
Bias in Robust Estimation Caused by Discontinuities andMultiple StructuresCharles V. Stewart�Department of Computer ScienceRensselaer Polytechnic InstituteTroy, New York 12180{3590stewart@cs.rpi.eduNovember 27, 1996AbstractWhen �tting models to data containing multiple structures, such as when �tting surfacepatches to data taken from a neighborhood that includes a range discontinuity, robust esti-mators must tolerate both gross outliers and pseudo outliers. Pseudo outliers are outliers tothe structure of interest, but inliers to a di�erent structure. They di�er from gross outliersbecause of their coherence. Such data occurs frequently in computer vision problems, includ-ing motion estimation, model �tting and range data analysis. The focus in this paper is theproblem of �tting surfaces near discontinuities in range data.To characterize the performance of least median of squares, least trimmed squares, M-estimators, Hough transforms, RANSAC, and MINPRAN on this type of data, the \pseudooutlier bias" metric is developed using techniques from the robust statistics literature, andit is used to study the error in robust �ts caused by distributions modeling various types ofdiscontinuities. The results show each robust estimator to be biased at small but substantialdiscontinuities. They also show the circumstances under which di�erent estimators are moste�ective. Most importantly, the results imply present estimators should be used with care andnew estimators should be developed.�This paper presents a substantial reformulation and improvement of an earlier version of this work,which was described in [25].



1 IntroductionRobust estimation techniques have been used with increasing frequency in computer visionapplications because they have proven e�ective in tolerating the gross errors (outliers) char-acteristic of both sensors and low-level vision algorithms. Most often, robust estimators areused when �tting model parameters | e.g. the coe�cients of either a polynomial surface, ana�ne motion model, a pose estimate, or a fundamental matrix | to a data set. For theseapplications, robust estimators work reliably when the data contain measurements from asingle structure, such as a single surface, plus gross errors.Sometimes, however, the data are more complicated than this, presenting a challenge torobust estimators not anticipated in the robust statistics literature. This complication occurswhen the data are measurements from multiple structures while still being corrupted bygross outliers. These structures may be di�erent surfaces in depth measurements or multiplemoving objects in motion estimation. Here, the di�culty arises because robust estimatorsare designed to extract a single �t. Thus, to estimate accurate parameters modeling one ofthe structures | which one is not important | they must treat the points from all otherstructures as outliers. After successfully estimating the �t parameters of one structure, therobust estimator may be re-applied, if desired, to estimate subsequent �ts after removingthe �rst �t's inliers from the data.An example using synthetic range data illustrates the potential problems caused by mul-tiple structures. Figure 1 shows (non-robust) linear least-squares �ts to data from a singlesurface and to data from a pair of surfaces forming a step discontinuity. In the single surfaceexample, the least-squares �t is skewed slightly by the gross outliers, but the points fromthe surface are still generally closer to the �t than the outliers. Thus, the �t estimated bya robust version of least-squares will not be signi�cantly corrupted by these outliers. In themultiple surface example, the least-squares �t is skewed so much that it crosses (or \bridges")the point sets from both surfaces, placing the �t in close proximity to both point sets. Sincerobust estimators use �t proximity to distinguish inliers and outliers and downgrade thein
uence of outliers, this raises two concerns about the accuracy of robust �ts. First, anestimator that iteratively re�nes an initial least squares �t will have a local, and potentially1



 

 

 

 a bFigure 1: Examples demonstrating the e�ects of (a) gross outliers and (b) both gross outliersand data from multiple structures on linear least-squares �ts.global, minimum �t that is not far from the initial, skewed �t. This is because points fromboth surfaces will have both small and large residuals, making it di�cult for the estimator to\pull away" from one of the surfaces. Second, and more important, for the robust estimatebe the correct �t, thereby treating the points from one surface as inliers and points from theother as outliers, the estimator's objective function must be lower for the smaller inlier setof the correct �t than the larger inlier set of the bridging �t. By varying both the proximityof the two surfaces and the relative sizes of their point sets, all robust estimators studiedhere can be made to \fail" on this data, producing �ts that are heavily skewed.Motivated by the foregoing discussion, the goal of this paper is to study how e�ectivelyrobust estimators can estimate �t parameters given a mixture of data from multiple struc-tures. Stating this \pseudo outliers problem" abstractly, to obtain an accurate �t a robusttechnique must tolerate two di�erent types of outliers: gross outliers and pseudo outliers.Gross outliers are bad measurements, which may arise from specularities, boundary e�ects,physical imperfections in sensors, or errors in low-level vision computations such as edgedetection or matching algorithms. Pseudo outliers are measurements from one or more addi-tional structures. (Without losing generality, inliers and pseudo outliers are distinguished byassuming the inliers are points from the structure contributing the most points and pseudooutliers are points from the other structures.) The coherence of pseudo outliers distinguishesthem from gross outliers. Because data from multiple structures are common in vision ap-2



plications, robust estimators' performance on this type of data must be understood to usethem e�ectively. Where they prove ine�ective, new and perhaps more complicated robusttechniques will be needed.1To study the pseudo outliers problem, this paper develops a measure of \pseudo outlierbias" using tools from the robust statistics literature [10, pages 81-95] [12, page 11]. Pseudooutlier bias will measure the distance between a robust estimator's �t to a \target" distribu-tion and its �t to an outlier corrupted distribution. The target distribution will model thedistribution of points drawn from a single structure without outliers, and the outlier cor-rupted mixture distribution [27] will combine distributions modeling the di�erent structuresand a gross outlier distribution. The optimal �t is found by applying the functional form ofan estimator to these distributions, rather than by applying the estimator's standard formto particular sets of points generated from these distributions. This gives a theoretical mea-sure, avoids the need for extensive simulations, and, most importantly, shows the inherentlimitations of robust estimators by studying their objective functions independent of theirsearch techniques. The bias of a number of estimators | M-estimators [12, Chapter 7], leastmedian of squares (LMS) [16, 21], least trimmed squares (LTS) [21], Hough transforms [13],RANSAC [7], and MINPRAN [26] | will be studied as the target and mixture distributionsvary.The application for studying the pseudo outliers problem is �tting surfaces to range datataken from the neighborhood of a surface discontinuity. While this is a simple application forstudying the pseudo outliers problem, the problem certainly arises in other applications aswell | essentially any application where the data could contain multiple structures | andthe results obtained here should be used as qualitative predictions of potential di�culties inthese applications. In the context of the range data application, three idealized discontinuitymodels are used to develop mixture distributions: step edges, crease edges and parallelsurfaces. Step edges model depth discontinuities, where points from the upper surface ofthe step are pseudo outliers to the lower surface. Crease edges model surface orientationdiscontinuities, where points from one side of the crease are pseudo outliers to the other.1Several versions of these techniques actually exist for �tting surfaces to range data. Their e�ectiveness,however, depends in part on the accuracy of an initial set of robust �ts.3



Finally, parallel surfaces model transparent or semi-transparent surfaces, where a backgroundsurface appears through breaks in the foreground surface, and data from the background arepseudo outliers to the foreground.A �nal introductory comment is important to assist in reading this paper. The paper de-�nes the notion of \pseudo outlier bias" using techniques common in mathematical statisticsbut not in computer vision, most importantly, the \functional form" of a robust estimator.The intuitive meaning of functional forms and their use in pseudo outlier bias are discussedat the start of Section 4, which then proceeds with the main derivations. Readers uninter-ested in the mathematical details should be able to skip Sections 4.2 through 4.6 and stillfollow the analysis results.2 Robust EstimatorsThis section de�nes the robust estimators studied. These de�nitions are converted to func-tional forms suitable for analysis in Section 4. Because the goal of the paper is to exposeinherent limitations of robust estimators, the focus in de�ning the estimators is their ob-jective functions rather than their optimization techniques. Special cases of iterative opti-mization techniques where local minima are potentially problematic will be discussed whereappropriate.The data are (~xi; zi), where ~xi is an image coordinate vector | the independent vari-able(s) | and zi is a range value| the dependent variable. Each �t is a function z = �(~x), of-ten restricted to the class of linear or quadratic polynomials. The notation �̂(~x) indicates the�t that minimizes an estimator's objective function, with �̂ called the \estimate". Each esti-mator's objective function evaluates hypothesized �ts, �(~x), via the residuals, ri;� = zi��(~xi).2.1 M-EstimatorsA regression M-estimate [12, Chapter 7] is�̂ = argmin� Xi �(ri;�=�̂); (1)4



where �̂ is an estimate of the true scale (noise) term, �, and �(u) is a robust \loss" functionwhich grows subquadratically for large juj to reduce the e�ect of outliers. (Often, as discussedbelow, �̂ and �̂ are estimated jointly.) M-estimators are categorized into three types [11] bythe behavior of  (u) = �0(u); one estimator of each type is studied. Monotone M-estimators(Figure 2a), such as Huber's [12, Chapter 7], have non-decreasing, bounded  (u) functions.Hard redescenders (Figure 2b), such as Hampel's [9] [10, page 150], force  (u) = 0 for juj > c;hence c is a rejection point, beyond which a residual has no in
uence. Soft redescenders(Figure 2c), such as the maximum likelihood estimator of Student's t-distribution [5], do nothave a �nite rejection point, but force  (u)! 0 as juj ! 1. The three robust loss functionsare shown in Figure 2 and in order they are�m(u) = 8<: 12u2; juj � c12c(2juj � c); c < juj (2)�h(u) = 8>>>>>><>>>>>>: 12u2; juj � a12a(2juj � a); a < juj � b12a[(juj � c)2=(b� c) + (b+ c� a)]; b < juj � c12a(b+ c� a); c < juj (3)and �s(u) = 12(1 + f) log(1 + u2=f): (4)The � functions' constants are usually set to optimize asymptotic e�ciency relative to agiven target distribution [11] (e.g. Gaussian residuals).M-estimators typically minimizeP�(ri;�=�̂) using iterative techniques [11] [12, Chapter7]. The objective functions of hard and soft redescending M-estimators are non-convex andmay have multiple local minima.In general, �̂ must be estimated from the data. Hard-redescending M-estimators oftenuse the median absolute deviation (MAD) [11] computed from the residuals to an initial �t,�̂0: �̂ = k mediani fjri;�̂0 �medianj frj;�̂0gjg; (5)5



Monotone Hard Soft�(u) (u) (a) (b) (c)Figure 2: �(u) and  (u) functions for three M-estimators.where k = 1:4826 for consistency at the normal distribution and k = 1:14601 for consistencyat Student's t-distribution (when f = 1:5). Other M-estimators jointly estimate �̂ and �̂ as(�̂; �̂) = argmin�;� Xi �(ri;�; �): (6)In particular, Huber [12, Chapter 7] uses�m(ri;�; �) = [�m(ri;�=�) + a]�; (7)where �m(ri;�=�) is from equation 2 and a is a tuning parameter; Mirza and Boyer [5] use�s(ri;�; �) = ln� + �s(ri;�=�); (8)where �s(ri;�=�) is from equation 4.When �tting surfaces to range data, a di�erent option for obtaining �̂ is often used [3].If � depends only on the properties of the sensor then �̂ may be estimated once and �xed forall data sets. Theoretically, when �̂ is �xed, the M-estimators described by equation 1 areno longer true M-estimators since they are not scale equivariant [10, page 259]. To re
ectthis, when �̂ is �xed a priori, they are called \�xed-scale M-estimators." Both standardM-estimators and �xed-scale M-estimators are studied here.6



2.2 Fixed-Band Techniques: Hough Transforms and RANSACHough transforms [13], RANSAC [4, 7], and Roth's primitive extractor [20] are examples of\�xed-band" techniques [20]. For these techniques, �̂ is the �t maximizing the number ofpoints within ��rb, where rb is an inlier bound which generally depends on �̂ (i.e. rb = c�̂ forsome constant c). Equivalently, viewing �xed-band techniques as minimizing the number ofoutliers, they become a special case of �xed-scale M-estimators with a simple, discontinuousloss function �f (u) = 8<: 0; juj � c1; juj > c: (9)Fixed-band techniques search for �̂ using either random sampling or voting techniques.2.3 LMS and LTSLeast median of squares (LMS), introduced by Rousseeuw [21], �nds the �t minimizing themedian of squared residuals. (See [16] for a review.) Speci�cally, the LMS estimate is�̂ = argmin� fmediani f(ri;�)2gg: (10)Most implementations of LMS use random sampling techniques to �nd an approximateminimum.Related to LMS and also introduced by Rousseeuw [21] is the least trimmed squaresestimator (LTS). The LTS estimate is�̂ = argmin� hXj=1(r2�)j:N : (11)where the (r2�)j:N are the (non-decreasing) ordered squared residuals of �t �. Usually h =b(N + 1)=2c. LTS implementations also use random sampling.2.4 MINPRANMINPRAN searches for the �t minimizing the probability that a �t and a collection of inliersto the �t could be due to gross outliers [24, 26]. It is derived by assuming that relative to7



any hypothesized �t �(x) the residuals of gross outliers are uniformly distributed2 in therange �Z0. Based on this assumption, the probability that a particular gross outlier couldbe within �(~xi) � r for 0 � r � Z0 is r=Z0. Furthermore, if all n points are gross outliers,the probability k or more of them could be within �(~x)� r isF(r; k; n) = nXj=k�nj�(r=Z0)j(1� r=Z0)n�j : (12)Given n data points containing an unknown number of gross outliers, MINPRAN evaluateshypothesized �ts �(~x) by �nding the inlier bound, r, and the associated number of points(inliers), kr;�, within �r of �(~x), minimizing the probability that the inliers could actuallybe gross outliers. Thus MINPRAN's objective function in evaluating a particular �t isminr F(r; kr;�; n)and MINPRAN's estimate is �̂ = argmin� [minr F(r; kr;�; n)]: (13)MINPRAN is implemented using random sampling techniques (see [26]).3 Modeling DiscontinuitiesThe important �rst step in developing the pseudo outlier bias analysis technique is to modelthe data taken from near a discontinuity as a probability distribution. Attention here isrestricted to discontinuities in one-dimensional structures, since this will be su�cient todemonstrate the limitations of robust estimators.3.1 Outlier DistributionsTo set the context for developing the distributions modeling discontinuities, consider the one-dimensional, outlier corrupted distributions used in the statistics literature to study robustlocation estimators [10, page 97] [12, page 11]:F = (1� ")F1 + "G2MINPRAN has been generalized to any known outlier distribution [26].8
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xx d0 x1Figure 3: Example data set for points near a step discontinuity.Here, F1 is an inlier distribution (also called a \target distribution"), such as a unit varianceGaussian, and G is an outlier distribution, such as a large variance Gaussian or an uniformdistribution over a large interval. The parameter " is the outlier proportion. A set A of Npoints sampled from this distribution will contain on average "N outliers. Robust locationestimators are analyzed using distribution F rather than using a series of point sets sampledfrom F .3.2 Mixture Distributions Modeling DiscontinuitiesThe present paper analyzes robust regression estimators by examining their behavior ondistributions modeling discontinuities. These mixture distributions [27] will be of the formH = (1 � "o)["sH1 + (1 � "s)H2] + "oHo: (14)H1, H2 and Ho will be inlier, pseudo outlier and gross outlier distributions, respectively, and"s and "o will control the proportion of points drawn from the three distributions.To formulate H1, H2 and Ho, and to set "s and "o, consider a set, S, of data points takenfrom the vicinity of a discontinuity. For example, S might be the points in Figure 3 whosex coordinate falls in the interval [x0; x1]. H1 is modeled as a two-dimensional distributionof points (x; z) with x values in an interval [x0; xd] | assuming, without losing generality,more points are from the left side of the discontinuity location than the right. (Using a two-dimensional distribution could be counterintuitive since the x values, which may be thoughtof as image positions at which depth measurements are made, are usually �xed.) Here, x is9



treated as uniform in the interval [x0; xd], modeling the uniform spacing of image positions.3The depth measurement for an inlier is z = �1(x)+e, where e is independent noise controlledby the Gaussian density g(e;�2) with mean 0 and variance �2. �1(x) models the ideal curvefrom which the inliers are measured. The pseudo outlier distribution, H2, can be de�nedsimilarly, with x values uniform in [xd; x1] and depth measurements z = �2(x) + e. Thus,for both distributions H1 and H2, the densities of x and z can be combined to give the jointdensity hi(x; z) = 8><>: g(z � �i(x);�2)xi;1 � xi;0 ; xi;0 � x � xi;10; otherwise. (15)where i 2 f1; 2g and xi;0 and xi;1 bound the uniform distribution on the x interval.For Ho, the distribution of gross outliers in S, again x values are uniformly distributed,but this time over the entire interval [x0; x1], and z values are governed by density go(z),which will be uniform over a large range. This gives the joint density for a gross outlier:ho(x; z) = 8><>: go(z)x1 � x0 ; x0 � x � x10; otherwise. (16)The mixture proportions "s and "o in (14) are easily speci�ed. "o is just the fractionof gross outliers. "s is the \relative fraction" of inliers, i.e. the fraction points that are notgross outliers and that are from the inlier side of the discontinuity. Assuming the density ofx values does not change across the discontinuity, "s is determined by xd:"s = xd � x0x1 � x0 : (17)Equivalently, given "s, xd = x0 + "s(x1 � x0). (To distinguish inliers and pseudo outliers,assume "s > 0:5.) Notice that the \actual fraction" of inliers is "1 = (1� "o)"s. Dependingon which estimator is being analyzed, either the relative or the actual fraction or both willbe important.3For any point set sampled from this distribution, the x values will not be uniformly spaced, in general,but their expected values are. This expected behavior is captured when using the distribution itself in theanalysis rather than points sets sampled from the distribution.10



Using these mixture proportions, the above densities can be combined into a single,mixed, two-dimensional density:h(x; z) = (1� "o)["sh1(x; z) + (1 � "s)h2(x; z)] + "oho(x; z) (18)Observe that the \target density" is just h1(x; z) and the \target distribution" is H1(x; z).The mixture distributionH(x; z) and the target distribution H1(x; z) can be calculated fromh(x; z) and h1(x; z) respectively.Using mixture density h(x; z), data can be generated to form step edges and crease edges.The appropriate model is determined by the two curve functions �1 and �2. For example, astep edge of height �z is modeled by setting �1(x) = c and �2(x) = c+�z, for some constantc. A crease edge is modeled when �1 and �2 are linear functions and �1(xd) = �2(xd). Parallellines with overlapping x domains can be created by using �1 and �2 from step edges, butsetting x1;0 = x2;0 = x0 and x1;1 = x2;1 = x1, and letting "s represent the proportion of pointsfrom the lower line. In this case, the mixture proportions are divorced from the locationof the discontinuity, which has no meaning. Thus, all three desired discontinuities can bemodeled.4 Functional Forms and Mixture ModelsTo analyze estimators on distributions H, each estimator must be rewritten as a functional,T | a mapping from the space of probability distributions to the space of possible estimates.This section derives functional forms of the robust estimators de�ned in Section 2. Itstarts, in Section 4.1 by giving intuitive insight. Then, Section 4.2 introduces functionalforms and empirical distributions on a technical level, using univariate least-squares locationestimates as an example. Next, Section 4.3 derives several important distributions needed inthe functionals. The remaining sections derive the required functionals. Readers uninterestedin the technical details should read only Section 4.1 and then skip ahead to Section 5.11



4.1 IntuitionTo illustrate what it means for a functional T to be applied to a distribution H, considerleast-squares regression. When applied to a set containing points (xi; zi), the least-squaresobjective function is Pi[zi � �(xi)]2 =Pi r2i;�, which is proportional to the second momentof the residuals conditioned on �, and the least squares estimate is the �t �̂ minimizingthis conditional second moment. A similar second moment, conditioned on �, may be cal-culated for distribution H(x; z), and the �t �̂ minimizing this conditional second momentmay be found. This is the least-squares regression functional. The functional form of anM-estimator, by analogy, returns the �t minimizing a robust version of the second momentof the conditional residual distribution calculated from H. Intuitions about the functionalforms of other estimators are similar.The estimate T (H) can be used to represent or characterize the estimator's performanceon point sets sampled from H. Although the robust �t to any particular point set may di�erfrom T (H), if T (H) is skewed by the pseudo and gross outliers, then the �t to the pointset will likely be skewed as well. Indeed, when an estimator's minimization technique is aniterative search, the skew may be worse than that of T (H) because it may stop at a localminimum.4.2 One-Dimensional Location EstimatorsTo introduce functional forms on a more technical level, this section examines the least-squares location estimate for univariate data. For a �nite sample fx1; : : : ; xng, the locationestimate is �̂ = argmin� 1nXi (xi � �)2 = 1nXi xi; (19)which is the sample mean or expected value. The functional form of this is the locationestimate of the distribution F from which the xi's are drawn:Tloc(F ) = �̂ = argmin� Z (x� �)2 dF = argmin� Z (x� �)2f(x) dx = Z xf(x) dx; (20)the population mean or expected value. 12



The functional form of the location estimate is derived from the sample location estimateby writing the latter in terms of the \empirical distribution" of the data, denoted by Fn, andthen replacing Fn with F , the actual distribution. The empirical density of fx1; : : : ; xng isfn(x) = 1nXi �(x� xi):where �(�) is the Dirac delta function, and the empirical distribution isFn(x) = 1nXi u(x� xi);where u(�) is the unit step function. When the xi's are independent and identically dis-tributed, Fn converges to F as n ! 1. The least squares location estimate is written interms of the empirical density by using the sifting property of the delta function [8, page 56]:argmin� 1nXi (xi � �)2 = argmin� 1nXi Z (x� �)2�(x� xi) dx= argmin� Z (x� �)2 1nXi �(x� xi) dx= argmin� Z (x� �)2fn(x) dxReplacing fn with the population density f(x) = dF=dx yields the functional form of thelocation estimate as desired (20).4.3 Residual Distributions and Empirical DistributionsBefore deriving functional forms for the robust regression estimators, the mixture distributionH(x; z) must be rewritten in terms of the distribution of residuals relative to a hypothesized�t, �. This is because the estimators' objective functions depend directly on residuals rand only indirectly on points (x; z). In addition, several empirical versions of this \residualdistribution" are needed.Two di�erent residual distributions are required: one for signed residuals and one fortheir absolute values. Let the distribution and density of signed residuals be F s(rj�;H) andf s(rj�;H) (including H in the notation to make explicit the dependence on the mixturedistribution). These are easily seen to be (Figure 4a)F s(rj�;H) = Z x1x0 Z �(x)+r�1 h(x; z) dz dx; (21)13
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(hn should not be confused with hi from equation 15). Next, the empirical density of thesigned residuals follows from hn(x; z) using the sifting property of the � function [8, page 56]:f sn(rj�;Hn) = Z 1�1hn(x; �(x)+r) dx= Z 1�1 1nXi �(x�xi; �(x)+r�zi) dx= 1nXi �(�(xi)+r�zi) (25)Finally, the empirical distribution of the absolute residuals isF an (rj�;Hn) = Z r�rf sn(yj�) dy: (26)4.4 M-Estimators and Fixed-Band TechniquesThe functionals for the robust regression estimators can now be derived, starting with thatof �xed-scale M-estimators. The �rst step is to write equation 1 in a slightly modi�ed form,which does not change the estimate:�̂ = argmin� 1nXi �(ri;�=�̂);Next, writing this in terms of the empirical distribution producesargmin� 1nXi �(ri;�=�̂) = argmin� 1nXi �((zi��(xi))=�̂)= argmin� 1nXi ZZ �((z��(x))=�̂) �(x�xi; z�zi) dx dz= argmin� ZZ �((z��(x))=�̂) hn(x; z) dx dzReplacing the empirical density hn(x; z) with the mixture density h(x; z) yieldsT�(H) = argmin� ZZ �((z��(x))=�̂) h(x; z) dx dz:The change of variables r = z � �(x) simpli�es things further,T�(H) = argmin� Z �(r=�̂)Z h(x; �(x)+r) dx dr=argmin� Z �(r=�̂) f s(rj�;H) dr: (27)15



This is the �xed-scale M-estimator functional. Substituting equations 2, 3 and 4 givesfunctionals T�m, T�h, and T�s respectively for the M-estimators studied here.For the M-estimators that jointly estimate �̂ and �̂ (see equations 7 and 8), the functionalis obtained by replacing �(r=�̂) with �(r; �) in equation 27, producingT�;s(H) = argmin� Z �(r; �) f s(rj�;H) dr: (28)Finally, recalling that �xed-band techniques are special cases of �xed-scale M-estimators,their functional is obtained by substituting equation 9 into equation 27, yieldingTb(H) = argmin� �Z �rb�1 f s(rj�;H)) dr + Z 1rb f s(rj�;H)) dr�= argmin� [1 � F a(rbj�;H)] (29)Observe that [1� F a(rbj�;H)] is the expected fraction of outliers.4.5 LMS and LTSDeriving the functional equivalent to LMS requires �rst deriving the cumulative distribu-tion of the squared residuals and then writing the median in terms of the inverse of thisdistribution. De�ning y = r2, the empirical distribution of squared residuals isFn;y(yj�;H) = F an ( +pyj�;H);since it is simply the percentage of points whose absolute residuals relative to �t � are lessthan +py. Now, medianf(ri;�)2g = F�1n;y (1=2j�; h); (30)In other words, the median is the inverse of the cumulative, evaluated at 1=2.4 This is thestandard functional form of the median [10, page 89]. Substituting equation 30 in 10 and4When LMS is implemented using random sampling where p points are chosen to instantiate a �t, themedian residual is taken from among the remaining n � p points. To re
ect this, the 1=2 in equation 30could be replaced by (n� p)=2 + p. 16



replacing the empirical distribution Fn;y with Fy(yj�;H) = F a( +py j�;H) produces the LMSfunctional: TL(H) = argmin� F�1y (1=2j�;H) (31)Turning now to LTS, normalizing its objective function and writing it in terms of theempirical density of residuals yields1n b(N+1)=2cXj=1 (r2�)j:N = Z rm�rm r2f sn(rj�;Hn) drwhere r2m = F�1n;y(1=2j�;Hn) is the empirical median square residual. The functional form ofLTS then is easily written asTT (H) = argmin� Z F�1y (1=2j�;H)�F�1y (1=2j�;H) r2f s(rj�;H) dr (32)4.6 MINPRANMINPRAN's functional is derived by �rst re-writing MINPRAN's objective function, replac-ing the binomial distribution with the incomplete beta function [19, page 229]:minr F(r; kr;�; n) = minr I(kr;�; n�kr;�+1; r=Z0)where I(v;w; p) = �(v + w)�(v)�(w) Z p0 tv�1(1� t)w�1 dt:and �(�) is the gamma function. This is done because I(v;w; p) only requires v;w 2<+, whereas the binomial distribution requires integer values for kr;� and n. Now, sinceF an (rj�;Hn) is the empirical distribution of the absolute residuals (see equation 26), kr;� =n � F an (rj�;Hn) for all r > 0. Thus, MINPRAN's objective function can be re-written equiv-alently as minr I(n�F an(rj�;Hn); n(1�F an (rj�;Hn))+1; r=Z0);Replacing F an by F a and substituting equation 13 gives the functionalTM(H) = argmin� nminr I(n�F a(rj�;H); n(1�F a(rj�;H))+1; r=Z0)o : (33)Observe that n, the number of points, is still required here, but TM(H) is considered afunctional [10, page 40]. 17



5 Pseudo Outlier BiasNow that the functional forms of the robust estimators have been derived, the pseudo outlierbias metric can be de�ned. Given a particular mixture distribution H(x; z), target distribu-tion H1(x; z), and a functional T , let�̂ = T (H) and �̂1 = T (H1):These �ts are assumed to minimize the estimator's objective functional globally. Then,pseudo outlier bias is de�ned as the normalized L2 distance between the �ts:k�̂ � �̂1k2 = 1(x1 � x0) �Z x1x0 [(�̂(x)� �̂1(x))=�]2 dx�1=2 : (34)As is easily shown, this metric is invariant to translation and independent scaling of both xand z. (For �xed-scale M-estimators, �̂, which is provided a priori, must be scaled as well.For MINPRAN, the outlier distribution must be scaled appropriately.)When the set of the possible curves �(x) includes �1(x), it can be shown that for eachof the functionals derived in Section 4, T (H1) = �̂1 = �1. In other words, the estimator'sobjective function is minimized by �1.5 When T (H1) = �1, the pseudo outlier bias metricbecomes k�̂ � �1k2 = 1(x1 � x0) �Z x1x0 [(�̂(x)� �1(x))=�]2 dx�1=2 : (35)Intuitively, pseudo outlier bias measures the L2 norm distance between the two estimates,T (H) and T (H1), normalized by the length of the x interval over which H(x; z) is non-zeroand by the standard deviation of the noise in the z values. Since T (H1) = �1 for the casesstudied here, a metric value of 0 implies that T is not at all corrupted by the presence ofeither gross or pseudo outliers, and a metric value of 1 implies that on average over the xdomain T (H) is one standard deviation away from �1.5In the analysis results given in Section 6, the set of curves will be linear functions of the form �(x) =mx+ b. �1(x) and �2(x) will also be linear. These curves are continuous and have in�nite extent in x, unlikethe densities modeling data drawn from them. 18
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The foregoing shows that the parameters "s, "o, �z=�, and z0 completely specify a twosurface discontinuity model, the resulting mixture density, h(x; z), and therefore, the distri-bution, H(x; z). Hence, after specifying the class of functions (linear, here) for hypothesized�ts, a given robust estimator's pseudo outlier bias can be calculated as a function of theseparameters. This calculation requires an iterative, numerical search to minimize T (H), andmay require several starting points to avoid local minima. (See Figure 6 for an example plotof T�h's objective functional.) Thus, for a particular type of discontinuity and for a particu-lar robust estimator, the parameters may be varied to study their e�ect on the estimator'spseudo outlier bias, thereby characterizing how accurately the estimator can �t surfaces neardiscontinuities.As a �nal observation, although the results are presented for one-dimensional imagedomains, they have immediate extension to two dimensions. For example, a two-dimensionalanalog of the step edge presented here is �1(x; y) = 0 for x 2 [0; xd] and y 2 [0; 1] and�2(x; y) = �z=� for x 2 [xd; 1] and y 2 [0; 1]. It is straightforward to show that this modelresults in exactly the same pseudo outlier bias as a one-dimensional step model havingthe same mixture parameters and gross outlier distribution. Similar results are obtainedfor natural extensions of the crease edge and parallel lines models. Thus, one-dimensionaldiscontinuities are su�cient to establish limitations in the e�ectiveness of robust estimators.6.2 Fixed-Scale M-Estimators and Fixed-Band TechniquesThe �rst analysis results are for �xed-band techniques and �xed-scale M-estimators. Thesetechniques represent an ideal case where the noise parameter �̂ = � is known and �xed inadvance. Figure 7 shows the bias of �xed-band techniques (TF ) and three �xed-scale M-estimators (T�m, T�s, and T�h) as a function �z=� when "s = 0:6 and when "s = 0:8. Thebias of the least-squares estimator, calculated by substituting �(u) = u2 into equation 27,is included for comparison. The � function tuning parameters values are directly from theliterature (c = 1:345 for �m [11], a = 1:31, b = 2:04, c = 4:00 for �h [10, page 167], andf = 1:5 for �s [18]), and rb = 2:5�̂ for Tb. Interestingly, the proportion of gross outliers, "o,has no e�ect on the results. This is because the fraction of the outlier distribution withinr of a �t is the same for all �ts � and for all r except when �(x) � r is extreme enough to21



cross outside the bounds of the gross outlier distribution.The sharp drops in bias shown in Figure 7 (a) and (b) for �xed-band techniques and thehard redescending M-estimator (and to some extent for the soft redescending M-estimator in(b)) correspond to �̂(x) = T�(H) shifting from the local minimum associated with a heavilybiased �t to the local minimum near �1(x), the optimum �t to the target distribution.Plotting the step height at which this drop occurs as a function of "s gives a good summaryof these estimators' bias on step edges. Figure 8 does this, referring to this height as the\small bias height" and quantifying it as the step height at which the bias drops below 1.0.The plots in Figures 7 and 8(a) show that �xed-band techniques and �xed-scale M-estimators are biased nearly as much as least-squares for signi�cant step edge and creaseedge discontinuity magnitudes. The estimators fare much better on parallel lines (Figure 7(e)and (f)); apparently, asymmetric positioning of pseudo outliers causes the most bias. To givean intuitive feel for the signi�cance of the bias, Figure 9 shows step edge data generated using"s = 0:6 and �z=� = 7:5, model parameters for which the robust estimators are stronglybiased.Overall, the hard redescending, �xed-scale M-estimator is the least biased of the tech-niques studied thus far. Compared to other �xed-scale M-estimators, its �nite rejectionpoint | the point at which outliers no longer in
uence the �t | makes it less biased bypseudo outliers than monotone and soft redescending �xed-scale M-estimators. On the otherhand, it is less biased than �xed-band techniques because it retains the statistical e�ciencyof least-squares for small residuals.The hard redescending, �xed-scale M-estimator can be made less biased by reducingthe values of its tuning parameters, as shown in Figure 8(b), e�ectively narrowing �h andreducing its �nite rejection point. (The parameter set a = 1:0, b = 1:0, c = 2:0 comes from[2]; the set a = 1:0, b = 2:0, c = 3:0 was chosen as an intermediate set of values.) Usingsmall parameter values has two disadvantages, however: the optimum statistical e�ciency ofthe standard parameters is lost, giving less accurate �ts to the target distribution, and somegood data may be rejected as outliers. Despite these disadvantages, lower tuning parametersshould be used since avoiding heavily biased �ts is the most important objective.Finally, in practice, the non-convex objective functions of hard and soft redescending22



Step | "s = 0:6 Step | "s = 0:8
0

2

4

6

8

10

0 2 4 6 8 10 12 14 16 18 20

B
i
a
s

Step Height

Least-squares
Fixed-band

Hard

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16 18 20

B
i
a
s

Step Height

Least-squares
Monotone

Soft
Fixed-band

Harda bCrease | "s = 0:6 Crease | "s = 0:8
0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16 18 20

B
i
a
s

Crease Height

Least-squares
Monotone

Soft
Fixed-band

Hard

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2 4 6 8 10 12 14 16 18 20

B
i
a
s

Crease Height

Least-squares
Monotone

Soft
Fixed-band

Hardc dParallel | "s = 0:6 Parallel | "s = 0:8
0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16 18 20

B
i
a
s

Relative Height

Least-squares
Monotone

Soft
Fixed-band

Hard

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16 18 20

B
i
a
s

Relative Height

Least-squares
Monotone

Soft
Fixed-band

Harde fFigure 7: Bias of �xed-band techniques, �xed-scale M-estimators and least-squares on stepedges, (a) and (b), crease edges, (c) and (d), and parallel lines, (e) and (f), as a functionof height when "s = 0:6 and "s = 0:8. The horizontal axis is the relative discontinuitymagnitude (height), �z=�, and the vertical axis is the bias (see equation 35). Plots notshown in (a) are essentially equivalent to the least-squares plots.23



0

5

10

15

20

0.5 0.55 0.6 0.65 0.7 0.75 0.8

S
m
a
l
l
 
B
i
a
s
 
C
u
t
-
o
f
f
 
H
e
i
g
h
t

Fraction of Points on Lower Half of Step

Soft
Fixed-band

Hard

0

5

10

15

20

0.5 0.55 0.6 0.65 0.7 0.75 0.8

S
m
a
l
l
 
B
i
a
s
 
C
u
t
-
o
f
f
 
H
e
i
g
h
t

Fraction of Points on Lower Half of Step

1.31, 2.04, 4.0
1.0, 2.0, 3.0
1.0, 1.0, 2.0

a bFigure 8: Small bias cut-o� heights as a function of "s, the relative fraction of points onthe lower half of the step. Plots in (a) show the heights for �xed-band techniques and two�xed-scale M-estimators. Plots in (b) show the heights for di�erent tuning parameters ofthe hard redescending �xed-scale M-estimator. Heights not plotted for small "s are above�z=� = 20. When height is not plotted for large "s, bias is never greater than 1.0.�xed-scale M-estimators can lead to more biased results than indicated here. Iterative searchtechniques, especially when started from a non-robust �t, may stop at a local minimumcorresponding to a biased �t when the �t to the target distribution is the global minimumof the objective function. Therefore, to avoid local minima, �xed-scale M-estimators shoulduse either a random sampling search technique or a Hough transform.6.3 M-EstimatorsNext, consider standard M-estimators, which estimate �̂ from the data. To calculate T (H)for the monotone and soft redescending M-estimators, simply calculate �̂ = T�;s(H) forany mixture distribution using equation 7 or 8 as the objective functional. For the hardredescending M-estimator, which estimates �̂ from an initial �t, the optimum �t to themixture distribution is found in three stages: �rst �nd the optimum LMS �t, then calculatethe median absolute deviation (MAD) [10, page 107] to this �t, scaling it to estimate �̂,and �nally calculate �̂ = T�h(H) with �̂ �xed. Two di�erent scale factors for estimating �̂are considered: the �rst, 1:4826, ensures consistency at the normal distribution; the second,1:14601, ensures consistency at Student's t-distribution (with f = 1:5). Using the latterallows accurate comparison between the hard and soft redescending M-estimators since the24



Figure 9: Example step edge data generated when "s = 0:6 and �z=� = 7:5, a discontinuitywhere each the objective function of each robust estimator (except LTS) is minimized by abiased �t. The example �t shown is �̂(x) for the hard redescending, �xed-scale M-estimator.latter is the maximum likelihood estimate for Student's t distribution [5].Figure 10 shows bias plots for the soft redescending M-estimator and for the hard re-descending M-estimator using the two di�erent scale factors (plot \Hard-N" for the normaldistribution and plot \Hard-t" for the t-distribution). Results for the monotone M-estimatorare not shown since its bias matches that of least-squares almost exactly. Overall, the resultsare substantially worse than for �xed-scale M-estimators, especially for "s = 0:6. This is adirect result of �̂ being a substantial over-estimate of �: for example, when "s = 0:6 and�z=� = 10, �̂=� � 2:4 for all estimates. (See [22] for analysis of bias in estimating �̂.)These over-estimates allow a large portion of the residual distribution to fall in the regionwhere � is quadratic, causing the estimator to act more like least-squares. Because of this,M-estimators are heavily biased by discontinuities when they must estimate �̂ from the data.6.4 LMS, LTS and MINPRANThe last estimators examined are LMS, LTS, and MINPRAN,methods which neither require�̂ a priori nor need to estimate it while �nding �̂(x). Figure 11 shows bias plots for theseestimators on step edges, crease edges and parallel lines, using "0 = 0:1 and z0 = 100.Figure 12 shows small bias cut-o� heights on step edges for LMS, LTS and MINPRAN, andit demonstrates the e�ects of changes in the mixture proportions on LMS and LTS.LMS and LTS work as well as any technique studied as long as the actual of fraction25
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inliers | data from �1(x) | is above 0.5. Since this fraction is (1�"o)"s, the bias of LMS andLTS, unlike that of M-estimators, depends heavily on both "o and "s. (For random samplingimplementations of LMS and LTS, where p points instantiate a hypothesized �t and theobjective function is evaluated on the remaining n � p points, the bias curves in Figure 11and the steep drop in cut-o� heights in Figure 12 will shift to the right, but only marginallysince usually n� p.) Figures 12b and c demonstrate this dependence in two ways for LTS.Figure 12b shows small bias cuto�s as a function of "s, the relative fraction of inliers |points on the lower half of the step. The bias cuto�s are lower for lower "o simply becausefewer gross outliers imply more actual inliers when "s remains �xed. Figure 12c showssmall bias cuto�s as a function of the actual fraction of inliers. In this context, varying "owhile (1� "o)"s is �xed changes the fraction of gross outliers versus pseudo outliers. As theplot shows, the coherent structure of the pseudo outliers causes more bias than the randomstructure of gross outliers. This same e�ect is shown for LMS in Figure 12d. Finally, themagnitude of z0, which controls the gross outlier distribution, has little e�ect on the biasresults, except in the unrealistic case where it approaches the discontinuity magnitude.LTS is less biased than LMS, especially when the actual fraction of inliers is only slightlyabove 0.5. This can be seen most easily by comparing the low bias cuto� plots in Figure 12cand d. Like the advantage of hard redescending M-estimators over �xed-band techniques(Section 6.2), this occurs because LTS is more statistically e�cient than LMS [21] | itsobjective function depends on the smallest 50% of the residuals rather than just on themedian residual. It is important to note that although LMS's e�ciency can be improved byapplication of a one-step M-estimator starting from the LMS estimate, this will not improvesubstantially a heavily biased �t, since a local minimumof the M-estimator objective functionwill be near this �t.With a minor modi�cation to its optimization criteria, MINPRAN can be made muchless sensitive to pseudo outliers, improving dramatically on the poor performance shown inFigures 11 and 12. The idea is to �nd two disjoint �ts (no shared inliers), �̂a and �̂b, withinlier bounds r̂a and r̂b and inlier counts k�̂a;r̂a and k�̂b;r̂b, minimizingF(r̂a+r̂b; k�̂1 ;r̂a+k�̂b ;r̂b; n)[23, 26]. If �̂ is the single �t minimizing the criterion function, with inlier bound r̂ and inlier29



count k�̂;r̂, then the two �ts �̂a and �̂b are chosen instead of the single �t �̂ ifF(r̂a + r̂b; k�̂a;r̂a + k�̂b;r̂b; n) < F(r̂; k�̂; n): (36)Thus, the modi�ed optimization criteria tests whether one or two inlier distributions aremore likely in the data [27]. Figure 12 shows the step edge small bias cut-o� heights for thisnew objective function, denoted by MINPRAN2. These are substantially lower than those ofthe other techniques, including LTS. Further, these results, unlike those of MINPRAN, areonly marginally a�ected by the parameters "o and z0. Unfortunately, the search for �̂a and�̂b is computationally expensive, and so the present implementation of MINPRAN2 uses asimple search heuristic that yields [23, 26] more biased results than the optimum shown here.It is, however, as e�ective as the �xed-scale, hard redescending M-estimator and, unlike LMSand LTS, it does not fail dramatically when there are too few inliers.6.5 Discussion and RecommendationsOverall, the results show that all the robust estimators studied estimate biased �ts at smallbut substantial discontinuity magnitudes. This bias, which relative to the bias of least-squares is greater for crease and step edges and less for parallel lines, occurs even if �̂ or thedistribution of gross outliers or both are known a priori. Further, it must be emphasizedthat this bias is not an artifact of the search process: the functional form of each estimatorreturns the �t corresponding to the global minimum of the estimator's objective function.The reason for the bias can be seen by examining the cumulative distribution functions(cdfs) of absolute residuals. Figure 13 plots this cdf, F a(rj�;H), when � is the target �t (� =�1) and when � is the least-squares �t to H, for H modeling crease and step discontinuities.For �z=� = 6:0, the cdf of the biased �t is almost always greater that of the target �t,meaning that in a discrete set of samples, the biased �t, which crosses through both pointsets, will on average yield smaller magnitude residuals than the target �t, which is close toonly the target point set. (The situation is somewhat better when �z=� = 9:0.) Therefore,robust estimators, such as the ones studied, whose objective functions are based solely onresiduals, are unlikely to estimate unbiased �ts at small magnitude discontinuities.30
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While none of the estimators works as well as desired, the following recommendations forchoosing among them are based on the results presented above:� When �̂ is known a priori , one should use a hard redescending M-estimator objec-tive function such as Hampel's with reduced tuning parameter values and either arandom-sampling search technique or a weighted Hough transform. To ensure all in-liers are found and to obtain greater statistical e�ciency, an one-step M-estimator withlarger tuning parameters should be run from the initial optimum �t. This technique ispreferable to LTS and LMS because it is less sensitive to the number of gross outliers.� When �̂ is not known a priori, but the distribution of gross outliers is known, oneshould use the modi�ed MINPRAN algorithm, MINPRAN2 [23, 26].� When neither �̂ nor the distribution of gross outliers is known, LTS should be used,although its performance degrades quickly when there are too few inliers. LTS ispreferable to LMS because of its statistical e�ciency.7 Summary and ConclusionsThis paper has developed the pseudo outlier bias metric using techniques from mathematicalstatistics to study the �tting accuracy of robust estimators on data taken from multiplestructures | surface discontinuities, in particular. Pseudo outlier bias measures the distancebetween a robust estimator's optimum �t to a target distribution and its optimum �t to anoutlier corrupted mixture distribution. Here, the target distribution models the points froma single surface and the mixture distribution models points from multiple surfaces plusgross outliers. Each estimator's optimum �t is found by applying its functional form toone of these model distributions. Thus, like other analysis tools from the robust statisticsliterature, pseudo outlier bias depends on point distributions rather than on particular pointsets drawn from these distributions. While this has some limitations | the actual �ttingerror for particular points sets may be more or less than the pseudo outlier bias and it ignoresproblems that may arise from multiple local minima in an objective function | it representsa simple, e�cient, and elegant method of analyzing robust estimators.32



Pseudo outlier bias was used to analyze the performance of M-estimators, �xed-bandtechniques (Hough transforms and RANSAC), least median of squares (LMS), least trimmedsquares (LTS) and MINPRAN in �tting surfaces to three di�erent discontinuity models: stepedges, crease edges and parallel lines. For each of these discontinuities, two surfaces generatedata, with the larger set of surface data forming the inliers and the smaller set formingthe pseudo outliers. By characterizing these discontinuity models using a small number ofparameters, formulating the models as mixture distributions, and studying the bias of therobust estimators as the parameters varied, it was shown that each robust estimator is biasedfor substantial discontinuity magnitudes. This e�ect, which relative to that of least-squaresis strongest for step edges and crease edges, persists even when the noise in the data or thegross outlier distribution or both are known in advance. It is disappointing because in visiondata | not just in range data | multiple structures (pseudo outliers) are more prevalentthan gross outliers. In spite of the disappointment, however, speci�c recommendations,which depend on what is known about the data, were made for choosing between currenttechniques.6These negative results indicate that care should be used when robustly estimating surfaceparameters in range data, either to obtain local low-order surface approximations or toinitialize �ts for surface growing algorithms [3, 5, 6, 15]. (Similar problems may occurfor the \layers" techniques that have been applied to motion analysis [1, 6, 28].) Robustestimates will be accurate for large scale depth discontinuties and sharp corners, but willbe skewed at small magnitude discontinuites, such as near the boundary of a slightly raisedor depressed area of a surface. Obtaining accurate estimates near these discontinuities willrequire new and perhaps more sophisticated robust estimators.AcknowledgementsThe author would like to acknowledge the �nancial support of the National Science Foun-dation under grants IRI-9217195 and IRI-9408700, the assistance of James Miller in variousaspects of this work, and the insight o�ered by the anonymous reviewers which led to sub-6See [14, 17] for new, related techniques. 33



stantial improvements in the presentation.Appendix A: Evaluating Fs(rj�;H)This appendix shows how to evaluate the conditional cumulative distribution and conditionaldensity of signed residuals, F s(rj�;H) (equation 21) and f s(rj�;H) (equation 22). Thedistribution and density of the absolute residuals are obtained easily from these.Expanding the expression in equation 21 for F s(rj�;H), using equation 18 for h, givesF s(rj�;H) = "oF so (rj�;H) + (1� "o)["sF s1 (rj�;H) + (1 � "s)F s2 (rj�;H)]: (37)Here, F so (rj�;H) = Z x1x0 Z �(x)+r�1 go(z)x1 � x0 dz dx = Go(�(x) + r) (38)where Go(�) is the cumulative distribution of the gross outliers, and for i = 1; 2F si (rj�;H) = Z xi;1xi;0 Z �(x)+r�1 g(z��i(x);�2)xi;1 � xi;0 dzdx: (39)To simplify evaluating F si (rj�;H), change variables and then change the order of integration.Starting with the change of variables, make the substitutions v = z � �i(x) and dv = dz(intuitively, v is the �t residual at x), de�ne �(x) = �(x)��i(x), and let �i = 1=(xi;1�xi;0).Then, the integral becomesF si (rj�;H) = Z xi;1xi;0 Z �(x)+r�1 �ig(v;�2) dv dx:Since the integrand is now independent of x, rewriting the integral to integrate over stripsparallel to the x axis will produce a single integral. Consider a strip bounded by v and v+�v(Figure 14). The integral over this strip is approximately �ig(v)w(v)�v, where w(v) is thewidth of the integration region at v. In the limit as �v ! 0, this becomes exact and theintegral over the entire region becomesF si (rj�;H) = Z v1�1 �ig(v;�2)w(v)dv; (40)where v1 is the maximum of �(x) + r over [xi;0; xi;1].34



v
0

v
1

(x)+rφ

i,0
x

i,1
x

v

v+ ∆vFigure 14: Calculating F si (rj�;H) for i = 1; 2 requires integrating the point density for curvei over strips of width �v parallel to the x axis. The density g(v;�2) is constant over thesestrips.Evaluating w(v) depends on �(x). This paper studies linear �ts and linear curve models,so �(x) is linear. In this case, let �(x) = mx+ b, assume m > 0, and let v0 = mxi;0 + b+ rand v1 = mxi;1 + b + r (see Figure 14). Then, w(v) = xi;1 � xi;0 for v < v0 and w(v) =xi;1 � (v � b� r)=m for v0 � v � v1. Thus, using G to denote the cdf of the gaussian,F si (rj�;H) = �Z v0�1(xi;1 � xi;0)g(v;�2) dv + �Z v1v0 �xi;1 � v � b� rm � g(v;�2) dv= G(v0;�2) + �mxi;1 + b+ rm [G(v1;�2)�G(v0;�2)] + ��2m [g(v1;�2)� g(v0;�2)](41)A similar result is obtained when m < 0, and when m = 0, v0 = v1 and so F si (rj�;H) =G(v0;�2).To compute the density fs(rj�;H), start from the mixture density in equation 22 andintegrate each component density separately. This is straightforward when the density go isuniform and, as above, �(x) and �i(x) are linear.References[1] S. Ayer and H. Sawhney. Layered representation of motion video using robust maxi-mum likelihood estimation of mixture models and MDL encoding. In Proceedings IEEEInternational Conference on Computer Vision, pages 777{784, 1995.[2] P. J. Besl, J. B. Birch, and L. T. Watson. Robust window operators. In ProceedingsIEEE International Conference on Computer Vision, pages 591{600, 1988.[3] P. J. Besl and R. C. Jain. Segmentation through variable-order surface �tting. IEEETransactions on Pattern Analysis and Machine Intelligence, 10:167{192, 1988.35



[4] R. C. Bolles and M. A. Fischler. A Ransac-based approach to model �tting and itsapplication to �nding cylinders in range data. In Proceedings Seventh InternationalJoint Conference on Arti�cial Intelligence, pages 637{643, 1981.[5] K. L. Boyer, M. J. Mirza, and G. Ganguly. The Robust Sequential Estimator: A generalapproach and its application to surface organization in range data. IEEE Transactionson Pattern Analysis and Machine Intelligence, 16:987{1001, 1994.[6] T. Darrell and A. Pentland. Cooperative robust estimation using layers of support.IEEE Transactions on Pattern Analysis and Machine Intelligence, 17:474{487, 1995.[7] M. A. Fischler and R. C. Bolles. Random Sample Consensus: A paradigm for model�tting with applications to image analysis and automated cartography. CACM, 24:381{395, 1981.[8] J. D. Gaskill. Linear Systems, Fourier Transforms, and Optics. John Wiley and Sons,1978.[9] F. R. Hampel, P. J. Rousseeuw, and E. Ronchetti. The change-of-variance curve andoptimal redescending M-estimators. Journal of the American Statistical Association,76:643{648, 1981.[10] F. R. Hampel, P. J. Rousseeuw, E. Ronchetti, and W. A. Stahel. Robust Statistics: TheApproach Based on In
uence Functions. John Wiley & Sons, 1986.[11] P. W. Holland and R. E. Welsch. Robust regression using iteratively reweighted least-squares. Commun. Statist.-Theor. Meth., A6:813{827, 1977.[12] P. J. Huber. Robust Statistics. John Wiley & Sons, 1981.[13] J. Illingworth and J. Kittler. A survey of the Hough transform. CVGIP, 44:87{116,1988.[14] K.-M. Lee, P. Meer, and R.-H. Park. Robust adaptive segmentation of range images.(submitted to) IEEE Transactions on Pattern Analysis and Matchine Intelligence, 1996.[15] A. Leonardis, A. Gupta, and R. Bajcsy. Segmentation of range images as the search forgeometric parametric models. International Journal of Computer Vision, 14:253{277,1995.[16] P. Meer, D. Mintz, A. Rosenfeld, and D. Y. Kim. Robust regression methods forcomputer vision: A review. International Journal of Computer Vision, 6:59{70, 1991.[17] J. V. Miller and C. V. Stewart. MUSE: Robust surface �tting using unbiased scale esti-mates. In Proceedings IEEE Conference on Computer Vision and Pattern Recognition,pages 300{306, 1996.[18] M. J. Mirza and K. L. Boyer. Performance evaluation of a class of M-estimators forsurface parameter estimation in noisy range data. IEEE Transactions on Robotics andAutomation, 9:75{85, 1993. 36



[19] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipesin C: The Art of Scienti�c Computing. Cambridge University Press, 1992.[20] G. Roth and M. D. Levine. Extracting geometric primitives. CVGIP: Image Under-standing, 58:1{22, 1993.[21] P. J. Rousseeuw. Least median of squares regression. Journal of the American StatisticalAssociation, 79:871{880, 1984.[22] P. J. Rousseeuw and C. Croux. Alternatives to the median absolute deviation. Journalof the American Statistical Association, 88:1273{1283, 1993.[23] C. V. Stewart. A new robust operator for computer vision: Application to range images.In Proceedings IEEE Conference on Computer Vision and Pattern Recognition, pages167{173, 1994.[24] C. V. Stewart. A new robust operator for computer vision: Theoretical analysis. InProceedings IEEE Conference on Computer Vision and Pattern Recognition, pages 1{8,1994.[25] C. V. Stewart. Expected performance of robust estimators near discontinuities. InProceedings IEEE International Conference on Computer Vision, pages 969{974, 1995.[26] C. V. Stewart. MINPRAN: A new robust estimator for computer vision. IEEE Trans-actions on Pattern Analysis and Machine Intelligence, 17:925{938, 1995.[27] D. Titterington, A. Smith, and U. Makov. Statistical Analysis of Finite Mixture Distri-butions. John Wiley and Sons, New York, 1985.[28] J. Y. A. Wang and E. H. Adelson. Layered representation for motion analysis. InProceedings IEEE Conference on Computer Vision and Pattern Recognition, pages 361{366, 1993.
37


