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Abstract

We prove that any one-pass streaming algorithm which
(e, 0)-approximates the kth frequency moment Fj, for any
real k # 1 and any ¢ = Q (\}m), must use Q(eiz) bits
of space, where m is the size of the universe. This is
optimal in terms of €, resolves the open questions of Bar-
Yossef et alin [3, 4], and extends the Q (=) lower bound for

Fy in [11] to much smaller ¢ by applying novel techniques.

Along the way we lower bound the one-way communication
complexity of approximating the Hamming distance and the
number of bipartite graphs with minimum/maximum degree
constraints.

1 Introduction

Computing statistics on massive data sets is increasingly
important these days. Advances in communication
and storage technology enable large bodies of raw data
to be generated daily, and consequently, there is a
rising demand to process this data efliciently. Since
it is impractical for an algorithm to store even a
small fraction of the data stream, its performance is
typically measured by the amount of space it uses. In
many scenarios, such as internet routing, once a stream
element is examined it is lost forever unless explicitly
saved by the processing algorithm. This, along with the
sheer size of the data, makes multiple passes over the
data infeasible. In this paper we restrict our attention to
one-pass streaming algorithms and we investigate their
space complexity.

Let a = ay,...,a4 be a stream of g elements drawn
from a universe of size m, which we denote by [m] =
{1,...,m}, and let f; denote the number of occurrences
of the ith universe element in a. For any real k, the kth
frequency moment Fj is defined by:

Fp=Y_fF
1=1

Interpreting 0° = 0, we see that Fy is the number of
distinct elements in a, Fj is the stream size ¢, and
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F5 is the repeat rate, also known as Gini’s index of
homogeneity [10]. Efficient algorithms for computing
Fy are important to the database community since
query optimizers can use them for finding the number of
unique values of an attribute without having to perform
an expensive sort on the values. Efficient algorithms for
F5 are useful for determining the output size of self-
joins in databases and for computing the surprise index
of a data sequence [10]. Higher frequency moments are
used to determine data skewness which is important in
parallel database applications [8].

An algorithm A (e, d)-approximates Fj if A out-
puts a number F, such that Pr[|F, — Fy| > eFy] <
0. Since there is an Q(m) space lower bound [1] for
any deterministic algorithm computing Fj exactly or
even approximating Fj within a multiplicative factor
of (1 £ ¢€), considerable effort has been invested into
randomized approximation algorithms for the problem.
In [1, 3, 7, 9] various algorithms are given to (e,d)-
approximate Fy with the best known algorithm (in
terms of space complexity) given in [3] achieving space
O (% loglogm +logmlogl) '. Alon et al [1] present
the best algorithm for (e,d)-approximating F» which
achieves space O (}2 (logm + log q)), and the best algo-
rithm for (e, §)-approximating F}, which achieves space

o) (logmeiilog‘”mk%) for any integer constant k > 1.

This paper is concerned with space lower bounds for
the problem - we show that for any ¢ = ) (\/—%), any

one-pass streaming algorithm which (e, §)-approximates
F,,, for any real k # 1 2, must use 2 (6%) bits of space.
Prior to our work the only known space lower bounds
in terms of the approximation error ¢ were for Fy. For
Fy an 2 (logm) space lower bound was established in
[1], an © (1) lower bound in [4], and an Q (%) lower

bound for ¢ = Q (mﬁ) for any ¢ > 0 in [11]. Note

that one cannot hope for the (}2) lower bound to

TTn this paper we take the error probability & to be a constant,
i.e., a value independent of m.
2Note that F} can be computed trivially and exactly in space

O(log q).



hold for e = o (\/—%

computing Fy exactly and an O(mlogq) computing Fy,
exactly for any k ¢ {0,1}.

As in previous papers [1, 4, 5, 6, 11], to show space
lower bounds we lower bound the one-way communi-
cation complexity of a boolean function f and reduce
the computation of f to that of Fy. More precisely,
there are two parties Alice and Bob holding inputs x
and y respectively who wish to compute f(z,y) with
error probability at most d. Suppose that Alice and
Bob can associate x,y with data streams a;,a,. Let
A be an algorithm which (e, §)-approximates Fj. Then
Alice can compute A(a,) and transmit the state S of A
to Bob. Bob can feed S into his copy of A and continue
the computation to obtain Fj(a, o a,). If Fj(a, o a,)
can determine f(z,y) with probability at least 1 — ¢,
then the space used by A must be at least the one-way
communication complexity of f. The cleverness is in
choosing f and bounding its one way complexity.

Let A(-,-) denote Hamming distance and set t =
O (6%) We consider the following function f suggested
in [11]. Alice and Bob are given z,y € {0,1}! with
the promise that either A(z,y) < % — V/t, in which
case f(z,y) = 0, or A(z,y) > %, in which case
f(z,y) = 1. The authors of [11] were not able to lower
bound the one-way complexity of f directly, and instead
considered a related function g with rational inputs
x,y € [0,1]2. They used a low distortion embedding
to reduce a bound on g’s complexity to a bound on
Fy’s space complexity. This indirect approach led
to an additional assumption on €, namely, that their

) since there is an O(m) algorithm

bound held only for ¢ = Q (m9;+lc) for any ¢ > 0.

We instead lower bound the one-way complexity of f
directly using novel techniques, and hence our €2 (E%)

bound holds for all € = 0 (T%) and all k # 1, which
is optimal. To lower bound f’s one-way complexity,
we use shatter coefficients [6] which generalize the VC-
dimension [12, 14]. The tricky part is proving our main
theorem, which essentially computes the largest shatter
coefficient of f. We use the probabilistic method in
an elaborate way and a correlation inequality due to
Kleitman [2].

Our main theorem establishes some additional re-
sults. Consider the problem: Alice and Bob have inputs
x, y respectively and wish to (e, §)-approximate A(z,y).
Such a protocol necessarily computes f(z,y) with er-
ror probability at most §. Hence, we obtain the first
(in terms of €) lower bound on the one-way communi-
cation complexity of (e, d)-approximating the Hamming
distance.

Finally, in the proof of our main theorem it is shown
that the number of m by n binary matrices M with

majority one in each column and majority one in each
row is at least 2™m"~*™~" for a constant z < 1. Here
m = w(l) for n — oo. Using the natural association
between bipartite graphs on n by m vertices with binary
m by n matrices, we obtain a nontrivial lower bound on
the number of bipartite graphs on n by m vertices where
each left vertex has degree at most (resp. at least) %
and each right vertex has degree at most (resp. at least)
5. Our presentation is much simpler than that in [13],
although our result is only a lower bound. As far as we
are aware, this is the first nontrivial lower bound for the
class of bipartite graphs 3.

2 Preliminaries

We adopt some of the definitions/notation given in [4,
11]. For z,y € {0,1}", let @ y denote vector addition
over GF(2), T complementation, A(z,y) Hamming
distance, and Z the integers. The characteristic vector
of a stream a is the length-m bit vector with ¢th bit set
to 1 iff f; > 0.

2.1 One-Way Communication Complexity Let
f: X xY —{0,1} be a boolean function. In this paper
we consider two parties, Alice and Bob, receiving x and
y respectively, who wish to compute f(z,y). In our
protocols Alice computes some function A(z) of z and
sends the result to Bob. Bob then attempts to compute
f(z,y) from A(z) and y. Note that only one message is
sent, and it must be from Alice to Bob.

DEFINITION 2.1. For each randomized protocol 11 as
described above for computing f, the communication
cost of Il is the expected length of the longest mes-
sage sent from Alice to Bob over all inputs. The -
error randomized communication complexity of
f, Rs(f), is the communication cost of the optimal
protocol computing f with error probability & (that is,

Pr{li(z,y) # f(z,y)] <0).

For deterministic protocols with input distribution g,
define D,, 5(f), the é-error p-distributional commu-
nication complexity of f, to be the communication
cost of an optimal such protocol. Using the Yao Min-
imax Principle, Rs(f) is bounded from below by D, s
for any p [15].

2.2 VC dimension and Shatter Coefficients Let
F={f:X —{0,1}} be a family of Boolean functions
on a domain X. Each f € F can be viewed as a |X|-bit

string f1 NN f|X\

3The presentation in [13] was a characterization for general

graphs.



DEFINITION 2.2. For a subset S C X, the shatter
coefficient SC(fs) of S is given by |{f|s}rer|, the
number of distinct bit strings obtained by restricting F
to S. The I-th shatter coefficient SC(F,l) of F is the
largest number of different bit patterns one can obtain
by considering all possible f|s, where S ranges over all
subsets of size I. If the shatter coefficient of S is 2!5!,
then S is shattered by F. The VC dimension of
F, VCD(F), is the size of the largest subset S C X
shattered by F.

The following theorem [6] lower bounds the one-way
complexity of f in terms of information theory.

THEOREM 2.1. For every function f: X x Y — {0,1},
every | > VCD(fx), and every 6 > 0, there exists a
distribution p on X X Y such that:

Dy.s(f) 2 1og(SC(fx,1)) =1 - Ha(0).

2.3 Properties of the Binomial Distribution We
need some properties of the binomial distribution in the
proof of our main theorem. The following lemmas follow
easily from Stirling’s formula. Let n be odd and let X
be the sum of n independent unbiased Bernoulli random
variables Xi,...,X,,.

LEMMA 2.1. For any constant ¢ > 0, and for suffi-
ciently large n,

1 2

Pr[X > g—i-c\/ﬁ] >3-

s

LEMMA 2.2.

. n 1 [ 2

2.4 A Theorem of Kleitman We also need the
following theorem due to Kleitman [2]. We say a set
family A of a finite set N is monotone increasing if
whenever S € Aand SCT C N, thenT € A If A
and B are monotone increasing, then their intersection
{S|S € Aand S € B} is monotone increasing.

THEOREM 2.2. (KLEITMAN) Let N be a set of size
n. Consider the symmetric probability space whose
elements are the members of the power set of N, that
is, for any A C N, Pr[A] = 27", Let A and B be two
monotone increasing families of subsets of N. Then,

Pr[AN B] > Pr[A] - Pr[B]

3 Applications of the Main Theorem

The main theorem intuitively says that there is a set
S C{0,1}™ of n elements such that for many subsets T

of S, one can find a word yp € {0,1}" that separates T
from its complement S — 7. By yr separating T' from
S — T, we mean that yr is closer to every element of T’
than to any element of S —T. We measure closeness in
terms of Hamming distance. For one of our applications
we also need to ensure that yr is not too close to any
element of 7. We give the formal theorem statement
now and defer its proof to section 4:

THEOREM 3.1. (MAIN) There exist constants ¢,c¢’ > 0
such that for sufficiently large n there is a set S C
{0,1}" of size n such that for 22" subsets T of S,
there exists a y = yr € {0,1}" such that for allt € T,
dn < A(y,t) < % —cyn, and for allt € S T,
Ay, t) > 5.

We say that a set T C S is good if there is a yr € {0,1}"
which separates T from its complement. More precisely,
T is good if for all t € T, ¢'n < A(y,t) < § — ¢y/n, and
forallt € S —T, A(y,t) > 5.

3.1 One-way Communication Complexity of

Approximating the Hamming Distance Let ¢ =

Q (\/Lﬁ) and t = 0O (elz), where we assume t is a power

of 2 without loss of generality (wlog). Let S,c¢ be as
in the main theorem, applied with n = ¢, and define
Y ={yr | T C S and T is good}, using the notation
above. We assume ¢ is small enough so that ¢ is suf-
ficiently large to apply the main theorem with n = ¢.
Setting € to be less than a small constant suffices. Define
the promise problem:

L={(y,s) € YxS s.t. A(y,s) < %—C\/l_f or Ay, s) > %}

Define f: Y x S — {0,1} as f(y,s) = 1if A(y,s) > §
and f(y,s) = 0 if A(y,s) < £ — ¢V, and define the
function family F = {f, | vy € Y} where f, : S — {0,1}

is defined by f,(s) = f(y, s).

Consider the (¢,d)-Hamming Distance Approxi-
mation Problem ((e,d)-HDAP): Alice, Bob have
z,y € {0,1}™ respectively, and wish to output A(z,y)
with Pr[|A(z,y) — A(x,y)| > eA(x,y)] < J. The claim
is that provided t < m, the randomized one-way com-
munication complexity Rs(f) of deciding L is a lower
bound on the one-way communication complexity of the
(€,)-HDAP. Indeed, a special case of the (¢,d)-HDAP
is when Alice is given a random element x of ), padded
with m — ¢ zeros, and Bob a random element y of S,
padded with m —t zeros. Then with probability at least
1—6,if A(z,y) < £ —evit, Az, y) < (1+€) (§ - eVi),
and if A(z,y) > £, then Az,y) > (1 — €)L. For
appropriately small € = © (\/LE)’ these two cases can



be distinguished. Hence, the output A(z,y) can decide
L with probability 1 — 4.

We now show Rs(f) = Q(t), and hence that the
one-way complexity of the (e,8)-HDAP is Q (%).

THEOREM 3.2. The %th shatter coefficient of F is 21,

Proof. The claim is that there are 2% distinct bit-
strings in the truth table of F. Indeed, for every y € ),
there exists a good subset T" C S such that y = yp.
Fors e T, f(y,s) =0and for s € S —T, f(y,s) = 1.
Viewing f, as a bitstring (see section 2), it follows that
Jy # [y for y # y' since if T" C S is such that y' = ypv,
T’ and T differ in at least one element. Hence there are
|V| = 29" distinct bitstrings, so the shatter coefficient
is 220, =

COROLLARY 3.1. The randomized one-way communi-
cation complezity Rs(f) is Qt) = Q (%).

Proof. Follows immediately from theorem 2.1. W

3.2 Space Complexity of Approximating the
Frequency Moments From the previous section, we

know that for e = Q (m_%), the one-way communi-

cation complexity of deciding L with error probability
at most § is 2 (6%) We now give a protocol for any

which decides L with probability at least

1—¢ with communication cost equal to the space of any
(€,8) Fy-approximation algorithm for any k # 1. It fol-

e:g(m—%)

lows that for any k£ # 1 and any € = Q) (m_%), any (e, 0)

Fi-approximation algorithm must use {2 (6%) space. In
particular, for all smaller €, any such algorithm must
use 2(m) space. For k = 0 this is optimal since one can
keep a length-m bit vector to compute Fj exactly. For
k ¢ {0,1} this is optimal up to a factor of loggq since
one can keep a length-m vector with ith entry set to f;.
Lett =0 (Eig) as before. Alice and Bob are given
random y € Y and s € S, respectively, and wish to
determine f(y,s). The protocol is as follows: Alice
chooses a stream a,, with characteristic vector yo 0™ .
Let M be an (¢,d) Fg-approximation algorithm for
some constant k # 1. Alice runs M on a,. When
M terminates, she transmits the state S of M to
Bob along with wt(y). Bob chooses a stream as with
characteristic vector s o 0™~ and feeds both S and a,
into his copy of M. Let F, be the output of M. The
claim is that Fj, along with wt(y) and wt(s) can be
used to determine f(y,s) (and hence decide L) with
probability at least 1 — §. We first decompose F:

Fiayoa,) = Y fF =2 wt(yns)+15A(y, )

i€[m]

= 25" Hwi(y) + wt(s) — Ay, s)) + Ay, 5)
= 2k L (wt(y) + wt(s)) + (1 — 25" HA(y, s)
and hence for k # 1,

2k71

Aly,s) = P ——

(3.1) -

(wi(y) + wi(s))
Fr(ay o a,)
Skl
We want a (1 £ €') approximation to Fj to result in a
(1 £+ €) approximation to A(y,s) for some ¢ = O(e).
Specifically, if k£ < 1 we want:
(1 - E)A(yu 8) <

2k—1 Fi(a, oay)
T—] (wt(y) +wt(s)) — (1 — 6/)2k:ii_1
and
ok—1 Fi.(a, o a,

(1+€)A(y, ),

whereas for k£ > 1 we want:

(1—-€)A(y,s) <

ok—1 Fk(ay o as)
and
2k—1 Fi(a, oay)
PT—] (wt(y) +wt(s)) — (1 — €/)ﬁ =

(1+e)A(y, s).

After some algebraic manipulation, we see that these
properties hold iff:
/ e[2"1 —1]A(y, s)

‘ Fy(ayoa,)

Now, Fy(ay o as) = O(t). Hence, for any k # 1 we
will have € = O(e) if there exists a positive constant
p so that for all pairs of inputs y, s, A(y,s) > pt. For
n = t in the main theorem, we see that this condition
is satisfied for p = /.

We conclude that Alice and Bob can choose € = O(e)
such that Bob can use his knowledge of wt(y), wt(s),
and an (€,0) approximation to Fj (ie., Fg), to
compute %(wt(y)—l—wt(s)) - %, which
is a (1 &+ e)-approximation to A(y,s). Hence, as in
the analysis of the (e,d§)-HDAP, Bob can decide L



with probability at least 1 — §. One may worry that
the logt = O(logm) bits used to transmit wt(y) will
dominate the space of the Fy-approximation algorithm
for large e. Fortunately, there is also an Q(logm) space
lower bound [1] for approximating Fj for any k # 1
4 so if indeed logm = w (}2), the Q (E%) lower bound
is absorbed in the Q(logm) lower bound. From the
reduction we see that the Fj-approximation algorithm
must use {2 (E%) space.

3.3 Lower Bound for Bipartite Graphs with
Given Maximum/Minimum Degree There is a bi-
jective correspondence between m by n binary matrices
M and bipartite graphs G on m + n vertices, where
M;; = 1 iff there is an edge from the ith left vertex
to the jth right vertex in G. From corollary 4.1 (see
the end of section 4) we see that the number of bipar-
tite graphs on m + n vertices where each left vertex has
degree at least § and each right vertex has degree at
least %, is at least 2™"7*™~" for a constant z < 1.
Interchanging the role of 1s and 0s, it follows that the
number of bipartite graphs with each left vertex having
degree at most 5 and each right vertex having degree
at most 7, is at least 2m" =",

Note that a trivial lower bound on the number of
such graphs can be obtained from theorem 2.2. Indeed,
if C is the event that each column of M is majority 1
and R the event that each row is majority 1, C and
R represent monotone families of subsets of [mn], so
by theorem 2.2, PrfR NC] > 2™ .27" = 27" and
hence the number of such M is at least 2™ . 27"~ " =
2(mn—m=n) = Gince z < 1 in our bound, our bound is
strictly stronger.

4 Proof of the Main Theorem

We use the probabilistic method to prove our main
theorem, repeated here for convenience:

THEOREM 4.1. There exist constants c,c’ > 0 such
that for sufficiently large n there is a set S C {0,1}"™
of size n such that for 2% subsets T of S, there
exists a y = yr € {0,1}" such that for all t € T,
dn < A(y,t) < § —cyn, and for allt € ST,
Ay, t) > 5.

Proof. Let ¢,¢’ > 0 be constants to be determined. We
assume n = 1 mod 4 in what follows, so that n and
[5] are odd. Choose n elements r1,...,7, uniformly
at random from {0,1}"™ with replacement, and put

n |

1] the authors only explicitly state the Q(logm) lower
bound for k € {0, 2}, but their argument in propositions 3.7 and
4.1 is easily seen to hold for any fixed k # 1 (even nonintegral)

for sufficiently small, but constant e.

S = {r1,...,r}. Note that S may be a multiset;
we correct this later. Set m = [5] and let T" be an
arbitrary subset of S of size m. We omit ceilings if not
essential.

For notational convenience put T = {ry,...,rm}.
Let y = yr be the majority codeword of T, that is,
y; = majority(rij,...,rm;) for all 1 < j < m. The
map fy(xr) = =Sy preserves Hamming distances, so
wlog, assume y = 1™.

We say that T is good if for all t € T,
dn < A(y,t) < § —cyn, and for all t € S - T,
A(y,t) > 5. We show the probability that 7" is good
is greater than 27*" for a constant z < 1. It follows

that the expected number of good subsets of S of size
m is (M)27" = 9Ha(3)n+o(Hn—zn _ 9Q(n) Hence,
there exists an S with 24 good subsets. It remains
to lower bound the probability that 7" is good.

The probability that T is good is just the prod-
uct:

Pr[Vte S—T, Aly,t) > g ]

Pr[VteT, dn<Ay,t) < g —cvn |,

since these events are independent. Since y is indepen-
dent of S — T,
am=n,

(42) Pr[Vte ST, A(y,t)> =] =

o3

We find Pr[ Vt € T, A(y,t) < % —cv/n ]. We force
A(y,t) > 'n later. Let M be the binary m x n matrix
whose ith row is r;. Let m = my 4+ mg for mq, mo
positive integers to be determined. Let R; be the event
that M has at least & +cy/n ones in each of its first m,
rows, R the event that M has at least § + cy/n ones
in each of its remaining ms rows, and C the event that
M has at least % ones in each column. Then,

wo[3

Pr{Vt €T, Ay,t) < 5 —evn ] = P{RiNRz | C]
PI‘[RlﬂRQﬂC]

- Pr[ C |

M can be viewed as the characteristic vector of a subset
of [mn] = {0,...,mn — 1}. Under this correspondence,
each of R1,R2, and C represent monotone families of
subsets of [mn]. Applying Theorem 2.2,

PI‘[RlﬂRQﬂC] Z PI‘[RlﬂC]PI‘[RQ]
= Pr[R:|C]Pr[C|Pr[ Ry ]



and hence,

(4.3)  Pr[VteT, A(y,t) < g N

> Pr[ Ry | C]Pr[Rs ]

Computing Pr[ Ry ] is easy since M’s entries are
independent in this case. There are mo independent
rows, and each row is a sum of n independent unbiased
Bernoulli variables. By lemma 2.1,

1 2\ "
PI'[ Rg ] > (5 —C ;)

To compute Pr[R1|C], let Y be the number of ones in
M. We compute

(4.4)

Pr[Ry|C] = Pr[Ri|Y =s,C]- Pr[Y =5 | C].

The following insight simplifies this calculation:

LEMMA 4.1, PrfY = 8 4, /2 (14 0(1)) | € ] =
1—o0(1).

Proof. Let Y; be the number of ones in column 7, for 1 <
i < n. From lemma 2.2, E[Y;|C] = 2 + /22 (1 + o(1)).

Hence, E[Y|C] = 2 + ny/22 (1 +0(1)). Since the

columns are iid., Var[Y|C] = nVar[V}|C] < =,

Chebyshev’s inequality establishes the lemma:
Var[Y|C]

Put s = % + ny /22 (1 + o(1)). It follows that:

(4.5) Pr[R4|C] > (1-o0(1))Pr[R4]Y =s,C].

Technically speaking, s represents a set of values, all
of which are of the form 2 + ny/22 (1 + 0(1)). We

abuse notation and say Y = s, when in fact Y assumes
a value in this set.

Define X;; to be the (i,5)th entry of M, condi-
tioned on events Y = s and C, and define X; = Ej Xij.

Now put ¢ = 2—’; and d = 2227 for a constant
0 <7 <1 to be determined, and let &; be the event:

g+c\/ﬁ<Xi<g+d\/ﬁ.

for 1 < i < m;. Clearly,
maq )
(4.6)Pr[Ry [ C, Y =] > [[Prl& | N &.

i=1

The idea is to bound E[X;] MiZ1 &) and to show
Var[X;| NjZ] &] is small so that we can use Cheby-
shev’s inequality on each multiplicand in the RHS of 4.6.

We first bound E[X;| NiZ] &]. Given N[_{&, we
know that 30,1 X; is at least (i — 1) (2 + c/n) and at
most (i — 1) (% + dy/n). To ensure that E[X;| Ni_} &]
doesn’t vary much with i, we restrict m; from being
too large by setting my = vm for a constant 0 < v < 1
to be determined. Since there are s ones in M, and

E[X;, | NiZ1 &) =E[X;, | NiZ} &] for all j1,j2 > 4,

s—(i—1) (5 +dvn)
m—(i—1)

ot aamyT4o(nd) - (i-1) (3 +dvi)
o m—(i—1)

VT

OO )

n
_§+\/ﬁ m—1i+1

< E[X;| Nz &l
From a similar calculation,
E[X; Nz &) <

(i—l)(%—c)
m—i+1

ﬁ —I—o(n%)

Setting ¢ = m; + 1 in the above, we obtain bounds
independent of ¢ which hold for all 1 < i < mq,

> v(1-F)

Jr o 1—-w

N

g+\/ﬁ

n
SV

<E[Xi|N_1 &) <

2
n 2 (ﬁ—c) 1
§+\/ﬁ ﬁ-i- 1 +0(n2)
Define k; to be
min

i— n n i—
(BNt &l - 2 - eV, S+ dvin - ELX| Nz} €1))

and note that k; measures how_far XZ| ﬂli;% & has to
deviate from its expectation for &; | ﬂf;i & to occur. We



will use k; in Chebyshev’s inequality below. Simplifying
k; using our bounds, after some algebra we obtain:

) (5

using the definitions of ¢ and d, which were defined to
be symmetric around % Note that for sufficiently

large n, k; is positive provided v < %, which we hereby

enforce.

We show that Var[X;| Ni_; &] is small by show-
ing the entries in the ith row are negatively correlated:

LEMMA 4.2. Forany2<i<mj andany 1 <j<k<

n,

Cov[Xij, Xu, | NjZ1 &) _

>+o(né),

Pr{Xy =1 N2} & ]
Pr[X;; =1| Xy =1, Nj_1&)-Pr[X;; =1 |NjZ{&] <0
Proof. Interpreting () = 0 for z < 0, we have:

PrX;; =1| NZ{ &) =

n

D PrlXy =1 X;=t, NZ{&] - Pr(X; =t, NjZ1&)] =

We now apply Chebyshev’s inequality to each row:

Pri&; | NiZi &] =
n n i—1
Pr[§+c\/ﬁ<Xi < §+d\/ﬁ| Ni—y & >

1= Pr[ |X; - E[X;|mZy &) | > ki ] >
_ VarlX; | NiZ1 &)

1 . >
n m
1 - m = 1 - D) .
i 4 (11—_2;”) (2 —2r)2 — o(1)

. . . . _ \/571
To simplify this expression, we choose v = ( 3 \/5_1) <

%. The above inequality becomes

47) Pri& | niZle) > L sao o

From equations 4.3, 4.4, 4.5, 4.6, and 4.7, we conclude:

(4.8) Pr[VteT, Aly,t) < g —evn]>

71' m 1 2\ "
(- = =) ““’“”(5‘0 %)

We say that T is almost good if for all t € T, A(y,t) <

t=0
n (n,l % —cy/n, and forall t € S — T, A(y,t) > %. Note that
Z t—l) PrX,; = t, ﬂf:igl] > these two events are independent and that 7" is good if
=1 () B and only if T is almost good and for all t € T, A(y, t) >
. (n—2) ¢'n. Combining equations 4.2 and 4.8, we have:
t—2 o i—ley _
Z ) PriX; =t, mZ1&] = Pr[T is almost good | =
t=1 \t—1
n
n , Pr[vte S—-T, A(y,t) > = |
D Pr[Xi; =1 X =1, X; =t, Ni_{&] : w.0>3]
=0 Pr[Vie T, A(y,t) < g —cvn |
Pr(X; = t, M_; &) ma
i— m—n 1 2
= Pl“[Xij =1 | Xip =1, ﬂ;:ié‘l], > 2 <§ —-c ;) .
where we used the fact that conditioned on X; = ¢, m
every t-combination in the ith row is equally likely by 7T
l———F—— | (1-01)
symmetry. W 8(1—r)"—o(1)
It follows that for all 7, - <1 2r\/§> (1—-v)m
Var[X; | NiZ] &) = 2 T

<1 ) 0(1)> (1—o(1))

ZV&I‘[XU | ﬂ;;} &+ Z Cov[X;;, Xt | ﬂ;;% &l
j=1
’ Taking logarithms base 2 and dividing by n we obtain:

oyt
- i— n .
< ZVar[Xij | NiZt &) < 1 (4.9) log(Pr[T" is almost good ]) 1

=1 n 2




2 2 T

L (1w Iog, (1 ~ 2r\/§>

+ §log2 <1 a 8(1 —T)2 —o(l))

+ log, (1 —o0(1))

Observe that the RHS of equation 4.9 is continuous in
r for 0 <r <1 and for r =0 is just:

o))

logy(1 - o(1).

Let ny € Z be such that for all n > ny, (4.10) is less
than | = —1+ % (1+1logy, (1— %)) > —1. Let n be
larger than n; and large enough to satisfy all previous
steps where n needed to be sufficiently large. Then
(4.10) is larger than a constant larger than —1. Since
equation 4.9 is continuous in r, there exists a constant
r > 0 so that for sufficiently large n, the RHS of
equation 4.9 is larger than a constant larger than -1.
Hence for sufficiently large n, there exists a constant
z < 1 so that Pr[T is almost good | > 27*".

(4.10) -1 + g (1 +log, <1 -

We compute Pr[ ¥Vt € T, A(y,t) > ¢n]. Fix
t € T. From lemma 2.2, there is a constant v > 0 with:

G5 G5
(0 ) Go ) on

< 2H2(1—c/)n+0(log n)—an

[M]=

for any constant o < 1 and sufficiently large n. Hence,
Pr[3t € T such that A(y,t) < d'n]
< p2H2(1—c)nt0(logn)—an < gHa(1-c'In—a'n.
for any o/ < « and large enough n. By the union bound,
Pr[ T is good | =
Pr[Vte T, dn<A(y,t) < g —c/nl]>

Pr[ T is almost good ]—
Pr[3t € T such that A(yr,t) < c'n] >

9—zn _ 2H2(1—cl)n—o/n

We choose ¢/, a, & so that o/ — Ha(1 — ¢') > 2z by
choosing ¢ close to 0 and « close to 1. Hence,
Pr[ T is good | > 272" for any 2’ > z and large enough
n. Since z < 1, we can choose 2z’ < 1, as needed.

The only loose end to tie up is that S may be a
multiset. But for any i # j, Pr[r; = r;] =277, so:

Pr[3i # j such that r; = r;] < (Z) 2" = g~n+0(logn)

and hence for any specific T,
(4.11) Pr[T is not good or S is a multiest | <
1 — 2% 4 g~ n+0(ogn)
so that for sufficently large n and for any 1 > 2" > 2/,

Pr[T is good |S is not a multiset | >

Pr[T is good and § is not a multiset | > 27"

Thus, the expected number of good subsets of S, given
that S is not a multiset, is 22("), as before. This
completes the proof. |

COROLLARY 4.1. The number of m by n binary matri-
ces M with more ones than zeros in each column and
more ones than zeros in each row is at least 2™~ *mM~"
for a constant z < 1.

Proof. Using the notation of the proof, the probability
that a (uniformly) random m by n binary matrix M
has majority 1 in each row, given that it has majority
1 in each column, is Pr[ Ry | C ] - Pr[Rg] with r = 0
(and hence ¢ = 0). Note that the proof holds for any
superconstant value of m, even though we only needed
m = [5] before. As n — oo, Pr[ Ry | C |- Pr[Ro]
approaches (%)(1_U)m (1 — %)Um (see equations 4.4, 4.5,
4.6, 4.7), which is 2-%'m for a constant z’ < 1. Hence for
large enough n, we can get rid of the o(1) terms (see the
RHS of equation 4.8) and have Pr[R;|C]-Pr[Rq]| > 27*™
for a constant z with 2’ < z < 1. Thus, the probability
that M has majority 1 in each row and majority 1 in
each column is at least 277%™ . 27" = 27#™~"_ Since

there are 2™" total binary matrices, the number of such
M is at least 2mn—*m", |
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