Chapter 7:
Dataspaces

Cornelia Hedeler!, Khalid Belhajjame', Norman W. Paton',
Alessandro Campi?, Alvaro A.A. Fernandes', and Suzanne M. Embury!

1 School of Computer Science, University of Manchester, UK
{chedeler, npaton, alvaro, embury}@cs .manchester.ac.uk
2 Dipartimento di Elettronica e Informatzione, Politecnico di Milano, Italy
campi@elet.polimi.it

Abstract. The vision of dataspaces is to provide various of the benefits of
classical data integration, but with reduced up-front costs, combined with
opportunities for incremental refinement, enabling a “pay as you go” ap-
proach. As such, dataspaces join a long stream of research activities that
aim to build tools that simplify integrated access to distributed data. To
address dataspace challenges, many different techniques may need to be
considered: data integration from multiple sources, machine learning ap-
proaches to resolving schema heterogeneity, integration of structured and
unstructured data, management of uncertainty, and query processing and
optimization. Results that seek to realize the different visions exhibit con-
siderable variety in their contexts, priorities and techniques. This chapter
presents a classification of the key concepts in the area, encouraging the use
of consistent terminology, and enabling a systematic comparison of propos-
als. This chapter also seeks to identify common and complementary ideas
in the dataspace and search computing literatures, in so doing identifying
opportunities for both areas and open issues for further research.

1 Introduction

Data integration, in various guises, has been the focus of ongoing research in
the database community for over 20 years. The objective of this activity has
generally been to provide the illusion that a single database is being accessed,
when in fact data may be stored in a range of different locations and managed
using a diverse collection of technologies. Providing this illusion typically involves
the development of a single central schema to which the schemas of individual
resources are related using some form of mapping. Given a query over the central
schema, the mappings, and information about the capabilities of the resources,
a distributed query processor optimizes and evaluates the query.

Data integration software is impressive when it works; declarative access is
provided over heterogeneous resources, in a setting where the infrastructure takes
responsibility for efficient evaluation of potentially complex requests. However, in
a world in which there are ever more networked data resources, data integration
technologies from the database community are far from ubiquitous. This stems
in significant measure from the fact that the development and maintenance of

S. Ceri and M. Brambilla (Eds.): Search Computing, LNCS 5950, pp. 114 2010.
© Springer-Verlag Berlin Heidelberg 2010

Dataspaces 115

mappings between schemas has proved to be labour intensive. Furthermore, it
is often difficult to get the mappings right, due to the frequent occurrence of
exceptions and special cases as well as autonomous changes in the sources that
require changes in the mappings. As a result, deployments are often most success-
ful when integrating modest numbers of stable resources in carefully managed
environments. That is, classical data integration technology occupies a position
at the high-cost, high-quality end of the data access spectrum, and is less effective
for numerous or rapidly changing resources, or for on-the-fly data integration.

The vision of dataspaces [I6J18] is that various of the benefits provided by
planned, resource-intensive data integration should be able to be realised at much
lower cost, thereby supporting integration on demand but with lower quality of
integration. As a result, dataspaces can be expected to make use of techniques
that infer relationships between resources, that refine these relationships in the
light of user or developer feedback, and that manage the fact that the relation-
ships are intrinsically uncertain. As such, a dataspace can be seen as a data
integration system that exhibits the following distinguishing features: (i) low/no
initialisation cost, (ii) support for incremental improvement, and (iii) manage-
ment of uncertainty that is inherent to the automatic integration process, but
could also be present in the integrated data itself.

However, to date, no dominant proposal or reference architecture has emerged.
Indeed, the dataspace vision has given rise to a wide range of proposals either for
specific dataspace components (e.g. [23I35]), or for complete dataspace manage-
ment systems (e.g. [T0J27]). These proposals often seem to have little in common,
as technical contributions stem from very different underlying assumptions — for
example, dataspace proposals may target collections of data resources as diverse
as personal file collections, enterprise data resources or the web. It seems unlikely
that similar design decisions will be reached by dataspace developers working
in such diverse contexts. This means that understanding the relationships and
potential synergies between different early results on dataspaces can be chal-
lenging; this paper provides a framework against which different proposals can
be classified and compared, with a view to clarifying the key concepts in datas-
pace management systems (DSMS), enabling systematic comparison of results
to date, and identifying significant gaps. In the context of search computing, the
chapter identifies issues that occur in dataspaces that are also relevant to search
computing, such as uncertainty, and explores how dataspace concepts may be
relevant to multi-domain search and vice versa.

The remainder of the chapter is structured as follows. Section [2] describes the
classification framework by introducing the various dimensions that are used to
characterise data integration and dataspace proposals. For the purpose of instan-
tiating the framework SectionBldescribes existing data integration and dataspace
proposals in the context of the classification framework. Section [discusses open
issues for dataspaces and search computing, and Section [concludes the chapter.
This paper extends Hedeler et al. [T9] by extending the dimensions used in the
classification, increasing the number of proposals included in the classification,

116 C. Hedeler et al.

and by including a discussion of the relationship between dataspaces and search
computing.

2 The Classification Framework

Low-cost, on-demand, automatic integration of data with the ability to search
and query the integrated data can be of benefit in a variety of situations, be
it the short-term integration of data from several rescue organisations to help
manage a crisis, the medium-term integration of databases from two companies,
one of which acquired the other until a new database containing all the data
is in place, or the long-term integration of personal data that an individual
collects over time, e.g., emails, papers, or music. Different application contexts
result in different dataspace lifetimes, ranging from short-, medium- to long-term
(Lifetime field in Tables [[l and [2]).

Figure [Il shows the conceptual life cycle of a dataspace consisting of phases
that are introduced in the following. Dataspaces in different application contexts
may only need a subset of the conceptual life cycle. The phases addressed are
listed in Life cycle in Tables [l and] with the initialisation, test/evaluation,
deployment, maintenance, use, and improvement phases denoted as init, test,
depl, maint, use, and impr, respectively.

A dataspace, just like any traditional data integration software, is initialised,
which may include the identification of the data resources to be accessed and
the integration of those resources. Initialisation may be followed by an evalua-
tion and testing phase, before deployment. The deployment phase, which may
not be required, for example, in the case of a personal dataspace residing on
a single desktop computer, could include enabling access to the dataspace for
users or moving the dataspace infrastructure onto a server. As the initialisation
of a DSMS should preferably require limited manual effort, the integration may
be improved over time in a pay-as-you-go manner [27] while it is being used to
search and query the integrated data resources. In ever-changing environments,
a DSMS also needs to respond to changes, e.g., in the underlying data resources,

y =} Initialise dataspace }4

Make necessary changes #

4{ Test/Evaluate dataspace ‘
¥

React to changes in sources React to feedback
‘ Deploy dataspace ‘

[

¥] ¥

Maintain dataspace: Use dataspace: Improve dataspace:
React to changes in sources || Search/query dataspace | |Gather and react to feedback

[]]

L]

‘ Disband dataspace ‘

Fig. 1. Conceptual life cycle of a dataspace

Dataspaces 117

: . . Create
Identify | |Design . : Derive i

data [»Integration *:\ﬁgggﬁ] s}I\D/IearN?n §[™Integration > rez:ltt;ng
sources| |schema 9 PPINGS| |schema el

\/

Fig. 2. Initialisation of a dataspace

which may require support for incremental integration. The phases Use, Main-
tain and Improve are depicted as coexisting, because carrying out maintenance
and improvement off-line would not be desirable. For clarity, the figure does
not show information flow between the different phases, so the arrows denote
transitions between phases.

In the remainder of this section, the initialisation, usage, maintenance and
improvement phases are discussed in more detail with a view to eliciting the
dimensions over which existing dataspace proposals have varied. The dimensions
are partly based on the dataspace vision [I6/I8] and partly on the characteristics
of dataspace proposals.

2.1 Initialisation Phase

Figure 2 presents a more detailed overview of the steps that may be part of the
initialisation phase. In the following, each of these steps is discussed in more
detail and the dimensions that are used to classify the existing proposals are
introduced. For each step, the dimensions are either concerned with the process
(e.g., identifying matchings) and its input, or with the output of the process (e.g.,
the matchings identified). As others have proposed (e.g., [30]) we distinguish
between matchings, which we take to be correspondences between elements and
attributes in different schemas, and mappings, which we take to be executable
programs (e.g., view definitions) for translating data between schemas.

Data Sources. A DSMS can either provide support for the integration of data
sources with any kind of content (Cont field in Tables[Il and) or it can provide
support for a specific application (app sp), in which case assumptions that apply
to that particular application can be of benefit during the initialisation phase.
Utilising domain knowledge, e.g., in form of a predefined integration schema, or
utilising domain knowledge during matching and mapping generation, to create
domain specific dataspace solutions could result in a higher quality of the initial
integration and may require less improvement. However, those solutions could
be hard to port into different domains. In contrast, general purpose dataspace
solutions can be applied to any domain, but may be burdened by lower quality of
the integration, requiring more user feedback for improvement of the integration.
General support is denoted by gen. Examples of specific applications include the
life sciences, personal information and enterprise data. Furthermore, the data
sources to be integrated can be of different types (Type field in Tables [I] and

118 C. Hedeler et al.

2). Examples include unstructured (unstr), semi-structured (with no explicit
schema) (s str) or structured (with explicit schema) (str). The data sources can
also differ in their location: they can be local (loc) or distributed (distr).

Integration Schema and Its Design/Derivation. The integration schema
can simply be a union schema, in which source-specific concepts are imported
directly into the integration schema, or a schema that merges (e.g. [31]) the
source schemas with the aim of capturing more specifically the semantic as-
pects that relate them. The different types of resulting schemas are denoted as
union and merge in Tables [[l and 2] respectively. Integration schemas can also
vary in their scope. To be able to model a wide variety of data from a variety
of domains, generic models (gen), such as resource-object-value triples, can be
used. In contrast to those, domain-specific models (dom sp) are used in other
proposals. Various data models can be used to represent the integration schema.
Multiple models are used by the dataspace proposals discussed here, ranging
from specific models, such as the relational model, to supermodels that sub-
sume several specific models (e.g., [2]). The Process of obtaining the integration
schema can either be manual (man), i.e., it is designed, or it can be derived
semi-automatically (s aut), e.g., requiring users to select between alternatives,
or automatically (aut) without any manual intervention. A variety of information
can be used as Input for designing or deriving the schema, which is depicted by
the different locations of the Design and Derive steps in Figure 2l The schema
can be designed using schema or instance (inst) information from the sources.
Matchings (match) or mappings (map) can also be used as input.

Matchings and Their Identification. Matchings can vary with respect to
their endpoints: they can either be correspondences between the source schemas
(sre-sre) or between source schemas and the integration schema (src-int). The
process of identifying the matchings can either be manual (man), semi-automatic
(s aut) or automatic (aut). The identification process may require a variety of
different inputs, e.g., the schemas to be matched, instances (inst) that conform
to the schemas (which may be utilised instead of or in addition to schema in-
formation to infer matches between the schemas), and training data (¢rain),
e.g., when machine learning techniques are applied.

Mappings and Their Identification. Like matchings, mappings can also vary
with respect to their endpoints (src-src or src-int). The process to derive the map-
pings can either be manual (man), semi-automatic (s aut) or automatic (aut).
The inputs to the derivation process may include the schemas to be mapped,
instances that conform to the schemas (inst), matchings (match) and/or train-
ing data (train), for example, when machine learning techniques are used, or a
query.

Resulting Data Resource. The resulting data resources over which queries
are expressed can vary with respect to their materialisation (Materialis.): they
can either be virtual (wvirt), partially materialised (p mat) or fully materialised

Dataspaces

119

Table 1. Properties of the initialisation, usage, maintenance, and improvement phase
of existing data integration and dataspace proposals

20)

Dimension DB2 II[17] Aladin ~ SEMEX iMeMex[10],PayGo[27] UDIBEIT3IREE6]Iba Quarry
23]

iTrails[34]
Life time/Life cycle

Lifetime long long long long
Life cycle init/use/ init/use/ init/use init/use/
maint maint maint/impr
Initialisation
Data sources; identification
Cont gen app sp app sp app sp
Type s str/str s str/str unstr/ unstr/
s str/str s str/str
Location distr distr loc/ distr
distr
Integration schema; design/derivation
Type union/merge union merge union
Scope dom sp dom sp dom sp gen
Process s aut/man s aut man aut
Input

Matchings; identification

Endpoints src-int src-src src-int src-src
Process man aut aut s aut
Input schema/ schema/ schema/
inst inst inst
Mappings; identification
Endpoints src-int src-int src-int src-int/
Sre-sre
Process man aut man
Input match schema/
inst
Resulting data resource; creation
Materialis. virt/p mat mat mat virt
Reconcil. NA dupl dupl
Usage: Search/query; evaluation
Specification in adv/run run run run
Type SPJ/aggr browse/ browse/ browse/
key/SPJ key SP key/SPJ
Evaluation compl compl compl partial
Comb. res. union
Maintenance
Changes add/ src inst add/ add
src inst
Reuse match/
map/
int sch
Improvement
Approach

Stage feedb
Stage impr

long long

init/use/ init

maint/

impr

gen gen

str str

distr loc

union merge

dom sp dom sp

aut aut
schema/
match

src-src Src-src,
src-int

aut aut

schema/ schema

inst/train

src-int src-int,
src-int
aut
schema/
match
virt
dupl

run run

key SP(J)

compl compl

union merge

match/

map/

int sch

alg match

/exp user

long
impr

gen

union
gen

aut
schema/
inst

SIC-src
aut
schema/

inst

src-int

virt

dupl

in adv
key/S

partial
merge

long
init/use

gen
s str

loc
union
gen
aut

schema/
inst

src-int

f mat

run
browse/

compl
union

exp user

match
match

120 C. Hedeler et al.

Table 2. Properties of the initialisation, usage, maintenance, and improvement phase
of existing data integration and dataspace proposals (cont.)

Dimension Q [37] Cimple [ITI29] CopyCat [22] Octorus [7]

Life time/Life cycle

Lifetime medium/ long long short short

Life cycle init/use/ impr init/use/ init/use/ impr init/ use/ impr
maint/impr

Initialisation

Data sources; identification

Cont app sp (gen) app sp gen gen

Type s str/str str s str/str s str/str

Location distr distr distr distr

Integration schema; design/derivation

Type union merge union merge

Scope gen dom sp dom sp dom sp

Process aut man s aut s aut

Input schema/ match schema/ inst/ match schema/ inst

Matchings; identification

Endpoints Src-src src-src/ sre-int Src-src src-int

Process s aut s aut s aut s aut

Input schema/ inst schema/ inst schema/ inst schema/ inst

Mappings; identification

Endpoints Src-src src-int src-int src-int

Process aut man s aut s aut

Input schema/ match/ query schema/ inst schema/ inst

Resulting data resource; creation

Materialis. virt p mat f mat f mat

Reconcil. dupl dupl

Usage: Search/query; evaluation

Specification in adv/ run run in adv in adv

Type key key/ SPJ VQL key

Evaluation compl compl compl compl

Comb. res. union merge union merge

Maintenance

Changes src sch/ src inst add add

Reuse int sch map

Improvement

Approach exp user exp user exp user exp user exp user

Stage feedb map res/ res ran match int sch/ map int sch/ map

Stage impr map map match int sch/ map int sch/ map

(f mat). During the creation of the integrated database, duplicates (dupl) entities
and conflicts (confl) can either be reconciled (Reconciliation) using, e.g., record
linkage approaches, or be allowed to coexist.

2.2 Usage Phase: Search/Query and Their Evaluation

Searches and queries can be specified (Specification) as a workload in advance
(in adv) of data integration taking place, or they can be specified after the inte-
gration, at runtime (run). Specifying queries in advance provides the potential for
optimising the integration specifically for a particular workload. Different types
of searches/queries can be supported by the dataspace: exploratory searches,
e.g, browsing (browse) or visual query languages (VQL), which are useful either
if the user is unfamiliar with the integration schema, or if there is no integra-
tion schema. Other types include keyword search (key), select- (5), project- (P),

Dataspaces 121

join- (J), and aggregation (aggr) queries. A common aim for a dataspace is to
provide some kind of search at all times [16]. Query evaluation can either be
complete (compl) or partial (part), e.g., using top-k evaluation approaches or
approaches that are able to deal with the unavailability of data sources [I6].
If multiple sources are queried, the results have to be combined (Combine re-
sults), which may be done by forming the union or merging (merge) the results,
which may include the reconciliation of duplicates entities and /or conflicts using,
e.g., record linkage approaches.

2.3 Maintenance and Improvement Phase

The maintenance phase deals with the fact that the underlying data sources are
autonomous [16], and the improvement phase aims to provide tighter integration
over time [I6]. The steps in both phases are comparable to the steps involved in
the initialisation phase, however, additional inputs may need to be considered.
Examples include user feedback, as well as previous matchings and mappings
that may need to be updated after changes in the underlying schemas.

Despite the general awareness that a DSMS needs to be able to cope with
evolving data sources and needs to improve over time, only limited results have
been reported to date, making it hard to consolidate the efforts into coherent
dimensions. In the following we suggest a set of dimensions, that may be used
to characterise future research efforts (see also Tables [Il and).

Maintenance: For effective maintenance, a DSMS needs to be able to cope with
a number of different changes, including adding (add) and removing (rem) of
resources. A DSMS also needs to be able to cope with changes in the underlying
sources, e.g. changes to the instances (src inst) or the schemas (src sch), as well
as changes to the integration schema (int sch). Ideally, a DSMS should require
little or no manual effort to respond to those changes. It may also be beneficial to
Reuse the results of previous integration tasks, e.g., previous matchings (match),
mappings (map), integration schemas (int sch), or even user feedback (feedb)
when responding to source changes.

Improvement: Improvement may be achieved in a number of ways (Approach),
including the use of different or additional approaches to those used during ini-
tialisation for deriving matchings (a match), mappings (a map), or the integra-
tion schema (a int). Furthermore, user feedback can be utilised, which could be
implicit (¢mp user) or explicit (exp user). In cases where user feedback is consid-
ered, this could be requested about a number of different stages (Stage feedb).
This includes requesting feedback on the matchings (match), mappings (map),
integration schema(s) (int sch), reformulated queries (ref query), query results
(res) (e.g., [3]) or the ranking of the results (res ran). The feedback obtained may
not only be used to revise the stage about which it was acquired, but it may also
be propagated for improvement at other stages (Stage impr). The values for this
property are the same as for Stage feedb.

122 C. Hedeler et al.

2.4 Uncertainty

For the purpose of this survey, we use the term uncertainty to cover various
aspects, such as the trustworthiness of sources, or the robustness of algorithms
which, e.g., could be represented as probabilities or scores associated with the
resulting matchings or mappings. When data from a variety of sources is inte-
grated, uncertainty may be introduced at various stages of the initialisation and
maintenance phases, and may have an impact on the usage and improvement
phases. As uncertainty plays a role across all phases of the dataspace life cycle, it
is discussed separately here. Table Bl classifies proposals that handle uncertainty
explicitely in terms of the dimensions.

When the uncertainty that is intrinsic to the integration process is made ex-
plicit, all the concepts that are produced during initialisation can be annotated
with uncertainty information. The concepts include: source data, which in itself
could be of uncertain quality; data sources, which for example could be ranked
with respect to their relevance to a given query; the matchings identified, which
may be computed using algorithms that use partial information; the mappings,
which may be derived from uncertain matchings or, similar to matchings, they
may be derived using incomplete information; the integration schema, which
may be one of many alternative integration schemas that can be derived from
mappings and as such may not model the conceptual world appropriately; and
the resulting data resource, which may have uncertainty associated with its in-
tegrated content due to the uncertainty associated with the integration process
itself. The uncertainty that may be accumulated throughout the various stages
of the intialisation phase may then manifest itself in the usage phase. As such,
query results or their rankings may be annotated with uncertainty information
or quality measures. In addition, certain properties of the query itself may be
uncertain, e.g., it may be uncertain whether a structured query that is derived
from a keyword query [37] is an appropriate representation of the query the user
had in mind.

Uncertainty can be represented by various kinds of annotation, which include:
scores, which, for example, can be used to represent a preference; probabilities,
which can be used to express the probability that a concept is relevant; preci-
sion/recall measures; or by ranking values without providing addition quality
measures. However, the quality measures associated with a concept could have
various meanings, for example, the ranking of query results could mean that the
results ranked higher are more relevant to the query or that they are more likely
to be part of the correct answer as the matchings, mappings, etc. that have been
utilised to obtain the answers have less uncertainty associated with them than
the mappings used to obtain the lower ranked results. As such, we also clarify for
each proposal that represents uncertainty explicitly the meaning of the quality
measures associated with the concepts.

The annotation representing uncertainty can be propagated through various
of the operations of the initialisation phase, such as, identify matchings, derive
mappings, derive integration schema, and create resulting data resource. The
operations utilised during the usage phase, such as answer query and combine

Dataspaces 123

Table 3. Handling of uncertainty by existing data integration and dataspace proposals

Concept Proposal Kind of Meaning Propagation Propag.
annota- function
tion

Data PayGo[27] ranking relevance to query combine results in-built

sources

Ocrorus [7] score/ relevance to query
ranking

Matchings iMeMex|[T0/jprob likelihood that results ob- derive mappings/ derive in-built

iTrails[34] tained are correct integration schema
weights relevance of matching to derive mappings/ derive in-built
query integration schema

PayGo|27] weights distance between schemas derive mappings/ derive in-built
integration schema
UDIB5IT3IT45E6]b probability that matching is derive mappings/ derive in-built

correct integration schema/ an-
swer query
Roomba score confidence of match being
correct
Q B7 costs bias against using match- derive mappings/ an- in-built

ing for query as it pro- swer query
duces worse answers from

the user’s point of view when

used to answer a query

Cimple score confidence that match is cor- answer query in-built
rect

CopyCat score relevance to integration op- derive mappings/ an- in-built

22] eration swer query

Mapping Octopus [7] score relevance to query and table
to be joined with

Query Roomba score expected result quality
23]
Query re- UDI[35/T3IT4E6ke scores of mappings used
sults
Q B7 score cost of the query that pro-
duced result
Cimple score scores from matchings used

CopyCat score score of query that produced

22] result
User Cimple score trustworthiness of user
[AT29]

results, can also propagate uncertainty. The propagation function that deter-
mines how the uncertainty is propagated can either be a predetermined built-in
function, such as the sum or product of all the scores associated with the input
concept, or can be user-defined, e.g., allowing the user to assign different impor-
tance in the form of weights to certain inputs. For example, users may choose
to trust information coming from particular sources more than from others, and
may want to encode their preference in the propagation function.

2.5 Human-Computer Interface

Another aspect that plays a role across the various phases of the dataspaces life
cycle is the Human-Computer Interface that is provided to enable the user to
interact with the system (see Table Ml for properties of proposals that provide a
description of their user interface, and Table [l for properties of proposals that
describe the query inputs and outputs). As users have varying backgrounds,

124 C. Hedeler et al.

Table 4. Human-Computer Interfaces provided by existing data integration and
dataspace proposals

Concept Proposal Kind of user Input Optional/ Mandatory
Matchings Roomba [23] domain expert annotate optional
Cimple [I1I29] domain expert provide/ edit/ annotate mandatory/ optional
Mappings DB2 II [17] database expert provide mandatory
iMeMex[I0l4], database expert provide mandatory
iTrails[34]
Q B7 domain expert edit optional
CopyCat [22] domain expert provide/ edit/ annotate mandatory
Ocrorus [7] domain expert edit/ annotate mandatory
Integration SEMEX [12I25] domain expert edit optional
schema
Cimple [II1J29] domain expert provide mandatory
CopyCat [22] domain expert provide/ edit/ annotate mandatory
Ocrorus [7] domain expert edit/ annotate mandatory
Ranked query Q [37] domain expert annotate optional
results

Table 5. Query Interfaces provided by existing data integration and dataspace
proposals

Proposal Query input Query output

DB2 II [17] structured results

Aladin [24] keywords/ structured ranked results
SEMEX [12125] keywords/ structured results/ browse
iMeMex[T0M], iTrails[34] keywords/ structured results/ browse/ provenance
PayGol27] keywords ranked results
UDI[35/T3IT4136] structured ranked results
Roomba [23] keywords/ structured results

Quarry [20] structured results/ browse

Q 37 keyword ranked results

Cimple [11}29] keyword/ structured ranked results/ browse
CopyCat [22] visual query language results/ provenance
Ocrorus [7] keyword results

knowledge and experience, interfaces should be designed for different kinds of
users. For the purpose of the classification framework, we only focus on domain
experts who are familiar with the domain which is described by the information
to be integrated and queried and database experts with a good understanding,
for example, of the source schemas, the integration schema and how they relate
to each other. Throughout the initialisation and improvement phase, users may
want to or may be encouraged to provide information at various stages. The
input provided by users may include providing the concepts in question as input,
editing those suggested by the integration system, or annotating them with qual-
ity measures, for example, by indicating which were expected by the user (true
positives), or which were not expected (false positives). Concepts that users may
provide as input, edit or annotate include matchings, mappings, the integration
schema, query results and ranked query results. Providing the information or
annotation can either be mandatory or optional.

To cater for different kinds of users but also different degrees of integration,
different interfaces for querying the integrated sources as well as viewing and
possibly exploring the results may have to be provided. The query input can be
provided using a visual query language, keywords or structured queries, such as

Dataspaces 125

the select, project and join queries mentioned earlier in the usage phase. The
query output could consist simply of the results or the ranked results, or could in
addition include some provenance information that can be explored by the user
to identify the source of the information returned. In addition, a means may be
provided to browse the results and their associations with other information, for
example by providing links that users can follow.

3 Data Integration Proposals

For the purpose of comparison, this section uses the framework to characterise
and describe a number of dataspaces proposals, and in addition the data integra-
tion facilities of DB2 [I7] as an example of a classical data integration approach.
The proposals were classified according to the dimensions in Section 21 Only
published proposals were chosen for which sufficient implementation detail is
available to enable them to be classified according to the framework presented
in Section

DB2 [I7] follows a database federation approach. It provides uniform access
to heterogeneous data sources through a relational database that acts as media-
tion middleware. The integration schema could be a union schema, or a merged
schema defined by views which need to be written manually. Data sources are
accessed by wrappers, some of which are provided by DB2 and some of which
may have to be written by the user. A wrapper supports full SQL and trans-
lates (sub)queries of relevance to a source so that they are understood by the
external source. Due to the virtual nature of the resulting data resource, changes
in the underlying data sources may be responded to with limited manual effort.
In summary, DB2 relies on largely manual integration, but can provide tight
semantic integration and powerful query facilities in return.

ALADIN [24] supports semi-automatic data integration in the life sciences,
with the aim of easing the addition of new data sources. To achieve this, ALADIN
makes use of assumptions that apply to this domain, i.e., that each database
tends to be centered around one primary concept with additional annotation
of that concept, and that databases tend to be heavily cross-referenced using
fairly stable identifiers. ALADIN uses a union integration schema, and predomi-
nantly instance-based domain-specific approaches, e.g., utilising cross-referencing
to discover relationships between attributes in entities. The resulting links are
comparable to matchings. Duplicates are discovered during materialisation of the
data resource. Links and duplicate information are utilised for exzploratory and
keyword searches and may help life scientists to discover previously unknown re-
lationships. To summarise, ALADIN provides fairly loose integration and mainly
exploratory search facilities that are tailored to the life sciences domain.

SEMEX [12125] integrates personal information. A domain model, which es-
sentially can be seen as a merged integration schema, is provided manually up-
front, but may be extended manually if required. Data sources are accessed
using wrappers, some provided, but some may have to be written manually. The
schemas of the data sources are matched and mapped automatically to the domain

126 C. Hedeler et al.

model, using a bespoke mapping algorithm that utilises heuristics and reuses ex-
perience from previous matching/mapping tasks. As part of the materialisation
of the resulting data resource, duplicate references are reconciled, making use of
domain knowledge, e.g., exploiting knowledge of the components of email ad-
dresses. SEMEX provides support for adding new data sources and changes in
the underlying data, e.g., people moving jobs and changing their email address
or phone number, which require domain knowledge to be resolved, e.g., to re-
alise that it is still the same person despite the change to the contact details.
SEMEX, therefore, can be seen as a domain-specific dataspace proposal that
relies on domain knowledge to match schemas to the given integration schema
and reconcile references automatically.

iMeMeX [I0M] is a proposal for a dataspace that manages personal infor-
mation; in essence, data from different sources such as email or documents are
accessed from a graph data model over which path-based queries can be evalu-
ated. iMeMeX provides low-cost data integration by initially providing a union
integration schema over diverse data resources, and supports incremental refine-
ment through the manual provision of path-based queries known as iTrails [34].
These trail definitions may be associated with a score that indicates the uncer-
tainty of the author that the values returned by an iTrail is correct. As such,
iMeMeX can be seen as a light weight dataspace proposal, in which uniform data
representation allows queries over diverse resources, but without automation to
support tasks such as the management of relationships between sources.

PayGo [27] aims to model web resources. The schemas of all sources are inte-
grated to form a union schema. The source schemas are then matched automat-
ically using a schema matching approach that utilises results from the matching
of large numbers of schemas [26]. Given the similarity of the schemas determined
by matching, the schemas are then clustered. Keyword searches are reformulated
into structured queries, which are compared to the schema clusters to identify
the relevant data sources. The sources are ranked based on the similarity of
their schemas, and the results obtained from the sources are ranked accordingly.
PayGo [27] advocates the improvement of the semantic integration over time by
utilising techniques that automatically suggest relationships or incorporate user
feedback; however, no details are provided as to how this is done. In summary,
PayGo can be seen as a large-scale, multi-domain dataspace proposal that offers
limited integration and provides keyword-based search facilities.

UDI [35IT3I14136] is a dataspace proposal for integration of a large number
of domain independent data sources automatically. In contrast to the proposals
introduced so far, which either start with a manually defined integration schema
or use the union of all source schemas as integration schema, UDI aims to derive
a merged integration schema automatically, consolidating schema and instance
references. As this is a hard task, various simplifying assumptions are made: the
source schemas are limited to relational schemas with a single relation, and for
the purpose of managing uncertainty, the sources are assumed to be indepen-
dent. Source schemas are matched automatically using existing schema match-
ing techniques [32]. Using the result of the matching and information on which

Dataspaces 127

attributes co-occur in the sources, attributes in the source schemas are clustered.
Depending on the scores from the matching algorithms, matchings are deemed
to be certain or uncertain. Using this information, multiple mediated schemas
are constructed, which are later consolidated into a single merged integration
schema that is presented to the user. Mappings between the source schemas
and the mediated schemas are derived from the matchings and have uncertainty
measures associated with them. Query results are ranked based on the scores
associated with the mappings used. In essence, UDI can be seen as a proposal
for automatic bootstrapping of a dataspace, which takes the uncertainty result-
ing from automation into account, but makes simplifying assumptions that may
limit its applicability.

Even though the majority of proposals acknowledge the necessity to improve
a dataspace over time, Roomba [23] is the first proposal that places a significant
emphasis on the improvement phase. It aims to improve the degree of seman-
tic integration by asking users for feedback on matches and mappings between
schemas and instances. It addresses the problem of choosing which matches
should be confirmed by the user, as it is impossible for a user to confirm all
uncertain matches. Matches are chosen based on their utility with respect to a
query workload that is provided in advance. To demonstrate the applicability of
the approach, a generic triple store has been used and instance-based matching
using string similarity is applied to obtain the matches.

Quarry [20] also uses a generic triple store as its resulting data source, into
which the data is materialised. Using a union schema, the data from the data
sources coexists without any semantic integration in the form of matchings
or mappings. So called signature tables, which contain the properties for each
source, are introduced and it is suggested that signature tables with similar prop-
erties could be combined. Quarry provides an API for browsing the integrated
data and for posing select and project queries.

Q [37], the query system of ORCHESTRA [21], a collaborative data sharing
system, covering the three phases intialisation, usage and improvement, uses
a generic graph structure to store the schemas and matches between schema
elements, which are derived semi-automatically and annotated with costs repre-
senting the bias of the system against using the matches. Mappings in the form of
query templates are derived from keyword queries posed by the user and matched
against the schemas and matches. Multiple mappings are ranked by the sum of
the cost associated with the matches utilised for the mapping, and may be edited
and made persistent by the user for further reuse and parameterisation by him
and other users. Tbhe parameterised queries are executed and the results ranked
by the cost associated with the query that produced them and annotated with
provenance information that enables the propagation of user feedback from the
ranked query results to the corresponding mapping. Users may provide feedback
on the results and their ranking, indicating which results should be removed, or
how results should be ranked, which is propagated to the ranking of the produc-
ing mappings and the costs of the matchings utilised. The feedback is used to

128 C. Hedeler et al.

adjust the costs of the matchings and thus the ranking of the mappings used to
answer the query in an attempt to try and learn the model the user has in mind.

Community Information Management systems, such as Cimple [TTJ29] aim to
reduce the up-front cost of data integration by leveraging user feedback from the
community. An integration schema is provided manually, sources matched in a
semi-automatic manner in which an automatic tool is used as a starting point
and users are asked to answer questions, thus confirming or rejecting matches
suggested by the automatic tool. The uncertainty associated with the matches
is propagated through to the query results, which are annotated with scores and
ranked. As Cimple applies a mass collaboration approach and aims to reduce
the uncertainty by gathering feedback from users, it is aware of trustworthy and
untrustworthy users providing feedback, something not taken into account by
other proposals that gather user feedback. It handles feedback by the different
classes of users by ignoring feedback from untrustworthy users and taking a
majority vote on the feedback from trustworthy users to identify correct matches.

CopyCat [22] follows a more interactive approach to data integration, combin-
ing the integration-, usage- and improvement phases by providing a spreadsheet-
like workspace in which users copy and paste examples of the data they would
like to integrate to answer the queries they have. The user copies data instances
from various sources into the spreadsheet, thus specifying the integration schema
and mappings initially manually. The system then tries to learn the schemas of
the sources and the semantic types of the data from those examples and uses the
learned information to identify matches between sources and to suggest mappings
that reproduce the example tuples provided by the user or that integrate further
data, thus making it a semi-automatic integration process. Users can provide
feedback on those suggestions by either ignoring, accepting, editing , or providing
alternatives. To ease the decision process for the user, provenance information
is provided with the suggested data to be integrated. The user feedback is prop-
agated back through the mappings to the matchings and their scores adjusted
accordingly to reflect the user preference which in turn affects the scores and,
therefore, the rankings of the mappings.

Similar to CopyCat, OcToPUS [1] provides the means for integrating multiple
sources on the web interactively by providing several operations that can be
utilised to create an integrated data source. Using the SEARCH operator, the
user states a keyword query, for which the system tries to find sources which
are ranked according to their relevance with respect to the query. If multiple
data sources are required to gather the required information, users can use the
EXTEND operator, providing a column of a table with which to join the new
table and a keyword stating the information desired. With that information
the system tries to find appropriate source tables which are ranked according
to their relevance with respect to the query and their compatibility with the
column provided as input. Throughout the whole integration process, users can
provide feedback by editing or annotating in form or rejecting or accepting the
suggested source tables.

Dataspaces 129

Both, CopyCat and OcTOPUS do not distinguish between the various phases
of the dataspace lifecycle, e.g., initialisation, usage, and improvement. Instead,
they promote a seamless combination of initialisation, usage and improvement
of the dataspace, albeit with a fair amount of user input required.

4 The Interplay between Dataspaces and Search Tasks

In this section, we investigate the interplay between dataspaces and search tasks.
In particular, we show how features that are peculiar to search tasks can be
borrowed and adapted in a dataspace context and vice-versa, and pinpoint open
issues that arise as a result.

4.1 Performing Search Tasks in Dataspaces

One of the defining features of search tasks is that the sources return streams
of ranked results. We refer to sources of this kind using the term search sources.
Although one could imagine dataspaces queries that involve search sources, the
classification and survey presented earlier in this chapter show that existing
dataspace proposals do not support them. This raises the question as to how a
dataspace system can be adapted to support queries over search sources. In what
follows, we discuss issues that have to do with the initialisation and improvement
phases of dataspaces when user queries are answered using search sources.

Usage. To support search sources, the query processor of the dataspace system
needs to be able to produce results by combining streams of sub-results produced
by multiple search sources. Furthermore, the results obtained need to be ranked
in the light of the rankings of the sub-results produced by the search sources. In
this respect, techniques from the search computing field can be borrowed and
adapted for combining and ranking dataspace query results.

Improvement. To perform a search task, the dataspace system needs mappings
from the integration schema, which is used by the user to pose queries, to the
schemas of search sources. In doing so, the system needs to identify the search
sources of relevance to users’ queries. The identification of search sources can be
performed in incremental manner by seeking feedback from users, e.g., the user
can specify whether a result that is obtained from given search sources meets
the expectations.

4.2 Using Dataspaces for Mult-domain Search Tasks

Multi-domain search tasks involve retrieving and combining the results obtained
from multiple search sources. In what follows, we discuss issues that arise in
the context of multi-domain searches, and shows how they can be addressed by
adopting the pay-as-you-go philosophy adopted in dataspaces.

130 C. Hedeler et al.

Query FExpression. In a dataspace, the schemas of local data sources are initially
integrated using low cost techniques, in particular, schema matching and schema
merging algorithms are used for mappings the sources schemas and creating the
integration schema (see the integration schema dimensions). The system is then
improved in the light of feedback provided by the user in an incremental manner.
One could envisage adopting a similar approach for easing the specification of
multi-domain searches. In particular, the specification of the connections between
the search services involved can be automatically derived using, e.g., matching
techniques. Because those connections are derived based on heuristics, they may
not meet the designer’s expectations, which gives rise to the following research
issue: How can the connections suggested by inference tools to link search sources
be verified?

Another issue that arises in search tasks is the specification of queries that
capture user’s expectations. In dataspaces, the user can pose a structured query,
e.g., using SQL, or specify a collection of keywords from which the dataspace
system attempts to construct/learn a structured query using as input the source
schemas and the mappings that connect the elements of these schemas [28/38]
(see the query type dimension). Can a similar approach be adopted for specify-
ing queries in the context of search tasks? One could envisage the case in which
the user specifies a form that captures the elements of the search results the
user is after. Using such a form, the system then attempts to construct a query
by identifying the sources that provide the elements specified by the user, and
connects the schemas of the sources selected using previously specified schema
mappings. Of relevance to this problem is the proposal by Blunschi et al. [,
which considers indexing support for queries that combine keywords and struc-
ture and proposes several extensions to inverted lists to capture structure when
it is present. In particular, it takes into account attribute labels, relationships be-
tween data items, hierarchies of schema elements, and synonyms among schema
elements. We can also foresee the application of techniques taken from differ-
ent areas in which the problem of search in semistructured or non structured
data was already addressed [RITJGITH]. In general, multiple structured queries are
constructed from a set of keywords. The issue that needs to be addressed is,
therefore, to identify the queries that closely meet user expectations.

Usage and Improvement. The results returned by each of the sources involved
in a multi-domain search task are uncertain; this uncertainty is partly due to
the fact that such results are generally obtained by matching a request with
the content of the source in question using heuristics. The difficulty then lies in
specifying a function whereby the results obtained by combining the sub-results
retrieved from the sources involved in the search task can be ranked; this is a
ranking composition problem [5]. Currently, ranking composition functions are
typically manually specified, a task that can be difficult since it involves defining
the global ranking of the query results taking into consideration the (possibly
different) ranking criteria adopted by the underlying search sources.

A possible solution to the above issue can be borrowed from dataspaces
through pay-as-you-go development of ranking composition. The results returned

Dataspaces 131

by evaluating a user query in dataspaces are also uncertain; this uncertainty is
partly due to the fact that the mappings used for populating the elements of
the integration schema (against which the user queries are posed) are derived
based on the results of matching heuristics [33] (see mappings identification di-
mensions). These mappings may not be manually debugged, but rather may
be verified by seeking feedback from end users (see improvement dimensions).
A similar approach can be adopted for specifying ranking composition in the
context of multi-domain search tasks. For example, the user can specify that a
given result should appear before another one. Using this kind of feedback, the
system can then learn the ranking desired by the user. Which mechanism to use
for leaning the correct ranking is an open issue. Existing ranking methods and
algorithms in the information retrieval literature are potentially relevant for this
purpose [9].

5 Conclusions

Dataspaces represent a vision for incremental refinement in data integration, in
which the effort devoted to refining a dataspace can be balanced against the cost
of obtaining higher quality integration. Comprehensive support for pay-as-you-
go data integration might be expected to support different forms of refinement,
where both the type and quantity of feedback sought are matched to the specific
requirements of an application, user community or individual. Early proposals,
however, provide rather limited exploration of the space of possibilities for in-
cremental improvement. As the large number of dimensions in the classification
shows, the decision space facing the designers of dataspaces has many aspects.
In this context, a common emphasis has been on reducing start-up costs, for
example by supporting a union integration schema; such an approach provides
syntactic consistency, but the extent to which the resulting dataspace can be
said to “integrate” the participating sources is somewhat limited.

Although there is a considerable body of work outside dataspaces to sup-
port activities such as schema matching or merging, early dataspace proposals
have made fairly limited use of such techniques. Furthermore, there are no com-
parable results on automated refinement. As such, there is some way top go
before the full range of dimensions associated with dataspaces are associated
with substantive results, and even where this is the case there will be consider-
able challenges composing these results to provide dataspace deployments that
meet diverse user requirements. However, dataspaces provide an overall vision
that promises to enable the wider application of information integration tech-
niques, by balancing the costs of integration activities with their benefits. The
challenge of providing appropriate data integration at manageable cost seems
to be of widespread relevance in widely different contexts, including personal,
group, enterprise and web scale settings, acting over sources that provide com-
putational services, structured data access and search. This chapter has sought
to characterise the area, with a view to comparing the contributions to date,
identifying topics for further investigation, and clarifying the space of issues of
relevance to pay-as-you-go integration.

132 C. Hedeler et al.

With respect to the interplay between search computing and dataspaces, we
note that techniques from search computing can be borrowed to address issues
that arise within dataspaces, and vice versa. In particular, search computing
techniques can be used in dataspaces when queries need to be evaluated using
search sources. On the other hand, the pay-as-you-go dataspace philosophy can
be used in search computing for incrementally defining ranking functions based
on feedback supplied by end users.

References

1. Amer-Yahia, S., Botev, C., Shanmugasundaram, J.: Texquery: a full-text search
extension to xquery. In: WWW 2004: Proceedings of the 13th international con-
ference on World Wide Web, pp. 583-594. ACM, New York (2004)

2. Atzeni, P., Cappellari, P., Torlone, R., Bernstein, P.A., Gianforme, G.: Model-
independent schema translation. VLDB J. 17(6), 1347-1370 (2008)

3. Belhajjame, K., Paton, N.W., Embury, S.M., Fernandes, A.A., Hedeler, C.:
Feedback-based annotation, selection and refinement of schema mappings for datas-
paces. In: EDBT (2010)

4. Blunschi, L., Dittrich, J.-P., Girard, O.R., Karakashian, S.K., Salles, M.A.V.: A
dataspace odyssey: The imemex personal dataspace management system (demo).
In: CIDR, pp. 114-119 (2007)

5. Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Optimization of multi-domain
queries on the web. PVLDB 1(1), 562-573 (2008)

6. Cafarella, M.J., Etzioni, O.: A search engine for natural language applications.
In: WWW 2005: Proceedings of the 14th international conference on World Wide
Web, pp. 442-452. ACM, New York (2005)

7. Cafarella, M.J., Halevy, A.Y., Khoussainova, N.: Data integration for the relational
web. PVLDB 2(1), 1090-1101 (2009)

8. Chakrabarti, S., Puniyani, K., Das, S.: Optimizing scoring functions and indexes
for proximity search in type-annotated corpora. In: WWW 2006: Proceedings of
the 15th international conference on World Wide Web, pp. 717-726. ACM, New
York (2006)

9. Chaudhuri, S., Das, G., Hristidis, V., Weikum, G.: Probabilistic information re-
trieval approach for ranking of database query results. ACM Trans. Database
Syst. 31(3), 1134-1168 (2006)

10. Dittrich, J.-P.; Salles, M.A.V.: idm: A unified and versatile data model for personal
dataspace management. In: VLDB 2006: 32nd International Conference on Very
Large Data Bases, pp. 367-378. ACM, New York (2006)

11. Doan, A., Ramakrishnan, R., Chen, F., DeRose, P., Lee, Y., McCann, R., Sayya-
dian, M., Shen, W.: Community information management. IEEE Data Eng.
Bull. 29(1), 64-72 (2006)

12. Dong, X., Halevy, A.Y.: A platform for personal information management and
integration. In: CIDR 2005, pp. 119-130 (2005)

13. Dong, X., Halevy, A.Y., Yu, C.: Data integration with uncertainty. In: VLDB 2007:
33rd International Conference on Very Large Data Bases, pp. 687-698 (2007)

14. Dong, X.L., Halevy, A.Y., Yu, C.: Data integration with uncertainty. VLDB
J. 18(2), 469-500 (2009)

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Dataspaces 133

Florescu, D., Kossmann, D., Manolescu, I.: Integrating keyword search into xml
query processing. In: Proceedings of the 9th international World Wide Web con-
ference on Computer networks: the international journal of computer and telecom-
munications netowrking, pp. 119-135. North-Holland Publishing Co., Amsterdam
(2000)

Franklin, M., Halevy, A., Maier, D.: From databases to dataspaces: a new abstrac-
tion for information management. SIGMOD Record 34(4), 27-33 (2005)

Haas, L., Lin, E., Roth, M.: Data integration through database federation. IBM
Systems Journal 41(4), 578-596 (2002)

Halevy, A., Franklin, M., Maier, D.: Principles of dataspace systems. In: PODS
2006: Proceedings of the twenty-fiftth ACM SIGMOD-SIGACT-SIGART sympo-
sium on Principles of database systems, pp. 1-9. ACM, New York (2006)
Hedeler, C., Belhajjame, K., Fernandes, A.A.A., Embury, S.M., Paton, N.W.:
Dimensions of dataspaces. In: Sexton, A.P. (ed.) BNCOD 2009. LNCS, vol. 5588,
pp. 55-66. Springer, Heidelberg (2009)

Howe, B., Maier, D., Rayner, N., Rucker, J.: Quarrying dataspaces: Schemaless
profiling of unfamiliar information sources. In: ICDE Workshops, pp. 270-277.
IEEE Computer Society, Los Alamitos (2008)

Ives, Z.G., Green, T.J., Karvounarakis, G., Taylor, N.E., Tannen, V., Talukdar,
P.P., Jacob, M., Pereira, F.: The orchestra collaborative data sharing system. SIG-
MOD Record 37(3), 26-32 (2008)

Ives, Z.G., Knoblock, C.A., Minton, S., Jacob, M., Talukdar, P.P., Tuchinda, R.,
Ambite, J.L., Muslea, M., Gazen, C.: Interactive data integration through smart
copy & paste. In: CIDR (2009)

Jeffery, S.R., Franklin, M.J., Halevy, A.Y.: Pay-as-you-go user feedback for datas-
pace systems. In: SIGMOD 2008: Proceedings of the 2008 ACM SIGMOD inter-
national conference on Management of data, pp. 847-860. ACM, New York (2008)
Leser, U., Naumann, F.: (almost) hands-off information integration for the life
sciences. In: Conf. on Innovative Database Research (CIDR), pp. 131-143 (2005)
Llu, J., Dong, X., Halevy, A.: Answering structured queries on unstructured data.
In: WebDB 2006, pp. 25-30 (2006)

Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.: Corpus-based schema match-
ing. In: International Conference on Data Engineering (ICDE 2005), pp. 57-68
(2005)

Madhavan, J., Cohen, S., Dong, X.L., Halevy, A.Y., Jeffery, S.R., Ko, D., Yu, C.:
Web-scale data integration: You can afford to pay as you go. In: CIDR 2007: Third
Biennial Conference on Innovative Data Systems Research, pp. 342-350 (2007)
Madhavan, J., Cohen, S., Dong, X.L., Halevy, A.Y., Jeffery, S.R., Ko, D., Yu, C.:
Web-scale data integration: You can afford to pay as you go. In: CIDR, pp. 342-350
(2007)

McCann, R., Shen, W., Doan, A.: Matching schemas in online communities: A web
2.0 approach. In: ICDE, pp. 110-119 (2008)

Miller, R.J., Hernandez, M.A., Haas, L.M., Yan, L., Ho, C.T.H., Fagin, R., Popa,
L.: The clio project: managing heterogeneity. SIGMOD Record 30(1), 78-83 (2001)
Pottinger, R., Bernstein, P.A.: Schema merging and mapping creation for relational
sources. In: EDBT, pp. 73-84 (2008)

Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB Journal: Very Large Data Bases 10(4), 334-350 (2001)

Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334-350 (2001)

134

34.

35.

36.

37.

38.

C. Hedeler et al.

Salles, M.A.V., Dittrich, J.-P., Karakashian, S.K., Girard, O.R., Blunschi, L.:
itrails: Pay-as-you-go information integration in dataspaces. In: VLDB 2007: 33rd
International Conference on Very Large Data Bases, pp. 663—674. ACM, New York
(2007)

Sarma, A.D., Dong, X., Halevy, A.: Bootstrapping pay-as-you-go data integration
systems. In: SIGMOD 2008: Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pp. 861-874. ACM, New York (2008)

Sarma, A.D., Dong, X.L., Halevy, A.Y.: Data modeling in dataspace support plat-
forms. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual
Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 122-138. Springer,
Heidelberg (2009)

Talukdar, P.P.; Jacob, M., Mehmood, M.S., Crammer, K., Ives, Z.G., Pereira, F.,
Guha, S.: Learning to create data-integrating queries. PVLDB 1(1), 785-796 (2008)
Tatemura, J., Chen, S., Liao, F., Po, O., Candan, K.S., Agrawal, D.: Ugbe: un-
certain query by example for web service mashup. In: SIGMOD Conference, pp.
1275-1280 (2008)

	Chapter 7: Dataspaces
	Introduction
	The Classification Framework
	Initialisation Phase
	Usage Phase: Search/Query and Their Evaluation
	Maintenance and Improvement Phase
	Uncertainty
	Human-Computer Interface

	Data Integration Proposals
	The Interplay between Dataspaces and Search Tasks
	Performing Search Tasks in Dataspaces
	Using Dataspaces for Mult-domain Search Tasks

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

