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Abstract

We present an overview of our computational approach tosvardierstanding the different contributions of the neo-
cortex and hippocampus in learning and memory. The applisdsed on a set of principles derived from converging
biological, psychological, and computational constraiffthe most central principles are that the neocortex ensploy
a slow learning rate and overlapping distributed represtents to extract the general statistical structure of ting-e
ronment, while the hippocampus learns rapidly using seépdnr@presentations to encode the details of specific events
while suffering minimal interference. Additional prindgs concern the nature of learning (error-driven and Habbia
and recall of information via pattern completion. We sumizethe results of applying these principles to a wide range
of phenomena in conditioning, habituation, contextualri@®y, recognition memory, recall, and retrograde amnesia
and point to directions of current development.
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H a) AB-AC List Learning in Humans b) AB-AC List Learning in Model
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This approach uses basic principles of computational |, ol
neural network learning mechanisms to understand both 01 5 10 20 05 10 15 20 25 30 35 40 45 50

Learning Trials on AC List Learning Trials on AC List

whatis different about the way these two neural systems
learn, andvhythey should have these differences. Thus'Figure 1: Human and model data for AB-AC list learning.

the computational approach can go beyond mere descrigy jymans show some interference for the AB list items as a
tion towards understanding the deeper principles undefnction of new learning on the AC list items. b) Model shows
lying the organization of the cognitive system. Thesea catastrophic level of interference. (data reproduceh fic-
principles are based on an convergence of biologicalCloskey & Cohen, 1989).

psychological, and computational constraints, and serve

to bridge betwe.en 'Fhese (_1|fferent Ie.vels- of analysis. _iteration of learning thedC list. Subjects exhibit some
The set of principles discussed in this paper were firsjeyg| of interference on the initially learnedB asso-

developed in McClelland, McNaughton, and O'Reilly cjations as a result of learning th& list, but they still

(1995), and have been refined several times s_ince theRmember a reasonable percentage (see Figure 1a for rep-
(O'Reilly, Norman, & McClelland, 1998; O'Reilly & | agentative data).

Rudy, 1999, in press). The computational principles have The first set of principles concern the effects of over-

been applied to a wide range of learning and memo . . . .
. apping representations (i.e., shared units between two
phenomena across several species (rats, monkeys and hy: e .
ifferent distributed representations) and rate of learn-

mans). For example, they can account for impaired an s . . . .
. . : : . ing on the ability to rapidly learn new information with a
preserved learning capacities with hippocampal lesion . - : :
evel of interference characteristic of human subjects:

in conditioning, habituation, contextual learning, reeog
nition memory, recall_, and retrograde amnesig. This pa- o Overlapping representations lead to interference
per provides a concise summary of the previous work, (conversely, separated representations prevent inter-

and a discussion of current and future directions. ference).
e A faster learning rate causes more interference
The Principles (conversely, a slower learning rate causes less in-
terference).

There are several levels of principles that can be dis- - . L I
L ; e .~ The mechanistic basis for these principles within a neural
tinguished by their degree of specificity in characteriz-

. . : network perspective is straightforward. Interference is
ing the nature of the underlying mechanisms. We be- . -
2 ST caused when weights used to encode one association are
gin with the most basic principles and proceed towards,. : .
e disturbed by the encoding of another (Figure 2a). Over-
greater specificity. . )
lapping patterns share more weights, and therefore lead
_ to greater amounts of interference. Clearly, if entirely
Learning Rate, Overlap, and Interference separate representations are used to encode two different
associations, then there will be no interference whatso-

The most basic set of principles can be motivated byever (Figure 2b). The story with learning rate is simi-

co_n5|der|n_g how subs_equent Iearnlng can mte_rfere Wltharly straightforward. Faster learning rates lead to more
prior learning. A classic example of this kind of interfer- weight change, and thus greater interference (Figure 3).

ence can be found in thé B — AC associative learning ; - :
However, a fast learning rate is necessary for rapid learn-
task (e.g., Barnes & Underwood, 1959). THerepre- ing g y P

sents one set of words that are associated with two dif-
ferent sets of other wordd; andC'. For example, the 104 ration and Extracting Statistical Structure
word windowwill be associated with the wongasonin
the AB list, and associated wittocomotiveon the AC Figure 3 shows the flip side of the interference story,
list. After studying thed B list of associates, subjects are integration If the learning rate is low, then the weights
tested by asking them to give the appropriBtassociate  will integrate over many experiences, reflecting the

for each of thed words. Then, subjects study th&” derlying statisticof the environment (White, 1989; Mc-
list (often over multiple iterations), and are subsequentl Clelland et al., 1995). Furthermore, overlapping repre-
tested on both lists for recall of the associates after eackentations facilitate this integration process, because t



List 1: A—>B List 2: A—>C

a) Remembering specifics using same
representations causes interference.

List 1: A—>B List 2: A—>C

b) Separated (conjunctive) represen—
tations and fast weight changes
enable rapid learning of specifics
without interference.
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same weights need to be reused across many different
experiences to enable the integration produced by a slow
learning rate. This leads to the next principle:

e Integration across experiences to extract underlying
statistical structure requires a slow learning rate and
overlapping representations.

Episodic Memory and Generalization: Incom-
patible Functions

Thus, focusing only on pattern overlap for the mo-
ment, we can see that networks can be optimized for two
different, and incompatible, functions: avoiding interfe
ence or integrating across experiences to extract general-
ities. Avoiding interference requires separated represen
tations, while integration requires overlapping represen

Figure 2: Interference as a function of overlapping (same) fations. These two functions each have clear functional

representations versus separated representat®ndsing the
same representation to encode two different associatidns (

B andA — C) causes interference — the subsequent learning

of A — C interferes with the prior learning o — B because
the A stimulus must have stronger weights@othan toB for
the second association, as is reflected in the wei@hta.sepa-

rated representation, wherkis encoded separated for the first

list (A1) versus the second lis#i) prevents interference.
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Figure 3:Weight value learning about a single input unit that
is either active or not. The weight increases when the input
is on, and decrease when it is off, in proportion to the size of
the learning rate. The input has an overall probability of be

ing active of .7. Larger learning rates (.1 or 1) lead to more

interference on prior learning, resulting in a weight vathat

advantages, leading to a further set of principles:

e Interference avoidance is essential fepisodic
memory, which requires learning about the specifics
of individual events and keeping them separate from
other events.

e Integration is essential for encoding the general
statistical structure of the environment, abstracted
away from the specifics of individual events, which
enablegyjeneralizatiorto novel situations.

The incompatibility between these functions is fur-
ther evident in these descriptions (i.e., encoding speacific
versus abstracting away from them). Also, episodic
memory requires relatively rapid learning — an event
must be encoded as it happens, and does not typically re-
peat itself for further learning opportunities. This com-
pletes a pattern of opposition between these functions:
episodic learning requires rapid learning while integra-
tion and generalization requires slow learning. This is
summarized in the following principle:

e Episodic memory and extracting generalities are in
opposition. Episodic memory requires rapid learn-
ing and separated patterns, while extracting gener-
alities requires slow learning and overlapping pat-
terns.

Applying the Principles to the Hippocampus

bounces around substantially with each training exampte. | and Neocortex

the extreme case of a learning rate of 1, the weight only rsflec
what happened on the previous trial, retaining no memory for

prior events at all. As the learning rate gets smaller (.00%

Armed with these principles, the finding that neural
network models that have highly overlapping represen-

weight smoothly averages over individual events and reflect tations exhibitcatastrophiclevels of interference (Mc-

the overall statistical probability of the input being aeti

Closkey & Cohen, 1989, Figure 1b) should not be sur-
prising. A number of researchers showed that this in-
terference can be reduced by introducing various factors
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that result in less pattern overlap (e.g., Kortge, 1993; One important application of the conjunctive rep-
French, 1992; Sloman & Rumelhart, 1992; McRae & resentations idea has beenrtonlinear discrimination
Hetherington, 1993). Thus, instead of concluding thatproblems These problems require conjunctive represen-
all neural networks are fundamentally flawed, as Mc-tations to solve because each of the individual stimuli is
Closkey and Cohen (1989) argued (and a number of othambiguous (equally often rewarded and not rewarded).
ers have uncritically accepted), McClelland et al. (1995)The negative patterning problem is a good example. It
argued that this catastrophic failure serves as an impotinvolves two stimuli,A and B (e.g., a light and a tone),
tant clue into the structure of the human brain. which are associated with reward (indicated ¥y or
Specifically, we argued that because of the fundanot (—). Three different trial types are trainedd+,
mental incompatibility between episodic memory andB+, AB—. Thus, the conjunction of the two stimuli
extracting generalities, the brain should employ two sep{AB—) must be treated differently from the two stim-
arate systems that each optimize these two objectives irtili separately f+, B+). A conjunctive representa-
dividually, instead of having a single system that triestion that forms a novel encoding of the two stimuli to-
to strike an inferior compromise. This line of reasoning 9ether can facilitate this form of learning. Therefore,
provides a strikingly good fit to the known properties of the fact that hippocampal damage impairs learning the
the hippocampus and neocortex, respectively. The dedegative patterning problem (Alvarado & Rudy, 1995;
tails of this fit in various contexts is the substance of theRudy & Sutherland, 1995; McDonald, Murphy, Guar-
remainder of the paper, but the general idea is that: ~ raci, Gortler, White, & Baker, 1997) would appear to
support the idea that the hippocampus employs pattern
e The hippocampus rapidly binds together informa-separated, conjunctive representations. However, it is
tion using pattern-separated representations to minfow clear that a number of other nonlinear discrimina-
imize interference. tion learning problems are unimpaired by hippocampal
damage (Rudy & Sutherland, 1995). The next set of prin-
« The neocortex slowly learns about the general stagjp|es help to make sense of these data so that they can be
tistical structure of the environment using overlap- reconciled with our interference-based principles of con-
ping distributed representations. junctive pattern separation, as discussed in a subsequent

o section.
(see also Sherry & Schacter, 1987 for a similar conclu-

sion). Before discussing the details, a few more princi-
ples need to be developed first.

Conjunctive Representations and NonlinearPattern Completion: Recalling a Conjunction
Discrimination Learning

The conjunctiveor configural representations the- Pattern completioiis required for recalling informa-
ory provides a converging line of thinking about the na-tion from conjunctive hippocampal representations, yet
ture of hippocampal function (Sutherland & Rudy, 1989; it conflicts with the process of pattern separation that
Rudy & Sutherland, 1995; Wickelgren, 1979; O’'Reilly & forms these representations in the first place (O'Reilly &
Rudy, 1999). A conjunctive/configural representation isMcClelland, 1994). Pattern completion occurs when a
one that binds together (conjoins or configures) multi-partial input cue drives the hippocampus to complete to
ple elements into a novel unitary representation. Thisan entire previously-encoded set of features that were
is consistent with the description of hippocampal func-bound together in a conjunctive representation. For a
tion given above, based on the need to separate pattergéven input pattern, a decision must be made to recog-
to avoid interference. Indeed, it is clear that patternnize it as a retrieval cue for a previous memory and per-
separation and conjunctive representations are two sidgerm pattern completion, or to perform pattern separa-
of the same coin, and that both are caused by the usiéon and store the input as a new memory. This deci-
of sparserepresentations (having relatively few active sion is often difficult given noisy inputs and degraded
neurons) that are a known property of the hippocampusgnemories. The hippocampus implements this decision
(O’Reilly & McClelland, 1994; O’'Reilly & Rudy, 1999). as the effects of a set of basic mechanisms operating
To summarize: on input patterns (O'Reilly & McClelland, 1994; Has-

selmo & Wyble, 1997), and it does not always do what

e Sparse hippocampal representations lead to patterwould seem to be the right thing to do from an omniscient

separation (to avoid interference) and conjunctiveperspective knowing all the relevant task factors — this

representations (to bind together features into a unican complicate the involvement of the hippocampus in
tary representation). nonlinear discrimination problems.



Learning Mechanisms: Hebbian and Error

Driven

To more fully explain the roles of the hippocampus
and neocortex we need to understand how learning works
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specific task demands (shifting the balance of pat-
tern separation and completion in the hippocampus,
and developing task-appropriate representations in
the neocortex).

in these systems (the basic principles just described dP( is the existence of this task-driven learning that com-

not depend on the detailed nature of the learning mech:
anisms; White, 1989). There are two basic mechanism
that have been discussed in the literature, Hebbian and
error-driven learning (e.g., Marr, 1971; McNaughton &
Morris, 1987; Gluck & Myers, 1993; Schmajuk & Di-
Carlo, 1992). Briefly, Hebbian learning (Hebb, 1949)

licates the picture for nonlinear discrimination leagnin
roblems.

A Summary of Principles

The above principles can be summarized with the fol-

works by increasing weights between co-active neurongoying three general statements of neocortical and hip-
(and usually decreasing weights when a receiver is a‘(’j)ocampal learning properties (O’Reilly & Rudy, 1999):

tive and the sender is not), which is a well-establishe

property of biological synaptic modification mechanisms|_earning rate. The cortical system typically learns

(e.g., Collingridge & Bliss, 1987). Hebbian learning is
useful for binding together features active at the same
time (e.g., within the same episode), and has therefore

slowly, while the hippocampal system typically
learns rapidly.

been widely suggested as a hippocampal learning mechsonjunctive bias. The cortical system has a bias to-

anism (e.g., Marr, 1971; McNaughton & Morris, 1987).

Error-driven learning works by adjusting weights to
minimize the errors in a network’s performance, with
the best example of this being tleeror backpropaga-
tion algorithm (Rumelhart, Hinton, & Williams, 1986).
Error-driven learning is sensitive to task demands in a
way that Hebbian learning is not, and this makes it a
much more capable form of learning for actually achiev-
ing a desired input/output mapping. Thus, it is natural
to associate this form of learning with the kind of pro-
cedural or task-driven learning that the neocortex is o
ten thought to specialize in (e.g., because amnesics with
hippocampal damage have preserved procedural learning
abilities). Although the backpropagation mechanism has
been widely challenged as biologically implausible (e.g.,
Crick, 1989; Zipser & Andersen, 1988), a recent analysis
shows that simple biologically-based mechanisms can be
used to implement this mechanism (O’Reilly, 1996), so
that it is quite reasonable to assume that the cortex de-
pends on this kind of learning.

Although the association of Hebbian learning with
the hippocampus and error-driven learning with the cor-
tex is appealing in some ways, it turns out that both
kinds of learning play important roles in both systems
(O'Reilly & Rudy, 1999; O'Reilly & Munakata, 2000;

wards integrating over specific instances to extract
generalities. The hippocampal system is biased by
its intrinsic sparseness to develop conjunctive repre-
sentations of specific instances of environmental in-
puts. However, this conjunctive bias trades-off with
the countervailing process of pattern completion, so
the hippocampus does not always develop new con-
junctive representations (sometimes it completes to
existing ones).

f_Learning mechanisms. Both cortex and hippocampus

use error-driven and Hebbian learning. The error-
driven aspect responds to task demands, and will
cause the network to learn to represent whatever is
needed to achieve goals or ends. Thus, the cortex
can overcome its bias and develop specific, conjunc-
tive representations if the task demands require this.
Also, error-driven learning can shift the hippocam-
pus from performing pattern separation to perform-
ing pattern completion, or vice-versa, as dictated by
the task. Hebbian learning is constantly operating,
and reinforcing the representations that are activated
in the two systems.

These principles are focused on distinguishing neo-

cortex and hippocampus — we have also articulated a

O'Reilly, 1998). Thus, the specific learning principles mqre complete set of principles that are largely common
adopted here are that both forms of learning operate iR, poth systems (O'Reilly, 1998; O'Reilly & Munakata,

both systems: 2000). Models incorporating these principles have been

e Hebbian learning binds together co-occurring fea_extensively applied_to a wide range of different cor_tical
tures (in the hippocampus) and generally leamﬁphenomer.]e.l, including perceptlgn, Iangugge_, and higher-
about the co-occurrence statistics in the environ-evel cognition. In the next section, we highlight the ap-

ment across many different patterns (in neocortex).pl'caltlon of the prmup_les pr_esented here to learning a_nd
memory phenomena involving both the cortex and hip-

e Error-driven learning shapes learning according topocampus.
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Applications of the Principles / 7 7

The principles just developed have been applied to
a number of different domains, as summarized in the
following sections. In most cases, the same neural
network model developed according to these principles
(O'Reilly & Rudy, 1999) was used to simulate the em-
pirical data, providing a compelling demonstration that b ,,\ \ ‘[
the principles are sufficient to account for a wide range
of findings.

Hippocampus

Conjunctions and Nonlinear Discrimination
Learning

Cortex

We first apply the above principles to the puzzling
pattern of hippocampal involvement in nonlinear dis-
crimination learning problems. The general statement of
the issue is that although we think the hippocampus is
specialized for encoding conjunctive bindings of stimuli
(and keeping these separated from each other to miniFigure 4:The O'Reilly and Rudy (1999) model, showing both
mize interference), apparently direct tests of this idea incortical and hippocampal components. The cortex has 12 dif-
the form of nonlinear discrimination learning problems ferent input dimensions (sensory pathways), with 4 diffiere
have not provided clear support. Specifically, rats withvalues per dimension. These are represented separatélg in t
hippocampal lesions can learn a number of these norlemental cortex (.Elem.). Higher Ievell association cort@g—(
linear discrimination problems just like intact rats. The SOC) can form conjunctive representations of these elesnént

general explanation of these results according to the fulfemanded. by the task. The interface to the hippocampus is via
set of principles outlined above is that: he entorhinal cortex, which contains a one-to-one mappfng

the elemental, association, and output cortical repratiens.

o . . The hippocampus can reinstate a pattern of activity over the
e The explicit task demands present in a nonlinearygtex via the EC.

discrimination learning problem cause the cortex
alone (with a lesioned hippocampus) to learn the
task via error-driven learning. (Gallagher & Holland, 1992). See O'Reilly and Rudy

_ S ~(1999) for a detailed discussion of the differential per-
¢ Nonlinear discrimination problems take many trials fgrmance on these tasks.

to learn even in intact animals, allowing the slow
cortical learning to accumulate a solution.

To summarize, this work showed that it is essential to
go beyond a simple conjunctive story and include a more
« The absence of hippocampal learning speed advarfomplete set of principles in understanding hippocampal

tages in normal rats, despite the more rapid hip-a”d cortical function. Because this more complete set
pocampal learning rate, can be explained by the facPf principles, implemented in an explicit computational
that the hippocampus is engaging in pattern comple-mOdeL accounts for the empirical data, this data provides
tion in these problems, instead of pattern separationSUPPOTt for these principles.

We substantiated this verbal account by running comRgpid Incidental Conjunctive Learning Tasks
putational neural network simulations that embodied the

principles developed above (O'Reilly & Rudy, 1999; A consideration of the full set of principles suggests
Figure 4). These simulations showed that in many —that another class of tasks might provide a much better
but not all — cases, removing the hippocampal compoineasure of hippocampal learning compared to the non-
nent did not significantly impair learning performance linear discrimination problems suggested by Sutherland
on nonlinear discrimination learning problems, matchingand Rudy (1989). As we just saw, the very fact that non-
the empirical data. Figure 5 shows one specific exampldjnear discrimination problemeequire conjunctive rep-
where the negative patterning problem discussed previresentations is what drives the cortex alone to be able
ously (44, B+, AB—) is impaired with hippocampal to solve them via error-driven learning. Therefore, we
lesions, but performance is not impaired on a very simi-suggest thaincidentalconjunctive learning tasks, where
lar ambiguous featurproblem,AC+, B+, AB—, C—, conjunctive representations are not forced by specific



O'Reilly 7

a) Negative Patterning: Rats b) Ambiguous Feature: Rats
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Figure 5: Results for the negative patterning (left column) and ambig feature AC+, B+, AB—, C—; right column) prob-
lems. The top row shows data from rats from Alvarado and Ru@9%), and the bottom row shows data from the mobteact is
intact rats/networks, andL is rats/networks with hippocampal lesions. N=40 differemtdom initializations for the model. The
hippocampally-lesioned system is able to learn the probJeand all conditions require many trials (i.e., large nuntfesrrors).
Negative patterning is differentially impaired with a hggampal lesion. Data from O’Reilly and Rudy (1999).

task demands, may provide a much better index of hip-age to the hippocampus. In a third phase of the study, a
pocampal function (O'Reilly & Rudy, 1999). Further- new object was introduced into the mix. This manipula-
more, the task should only allow for a relatively brief tion reinstated exploratory behavior in both sets of rats.
period of learning, which will emphasize the rapid learn- This pattern of data suggests that both control rats and
ing of the hippocampus as compared to the slow learningats with damage to the hippocampus encode representa-
of the cortex. Thus, we characterize these taskapisl,  tions of the individual objects and can discriminate them
incidental conjunctive learning tasks from novel objects. However, only the control rats en-
There are several recent studies of tasks that fit th€oded the conjunctions necessary to represent the spatial
rapid, incidental conjunctive characterizations. In thes arrangement of the objects, even though this was not in
tasks, subjects are exposed to a set of features in a partidny way a requirement of the task. Several other stud-
ular configuration, and then the features are rearrangedes of this general form have found similar results in
Subjects are then tested to determine if they can detedgts (Honey, Watt, & Good, 1998; Honey & Good, 1993;
the rearrangement. If the test indicates that the rearrangé>00d & Bannerman, 1997; Hall & Honey, 1990; Honey,
ment was detected, then one can infer the subject learnadillis, & Hall, 1990). In humans, the well established
a conjunctive representation of the original configura-incidental context effects on memory (e.g., Godden &
tion. The literature indicates that the incidental leagnin Baddeley, 1975) have been shown to be hippocampal-
of stimulus conjunctions, unlike many nonlinear discrim- dependent (Mayes, MacDonald, Donlan, & Pears, 1992).
ination pr0b|emsi,s dependent on the hippocampus_ Other hippocampal incidental Conjunctive Iearning ef-

Perhaps the simplest demonstration comes from th&Cts have also been demonstrated in humans (Chun &

study of the role of the hippocampal formation in ex- Phelps, 1999).

ploratory behavior. Control rats and rats with damage We have shown that the same neural network model
to the dorsal hippocampus were repeatedly exposed to gonstructed according to our principles and tested on the
set of objects that were arranged on a circular platformnonlinear discrimination learning problems as described
in a fixed configuration relative to a large and distinct above exhibits a clear hippocampal sensitivity in these
visual cue (Save, Poucet, Foreman, & Buhot, 1992). Af-rapid incidental conjunctive learning tasks (O'Reilly &
ter the exploratory behavior of both sets of rats habitu-Rudy, 1999).

ated, the same objects were rearranged into a different

configuration. This rearrangement reinstated exploratory

behavior in the control rats but not in the rats with dam-
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Contextual Fear Conditioning a) , -reexposure To Sep Features: Rats
Evidence for the involvement of the hippocampal for- -l-

mation in the incidental learning of stimulus conjunc- =)

tions has also emerged in the contextual fear condition- 5 40 J_

ing literature. This example also provides a simple ex- I

ample of the widely-discussed role of the hippocampus £

in spatial learning (e.g., O'Keefe & Nadel, 1978; Mc- S 20 T

Naughton & Nadel, 1990). Rats with damage to the - +

hippocampal formation do not express fear to a con- 0 | |

text or place where shock occurred, but will express Control ~ Separate  Together

fear to an explicit cue (e.g., a tone) paired with shock )

(Kim & Fanselow, 1992; Phillips & LeDoux, 1994; but b) 0.30 Preexposure To Sep Features: Model

see Maren, Aharonov, & Fanselow, 1997). Rudy and —

O'Reilly (1999) recently provided specific evidence that, 0.25 ; HL

in intact rats, the context representations are conjunc- § 0.20

tive in nature, which has been widely assumed (e.g., § 015

Fanselow, 1990; Kiernan & Westbrook, 1993; Rudy & g

Sutherland, 1994). For example, we compared the ef- g 0.10

fects of preexposure to the conditioning context with the * 0.05

effects of preexposure to the separate features that made

up the context. Only preexposure to the intact context 0.00 == Separate — Together

facilitated contextual fear conditioning, suggestingttha

conjunctive representations across the context featureéigure 6: Effects of exposure to the features separately com-
were necessary. We. also_showed that pz_;\ttern Complet'oﬁbred to exposure to the entire context on level of fear nesgpo
of hlppqcampal conjunctive representations can lead G g) rats (data from Rudy and O'Reilly (1999)) and the model.
generalized fear conditioning. The immediate shock condition (Immed) is included as a con-
We have simulated the incidental learning of con-trol condition for the model. Intact rats and the intact mode

junctive context representations in fear conditioning us-Show a significant effect of being exposed to the entire con-
ing the same principles as described above (O'Reilly &lexttogether colmpared tothe fegtgres §eparate|y, whelaifh .
Rudy, 1999). For example, Figure 6 shows the rat and)ocampally |e5|oned_ model ex_hlblts slightly more respogdi
model data for the separate versus intact context fea: the separate C_OT‘d'“".”' pf)SS't.’ly becaus_e of the greueer o

. v ... all number of training trials in this case. Simulation datanfi
tures experiment from Rudy and O’Reilly (1999), with ~,- .

- - . . O'Reilly and Rudy (1999).

the model providing a specific prediction regarding the

effects of hippocampal lesions, which has yet to be tested

empirically. that thetransitivity studies of Bunsey and Eichenbaum
(1996) and Dusek and Eichenbaum (1997) can be sim-
Transitivity and Flexibility ulated using the same model as in all of the previous

examples, with pattern completion playing a key role.
Whereas the previous examples concern the learnterestingly, the model shows that the training parame-
ing of conjunctive representations, this next example igers employed in these studies interact significantly with
concerned with the flexible use of learned information.the pattern completion mechanism to produce the ob-
Several theorists have described memories encoded kserved transitivity effects. We are able to make a number
the hippocampus as being flexible, meaning that (a) suchf novel empirical predictions that are inconsistent with
memories can be applied inferentially in novel situationsa simple logical-reasoning mechanism by manipulating
(Eichenbaum, 1992; O’'Keefe & Nadel, 1978) or (b) that these factors (O'Reilly & Rudy, 1999).
they are available to multiple response systems (Squire,
1992). AIthough.the terrﬁgxibi!ity provides a u_seful de- Dual-Process Memory Models
scription of certain behaviors, it does not provide a mech-
anistic understanding of how this flexibility arises from The dual mechanisms of neocortex and hippocampus
the properties of the hippocampus. provide a natural fit with dual-process models of recogni-
We have shown that hippocampal pattern completiortion memory (Jacoby, Yonelinas, & Jennings, 1997; Ag-
plays an important role in producing this flexible behav- gleton & Shaw, 1996; Aggleton & Brown, 1999; Vargha-
ior (O'Reilly & Rudy, 1999). Specifically, we showed Khadem, Gadian, Watkins, Connelly, Van Paesschen, &
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Mishkin, 1997; Holdstock, Mayes, Roberts, Cezayirli, Mumby, Astur, Hanlon, Koerner, & Thomas, in press),
Isaac, O'Reilly, & Norman, in press; O'Reilly et al., and reinterpretations of the existing findings in ways that
1998). These models hold that recognition can be subedo not require that the cortex acquires information from
served by two different processesegollectionprocess the hippocampus (e.qg., the “multiple hippocampal trace”
and afamiliarity process. Recollection involves the re- theory of Nadel & Moscovitch, 1997).

call of specific episodic details about the item, and thus  Our computational principles suggest that to the ex-
fits well with the hippocampal principles developed here.tent there are opportunities for the hippocampus to reac-
Indeed, we have simulated distinctive aspects of recoltivate cortical patterns of activity, the consequent i
lection using essentially the same model (O'Reilly et al.,learning will necessarily produce a consolidation-like ef
1998). Familiarity is a non-specific sense that the itemfect. We were able to fit a number of different retro-
has been seen recently — we argue that this can be sugrade amnesia gradients using these principles (McClel-
served by the small weight changes produced by slowand et al., 1995).

cortical learning. Current simulation work has shown

that a simple cortical model can account for a number of

distinctive properties of the familiarity signal (Norman, Comparison with Other Approaches
O'Reilly, & Huber, 2000).

One specific and somewhat counter-intuitive predic- A number of other approaches to understanding cor-
tion of our principles has recently been confirmed em-tical and hippocampal function share important similari-
pirically in experiments on a patient with selective hip- ties with our approach, including for example the use of
pocampal damage (Holdstock et al., in press). Thigiebbian learning and pattern separation (e.g., Hasselmo,
patient showed intact recognition memory for studied1997; McNaughton & Nadel, 1990; Touretzky & Redish,
items compared to similar lures when tested in a two-1996; Burgess & O’Keefe, 1996; Wu, Baxter, & Levy,
alternative forced-choice procedure (2AFC), but was sig-1996; Treves & Rolls, 1994; Moll & Miikkulainen, 1997;
nificantly impaired relative to controls for the same kinds Alvarez & Squire, 1994). These other approaches all of-
of stimuli using a single item yes-no (YN) procedure. fer other important principles, many of which would be
We argue that because the cortex uses overlapping digomplementary to those discussed here so that it would
tributed representations, the strong similarity of theetur be possible to add them to a larger, more complete model.
to the studied items produces a strong familiarity sig-  Perhaps the largest area of disagreement is in terms
nal for these lures (as a function of this overlap). Whenof the relative independence of the cortical learning
tested in a YN procedure, this strong familiarity of the mechanisms from the hippocampus. There are several
lures produces a large number of false alarms, as was olzomputationally-explicit models that propose the neocor-
served in the patient. However, because the studied itertex is incapable of powerful learning without the help of
has a small but reliably stronger familiarity signal than the hippocampus (Gluck & Myers, 1993; Schmajuk &
the similar lure, this strength difference can be detectediCarlo, 1992; Rolls, 1990), and other more general the-
in the 2AFC version, resulting in normal recognition per- oretical views that express a similar notion of limited cor-
formance in this condition. The normal controls, in con- tical learning with hippocampal damage (Glisky, Schac-
trast, have an intact hippocampus which performs patterter, & Tulving, 1986; Squire, 1992; Cohen & Eichen-
separation and is able to distinguish the studied items andaum, 1993; Wickelgren, 1979; Sutherland & Rudy,
similar lures, regardless of the testing format. 1989). In contrast, our principles hold that the cortex
alone is a highly capable learning system, that can for ex-
ample learn complex conjunctive representations in the
service of nonlinear discrimination learning problems.

Several lines of empirical evidence suggest thatthere  Empirically, the data that appears to support the lim-
is aretrograde gradienfor memory loss as a function ited cortical learning view tends to be based on larger
of hippocampal damage, with the mastentmemo- lesions of the medial temporal lobe. With the advent
ries being the most severely affected, while older mem-of selective lesion techniques in rats and monkeys, and
ories are relatively intact (e.g., Squire, 1992; Winocur,the study of people with highly selective hippocampal
1990; Kim & Fanselow, 1992; Zola-Morgan & Squire, lesions, it is becoming clear that the cortex is capable
1990). Theoretically, this phenomenon can be underof quite substantial learning on its own. Perhaps the
stood in terms of the cortex gradually acquiring hip- most dramatic evidence comes from a group of human
pocampal information (e.g., McClelland et al., 1995; amnesics who suffered bilateral selective hippocampal
Alvarez & Squire, 1994). However, this account hasdamage at relatively young ages (Vargha-Khadem et al.,
been called into question recently, both from failures t01997). Despite having significantly impaired hippocam-
replicate the retrograde findings (Sutherland, Weisendpal function (as was supported by brain scans and very
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