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SUMMARY

In a long term clinical trial to evaluate a new treatment, quite often each study subject may experience
a number of ‘failures’ that correspond to repeated occurrences of the same type of event or events of entirely
different natures during his/her follow-up period. To obtain efficient inference procedures for the therapeutic
effect over time, it is desirable to utilize those multiple event times in the analysis. In this article, we review
some useful procedures for analysing different kinds of multivariate failure time data. Specifically, we discuss
the two-sample problems and the general regression problems with various survival models. We also give
some recommendations of appropriate procedures for each type of multiple event data structure for
practical usage. ( 1997 by John Wiley & Sons, Ltd. Stat. Med., Vol. 16, 833—839 (1997).
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1. INTRODUCTION

In a long term clinical comparative study, life is relatively simple for a statistician if the study has
a unique well-defined outcome variable to evaluate the treatment difference. When there are
a number of equally important endpoints involved in the trial, issues about the design of the
study, the analysis of the data, and the interpretation of the results become rather challenging.
These multiple comparisons problems have been addressed extensively in the statistical litera-
ture1 and are taken seriously by the drug industry and regulatory authorities.2

In this paper, we will not discuss the philosophical issues of the multiplicity problem. Our goal
is to review and discuss the existing statistical methods which specifically deal with the multiple
failure time data. This type of data is commonly encountered in clinical trials for treating chronic
diseases. For such clinical studies, the subject may experience a number of failures which
correspond to repeated occurrences of the same type of event or to the occurrence of events of
entirely different natures. In the discussions, we classify these multiple failure time data into three
categories. In Section 3, we summarize methods for the analysis of the recurrence data or
multi-state failure time data. In Section 4, we deal with the case with unordered and distinct
events. In Section 5, inference procedures are discussed for highly stratified (or clustered) failure
times. For the benefit of our readers, we briefly summarize methods for handling the usual
multiple endpoints in Section 2. These methods are essential for the discussions in the later
sections. An excellent review on the Cox regression analysis3 of multivariate failure time data is
given by Lin.4



2. ANALYSIS WITH MULTIPLE ENDPOINTS

Suppose that in a two-arm comparative study, data are collected on K outcome variables from
each patient and the treatment difference is evaluated based on those multiple endpoints. For
example, in a trial to evaluate if a six month course of oral antioxidants would slow the
progression of amyotrophic lateral sclerosis (ALS), the assessment of the ALS progression can be
based on bulbar function, respiratory function, muscle strength, and upper and lower extremity
function. For each subject, one may construct a single numerical score (for example, Appel rating
scale: 0—160) based on the above endpoints and use these global scores to perform univariate
analyses for the treatment difference. Although such analyses are conceptually simply, it is more
informative to use a multivariate analysis approach to identify the effect of antioxidants on
particular endpoints. Here, we briefly describe a general approach that a frequentist might take to
handle this multiple comparisons problem.

Let h
k
be the treatment difference with respect to the kth endpoint and let the null hypothesis

H
k
be h

k
"0, that is, there is no difference between the two treatment groups with respect to the

kth response. Also, let ¹
k

be the corresponding standardized two-sample test statistic (for
example, t-test, Wilcoxon test, the difference of two-sample proportions et al.), k"1,2 ,K.
Based on those ¹

k
’s, one would like to know which h

k
’s are not zero. Now, let H be the hypothesis

which is the intersection of all the true H
k
’s. Then, the experimentwise type I error probability of

a test procedure for testing MH
k
, k"1,2 ,KN is the chance of rejecting H. To maintain this

prespecified experimentwise type I error rate a one may use the Bonferroni correction.5 However,
this approach is conservative when these statistics ¹

k
’s are highly correlated or very few h

k
’s are 0.

Generally, for a large sample, the joint null distribution of ¹
k
’s can be approximated by

a multivariate normal distribution with mean 0 and covariance matrix !. To relax the conserva-
tism of Bonferroni correction due to the dependence among the test statistics ¹

k
’s, one may

obtain a cut-off point c using this normal approximation, that is,

PA max
k/1,2 ,K

DZ
k
D(cB"1!a

where Z"(Z
1
,2 ,Z

K
)@ is the multivariate normal with mean 0 and covariance matrix !. Then, if

D¹
k
D'c, one may claim that h

k
O0. The critical value c can be obtained by simulating Z.

A similar procedure can be derived for testing MH
k
, k"1,2 , KN against a one-sided alternative

hypothesis.
One may make the above testing procedure even less conservative with a sequential method.6,7

Suppose that MDt
1
D(2(Dt

K
DN are observed ordered MD¹

k
DN. If Dt

K
D'c, we claim that h

K
O0. We

then obtain another cut-off point c
K~1

such that
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k/1,2 , (K~1)
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If Dt
K~1

D'c
K~1

, we conclude that h
K~1

O0. Testing continues until Dt
l
D(c

l
, and one would

conclude that H
k{

is non-significant for k@)l. This multi-stage method preserves the experiment-
wise type I error probability a and is more powerful than the non-sequential one, especially when
very few H

k
’s are true.

If the treatment differences with respect to all the endpoints are expected to be in the same
direction, one may combine the ¹

k
’s linearly to create a global assessment of the relative merit of

the treatments.8,9 That is, we consider a statistic ¹"+K
k/1

w
k
¹

k
, where w

k
can be chosen to have

maximum power to detect a prespecified alternative hypothesis. A common choice of
w"(w

1
,2 , w

K
)@ is !~1e, where e@"(1,2 , 1), a K]1 vector. Note that except for the sequential
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method, all the above procedures can be easily adapted to obtain joint confidence regions or
intervals for h

k
’s by inverting the corresponding test statistics.

Now, suppose that one needs to make adjustments from some potentially important covariates
to make inferences about the treatment difference. When the measurements of all the endpoints
are in the same scale, one may use the mixed effects model to estimate the regression coeffi-
cients.10 To relax the parametric assumptions in the mixed effects model, one may take the
generalized estimating equations approach11 to tackle the problem with multiple endpoints.

3. ANALYSIS OF RECURRENCE DATA OR MULTI-STATE FAILURE TIMES

A common feature for the recurrence times data and multi-state failure time observations is that
the events are naturally ordered and occur in a certain sequence over time. First, we use a bladder
tumour study conducted by the Veterans Administration Cooperative Urological Research
Group (VACURG)12 to illustrate the existing procedures to handle recurrence times data. In this
study all the patients had superficial bladder tumours when they entered the trial. These tumours
were removed transurethral and patients were randomly assigned to one of the three treatments:
placebo; thiotepa, or pyridoxine. Most patients had multiple recurrences of tumours during the
study. The new tumours were removed at each visit. The recurrence times of tumours for patients
in placebo and thiotepa groups are reported in Wei et al.13 Each recurrence time was measured
from the beginning of the patient’s treatment. We assume that a patient’s follow-up time is
independent of his/her event times. Furthermore, for each patient, some potentially important
covariates were also recorded, for example, the number of tumours and the size of the largest
tumour at patient’s entry. To evaluate the thiotepa effect, one may conduct the usual survival
analysis based on the first recurrence times. This univariate procedure, however, may not be
efficient and cannot be used to examine if there is a temporal treatment effect from thiotepa.

To perform a multivariate analysis, first let us consider two-sample non-parametric tests for
testing the equality of the two joint distributions for the first K tumour recurrence times without
making covariate adjustments. To mimic the non-censored case discussed in Section 2, for each
type of tumour recurrence (the first, the second etc.), we construct a two-sample distribution-free
test (for example, the logrank, Gehan test, or more generally, any member of the Gill’s class of
statistics14). This gives us K correlated test statistics, whose null distribution is approximately
normal with mean 0. The limiting covariance matrix can be easily estimated.15 One can then
follow the multiple comparisons procedures discussed in Section 2 to make inferences about the
differences of two groups. For example, one may be able to claim that thiotepa works well with
respect to the first two tumour recurrences, but not so for the later recurrences. To have a global
assessment of the treatment effect, a one-degree of freedom test can also be obtained by
combining these K statistics linearly.7,8

Next, let us consider the regression problem with recurrence times data, where patient’s
treatment indicator, number of tumours and size of the largest tumour at randomization are the
covariates. For this type of data, there are several inference procedures available for the
regression coefficients in the literature. First, one may use the Andersen-Gill (AG) model to
handle recurrence times data.16 This model is a generalization of the Cox proportional hazards
model and relates the intensity function of tumour recurrences to the covariates multiplicatively.
Under this model, the risk of a recurrent event for a patient follows the usual proportional
hazards assumption and is unaffected by earlier events that occurred to the patient. The AG
model essentially assumes that the tumour recurrences follow a non-homogeneous Poisson
process. Such strong Markovian assumptions can be relaxed by introducing time-dependent
covariates in the model, such as the number of prior recurrences, which may capture the
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dependence structure among the recurrence times. The AG model can be easily analysed by the
partial likelihood principle.

Prentice, William and Peterson (PWP)17 proposed an alternative approach for analysing
recurrence data. The PWP model specifies that the hazard function at time t for the kth
recurrence of a patient, conditional on the entire failure, censoring and covariate history prior to
time t has the usual proportional hazards form, where the nuisance hazard functions may vary
with k, k"1,2 , K. This produces a proportional hazards model with time dependent strata,
where the dependence between event times is handled by stratifying by the prior number of
failures. The PWP model can also be analysed by the partial likelihood principle. It has been
shown that the AG and PWP models are sensitive to misspecification of the dependence structure
among the recurrence times.13

The third approach one may take for the present situation is to use the proposal by Wei, Lin
and Weissfeld (WLW).13 Their idea is quite simple, that is, for the kth recurrence times, one uses
the usual proportional hazards model (the nuisance hazard function and the regression para-
meters may vary with k) to obtain the maximum partial likelihood estimate, say, bK

k
, for the

treatment difference. Then, the joint distribution of MbK
k
, k"1,2 , KN is approximately normal11

with a covariance matrix which can be consistently estimated. Inferences about the treatment
differences can then be made in the spirit of methods mentioned in Section 2. A global evaluation
of the treatment difference may be obtained by combining these bK

k
’s linearly. Recently, Prentice

and Cai18 have tried to obtain more efficient estimation procedures than the WLW method.
However, they find that the WLW performs quite well for almost all the practical situations.

The WLW method can be easily adapted to the competing risk setting. If the onset of an event,
for example, death, precludes the development of the kth tumour recurrence, the WLW can model
the cause-specific hazard for this recurrence, but model the ordinary (net) hazard for death. By
doing this, one may obtain a global assessment of the treatment difference with respect to tumour
recurrence and patient’s mortality. An alternative way to handle the above situation is to redefine
the kth event to be either the kth tumour recurrence or death, k"1,2 , K.19

For the AG, PWP and WLW methods, computer software is available, for example, MUL-
COX2,20 the SAS PHREG procedure, and S macros (developed by Terry Therneau of the Mayo
Clinic, Rochester, Minnesota, U.S.A.).

Although the Cox model has been used extensively to examine the covariate effects on the
hazard function for the failure time variable, it may not fit the data well. A useful alternative to the
proportional hazards model is the so-called accelerated failure time (AFT) model, which simply
regresses the logarithm of the survival time over the covariates.21—25 Using the idea of generaliz-
ing the usual univariate linear model to the multivariate case, this log-linear model can be easily
extended to multiple event times data.26 However, it is not clear how this multivariate AFT
model can handle the case when there are competing risks.

The fifth method for analysing recurrence time data is to use the so-called frailty model, for
example, an Andersen—Gill model with a random effect. The frailty may be thought of as
a random covariate which induces dependence among the multiple event times. Conditional on
this random effect, for each patient, his/her intensity function for tumour recurrences follows an
AG model. The most popular frailty model in survival analysis is the one proposed by Clayton
and Cuzick.27 This model assumes that the frailty is from a gamma distribution with mean one
and an unknown variance. Parameter estimation for such a model, however, is difficult since
standard partial likelihood methods do not eliminate the nuisance hazard function. Recently,
Nielsen et al.28 have proposed an estimation procedure for the regression parameters, the
variance of the frailty, and the underlying intensity function. However, their method is computa-
tionally demanding and the large sample properties of their estimators are available for very
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special cases.29,30 Moreover, an unpleasant feature of the ‘gamma frailty’ model is that while
hazards are proportional conditional on the frailty, the marginal hazards are not proportional.
Hougaard31 suggests the use of a ‘positive stable’ distribution for the frailty with the Cox model.
This particular distribution guarantees that both conditional and marginal hazards satisfy the
proportional hazards assumption. In general the frailty models have an intuitive appeal and
provide insight into the relationship between failures. On the other hand, the robustness of such
models to misspecification of the frailty distribution is unclear and inference procedures with
frailty distributions other than the one by Clayton and Cuzick27 have not been developed.

Note that the PWP and WLW methods can be applied to the case with the multistate failure
time data. For example, in a typical AIDS study to evaluate treatment effects, the outcome
measures may be the time to develop a particular type of serious infection and the time to death.19

4. ANALYSIS OF FAILURE TIMES FOR UNORDERED AND DISTINCT EVENTS

Consider a placebo controlled trial to evaluate the oral fluconazole, a potent antifungal agent, for
the prevention of oral and vaginal candidiasis in HIV-infected women at high risk for a candida
infection. Each study patient potentially has two event times, one is the time to the infection in the
oral mucosa and the other is the infection time in the vaginal mucosa.

The two-sample non-parametric tests15 discussed in Section 3 can certainly be used for the
present case to test if there is a treatment different with respect to the bivariate infection times.
However, since there is no natural ordering (for example, the oral infection does not always
precede the vaginal infection) among these two types of event times, the AG and PWP methods
cannot be applied directly to the present case. On the other hand, the WLW model and the
multivariate AFT model26 can easily handle this type of multiple event times. The frailty model
discussed in the previous section can also be used in the analysis of unordered and distinct event
times.

5. ANALYSIS OF CLUSTERED FAILURE TIMES

Consider the Diabetic Retinopathy Study (DRS), a randomized trial conducted by the National
Eye Institute to evaluate laser photocoagulation treatment for proliferative diabetic re-
tinopathy.32 Between 1972 and 1975, 1742 patients were enrolled in the study. Photocoagulation
was randomly assigned to one eye of each patient, with the other eye serving as an untreated
control. One of the major goals of the study was to investigate if the time of occurrence of severe
visual loss for the treated eye is longer than that for the control. Some potentially important
covariates associated with the failure time variable, such as the presence or absence of macular
oedema of the eye, and age and gender of the patient were also recorded. Note that the AG, PWP
and WLW methods described in Section 3 cannot be used to analyse the correlated failure time
data from DRS.

The stratified Cox procedure,33 which allows for separate baseline hazard for each patient, can
be used to evaluate the treatment effect for the DRS. However, it is not applicable to the data
from studies such as the Diabetes Control and Complications Trial.34 In that study, patients were
randomly assigned to receive either experimental or standard therapy. The purpose of the study
was to assess the relationship between glycaemia control and diabetic complications, including
diabetic retinopathy, in persons with insulin-dependent diabetes mellitus. Experimental therapy
involved the use of an intensive insulin regimen designed to maintain near normal glycaemia
levels in the absence of severe hypoglycaemia. Standard treatment was designed to maintain
patients free of clinical symptoms related to hyperglycaemia or hypoglycaemia while receiving up
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to two insulin injections daily. Since, the treatment is systematic and affects both eyes, the Cox
stratified procedure cannot be used to analyse this type of data.

Recently, Lee et al.35 have used the general estimating equations approach11 to derive an
inference procedure for the regression parameters based on the above clustered failure times.
They model the failure time for each eye based on the Cox model with a common nuisance hazard
function between two eyes. The software for this method is available in MULCOX2, the SAS
PHREG and S macros. One may also model the failure time for each eye with the AFT model.
Then, using the generalized estimating equations approach, we can obtain inference procedures
for the treatment difference.36 The Cox frailty model or the usual linear mixed effects model has
an intuitive physical interpretation and is a potentially useful tool for the analysis of such
clustered failure times.

6. REMARKS

Methods for the analysis of censored multiple outcome data are under extensive development.
The WLW13 and other similar methods25,35,36 are robust and well-developed. They are excellent
tools for making inferences on the ‘population average’37 effect of covariates on failure times.
They provide, however, no insights into the interrelationship among failure times. In some
multiple outcome problems (for example, for the case with the recurrence events), patients are not
only interested in the marginal covariate effects on the risk of individual failures, but also how
their prior events affect the risk of having future failures. To answer such questions, the
conditional approaches16,17 with fewer modelling assumptions would be appropriate. The frailty
model, which is appealing to the practitioners, can also be used to explore the relationship among
distinct failures. However, in our opinion, the AFT model would be more attractive than the Cox
counterpart. For the AFT mixed effects model, the fixed effects would be the same either
conditional on the frailty or marginally.
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