jimenez, 2011). In contrast, we recruited here
volunteer students from the University of Lyon and did not select
these participants based on arithmetic proficiency. 18 participants
of our Experiment 2 agreed to complete the French Kit. Their mean
score ranged from 28 to 144 (mean = 68; SD = 26), indicating a
highly heterogeneous population. Therefore, our findings are
clearly not restricted to participants with a particularly high level
of arithmetic skills.

4.5. No spatial biases for multiplication

Finally, our study indicates that the activation of procedures
involving movements along the MNL might be restricted to
single-digit addition and subtraction. Indeed, we did not find any
evidence for the presence of an attentional bias during multiplica-
tion problem-solving. Again, our results are consistent with that of
Fayol and Thevenot (2012). The authors found that the presenta-
tion of addition and subtraction signs facilitated subsequent
problem-solving, but no effect was found for multiplication signs.
This is in keeping with the idea that single-digit multiplication
problems may be predominantly solved by direct retrieval of arith-
metic facts. Multiplication problems are unique among arithmetic
problems in that they are explicitly learned by rote in school. They
may thus be strongly related to an associative network of facts and
might not be associated with procedural strategies in adults
(Campbell & Xue, 2001; Dehaene & Cohen, 1995; Galfano et al.,
2003; Ischebeck et al., 2006; Rusconi et al., 2004; Thibodeau
et al., 1996). This is consistent with several recent neuroimaging
studies showing that multiplication is associated with brain
regions involved in verbal retrieval, whereas single-digit subtrac-
tion and addition is associated with brain regions involved in spa-
tial attentional processing (Prado, Mutreja, & Booth, 2014; Prado
et al., 2011; Zhou et al., 2007).

4.6. Conclusion

To summarize, the present study shows that solving single-digit
addition and subtraction problems, but not multiplication prob-
lems, is accompanied by horizontal shifts of attention. This sup-
ports the idea that single-digit addition and subtraction, but not
multiplication, is associated with the activation of procedures that
may take the form of fast attentional movements along the MNL.
Future studies are needed to investigate when these procedures
emerge over development, the condition under which they are
used to solve single-digit problems in adults, and to what extent
this procedural knowledge relates to arithmetic skill.
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Appendix A

Full list of arithmetic problems used in Experiment 1.
Addition
 Subtraction
Small problems
 2 + 1
 2 � 1

3 + 1
 3 � 1

3 + 2
 3 � 2

4 + 1
 4 � 1

4 + 2
 4 � 2

4 + 3
 4 � 3

5 + 1
 5 � 1

5 + 2
 5 � 2

5 + 3
 5 � 3

5 + 4
 5 � 4
(continued on next page)
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Appendix A (continued)
Addition
 Subtraction
Large problems
 6 + 5
 6 � 5

7 + 5
 7 � 5

7 + 6
 7 � 6

8 + 5
 8 � 5

8 + 6
 8 � 6

8 + 7
 8 � 7

9 + 5
 9 � 5

9 + 6
 9 � 6

9 + 7
 9 � 7

9 + 8
 9 � 8
Zero problems
 1 + 0
 1 � 0

2 + 0
 2 � 0

3 + 0
 3 � 0

4 + 0
 4 � 0

5 + 0
 5 � 0

6 + 0
 6 � 0

7 + 0
 7 � 0

8 + 0
 8 � 0

9 + 0
 9 � 0
Appendix B

Full list of arithmetic problems used in Experiment 2.
Addition
 Multiplication
Small problems
 2 + 1
 1 + 2
 2 � 1
 1 � 2

3 + 1
 1 + 3
 3 � 1
 1 � 3

3 + 2
 2 + 3
 3 � 2
 2 � 3

4 + 1
 1 + 4
 4 � 1
 1 � 4

4 + 2
 2 + 4
 4 � 2
 2 � 4

4 + 3
 3 + 4
 4 � 3
 3 � 4

5 + 1
 1 + 5
 5 � 1
 1 � 5

5 + 2
 2 + 5
 5 � 2
 2 � 5

5 + 3
 3 + 5
 5 � 3
 3 � 5

5 + 4
 4 + 5
 5 � 4
 4 � 5
Large problems
 6 + 5
 5 + 6
 6 � 5
 5 � 6

7 + 5
 5 + 7
 7 � 5
 5 � 7

7 + 6
 6 + 7
 7 � 6
 6 � 7

8 + 5
 5 + 8
 8 � 5
 5 � 8

8 + 6
 6 + 8
 8 � 6
 6 � 8

8 + 7
 7 + 8
 8 � 7
 7 � 8

9 + 5
 5 + 9
 9 � 5
 5 � 9

9 + 6
 6 + 9
 9 � 6
 6 � 9

9 + 7
 7 + 9
 9 � 7
 7 � 9

9 + 8
 8 + 9
 9 � 8
 8 � 9
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