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Abstract

Theoretical and empirical work has shown that once reduced in size and geographical

range, species face a considerably elevated risk of extinction. We predict minimum viable

population sizes (MVP) for 1198 species based on long-term time-series data and model-

averaged population dynamics simulations. The median MVP estimate was 1377

individuals (90% probability of persistence over 100 years) but the overall distribution

was wide and strongly positively skewed. Factors commonly cited as correlating with

extinction risk failed to predict MVP but were able to predict successfully the probability

of World Conservation Union Listing. MVPs were most strongly related to local

environmental variation rather than a species� intrinsic ecological and life history

attributes. Further, the large variation in MVP across species is unrelated to (or at least

dwarfed by) the anthropogenic threats that drive the global biodiversity crisis by causing

once-abundant species to decline.
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I N TRODUCT ION

With the emergence of conservation biology as a distinct

discipline in the late 1970s came a need to characterize

quantitatively the long-term viability of small populations at

risk of imminent extinction (Soulé & Wilcox 1980). It was

recognized that given the limited resources available for

biodiversity management (especially in developing coun-

tries) and the ever-increasing conflict between humans and

wildlife, the efficient application of extinction theory for

applied conservation was (and still is) desperately required

(Shaffer 1981; Gilpin & Soulé 1986). Theoretical and

empirical work has repeatedly shown that once reduced in

size and geographical range, populations face a considerably

elevated risk of extinction (MacArthur & Wilson 1967;

Terborgh & Winter 1980), and a scientific expression of this

phenomenon is the concept of the �minimum viable

population� (MVP). An MVP is defined as the number of

individuals required to have a specified probability of

persistence over a given period of time (Shaffer 1981; Gilpin

& Soulé 1986; Nunney & Campbell 1993). Theoretical

expectations for MVP vary from 50 to 10 000 individuals

based on the postulated effects of demographical, genetical

and environmental variation (Reed et al. 2003), with the

limited available empirical evidence pointing to the upper

end of this range (Newmark 1987; Berger 1990; Thomas

1990; Harcourt 2002). However, present estimates of MVP

are at best highly uncertain, difficult to generalize, and give

little idea of the variance observed among taxa (Shaffer

1987; Reed et al. 2003).

Over the past few decades, conservation biologists have

regularly used models to estimate MVPs for imperiled

species, often at considerable expense and with substantial

data requirements (Boyce 1992; Nunney & Campbell 1993;

Reed et al. 2003), despite the MVP concept falling out of

favour with some authors (e.g. Reed et al. 2002). Procedures

such as gap analysis, reserve selection algorithms and some

of the World Conservation Union’s (IUCN) Red List criteria

are also underpinned by the notion that species with small

and range-restricted populations are particularly extinction

prone (Prendergast et al. 1999; Brook et al. 2002). For

example, IUCN Criterion D rates the level of threat faced by

a species based on a set of threshold absolute population

sizes, whilst Criterion E concerns the projected risk of
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extinction faced by a species over specified time periods

(IUCN 2005). That said, the defining feature of MVP is that

the risk of extinction is fixed, and the question of how large

a population must be to avoid this risk is asked. In contrast,

population viability analysis and the threat categories of

IUCN (endangered, vulnerable, lower risk, etc.) provide an

assessment of a species� probability of extinction given its

current population size and structure and the totality of

threatening processes it faces.

Political, administrative and management decisions

made for threatened species are frequently performed so

without the benefit of complete information and are often

subject to severe budgetary constraints, underscoring the

need to develop robust generalizations (Belovsky et al.

2004) for MVP. Moreover, it is reasonable to expect that

MVPs should be correlated with basic life history traits or

other ecological attributes (see Composite predictors),

given that other measures of a species� resilience (e.g.

IUCN Red Listing, the taxonomic distribution of local

extinctions following a disturbance, extinctions in geolo-

gical time) are indeed amenable to such generalizations

(McKinney 1997; Purvis et al. 2000a,b; Blackburn &

Duncan 2001; Kotiaho et al. 2005). Alternatively, if the

fate of small populations is largely independent of the

processes that ultimately caused species to become

endangered, seeking a broad-scale correlative framework

for MVP may be quixotic.

Here, we use a set of high-quality, long-term population

abundance time-series data to estimate MVPs for 1198 species

spanning a wide range of taxa, habitats and life histories. We

then address the question of whether there are common

processes explaining the observed distribution of MVPs, and

whether surrogate predictors can be used to infer MVPs when

detailed demographical or time-series data are unreliable or

unavailable. We report a striking lack of predictability in MVP,

with essentially no association to ecology, life history or

human threat. This absence of any clear pattern is in stark

contrast to strong relationships between global risk of decline

(as assigned by the IUCN) and these same ecological and life-

history attributes. This important (albeit negative) result

reinforces the spatial disconnection between the type of

conservation intervention required to manage the local risks

faced by small imperiled populations and the approaches

needed to arrest global declines (which can be underpinned by

some useful generalizations).

METHODS

Time-series data

Population dynamics time-series data were obtained pri-

marily from the Global Population Dynamics Database

(GPDD), which provides time-series data for nearly 5000

populations spanning over 1400 species. Other sources

obtained from peer-reviewed and grey literature (including

online material) were used where the data were either of

superior quality to, or were unavailable from the GPDD.

Unlike previous applications of GPDD data, we developed a

strict and extremely comprehensive set of filtering criteria to

remove the many ambiguities and inconsistencies therein

(details in Appendix S1). This produced a reduced and

coherent database suitable for cross-species meta-analysis.

Key issues requiring resolution included biases due to over-

representation of some species (multiple time series),

composite (multiple species) data, taxonomically unresolved

units, uneven sampling frequencies, different durations,

missing values, quality and method of representation (e.g.

direct censuses vs. indirect harvest indices) and different

data transformations. Our objective standardization proto-

col resulted in a single time series for each species that

ensured a minimum quality and adequate duration (> 8

observed time-step transitions) for reliable model fitting

(Morris & Doak 2002). The final dataset of 1198 species

(629 invertebrates, 529 vertebrates, 30 plants) had a mean

duration of 22 year-to-year transitions, mean rate of

population increase (r) ¼ 0.005 (r2
r ¼ 0.733), and a co-

efficient of variation in population size ¼ 0.610 (see

Table S1).

Population models

Previous model-based estimates of MVP have generally

ignored model-selection uncertainty and chosen a single

�best� model (which is often arbitrary and overly complex

given the available data), although it is widely acknowledged

that there is no single population dynamical framework that

can be applied to all taxa (Turchin 2003). We adopted a

multiple-working hypotheses approach based on informa-

tion-theoretic model selection and multimodel inference

(Burnham & Anderson 2002) and used an a priori model-

building strategy to arrive at a set of five population

dynamics models commonly used to describe phenomen-

ological time-series abundance data (Sæther et al. 2002;

Turchin 2003; Fryxell et al. 2005). These encompassed

directional and non-directional density-independent growth

and different forms of density regulation based on variants

of the generalized h-logistic population growth model:

log
Ntþ1

Nt

� �
¼ r ¼ rm 1 � Nt

Na

� �h
" #

þ et

where Nt, population size at time t; r, realized population

growth rate; rm, intrinsic population growth rate; Na, the

population size when r ¼ 0 and h (when fitted) permits a

nonlinear relationship between rate of increase and abun-

dance. The term et has a mean of zero and a variance (r2)
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that reflects environmental variability in r. Model variants

used were (i) random walk (RW; rm ¼ 0, r); (ii) exponential

(EX) growth (rm, h ¼ )¥,r); (iii) Ricker-logistic (RL) growth

(rm, Na, h ¼ 1, r); (iv) Gompertz-logistic (GL) growth

(rm, loge[Na], h ¼ 1, r, fitted to loge[Nt]); and (v) h-logistic

(TL) growth (rm, Na, h, r). For each species, we used

maximum-likelihood estimation to fit model parameters (via

linear regression for RW, EX, RL and GL, and nonlinear

regression using Newton optimization for TL) and

Kullback–Leibler information to assign relative strengths of

evidence (AICc weights) to each model (Burnham &

Anderson 2002). For each fitted model, we used a numerical

simulation optimization routine (> 100 000 iterations per

species) to estimate two MVPs by varying initial size until

the species had (i) 0.99 probability of persisting 40 genera-

tions (GMVP) and (ii) 0.90 probability of persisting

100 years (YMVP). GMVP was preferred because appar-

ently contrasting demographics among large- and small-

bodied taxa may become negligible when scaled by

generation length (Sinclair 1996; Frankham & Brook 2004).

Composite predictors

To determine whether there are common processes

influencing a species� MVP and if surrogate predictors of

�extinction risk� can be used to estimate MVP when

detailed demographical or time-series data are unavailable,

we undertook an extensive review of the available literature

to determine which ecological and anthropogenical varia-

bles have been shown or postulated to increase a species�
vulnerability to extinction (e.g. Gilpin & Soulé 1986;

WCMC 1992; McKinney 1997; Purvis et al. 2000a,b;

Blackburn & Duncan 2001; IUCN 2005; Kotiaho et al.

2005). We compiled nineteen variables encompassing

morphological, life-history, ecological and behavioural

attributes and measures of human impact that have been

cited in the literature, and then reduced this number of

predictors based on theory and logic to six derived

(composite) predictors: (i) Threat Index (TI) – a binary

index indicating whether a population or species was

considered to be of conservation concern, (ii) Geographic

Range (RA) – distribution of the species expressed as a

continuous variable (0–1) derived from five categories

(global, single phytogeographical or oceanic region, single

biome, narrow endemic < 500 km2, very narrow endemic

< 50 km2), (iii) Human Impact (HI) – a measure encap-

sulating the extent of range or habitat loss, and the severity

of direct (culling, etc.) or indirect population suppression

(e.g. pollution, competition with weeds), (iv) Body Size

(BS) – an allometric scaling covariate, (v) Ecological

Flexibility (EF) – a logical composite of dispersal ability,

trophic level and the extent of ecological specialization,

and (vi) Demographics (DE) – encapsulating the repro-

ductive life history of species (i.e. age at sexual maturity,

fertility, reproductive strategy and longevity). The logic and

justification, derivation and associated assumptions for

these correlates are described fully in Appendix S1 and

Tables S2 and S3 – space constraints prohibit the

presentation of this detailed information in the printed

paper.

One might argue that variables predicted a priori to

explain variation in extinction risk might not be expected to

correlate with MVP, given the latter does not encapsulate

the risks imposed by deterministic drivers. This is because

the calculation of MVPs requires setting an acceptable level

of risk and using knowledge of the population’s intrinsic

dynamics and stochastic influences to calculate an extinction

–�proof� population size in the absence of deterministic

pressures. Although our composite predictors do indeed

recapitulate deterministic stressors, they also describe

drivers of intrinsic population dynamics and stochastic

processes. Threat Index and Human Impact reflect strong

deterministic impacts, but also indicate the potential for

increasing environmental variation via such processes as

habitat fragmentation (Fahrig 2001; IUCN 2005). Wide-

ranging species may be buffered against environmental

fluctuations (Purvis et al. 2000a) because (for instance) only

certain subpopulations would succumb to localized catas-

trophes (e.g. fire, severe weather). Body Size is strong

predictor of intrinsic dynamics such as density-dependent

regulation and maximum rates of population growth

(McKinney 1997), whilst Demographics describes variation

in life-history strategies that evolve to suit particular

environmental circumstances (Frankham & Brook 2004).

Finally, Ecological Flexibility should indicate how sensitive a

species will be to stochastic events influencing demo-

graphic rates such as survival and fecundity (Gilpin & Soulé

1986).

Statistical analyses

To examine the relative importance of each derived ecological

variable to predict MVP, we used a form of model averaging

based on all-subsets selection of generalized linear mixed-

effects models (GLMM). All GLMMs were fitted to log

model-averaged MVPs using a quasi-Poisson error distribu-

tion with an identity link function in the R statistical package

v2.0.1 (Ihaka & Gentleman 1996). The random effects error

structure of GLMM corrects for non-independence of

statistical units (species) due to shared evolutionary history

(Felsenstein 1985), and permits the �random effects� variance

explained at different levels of hierarchical clustering (Class/

Order/Family) to be decomposed (Blackburn & Duncan

2001). The six derived predictor variables were modelled as

�fixed effects�. Interactions terms were not included because

our possible model set was already large and the rational
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interpretation of interaction trade-offs for composite predic-

tors is problematical.

In addition to the combined species model using all

correlates, we undertook separate analyses to evaluate the

sensitivity of our results to taxonomic representation, size

of MVP estimates, extent of geographical range and length

of monitoring (reported in Results) and treatment of

incomplete data or uncertain risk classifications for the TI

correlate (reported in the online Appendix S1). We also

considered an alternative �mixed� definition for MVP as a

0.90 probability of persisting the longer of 100 years or 40

generations, but in this instance only fitted the global

(saturated) correlates model.

To provide an independent check of the biological value

of the derived ecological predictors with respect to a

measure of extinction proneness, we also constructed

analogous models using the IUCN Red Listing (IUCN

2005) for the vertebrates (none of the invertebrates in our

database were on the IUCN Red List). These models were

fitted (after removing TI as a predictor) using a binomial

error distribution and logit link function. Of the 529

vertebrates, 70 were Red Listed (anything other than Least

Concern, excluding Data Deficient and Not Evaluated).

In the case of a large number of closely related models,

the designation of any single best model is inappropriate

because selection varies from dataset to dataset even if they

are generated by the same underlying processes. Instead,

inference based on all possible models eliminates model-

selection bias and provides a balanced, relative measure of

each predictor’s importance. In the case of six predictors,

there are 26 ¼ 64 possible models in an all-subsets selection

(25 ¼ 32 models using IUCN listing as the response), which

is a considerable improvement over the 219 ¼ 524 288

possible models based on the original correlates postulated

prior to derivation of the six a priori composite predictors.

Model averaging was based on Akaike’s Information

Criterion corrected for small samples (AICc). The weights

of evidence (w+i) for each predictor were calculated by

summing the model AICc weights (wi) over all models in

which each term appeared. However, the w+i values are

relative, not absolute because they will be > 0 even if the

predictor has no contextual explanatory importance

(Burnham & Anderson 2002). To judge which predictors

are relevant to the data at hand, a baseline for comparing

relative w+i across predictors is required. We randomized

the data for each predictor separately within the dataset,

re-calculated w+i, and repeated this procedure 100 times for

each predictor. The median of this new randomized w+i

distribution for each predictor was taken as the baseline

(null) value (w+0). For each term the absolute weight of

evidence (Dw+) was obtained by subtracting w+0 from w+i.

Predictors with Dw+ of zero or less have essentially no

explanatory power.

RESUL T S AND D I SCUSS ION

Minimum viable population size estimates

The generational MVPs (median estimates across 1198

species) were similar for the three density-dependent models

(GMVPRL ¼ 376, GMVPGL ¼ 431, GMVPTL ¼ 484),

whereas the density-independent model estimates were

nearly two orders of magnitude larger (GMVPRW ¼
37 304, GMVPEX ¼ 23 315, Fig. 1 – dashed lines). The

MVPs estimated on a yearly time scale demonstrated similar

trends (YMVPRL ¼ 335, YMVPGL ¼ 372, YMVPTL ¼ 391,

YMVPRW ¼ 250 216, YMVPEX ¼ 98 997, Fig. 1 – solid

lines). For all species combined, the relative strength of

evidence (standardized average AICc weight) for each of the

five models was 0.226 (RW), 0.078 (EX), 0.230 (RL), 0.385

(GL) and 0.080 (TL). The most-probable reason for the

difference in estimated MVP across different models is that

density-dependent variants encapsulate population dynamics

constrained to fluctuate around an equilibrium N. Thus,

density-dependent models provide greater long-term stabil-

ity than the density-independent models, which lack

endogenous control and are hence more prone to the vagaries

of environmentally induced fluctuations (Turchin 2003).

The trends in MVP and model weights were consistent

across all major taxonomic groups. For each species, the

MVP predicted by a given model was multiplied by its AICc

weight for that species� time series. A model-averaged

estimate of MVP for each species was calculated by sum-

ming these products across all five models (Fig. 1 – bottom

right panel).

Of the 529 vertebrate species� time series, 83 repre-

sented relatively high-precision, direct-count data and the

remainder were based on indirect indices of abundance

(e.g. catch per unit effort). To test the impact on MVP of

potential observation or measurement errors in estimating

abundance, we re-calculated the geometric mean model-

averaged GMVP for the direct- vs. indirect-count

categories. The 83 direct-count species resulted in a

median GMVP of 933 (633–2724; 95% bootstrapped

confidence intervals based on 10 000 iterations), and for

the remaining species, median GMVP ¼ 2943 (2149–

4077, 95% CI). We also evaluated the sensitivity of our

results to the 207 species� time series (covering all taxa),

which contained at least one non-terminal observation of

zero abundance (see Appendix S1 for details). Zeros may

indicate low detectability of individuals and hence a

higher observation error in the population index. For the

time series with zero abundance counts, GMVP was 5310

(3030–8017, 95% CI) compared with just 938 (774–1095,

95% CI) for the remaining 991 species, although the fit

of the correlates model (see Correlates of MVP) was poor

in both instances. On the basis of these two sensitivity

analyses, we conclude that measurement or observation
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error inflates apparent variation in population dynamics

and hence causes MVP to be overestimated (i.e. providing

a more-precautionary estimate of minimum viable popu-

lation sizes).

Correlates of MVP

The set of composite predictors of extinction risk failed to

explain the cross-species differences we observed in MVP.

The GLMM using GMVP and YMVP as response variables

explained an extremely small component of the variation (%

deviance explained, %DE) in the data (%DE[GMVP] ¼
0.24%, %DE[YMVP] ¼ 2.1%). When all six derived

predictors were fitted to each of the five model predictions

independently, the highest %DE[GMVP] was for the RW

model (1.78%), and the EX model for %DE[YMVP]

(7.1%). Thus the model-averaging procedure reduced

overall deviance explained (because it accounted explicitly

for model-selection uncertainty), but not substantially so.

Length of monitoring data can affect population dynamics

predictions (Fieberg & Ellner 2000) and indeed influenced

the fit of the saturated model – the deviance explained for

time series of < 15 transitions (n ¼ 242) was 1.1%,

compared with 9.4% for a the fit to time series of > 40

transitions (n ¼ 103). However, the difference in the

geometric mean model-averaged GMVP was particularly

striking: for the short time series, it was 11 860 (7260–

23 039, 95% CI) vs. 1108 (631–2706, 95% CI) for the long

time series. The median strength of evidence (AICc weight,

range 0–1) for the density-dependent models was 0.424 and

0.924 for the short- and long-time series respectively.

This difference in support for endogenous regulation is the

Figure 1 Frequency distribution of log

minimum viable population (MVP) sizes

for five population dynamics models

across 1198 species. MVP estimates were

based on two different persistence criteria:

(i) population size resulting in a > 99%

probability of persistence over 40 genera-

tions (dashed line) and (ii) > 90% prob-

ability of persistence over 100 years (solid

line). Random walk and exponential mod-

els are density-independent, whereas the

Ricker-, Gompertz- and h-logistic are

density-dependent. The model-averaged

loge MVP distribution (based on AICc

weights of the five listed models) is also

shown. Median values for each model

under MVP criterion (i) are indicated with

a vertical dotted line.

MVP is unrelated to global extinction risk 379

� 2006 Blackwell Publishing Ltd/CNRS



most-likely driver of the lower predicted MVPs for the long

time series group.

For all species combined, body size was the only

important predictor of YMVP, but its importance was

reduced for GMVP (Fig. 2a). Figure 2b hints of an

allometric scaling of MVP for the vertebrates, but body

size was irrelevant for the invertebrates (Fig. 2c). Detect-

ing an �important� predictor here, even with low %DE,

reflects in part the statistical power of the large dataset.

Examining the results for vertebrates (Fig. 2b) and

invertebrates (Fig. 2c) separately, the body-size effect

disappears for GMVP, suggesting the large average

difference in body size between these two phyla drives

the relationship observed for all species combined.

Ecological flexibility demonstrated some importance for

invertebrates (Fig. 2c). Fitting the saturated model to

specific taxa did not greatly improve the %DE[GMVP]:

2.1% for birds (n ¼ 225), 8.9% for mammals (n ¼ 152),

1.0% for fish (n ¼ 115), and 0.11% for insects (n ¼ 603),

nor when only species with small (GMVP < 5000

individuals: 8.4%DE, n ¼ 787) or large (GMVP > 20 000

individuals: 2.3%DE, n ¼ 277) MVPs were considered.

Similarly, the model fit remained poor when we examined

only those species restricted to a single phytogeographical

region or less (0.61%DE, n ¼ 777) or alternatively those

with continental/global distributions (0.43%DE, n ¼ 421);

range was not included as a predictor variable in this

instance. Use of the alternative mixed definition of

GMVP (0.90 probability of persisting the longer of

100 years or 40 generations) increased the overall GMVP

estimate slightly to 1414 (1169–1700, 95% CI) but did

not noticeably improve the fit of the correlates model

(0.65%DE, n ¼ 1198).

The general low power of the derived composite

predictors to explain variation in MVP, irrespective of the

group being examined, might indicate that they are not

robust variables associated with extinction risk. However,

GLMMs using IUCN Red Listing as the dependent

variable (listed or not) showed that all derived predictors

(except Demographics) were extremely useful in explain-

ing anthropogenic threat status (%DE[IUCN] ¼ 51.6%,

Fig. 2d). Some have argued that IUCN listing is a poor

indicator of a species� threat status (Webb & Carrillo

2000) given that it relies on crude surrogates of risk and

often sparse data, whilst others have demonstrated the

Red List’s utility for broadly predicting extinction risk

(Keith et al. 2004; Buchart et al. 2005). The strong

correlation between the probability of IUCN listing and

our composite ecological predictors underscores the real-

world applicability of our correlates. This verification is a

key component of our argument because it demonstrates

that the lack of correlation between MVP and our chosen

ecological predictors is authentic and not simply a result

of poorly formulated explanatory terms.

Figure 2 Absolute weights of evidence (Dw+) of six derived predictors [threat index (TI), geographical range (RA), human impact (HI), body

size (BS), ecological flexibility (EF) and demographics (DE)] for explaining variation in loge MVP (averaged across five models) based on two

different persistence criteria: population size resulting in a > 99% probability of persistence over 40 generations (shaded bars) and > 90%

probability of persistence over 100 years (clear bars). (a) Dw+ shown for all species combined, (b) for vertebrates only and (c) for

invertebrates only. Dw+ are also shown for models where IUCN threatened status (Red Listed or not) was the response variable (d). Predictor

Dw+ were calculated using model averaging over all possible generalized linear models containing those predictors. Predictors with weighting

of zero or less have essentially no explanatory power.
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MVP and threatened species

Do species with low MVP tend to be less at risk according

to IUCN classification? Those vertebrate species in the

database that were not IUCN Red Listed had a median

GMVP of 2394 (1833–3288; 95% CI), whereas the 70

threatened species had a median GMVP of 4885 (1319–

12 149; 95% CI). Therefore, threatened species may have

higher MVPs than their non-threatened counterparts, but

this difference could not be distinguished statistically

because of the wide and overlapping confidence limits.

Further, there was no sequential pattern of increasing

GMVPs with higher risk classification (all CIs from Critically

Endangered through to Lower Risk: Conservation Dependent had

overlapping limits).

Ecological predictors of threatened status (e.g. IUCN Red

List categorization) signify a species� sensitivity to the

ultimate causes of extinction (e.g. direct or indirect human

impacts; McKinney 1997; Purvis et al. 2000b), whereas

MVPs reflect the stochastic hazards encountered by

populations that have already been reduced in size (Shaffer

1981; Gilpin & Soulé 1986). The size required for long-term

viability in the face of stochastic variation will depend largely

on a host of population-specific factors such as the

magnitude and frequency of fluctuations in the environment

and the population’s response to these (Lande 1993), the

degree of inter-specific competition (Gilpin & Soulé 1986),

metapopulation dynamics (Hanski et al. 1996) and the

importance of population regulation (Sæther et al. 2002;

Turchin 2003). On the basis of our results, these influences

do not appear to be amenable to generalization at spatial

scales larger than the local population.

What then, determines the relative viability of small

populations for different species given the clear lack of

support for ecological and anthropogenic threats affecting

MVP? It is axiomatic that long-term persistence is

foreclosed (and therefore the question of MVP becomes

irrelevant) if a population continues to decline due to

external deterministic drivers (e.g. habitat loss, over-

exploitation; Caughley 1994). Thus, MVPs appear to be

driven primarily by the stochastic hazards faced by small

populations that are not (or at least no longer) declining

deterministically, with their extinction risk being largely a

function of demographic and environmental variance and

population size (Lande 1993). A GLMM using only a

population’s intrinsic growth rate and its variance (rm, Ve)

showed for our dataset that the model-averaged estimates

of rm and Ve explain 49.8% of the deviance observed in

GMVP (c.f. %DE[GMVP] ¼ 0.4% for the ecological/

anthropogenic predictors). When modelled in isolation,

%DE[Ve] ¼ 42.4% and %DE[rm] ¼ 6.0%, but the two-

predictor model was the most parsimonious (c. 100% of

the AICc weight).

Are the MVP estimates we present sufficiently robust to be

used by conservation managers to set recovery targets for

threatened species or determine whether habitat reserves

cover areas of sufficient size to maintain viable populations?

Our results clearly have heuristic value (Brook et al. 2002) and

the multimodel inferential methods we used to interrogate the

time series are statistically sound. However, deciding on the

biological validity of the absolute numbers is complex for at

least three reasons: (i) our analysis of direct- vs. indirect-count

data implies that observation or measurement error in

abundance estimates inflates predicted MVP; (ii) unmeasured

external processes may have suppressed population growth

rates in the historical time series; and conversely (iii) our

relatively simple phenomenological models do not include

demographical stochasticity, fluctuations associated with an

unstable stage structure, nor the negative and cumulative

genetic problems associated with small population sizes; these

omissions probably cause an underestimation of MVP. On

balance, we argue that although these MVPs provide a useful

rule of thumb for species conservation, they should not be

used as precise conservation targets.

ACKNOWLEDGEMENTS

We thank D. Bowman, R. Frankham, N. Yamamura and the

anonymous reviewers for helpful comments and suggestions,

and G. Pardon for his valuable assistance in assembling the

database. This work was carried out at the Key Centre for

Tropical Wildlife Management, Charles Darwin University,

under funding from the Australian Research Council and the

Center for Ecological Research through the Kyoto University

Visiting Scholars Programme. BWB and CJAB conceived the

work, did the analysis and wrote the paper. LWT collated the

data and provided intellectual input.

RE F ERENCES

Belovsky, G.E., Botkin, D.B., Crowl, T.A., Cummins, K.W.,

Franklin, J.F., Hunter, M.L.J. et al. (2004). Ten suggestions to

strengthen the science of ecology. BioScience, 54, 345–351.

Berger, J. (1990). Persistence of different-sized populations: an

empirical assessment of rapid extinctions in bighorn sheep.

Conserv. Biol., 4, 91–98.

Blackburn, T.M. & Duncan, R.P. (2001). Determinants of estab-

lishment success in introduced birds. Nature, 414, 195–197.

Boyce, M.S. (1992). Population viability analysis. Annu. Rev. Ecol.

Syst., 23, 481–506.

Brook, B.W., Burgman, M.A., Akçakaya, H.R., O’Grady, J.J. &
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