A Meta-search Method Reinforced by Cluster Descriptors

Yipeng Shen

Dik Lun Lee

Department of Computer Science
The Hong Kong University of Science and Technology
Hong Kong, China
{yipeng, dlee}@cs.ust.hk

Abstract

A meta-search engine acts as an agent for the par-
ticipant search engines. It receives queries from users
and redirects them to one or more of the participant
search engines for processing. A meta-search engine
incorporating many participant search engines is bet-
ter than a single global search engine in terms of the
number of pages indexed and the freshness of the in-
dexes. The meta-search engine stores descriptive data
(i.e., descriptors) about the index maintained by each
participant search engine so that it can estimate the
relevance of each search engine when a query is re-
ceived. The ability for the meta-search engine to select
the most relevant search engines determines the qual-
ity of the final result. To facilitate the selection pro-
cess, the document space covered by each search engine
must be described not only concisely but also precisely.
Exzisting methods tend to focus on the conciseness of
the descriptors by keeping a descriptor for a search en-
gine’s entire index. This paper proposes to cluster a
search engine’s document space into clusters and keep
a descriptor for each cluster. We show that cluster de-
scriptors can provide a finer and more accurate repre-
sentation of the document space, and hence enable the
meta-search engine to improve the selection of relevant
search engines. Two cluster-based search engine selec-
tion scenarios (i.e., independent and high-correlation)
are discussed in this paper. FExperiments verify that
the cluster-based search engine selection can effectively
identify the most relevant search engines and improve
the quality of the search results consequently.

1 Introduction

The enormous and rapidly increasing amount of in-
formation on the Web [10] has made the Internet very
valuable for discovering useful information. Search en-

gines help users to unearth relevant web pages from
the ocean of the Web, which contains billions of docu-
ments nowadays. Since the Web is huge and the web
pages are updated frequently, the index maintained by
a search engine has to be refreshed periodically. This
is extremely time and resource consuming because the
search engine needs to crawl the Web and download
web pages to refresh its index [2]. Thus, it is very dif-
ficult for a single search engine to cover a large part,
let alone the entirety, of the Web and keep its index
up-to-date at the same time.

A search engine indexing a smaller part of the Web
may refresh its index more frequently since it focuses
on either a specific network domain (e.g., edu.hk) or
web servers in a local geographical area. Therefore, a
small but focused search engine can return more per-
tinent and up-to-date web pages compared to a single
global search engine. However, its coverage of the Web
is small and it may only contain some of the pages rel-
evant to a user query. In order not to miss relevant
documents, the user has to visit several search engines
individually.

A meta-search engine is a middleware (or agent)
consisting of a number of participant search engines
[13, 6]. Each participant search engine maintains its
own index and offers some descriptive information (i.e.,
descriptors) about its index to the meta-search engine.
The meta-search engine records the descriptors and
uses them to estimate the relevance of the underly-
ing search engines when a query is received. To reduce
resource consumption, only the most relevant search
engines are invoked to process the query. The selection
of the most relevant search engines is referred to as the
server selection (or ranking) procedure.! A good server
selection method can effectively identify the most rele-
vant search servers and consequently the most relevant

ISince a search engine is often run on a server (often as a
server process), we use the terms search engine and search server
interchangeably.

set of documents.

Compared to a single search engine, meta-search en-
gines can provide a larger coverage of the Web and re-
turn more up-to-date web pages because it can incor-
porate a large number of search engines, each of which
can index a small part of the Web efficiently. How-
ever, the document space covered by each search engine
must be described not only concisely but also precisely
in the meta-search engine. In general, we want to keep
in the meta-search engine more descriptive information
about each server’s index to make server selection more
accurate. However, the large amount of descriptive in-
formation requires more resources on the participant
search engines to collect and on the meta-search engine
to store and process. It is clear that there is a tradeoff
between the amount of descriptive data stored at the
meta-search engine and the accuracy of the relevance
estimation.

Existing server selection methods tend to focus on
the conciseness of the descriptors by keeping a descrip-
tor for a search engine’s entire index. For example,
the descriptive information usually consists of the to-
tal number of documents indexed by the search engine,
and for each index term the total term frequency, and
document frequency, etc [17, 11]. It is clear that in-
formation such as ”the word business appears in 1,000
documents” doesn’t mean much without knowing the
context within which the word appears.

In this paper, we adopt an approach that clusters a
search engine’s document space into clusters and repre-
sents a document space in the meta-search engine by its
clusters descriptors. We propose a new server ranking
method which uses the cluster descriptors to estimate a
server’s relevance. Since clustering can identify homo-
geneous groups (clusters) of documents in the search
engine’s document space, cluster descriptors not only
give us a finer representation of the document space
because each cluster represents only a part of the doc-
ument space, but also a more accurate representation
since words appearing in the same cluster are likely to
bear the same meanings. As a result, the selection of
relevant search engines will be improved.

It can be argued that clustering is expensive. How-
ever, many fast clustering methods have been proposed
in the literature [12, 18] to obtain document clusters
and their descriptors (e.g., centroids) efficiently. We
also show in this paper that it is not necessary to gen-
erate a large number of clusters in order to improve the
performance and that the descriptors are very concise.

It is important to note that the participant search
engines don’t have to physically cluster their document
spaces. They can retain their own physical organiza-
tions and retrieval methods. They only need to im-

plement a clustering module to obtain the cluster de-
scriptors and send them to the meta-search engine. In
this sense, the meta-search engine is a cooperative sys-
tem. In fact, all meta-search engines that make use
of information provided by the participant search en-
gines, including the existing works described in the
next section, are cooperative systems. We believe the
economic incentive of getting high visibility and high
ranking on a meta-search engine will encourage the par-
ticipant search engines to provide the descriptive in-
formation. Furthermore, although this work has been
motivated by web-based meta-search systems, the pro-
posed method can be applied to non-web-based sys-
tems which distribute and search documents on dif-
ferent machines for system efficiency, availability, or
management reasons.

In this paper, we first define the information kept
in a cluster descriptor and then develop the server se-
lection method based on cluster descriptors. Using a
document collection derived from TREC?, we evaluate
the performance of the proposed method and compare
it to the existing methods. We show that our method
has very good performance especially when we only se-
lect a few candidates out of a large set of servers for
evaluating the query, which is exactly the situation we
expect to encounter in a large-scale meta-search engine
system.

In the next section, we review the related work. In
Section 3, our server ranking method using cluster de-
scriptors is introduced; two ranking scenarios (i.e., in-
dependent and high-correlation) are discussed. Section
4 presents some experimental results. The conclusion
is drawn in Section 5.

2 Related Work

Meta-search is also referred to as the hierarchical
distributed search. Many papers addressing this issue
are published recently. As mentioned before, server
ranking is the most critical problem in meta-search.

1. gGloss server ranking [5, 6] is often regarded as
the baseline for other server ranking methods. For
each document containing some query terms in a
server’s index database, it computes the similarity
between the document and the query. In gGloss
ranking, the ideal(0) goodness score of the server
is the sum of these similarity values.

2. CORI [3, 11] adopts the inference network to esti-
mate the relevance of each underlying server. Each
query term’s document frequencies (dfs) in all the

2 http://trec.nist.gov

servers and the inverse collection frequency (icf)
are used in server ranking, which is basically a
df x icf strategy.

3. CVV [17] prefers terms that can distinguish one
server from another. Terms with larger variances
in the cue validity values, which stand for the de-
gree by which one server can differ from others, are
given greater weights in the server ranking. Intu-
itively, larger variance indicates that some more
relevant servers can be separated from the irrele-
vant servers.

4. A recent server ranking method is proposed in
[13, 15, 16]. It tries to rank the servers accord-
ing to the document with the greatest similarity to
the query in each server so that the server ranking
can guarantee that the most similar documents
are always retrieved. For each server, the doc-
ument with the greatest similarity to the query
is supposed to be a document with the maxi-
mum normalized term weight for one of the query
terms and the average normalized term weights for
other query terms. We refer to this server ranking
method as MSD (the Most Similar Documents).

5. A theoretical model proposed in [4] aims at retriev-
ing a maximum number of relevant documents at
the minimum cost. Each server has its own perfor-
mance curve in terms of recall and precision and
there are server-specific costs for the retrieval of
documents. Given a query, if the total cost of
retrieving n documents from the servers related
to the query is minimized, the cost differentials
of these servers’ cost functions are equal by using
Lagrange multipliers, that is, the optimal number
of documents to be selected from each of these
servers can be anticipated. Moreover, this model
can also be extended to optimize the retrieval cost
if the user wants to browse n relevant documents.

6. Xu and Croft [14] proposed a cluster-based server
ranking method and showed that it is very effec-
tive. Given a query, the Kullback-Leibler diver-
gence [14] between each cluster and the query is
calculated for each server. The server ranking is
based on the most similar cluster in each server.
Our method is also cluster based, but we use a
different method to estimate a server’s relevance
from the cluster descriptors.

3 Server Selection

To improve the accuracy of server ranking, we must
delineate the document space indexed by a search en-

gine in detail. More data beyond the contents in the
present descriptors such as the document frequencies
used in CORI should be kept at the meta-search en-
gine. Our motivation is to cluster the documents in
each underlying server’s index database; similar doc-
uments are grouped together. The descriptors of the
clusters, which are concise in data size and informa-
tive in describing the document space, are stored at
the meta-search engine. The server selection is based
on these descriptors of clusters. In case the documents
in a server’s index database are not clustered or are
already tightly clustered, we may simply treat the doc-
uments as one single cluster in the cluster-based server
ranking.

Besides, we assume that both the documents in the
index databases and the user queries are represented as
vectors (i.e., the vector space model is adopted). For
each document vector corresponding to a document,
the weight of a term in the vector is defined as the raw
term frequency of the term divided by the maximum
raw term frequency among all the terms in the docu-
ment. The similarity between any two vectors is the
cosine value between them, which is the two vectors’
dot product divided by their two corresponding norms.
If x = (x4, ..., 2,,) is a vector, the norm of z is usually
defined as (22 + ... + 22,)2. When we cluster the doc-
uments, the similarity between two document vectors
is computed. Similarly, when we answer a user query,
the similarity between the query vector and a docu-
ment vector representing the document to be retrieved
is computed.

3.1 K-means Clustering

Efficient clustering algorithms have been discussed
in [12, 18, 7]. The clustering procedure in these algo-
rithms is based on main memory with the help of some
data structures (e.g., the Clustering Feature Tree in
BIRCH [18]). Since these algorithms incur fewer disk
operations, their efficiency is significantly improved.

Our objective is to study the effectiveness of the
cluster-based server selection method and to determine
if an efficient, but not necessarily the most effective,
clustering algorithm can still improve the quality of
server selection. As such, we adopt the widely used
K-means clustering algorithm [8], which is an iterative
algorithm that converges quickly. The K-means clus-
tering algorithm starts with K rough clusters and itera-
tively adjusts the clusters until the clusters are satisfac-
torily refined. Xu and Croft adopted this method and
showed that it is quite effective, although the version
they used is a more straightforward and faster two-pass
(iteration) algorithm [14].

3.2 Descriptors of Clusters

Once the clustering is done, the documents in the
same cluster can be briefly represented by that clus-
ter’s descriptor, which contains some basic information
about the cluster. Each cluster ¢’s descriptor consists
of the following data:

e The total number of documents in the cluster, V.

e The centroid of the cluster, (awi,aws, ..., awp,).
aw; is the average term weight of term ¢; over all
the documents in the cluster including the docu-
ments do not contain ¢;.

e The document frequency vector, (dfy, dfa, ..., dfm)-
df; is the number of documents that contain ¢; in
the cluster.

For term t;, aw; is the average value among all
the documents no matter whether the documents con-
tain the term or not. Given a query with multi-
ple terms, only the documents containing the query
terms are related to the query. Thus, another vector
(pw1, pws, ..., pwy,), which is referred to as the purified
weight vector, can be deduced. pw; = aw; - N/df; is
the average term weight of term ¢; among all the doc-
uments containing term ¢; in the cluster.

3.3 Similarity Weights of Clusters

Our server ranking method is based on the cluster
descriptors. For each query, we calculate the similar-
ity of a server according to the similarity weights of
its underlying clusters. Assume ¢ = (gt1,qta, ..., qtm)
is the query vector; p; = df; /N is the probability that
t; is contained in a random document in the cluster.
sim., the similarity of cluster ¢ to the query, can be
estimated via two different scenarios, namely, the in-
dependent scenario and the high-correlation scenario.

3.3.1 Independent Scenario

The independent scenario assumes that the distribu-
tion of terms in the documents is mutually indepen-
dent. For example, suppose ¢ = (t1,¢2) and p; and
po are the probabilities that a document contains t;
and t, respectively. The probability that the docu-
ment contains both ¢; and s is p; - p2 due to the
independent distribution assumption. p,, the prob-
ability that a random document in the cluster con-
tains either t; or ¢y, or both t; and t,, is equal to
pr+p2—pip2 = 1 — (L =p1)(1 — p2). If ¢ contains

m terms, p,, the probability that a random document
contains some query terms, is defined as:

pr=1—(1-=p1)(1=pa2).(l = pm).

Thus, p, - N is the total number of documents in the
cluster containing some query terms. To simplify the
computation, we choose the purified weight vector as
the representative of these documents. If sim, is the
similarity between the purified weight vector and the
query vector, sim., the estimated similarity of cluster
¢, is defined as sim, times the number of documents
that contain some query terms in c:

sime = pprNsim, (1)
= [1-(1=p)A=p2)...(1 —pp)] N sim,.

3.3.2 High-Correlation Scenario

Our high-correlation scenario is more or less similar
to that of gGloss [5] despite that our specification is
slightly different. We make two assumptions in the
same manner as those made in gGloss [5]:

1. Assume p; < py. If a document contains ¢;, then
it will also contain ¢s.

2. The weight of a term is distributed uniformly over
all the documents containing the term.

For example, if ¢ = (t1,%2,%3) and p; < pa < pa3,
the probability that a random document contains all
of the three terms is p;, which corresponds to the rep-
resentative vector rvy = (pwi,pws, pws); the proba-
bility that a document exactly contains ¢, and t3 is
p2 — p1, which corresponds to the representative vector
rvg = (0, pwa, pws), and so on.

Generally, if ¢ has m terms t¢1,%s,....t, and p; <
p2 < ... < pm, then ph; = p; — pi—1 (1 > 1) is the prob-
ability that a document exactly contains ¢;,t;41, ..., tm,
which corresponds to the representative vector rv; =
(0, ..., 0, pw;, pwWit1, ..., PWm). Phy, the probability that
a document contains all m terms is equal to p;, which
corresponds to rv; = (pwi, ..., P)-

Assume sim,, is the similarity between vector rv;
and query ¢q. sim., the estimated similarity between
cluster ¢ and ¢ can be computed as follows:

m
sim, = thi N sim,, (2)
i=1
p =1,
phz — P, Z 3
pi —pi-1, 1>1.

Furthermore, if sim,, is defined as the dot product
between the query vector and the corresponding rep-
resentative vector rv;, and the inverse document fre-
quencies are incorporated in the representative vector,

then sim. is equal to the ideal gGloss weight (i.e., the
ideal(0) weight for cluster c).

3.4 Estimated Weights of Servers

For each query, we may use one of the aforemen-
tioned scenarios to estimate the similarity of a cluster.
Suppose the documents indexed by a search server s
can be clustered into k clusters ¢y, ¢a, ..., cx. We define
the estimated similarity of s as the sum of the clus-
ter weights of the top clusters. That is, assume that
sime, is the estimated similarity weight of ¢; and that
§iMe, > SiMe, > ... > sime,. Then, simg, the esti-
mated similarity of s, is defined as:

!
simszz(simci,lglgk . (3)

i=1

In our server weight formula, the top clusters are
supposed to contain the majority of the relevant doc-
uments within s’s index. Therefore, the clusters with
smaller estimated similarity weights can be ignored in
estimating s’s similarity. Furthermore, if the num-
ber of clusters in s is large, this method can reduce
the amount of data stored at the meta-search engine,
which selects the most similar servers when a query is
received.

4 Experimental Results

To justify the effectiveness of our cluster-based
server ranking method, a simulation environment con-
sisting of 50 pseudo-servers is constructed. Documents
from the Volume 4 and Volume 5 of the TREC collec-
tion, consisting of over 500,000 documents of total size
of about 2.1 Gbytes, are distributed randomly (uni-
formly) among the 50 servers. If a skew distribution is
adopted, given a query, the difference of the relevance
of the underlying servers tends to be more obvious and
larger servers are often very likely to be more relevant.
The experiments are based on the uniform distribution
of documents in this paper since it is more difficult to
effectively identify the most relevant servers when the
documents are uniformly distributed. The documents
are indexed by each server and are further clustered.
The cluster descriptors are kept at the meta-search en-
gine, where the servers’ similarity values are estimated
against each user query.

For each query, the meta-search engine only selects
the most similar servers for processing the query. The
number of selected servers is referred to as the cast
number. Each selected server evaluates the query and
returns the retrieved documents together with their

corresponding TFIDF values; the documents are sorted
in descending order of the TFIDF values [1].

The local inverse document frequencies are used in
the TFIDF formula since it has been shown that the
effects of global inverse document frequencies and local
inverse document frequencies on the ranking are about
the same especially when the documents are uniformly
distributed in the servers [13]. Furthermore, since the
web queries are usually short (about two terms on aver-
age), both the effectiveness and the necessity of adopt-
ing the inverse document frequencies are weakened.
More importantly, maintaining global information is
impractical when the meta-search engine consists of a
large number of participant search engines.

Finally, the meta-search engine merges the docu-
ments retrieved from the selected servers to a final re-
sult list and returns it to the user.

The fifty queries used in the experiments are the
TREC topics 301-350; the short query format is
adopted since the web queries are usually short [9].
Each short TREC query contains 2.48 terms on aver-
age. Furthermore, since the number of returned docu-
ments is usually large for the web queries and the user
often just browses a small number of them, the preci-
sion of the top documents is taken as the most basic
performance criterion in our experiments.

4.1 Number of Clusters

If we generate a large number of clusters from the
documents covered by a search server, each cluster
tends to contain a smaller number of highly similar doc-
uments. Thus, the cluster descriptors would be more
precise in describing the documents in the clusters.
However, this will produce more cluster descriptors,
which will take up more storage space at the meta-
search engine. Furthermore, the cost of generating a
large number of clusters is high.

In this experiment, we will examine the effect on re-
trieval precision when different numbers of clusters are
used. We use the similarity weights of all the clusters in
a server’s index to generate the similarity weight of the
server. The precision values are obtained when the top
10, 20, and 30 documents are considered. From Figure
1, we notice that the precision values initially increase
when the number of clusters increases. However, once
the total number of clusters exceeds a certain value
(about 12 clusters in the experiment), increasing it fur-
ther will not affect the precision values much. This is
an important result, since it means that we don’t have
to spend a lot of resources, in terms of both cluster
generation and descriptor storage costs, to generate a
large number of clusters in order for our method to

work well.

02— T T T T T T T T T T T T T T T T T

0.2t * * * 4

Precision
o o
N P
S (2]

: T
,
\
1
1
\
N
; ;

o

[

N
T
L
i

?

0.08 1
* Top 10 Docs
— — Top 20 Docs

0.24

0.22
02 pemmep B8 % a0 0
F~ o o o A
FE R B T -
oasf O * B R IR A
A
0.16 :
c
i<l
L0.14
<
o
0.12
O Top 10 Docs, Cluster No=10
0.1 — — Top 10 Docs, Cluster No=20
A Top 10 Docs, Cluster No=30
0.08 + Top 10 Docs, Cluster No=40
Top 20 Docs, Cluster No=10
Top 20 Docs, Cluster No=20
0.06 Top 20 Docs, Cluster No=30
Top 20 Docs, Cluster No=40
0.04 i i i i i

01 02 03 04 05 06 07
Evaluation Ratio

08 09 1

0.06- —— Top 30 Docs

0.04

2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Total No. of Clusters

Figure 1. Effect of the Total Number of Clus-
ters (Cast Number=5, Independent Scenario)

4.2 Evaluation Ratio

In our cluster-based server selection method, we pro-
pose to sum up the similarity values of its top clusters
when the similarity weight of a server is estimated. The
percentage of the clusters used in calculating the weight
of a server is referred to as the evaluation ratio. If the
evaluation ratio equals 1, the similarity weights of all
the clusters in the server are used. The rationale is that
the relevant documents of a query should be similar to
each other and as such should be contained in a small
number of clusters. These clusters in turn should have
high cluster similarity weights to the query. Therefore,
the clusters with the highest similarity weights should
contain most of the relevant documents. We try to
verify this intuition with an experiment. The result is
shown in Figure 2. We can see that when we use more
than 30% top clusters (i.e., the evaluation ratio>0.3)
to compute the server weight, the precision of the top
documents does not improve very much. More clusters
employed in the ranking only result in some fluctuation
in the performance. This is also verified in Figure 3,
where the two ranking scenarios are compared.

4.3 Ranking Scenarios

When we estimate the similarity of a cluster in a
server, we have considered the independent and high-
correlation ranking scenarios. For the queries employed

Figure 2. Effect of the Evaluation Ratio (Cast
Number=5, Independent Scenario)

in this experiment, we examine the performance of our
server ranking method under both scenarios. The re-
sult is depicted in Figure 3, which shows that the in-
dependent ranking scenario performs better than the
high-correlation scenario for various evaluation ratios.
We believe that this phenomenon is attributed to the
fact that the query terms employed in the TREC top-
ics are not highly correlated. Therefore, we hereafter
adopt the independent ranking scenario for our cluster-
based server selection method.

0.24 T T T T T T T T T T
0.221 gl
02f -7 -o %8 Bob00 0
~ . o o o A
o ! ~o PR
0.18F ST 4
A
0.16 : 7
c
i<l
2o.1af 1
<
o
0.12- §|
0.1p O Independent, Cluster No=10 1
— — Independent, Cluster No=20
0.08} A Independent, Cluster No=30 d
High-Correlation, Cluster No=10
High—Correlation, Cluster No=20
0.06f High-Correlation, Cluster No=30 1
0.04 i i i i i i

01 02 03 04 05 06 07 08 09 1
Evaluation Ratio

Figure 3. Ranking Scenarios (Cast Number=5)

4.4 Comparison

In this experiment, we compare our cluster-based
server selection method against four existing methods
described in Section 2. We evaluate our method when
the number of clusters generated from the documents
under each search server is 20 or 30. The evaluation
ratio for both cases is 0.3. We also examine the result
of the ranking methods when the precision values of
the top 10 and top 20 documents are compared.

The result of the experiment is shown in Figure
4. When the cast number is small (e.g., cast num-
ber=10), we can see that our method is significantly
better than the other ranking methods under the two
cluster numbers and the two top document numbers.
When the cast number increases, the differences be-
tween the methods diminish. It is obvious that when
all of the servers are selected (i.e., cast number=50),
the five methods become the same.

Since the number of servers in a meta-search engine
is expected to be very large, we can only select a small
number of relevant servers to evaluate a query in order
to speed up query execution and save system resource.
Our cluster-based method can identify the most rele-
vant servers accurately even if the cast number is small.
Therefore, it is very suitable for the large-scale meta-
search systems.

5 Conclusion

Clustering is a useful method to identify data pat-
terns. We suggest in this paper that the document
space covered by a search server can be clearly and
concisely represented if it is clustered and represented
by cluster descriptors. Consequently, the relevance of
a search engine to a user query can be estimated more
accurately. We show by experiments that our cluster-
based server selection is very effective in identifying
the relevant search servers for a query. This is very im-
portant for a large-scale meta-search engine since the
server selection mechanism must be able to identify a
small number of relevant servers from a large number
of underlying servers.

The experiments also reveal some basic aspects of
the cluster-based server selection. To characterize the
document space with satisfactory accuracy, the docu-
ments in the index do not have to be clustered into
a large number of clusters. Instead, a moderate num-
ber of clusters is sufficient to describe the document
space. This reduces the clustering cost as well as the
storage space at the meta-search engine. Furthermore,

0.35

0.3F

0.25F

Precision

0.1r

0.05F

0.25

0.2F

0.15

Precision

0.1F

0.05F

Figure 4. Different Server Ranking Methods

0.2

CORI

gGloss

Ccw

MSD

Cluster-Based, Cluster No=20
— — Cluster-Based, Cluster No=30

+ X ¥ O

10 15 20 25 30 35 40 45
Cast Number

(a) Top 10 Documents

i
50

% %7 X -
p e T
. s ©
Ak
7R
’ +
&
O CORI
* gGloss
x Cw
+ MSD
Cluster-Based, Cluster No=20
— — Cluster-Based, Cluster No=30

5

10 15 20 25 30 35 40 45
Cast Number

(b) Top 20 Documents

i
50

it is enough to use a small percentage of the cluster de-
scriptors in estimating a server’s relevance to the query.
Thus, for each term, it is only necessary to store the
information of the most similar clusters; this results in
reduced storage cost with guaranteed performance.

Finally, since only the cluster descriptors are used
in ranking the servers, the underlying server does not
need to cluster the documents physically. It only needs
to periodically update the cluster descriptors and send
them to the meta-search engine. As a result, faster or
incremental clustering algorithms aiming at producing
rough clusters can be designed in the same manner as
the clustering feature tree used in BIRCH [18].

6 Acknowledgment

The writing of this chapter was supported by Re-
search Grants Council of Hong Kong, China (Project
numbers HKUST-6154/98E).

References

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Infor-
mation Retrieval. Addison Wesley, Essex, England,
1999.

[2] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. WWW?7 / Computer
Networks, 30(1-7):107-117, 1998.

[3] J. P. Callan, Z. Lu, and W. B. Croft. Searching dis-
tributed collections with inference networks. In SI-
GIR, pages 21-28, 1995.

[4] N. Fuhr. A decision-theoretic approach to database
selection in networked IR. ACM Transactions on In-
formation Systems, 17(3):229-249, 1999.

[6] L. Gravano and H. Garcia-Molina. Generalizing
GLOSS to vector-space databases and broker hierar-
chies. In VLDB, pages 78-89, 1995.

[6] L. Gravano, H. Garcia-Molina, and A. Tomasic.
GLOSS: Text-source discovery over the Internet.
ACM Transactions on Database Systems (TODS),
24(2):229-264, 1999.

[7] S. Guha, R. Rastogi, and K. Shim. CURE: An efficient
clustering algorithm for large databases. In SIGMOD,
pages 73-84, 1998.

[8] A.K. Jain and R. C. Dubes. Algorithms for Clustering
Data. Prentice Hall, 1988.

[9] B. J. Jansen, A. Spink, J. Bateman, and T. Saracevic.
Real life information retrieval: A study of user queries
on the Web. SIGIR Forum, 32(1):5-17, 1998.

[10] S. Lawrence and C. L. Giles. Accessibility of infor-
mation on the Web. Nature, Vol. 400:107-109, July
1999.

[11] A. L. Powell, J. C. French, J. P. Callan, and M. Con-
nell. The impact of database selection on distributed
searching. In SIGIR, pages 232-239, 2000.

[12] C. Silverstein and J. O. Pedersen. Almost-constant-
time clustering of arbitrary corpus subsets. In SIGIR,
pages 60-66, 1997.

[13] Z. Wu, W. Meng, C. T. Yu, and Z. Li. Towards a
highly-scalable and effective metasearch engine. In In-
ternational World Wide Web Conference (WWW10),
2001.

[14] J. Xu and W. B. Croft. Cluster-based language models
for distributed retrieval. In SIGIR, pages 254-261,
1999.

[15] C. T. Yu, W. Meng, K.-L. Liu, W. Wu, and N. Rishe.
Efficient and effective metasearch for a large number
of text databases. In CIKM, pages 217-224, 1999.

[16] C. T. Yu, W. Meng, W. Wu, and K.-L. Liu. Efficient
and effective metasearch for text databases incorpo-
rating linkages among documents. In SIGMOD, 2001.

[17] B. Yuwono and D. L. Lee. Server ranking for dis-
tributed text retrieval systems on the Internet. In
Proceedings of the Fifth International Conference on
Database Systems for Advanced Applications (DAS-
FAA), pages 41-50, Melbourne, Australia, 1997.

[18] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH:
An efficient data clustering method for very large
databases. In SIGMOD, pages 103-114, 1996.

