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Abstract

We present an overview of our computational approach towards understanding the different contributions of the neo-
cortex and hippocampus in learning and memory. The approachis based on a set of principles derived from converging
biological, psychological, and computational constraints. The most central principles are that the neocortex employs
a slow learning rate and overlapping distributed representations to extract the general statistical structure of the envi-
ronment, while the hippocampus learns rapidly using separated representations to encode the details of specific events
while suffering minimal interference. Additional principles concern the nature of learning (error-driven and Hebbian),
and recall of information via pattern completion. We summarize the results of applying these principles to a wide range
of phenomena in conditioning, habituation, contextual learning, recognition memory, recall, and retrograde amnesia,
and point to directions of current development.
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Introduction

This paper presents a computational approach to-
wards understanding the different contributions of the
neocortex and hippocampus in learning and memory.
This approach uses basic principles of computational
neural network learning mechanisms to understand both
what is different about the way these two neural systems
learn, andwhythey should have these differences. Thus,
the computational approach can go beyond mere descrip-
tion towards understanding the deeper principles under-
lying the organization of the cognitive system. These
principles are based on an convergence of biological,
psychological, and computational constraints, and serve
to bridge between these different levels of analysis.

The set of principles discussed in this paper were first
developed in McClelland, McNaughton, and O’Reilly
(1995), and have been refined several times since then
(O’Reilly, Norman, & McClelland, 1998; O’Reilly &
Rudy, 1999, in press). The computational principles have
been applied to a wide range of learning and memory
phenomena across several species (rats, monkeys and hu-
mans). For example, they can account for impaired and
preserved learning capacities with hippocampal lesions
in conditioning, habituation, contextual learning, recog-
nition memory, recall, and retrograde amnesia. This pa-
per provides a concise summary of the previous work,
and a discussion of current and future directions.

The Principles

There are several levels of principles that can be dis-
tinguished by their degree of specificity in characteriz-
ing the nature of the underlying mechanisms. We be-
gin with the most basic principles and proceed towards
greater specificity.

Learning Rate, Overlap, and Interference

The most basic set of principles can be motivated by
considering how subsequent learning can interfere with
prior learning. A classic example of this kind of interfer-
ence can be found in theAB � AC associative learning
task (e.g., Barnes & Underwood, 1959). TheA repre-
sents one set of words that are associated with two dif-
ferent sets of other words,B andC. For example, the
word windowwill be associated with the wordreasonin
theAB list, and associated withlocomotiveon theAC
list. After studying theAB list of associates, subjects are
tested by asking them to give the appropriateB associate
for each of theA words. Then, subjects study theAC
list (often over multiple iterations), and are subsequently
tested on both lists for recall of the associates after each
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Figure 1: Human and model data for AB-AC list learning.
a) Humans show some interference for the AB list items as a
function of new learning on the AC list items. b) Model shows
a catastrophic level of interference. (data reproduced from Mc-
Closkey & Cohen, 1989).

iteration of learning theAC list. Subjects exhibit some
level of interference on the initially learnedAB asso-
ciations as a result of learning theAC list, but they still
remember a reasonable percentage (see Figure 1a for rep-
resentative data).

The first set of principles concern the effects of over-
lapping representations (i.e., shared units between two
different distributed representations) and rate of learn-
ing on the ability to rapidly learn new information with a
level of interference characteristic of human subjects:� Overlapping representations lead to interference

(conversely, separated representations prevent inter-
ference).� A faster learning rate causes more interference
(conversely, a slower learning rate causes less in-
terference).

The mechanistic basis for these principles within a neural
network perspective is straightforward. Interference is
caused when weights used to encode one association are
disturbed by the encoding of another (Figure 2a). Over-
lapping patterns share more weights, and therefore lead
to greater amounts of interference. Clearly, if entirely
separate representations are used to encode two different
associations, then there will be no interference whatso-
ever (Figure 2b). The story with learning rate is simi-
larly straightforward. Faster learning rates lead to more
weight change, and thus greater interference (Figure 3).
However, a fast learning rate is necessary for rapid learn-
ing.

Integration and Extracting Statistical Structure

Figure 3 shows the flip side of the interference story,
integration. If the learning rate is low, then the weights
will integrate over many experiences, reflecting theun-
derlying statisticsof the environment (White, 1989; Mc-
Clelland et al., 1995). Furthermore, overlapping repre-
sentations facilitate this integration process, because the
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Figure 2: Interference as a function of overlapping (same)
representations versus separated representations.a) Using the
same representation to encode two different associations (A!B andA! C) causes interference — the subsequent learning
ofA! C interferes with the prior learning ofA! B because
theA stimulus must have stronger weights toC than toB for
the second association, as is reflected in the weights.b) A sepa-
rated representation, whereA is encoded separated for the first
list (A1) versus the second list (A2) prevents interference.
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Figure 3:Weight value learning about a single input unit that
is either active or not. The weight increases when the input
is on, and decrease when it is off, in proportion to the size of
the learning rate. The input has an overall probability of be-
ing active of .7. Larger learning rates (.1 or 1) lead to more
interference on prior learning, resulting in a weight valuethat
bounces around substantially with each training example. In
the extreme case of a learning rate of 1, the weight only reflects
what happened on the previous trial, retaining no memory for
prior events at all. As the learning rate gets smaller (.005), the
weight smoothly averages over individual events and reflects
the overall statistical probability of the input being active.

same weights need to be reused across many different
experiences to enable the integration produced by a slow
learning rate. This leads to the next principle:� Integration across experiences to extract underlying

statistical structure requires a slow learning rate and
overlapping representations.

Episodic Memory and Generalization: Incom-
patible Functions

Thus, focusing only on pattern overlap for the mo-
ment, we can see that networks can be optimized for two
different, and incompatible, functions: avoiding interfer-
ence or integrating across experiences to extract general-
ities. Avoiding interference requires separated represen-
tations, while integration requires overlapping represen-
tations. These two functions each have clear functional
advantages, leading to a further set of principles:� Interference avoidance is essential forepisodic

memory, which requires learning about the specifics
of individual events and keeping them separate from
other events.� Integration is essential for encoding the general
statistical structure of the environment, abstracted
away from the specifics of individual events, which
enablesgeneralizationto novel situations.

The incompatibility between these functions is fur-
ther evident in these descriptions (i.e., encoding specifics
versus abstracting away from them). Also, episodic
memory requires relatively rapid learning — an event
must be encoded as it happens, and does not typically re-
peat itself for further learning opportunities. This com-
pletes a pattern of opposition between these functions:
episodic learning requires rapid learning while integra-
tion and generalization requires slow learning. This is
summarized in the following principle:� Episodic memory and extracting generalities are in

opposition. Episodic memory requires rapid learn-
ing and separated patterns, while extracting gener-
alities requires slow learning and overlapping pat-
terns.

Applying the Principles to the Hippocampus
and Neocortex

Armed with these principles, the finding that neural
network models that have highly overlapping represen-
tations exhibitcatastrophiclevels of interference (Mc-
Closkey & Cohen, 1989, Figure 1b) should not be sur-
prising. A number of researchers showed that this in-
terference can be reduced by introducing various factors
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that result in less pattern overlap (e.g., Kortge, 1993;
French, 1992; Sloman & Rumelhart, 1992; McRae &
Hetherington, 1993). Thus, instead of concluding that
all neural networks are fundamentally flawed, as Mc-
Closkey and Cohen (1989) argued (and a number of oth-
ers have uncritically accepted), McClelland et al. (1995)
argued that this catastrophic failure serves as an impor-
tant clue into the structure of the human brain.

Specifically, we argued that because of the funda-
mental incompatibility between episodic memory and
extracting generalities, the brain should employ two sep-
arate systems that each optimize these two objectives in-
dividually, instead of having a single system that tries
to strike an inferior compromise. This line of reasoning
provides a strikingly good fit to the known properties of
the hippocampus and neocortex, respectively. The de-
tails of this fit in various contexts is the substance of the
remainder of the paper, but the general idea is that:� The hippocampus rapidly binds together informa-

tion using pattern-separated representations to min-
imize interference.� The neocortex slowly learns about the general sta-
tistical structure of the environment using overlap-
ping distributed representations.

(see also Sherry & Schacter, 1987 for a similar conclu-
sion). Before discussing the details, a few more princi-
ples need to be developed first.

Conjunctive Representations and Nonlinear
Discrimination Learning

The conjunctiveor configural representations the-
ory provides a converging line of thinking about the na-
ture of hippocampal function (Sutherland & Rudy, 1989;
Rudy & Sutherland, 1995; Wickelgren, 1979; O’Reilly &
Rudy, 1999). A conjunctive/configural representation is
one that binds together (conjoins or configures) multi-
ple elements into a novel unitary representation. This
is consistent with the description of hippocampal func-
tion given above, based on the need to separate patterns
to avoid interference. Indeed, it is clear that pattern
separation and conjunctive representations are two sides
of the same coin, and that both are caused by the use
of sparserepresentations (having relatively few active
neurons) that are a known property of the hippocampus
(O’Reilly & McClelland, 1994; O’Reilly & Rudy, 1999).
To summarize:� Sparse hippocampal representations lead to pattern

separation (to avoid interference) and conjunctive
representations (to bind together features into a uni-
tary representation).

One important application of the conjunctive rep-
resentations idea has been tononlinear discrimination
problems. These problems require conjunctive represen-
tations to solve because each of the individual stimuli is
ambiguous (equally often rewarded and not rewarded).
The negative patterning problem is a good example. It
involves two stimuli,A andB (e.g., a light and a tone),
which are associated with reward (indicated by+) or
not (�). Three different trial types are trained:A+,B+, AB�. Thus, the conjunction of the two stimuli
(AB�) must be treated differently from the two stim-
uli separately (A+, B+). A conjunctive representa-
tion that forms a novel encoding of the two stimuli to-
gether can facilitate this form of learning. Therefore,
the fact that hippocampal damage impairs learning the
negative patterning problem (Alvarado & Rudy, 1995;
Rudy & Sutherland, 1995; McDonald, Murphy, Guar-
raci, Gortler, White, & Baker, 1997) would appear to
support the idea that the hippocampus employs pattern
separated, conjunctive representations. However, it is
now clear that a number of other nonlinear discrimina-
tion learning problems are unimpaired by hippocampal
damage (Rudy & Sutherland, 1995). The next set of prin-
ciples help to make sense of these data so that they can be
reconciled with our interference-based principles of con-
junctive pattern separation, as discussed in a subsequent
section.

Pattern Completion: Recalling a Conjunction

Pattern completionis required for recalling informa-
tion from conjunctive hippocampal representations, yet
it conflicts with the process of pattern separation that
forms these representations in the first place (O’Reilly &
McClelland, 1994). Pattern completion occurs when a
partial input cue drives the hippocampus to complete to
an entire previously-encoded set of features that were
bound together in a conjunctive representation. For a
given input pattern, a decision must be made to recog-
nize it as a retrieval cue for a previous memory and per-
form pattern completion, or to perform pattern separa-
tion and store the input as a new memory. This deci-
sion is often difficult given noisy inputs and degraded
memories. The hippocampus implements this decision
as the effects of a set of basic mechanisms operating
on input patterns (O’Reilly & McClelland, 1994; Has-
selmo & Wyble, 1997), and it does not always do what
would seem to be the right thing to do from an omniscient
perspective knowing all the relevant task factors — this
can complicate the involvement of the hippocampus in
nonlinear discrimination problems.
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Learning Mechanisms: Hebbian and Error
Driven

To more fully explain the roles of the hippocampus
and neocortex we need to understand how learning works
in these systems (the basic principles just described do
not depend on the detailed nature of the learning mech-
anisms; White, 1989). There are two basic mechanisms
that have been discussed in the literature, Hebbian and
error-driven learning (e.g., Marr, 1971; McNaughton &
Morris, 1987; Gluck & Myers, 1993; Schmajuk & Di-
Carlo, 1992). Briefly, Hebbian learning (Hebb, 1949)
works by increasing weights between co-active neurons
(and usually decreasing weights when a receiver is ac-
tive and the sender is not), which is a well-established
property of biological synaptic modification mechanisms
(e.g., Collingridge & Bliss, 1987). Hebbian learning is
useful for binding together features active at the same
time (e.g., within the same episode), and has therefore
been widely suggested as a hippocampal learning mech-
anism (e.g., Marr, 1971; McNaughton & Morris, 1987).

Error-driven learning works by adjusting weights to
minimize the errors in a network’s performance, with
the best example of this being theerror backpropaga-
tion algorithm (Rumelhart, Hinton, & Williams, 1986).
Error-driven learning is sensitive to task demands in a
way that Hebbian learning is not, and this makes it a
much more capable form of learning for actually achiev-
ing a desired input/output mapping. Thus, it is natural
to associate this form of learning with the kind of pro-
cedural or task-driven learning that the neocortex is of-
ten thought to specialize in (e.g., because amnesics with
hippocampal damage have preserved procedural learning
abilities). Although the backpropagation mechanism has
been widely challenged as biologically implausible (e.g.,
Crick, 1989; Zipser & Andersen, 1988), a recent analysis
shows that simple biologically-based mechanisms can be
used to implement this mechanism (O’Reilly, 1996), so
that it is quite reasonable to assume that the cortex de-
pends on this kind of learning.

Although the association of Hebbian learning with
the hippocampus and error-driven learning with the cor-
tex is appealing in some ways, it turns out that both
kinds of learning play important roles in both systems
(O’Reilly & Rudy, 1999; O’Reilly & Munakata, 2000;
O’Reilly, 1998). Thus, the specific learning principles
adopted here are that both forms of learning operate in
both systems:� Hebbian learning binds together co-occurring fea-

tures (in the hippocampus) and generally learns
about the co-occurrence statistics in the environ-
ment across many different patterns (in neocortex).� Error-driven learning shapes learning according to

specific task demands (shifting the balance of pat-
tern separation and completion in the hippocampus,
and developing task-appropriate representations in
the neocortex).

It is the existence of this task-driven learning that com-
plicates the picture for nonlinear discrimination learning
problems.

A Summary of Principles

The above principles can be summarized with the fol-
lowing three general statements of neocortical and hip-
pocampal learning properties (O’Reilly & Rudy, 1999):

Learning rate. The cortical system typically learns
slowly, while the hippocampal system typically
learns rapidly.

Conjunctive bias. The cortical system has a bias to-
wards integrating over specific instances to extract
generalities. The hippocampal system is biased by
its intrinsic sparseness to develop conjunctive repre-
sentations of specific instances of environmental in-
puts. However, this conjunctive bias trades-off with
the countervailing process of pattern completion, so
the hippocampus does not always develop new con-
junctive representations (sometimes it completes to
existing ones).

Learning mechanisms. Both cortex and hippocampus
use error-driven and Hebbian learning. The error-
driven aspect responds to task demands, and will
cause the network to learn to represent whatever is
needed to achieve goals or ends. Thus, the cortex
can overcome its bias and develop specific, conjunc-
tive representations if the task demands require this.
Also, error-driven learning can shift the hippocam-
pus from performing pattern separation to perform-
ing pattern completion, or vice-versa, as dictated by
the task. Hebbian learning is constantly operating,
and reinforcing the representations that are activated
in the two systems.

These principles are focused on distinguishing neo-
cortex and hippocampus — we have also articulated a
more complete set of principles that are largely common
to both systems (O’Reilly, 1998; O’Reilly & Munakata,
2000). Models incorporating these principles have been
extensively applied to a wide range of different cortical
phenomena, including perception, language, and higher-
level cognition. In the next section, we highlight the ap-
plication of the principles presented here to learning and
memory phenomena involving both the cortex and hip-
pocampus.
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Applications of the Principles

The principles just developed have been applied to
a number of different domains, as summarized in the
following sections. In most cases, the same neural
network model developed according to these principles
(O’Reilly & Rudy, 1999) was used to simulate the em-
pirical data, providing a compelling demonstration that
the principles are sufficient to account for a wide range
of findings.

Conjunctions and Nonlinear Discrimination
Learning

We first apply the above principles to the puzzling
pattern of hippocampal involvement in nonlinear dis-
crimination learning problems. The general statement of
the issue is that although we think the hippocampus is
specialized for encoding conjunctive bindings of stimuli
(and keeping these separated from each other to mini-
mize interference), apparently direct tests of this idea in
the form of nonlinear discrimination learning problems
have not provided clear support. Specifically, rats with
hippocampal lesions can learn a number of these non-
linear discrimination problems just like intact rats. The
general explanation of these results according to the full
set of principles outlined above is that:� The explicit task demands present in a nonlinear

discrimination learning problem cause the cortex
alone (with a lesioned hippocampus) to learn the
task via error-driven learning.� Nonlinear discrimination problems take many trials
to learn even in intact animals, allowing the slow
cortical learning to accumulate a solution.� The absence of hippocampal learning speed advan-
tages in normal rats, despite the more rapid hip-
pocampal learning rate, can be explained by the fact
that the hippocampus is engaging in pattern comple-
tion in these problems, instead of pattern separation.

We substantiated this verbal account by running com-
putational neural network simulations that embodied the
principles developed above (O’Reilly & Rudy, 1999;
Figure 4). These simulations showed that in many —
but not all — cases, removing the hippocampal compo-
nent did not significantly impair learning performance
on nonlinear discrimination learning problems, matching
the empirical data. Figure 5 shows one specific example,
where the negative patterning problem discussed previ-
ously (A+, B+, AB�) is impaired with hippocampal
lesions, but performance is not impaired on a very simi-
lar ambiguous featureproblem,AC+, B+, AB�, C�,
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Figure 4:The O’Reilly and Rudy (1999) model, showing both
cortical and hippocampal components. The cortex has 12 dif-
ferent input dimensions (sensory pathways), with 4 different
values per dimension. These are represented separately in the
elemental cortex (Elem). Higher level association cortex (As-
soc) can form conjunctive representations of these elements, if
demanded by the task. The interface to the hippocampus is via
the entorhinal cortex, which contains a one-to-one mappingof
the elemental, association, and output cortical representations.
The hippocampus can reinstate a pattern of activity over the
cortex via the EC.

(Gallagher & Holland, 1992). See O’Reilly and Rudy
(1999) for a detailed discussion of the differential per-
formance on these tasks.

To summarize, this work showed that it is essential to
go beyond a simple conjunctive story and include a more
complete set of principles in understanding hippocampal
and cortical function. Because this more complete set
of principles, implemented in an explicit computational
model, accounts for the empirical data, this data provides
support for these principles.

Rapid Incidental Conjunctive Learning Tasks

A consideration of the full set of principles suggests
that another class of tasks might provide a much better
measure of hippocampal learning compared to the non-
linear discrimination problems suggested by Sutherland
and Rudy (1989). As we just saw, the very fact that non-
linear discrimination problemsrequire conjunctive rep-
resentations is what drives the cortex alone to be able
to solve them via error-driven learning. Therefore, we
suggest thatincidentalconjunctive learning tasks, where
conjunctive representations are not forced by specific
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Figure 5:Results for the negative patterning (left column) and ambiguous feature (AC+, B+, AB�, C�; right column) prob-
lems. The top row shows data from rats from Alvarado and Rudy (1995), and the bottom row shows data from the model.Intact is
intact rats/networks, andHL is rats/networks with hippocampal lesions. N=40 differentrandom initializations for the model. The
hippocampally-lesioned system is able to learn the problems, and all conditions require many trials (i.e., large number of errors).
Negative patterning is differentially impaired with a hippocampal lesion. Data from O’Reilly and Rudy (1999).

task demands, may provide a much better index of hip-
pocampal function (O’Reilly & Rudy, 1999). Further-
more, the task should only allow for a relatively brief
period of learning, which will emphasize the rapid learn-
ing of the hippocampus as compared to the slow learning
of the cortex. Thus, we characterize these tasks asrapid,
incidental conjunctive learning tasks.

There are several recent studies of tasks that fit the
rapid, incidental conjunctive characterizations. In these
tasks, subjects are exposed to a set of features in a partic-
ular configuration, and then the features are rearranged.
Subjects are then tested to determine if they can detect
the rearrangement. If the test indicates that the rearrange-
ment was detected, then one can infer the subject learned
a conjunctive representation of the original configura-
tion. The literature indicates that the incidental learning
of stimulus conjunctions, unlike many nonlinear discrim-
ination problems,is dependent on the hippocampus.

Perhaps the simplest demonstration comes from the
study of the role of the hippocampal formation in ex-
ploratory behavior. Control rats and rats with damage
to the dorsal hippocampus were repeatedly exposed to a
set of objects that were arranged on a circular platform
in a fixed configuration relative to a large and distinct
visual cue (Save, Poucet, Foreman, & Buhot, 1992). Af-
ter the exploratory behavior of both sets of rats habitu-
ated, the same objects were rearranged into a different
configuration. This rearrangement reinstated exploratory
behavior in the control rats but not in the rats with dam-

age to the hippocampus. In a third phase of the study, a
new object was introduced into the mix. This manipula-
tion reinstated exploratory behavior in both sets of rats.
This pattern of data suggests that both control rats and
rats with damage to the hippocampus encode representa-
tions of the individual objects and can discriminate them
from novel objects. However, only the control rats en-
coded the conjunctions necessary to represent the spatial
arrangement of the objects, even though this was not in
any way a requirement of the task. Several other stud-
ies of this general form have found similar results in
rats (Honey, Watt, & Good, 1998; Honey & Good, 1993;
Good & Bannerman, 1997; Hall & Honey, 1990; Honey,
Willis, & Hall, 1990). In humans, the well established
incidental context effects on memory (e.g., Godden &
Baddeley, 1975) have been shown to be hippocampal-
dependent (Mayes, MacDonald, Donlan, & Pears, 1992).
Other hippocampal incidental conjunctive learning ef-
fects have also been demonstrated in humans (Chun &
Phelps, 1999).

We have shown that the same neural network model
constructed according to our principles and tested on the
nonlinear discrimination learning problems as described
above exhibits a clear hippocampal sensitivity in these
rapid incidental conjunctive learning tasks (O’Reilly &
Rudy, 1999).
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Contextual Fear Conditioning

Evidence for the involvement of the hippocampal for-
mation in the incidental learning of stimulus conjunc-
tions has also emerged in the contextual fear condition-
ing literature. This example also provides a simple ex-
ample of the widely-discussed role of the hippocampus
in spatial learning (e.g., O’Keefe & Nadel, 1978; Mc-
Naughton & Nadel, 1990). Rats with damage to the
hippocampal formation do not express fear to a con-
text or place where shock occurred, but will express
fear to an explicit cue (e.g., a tone) paired with shock
(Kim & Fanselow, 1992; Phillips & LeDoux, 1994; but
see Maren, Aharonov, & Fanselow, 1997). Rudy and
O’Reilly (1999) recently provided specific evidence that,
in intact rats, the context representations are conjunc-
tive in nature, which has been widely assumed (e.g.,
Fanselow, 1990; Kiernan & Westbrook, 1993; Rudy &
Sutherland, 1994). For example, we compared the ef-
fects of preexposure to the conditioning context with the
effects of preexposure to the separate features that made
up the context. Only preexposure to the intact context
facilitated contextual fear conditioning, suggesting that
conjunctive representations across the context features
were necessary. We also showed that pattern completion
of hippocampal conjunctive representations can lead to
generalized fear conditioning.

We have simulated the incidental learning of con-
junctive context representations in fear conditioning us-
ing the same principles as described above (O’Reilly &
Rudy, 1999). For example, Figure 6 shows the rat and
model data for the separate versus intact context fea-
tures experiment from Rudy and O’Reilly (1999), with
the model providing a specific prediction regarding the
effects of hippocampal lesions, which has yet to be tested
empirically.

Transitivity and Flexibility

Whereas the previous examples concern the learn-
ing of conjunctive representations, this next example is
concerned with the flexible use of learned information.
Several theorists have described memories encoded by
the hippocampus as being flexible, meaning that (a) such
memories can be applied inferentially in novel situations
(Eichenbaum, 1992; O’Keefe & Nadel, 1978) or (b) that
they are available to multiple response systems (Squire,
1992). Although the termflexibility provides a useful de-
scription of certain behaviors, it does not provide a mech-
anistic understanding of how this flexibility arises from
the properties of the hippocampus.

We have shown that hippocampal pattern completion
plays an important role in producing this flexible behav-
ior (O’Reilly & Rudy, 1999). Specifically, we showed
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Figure 6:Effects of exposure to the features separately com-
pared to exposure to the entire context on level of fear response
in a) rats (data from Rudy and O’Reilly (1999)) and the model.
The immediate shock condition (Immed) is included as a con-
trol condition for the model. Intact rats and the intact model
show a significant effect of being exposed to the entire con-
text together compared to the features separately, while the hip-
pocampally lesioned model exhibits slightly more responding
in the separate condition, possibly because of the greater over-
all number of training trials in this case. Simulation data from
O’Reilly and Rudy (1999).

that thetransitivity studies of Bunsey and Eichenbaum
(1996) and Dusek and Eichenbaum (1997) can be sim-
ulated using the same model as in all of the previous
examples, with pattern completion playing a key role.
Interestingly, the model shows that the training parame-
ters employed in these studies interact significantly with
the pattern completion mechanism to produce the ob-
served transitivity effects. We are able to make a number
of novel empirical predictions that are inconsistent with
a simple logical-reasoning mechanism by manipulating
these factors (O’Reilly & Rudy, 1999).

Dual-Process Memory Models

The dual mechanisms of neocortex and hippocampus
provide a natural fit with dual-process models of recogni-
tion memory (Jacoby, Yonelinas, & Jennings, 1997; Ag-
gleton & Shaw, 1996; Aggleton & Brown, 1999; Vargha-
Khadem, Gadian, Watkins, Connelly, Van Paesschen, &
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Mishkin, 1997; Holdstock, Mayes, Roberts, Cezayirli,
Isaac, O’Reilly, & Norman, in press; O’Reilly et al.,
1998). These models hold that recognition can be sub-
served by two different processes, arecollectionprocess
and afamiliarity process. Recollection involves the re-
call of specific episodic details about the item, and thus
fits well with the hippocampal principles developed here.
Indeed, we have simulated distinctive aspects of recol-
lection using essentially the same model (O’Reilly et al.,
1998). Familiarity is a non-specific sense that the item
has been seen recently — we argue that this can be sub-
served by the small weight changes produced by slow
cortical learning. Current simulation work has shown
that a simple cortical model can account for a number of
distinctive properties of the familiarity signal (Norman,
O’Reilly, & Huber, 2000).

One specific and somewhat counter-intuitive predic-
tion of our principles has recently been confirmed em-
pirically in experiments on a patient with selective hip-
pocampal damage (Holdstock et al., in press). This
patient showed intact recognition memory for studied
items compared to similar lures when tested in a two-
alternative forced-choice procedure (2AFC), but was sig-
nificantly impaired relative to controls for the same kinds
of stimuli using a single item yes-no (YN) procedure.
We argue that because the cortex uses overlapping dis-
tributed representations, the strong similarity of the lures
to the studied items produces a strong familiarity sig-
nal for these lures (as a function of this overlap). When
tested in a YN procedure, this strong familiarity of the
lures produces a large number of false alarms, as was ob-
served in the patient. However, because the studied item
has a small but reliably stronger familiarity signal than
the similar lure, this strength difference can be detected
in the 2AFC version, resulting in normal recognition per-
formance in this condition. The normal controls, in con-
trast, have an intact hippocampus which performs pattern
separation and is able to distinguish the studied items and
similar lures, regardless of the testing format.

Retrograde Amnesia

Several lines of empirical evidence suggest that there
is a retrograde gradientfor memory loss as a function
of hippocampal damage, with the mostrecent memo-
ries being the most severely affected, while older mem-
ories are relatively intact (e.g., Squire, 1992; Winocur,
1990; Kim & Fanselow, 1992; Zola-Morgan & Squire,
1990). Theoretically, this phenomenon can be under-
stood in terms of the cortex gradually acquiring hip-
pocampal information (e.g., McClelland et al., 1995;
Alvarez & Squire, 1994). However, this account has
been called into question recently, both from failures to
replicate the retrograde findings (Sutherland, Weisend,

Mumby, Astur, Hanlon, Koerner, & Thomas, in press),
and reinterpretations of the existing findings in ways that
do not require that the cortex acquires information from
the hippocampus (e.g., the “multiple hippocampal trace”
theory of Nadel & Moscovitch, 1997).

Our computational principles suggest that to the ex-
tent there are opportunities for the hippocampus to reac-
tivate cortical patterns of activity, the consequent cortical
learning will necessarily produce a consolidation-like ef-
fect. We were able to fit a number of different retro-
grade amnesia gradients using these principles (McClel-
land et al., 1995).

Comparison with Other Approaches

A number of other approaches to understanding cor-
tical and hippocampal function share important similari-
ties with our approach, including for example the use of
Hebbian learning and pattern separation (e.g., Hasselmo,
1997; McNaughton & Nadel, 1990; Touretzky & Redish,
1996; Burgess & O’Keefe, 1996; Wu, Baxter, & Levy,
1996; Treves & Rolls, 1994; Moll & Miikkulainen, 1997;
Alvarez & Squire, 1994). These other approaches all of-
fer other important principles, many of which would be
complementary to those discussed here so that it would
be possible to add them to a larger, more complete model.

Perhaps the largest area of disagreement is in terms
of the relative independence of the cortical learning
mechanisms from the hippocampus. There are several
computationally-explicitmodels that propose the neocor-
tex is incapable of powerful learning without the help of
the hippocampus (Gluck & Myers, 1993; Schmajuk &
DiCarlo, 1992; Rolls, 1990), and other more general the-
oretical views that express a similar notion of limited cor-
tical learning with hippocampal damage (Glisky, Schac-
ter, & Tulving, 1986; Squire, 1992; Cohen & Eichen-
baum, 1993; Wickelgren, 1979; Sutherland & Rudy,
1989). In contrast, our principles hold that the cortex
alone is a highly capable learning system, that can for ex-
ample learn complex conjunctive representations in the
service of nonlinear discrimination learning problems.

Empirically, the data that appears to support the lim-
ited cortical learning view tends to be based on larger
lesions of the medial temporal lobe. With the advent
of selective lesion techniques in rats and monkeys, and
the study of people with highly selective hippocampal
lesions, it is becoming clear that the cortex is capable
of quite substantial learning on its own. Perhaps the
most dramatic evidence comes from a group of human
amnesics who suffered bilateral selective hippocampal
damage at relatively young ages (Vargha-Khadem et al.,
1997). Despite having significantly impaired hippocam-
pal function (as was supported by brain scans and very
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poor performance on recall tests), these individuals had
acquired normal or nearly normal levels of cognitive
functioning in language, semantic knowledge, and had
normal or nearly-normal IQs. Although it is difficult to
completely rule out the idea that this preserved semantic
learning is the result of residual hippocampal functioning
(as advocated by Squire & Zola, 1998), this seems some-
what implausible in the face of the patient’s significant
recall impairments and the brain scan evidence.

One important conclusion from this line of reasoning
is that the cortical regions surrounding the hippocampus
in the medial temporal lobes are particularly important
for many kinds of learning and memory. We suggest that
this is because of a significant convergence of other cor-
tical association areas in these regions (O’Reilly & Rudy,
1999; Mishkin, Suzuki, Gadian, & Vargha-Khadem,
1997; Mishkin, Vargha-Khadem, & Gadian, 1998).

Summary

We have shown that a small set of computationally-
motivated principles can account for a wide range of em-
pirical findings regarding the differential properties of
the neocortex and hippocampus in learning and memory.
In addition, these principles make a large number of em-
pirical predictions that will be tested in future research.
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