
A Meta-search Method Reinforced by Cluster DescriptorsYipeng Shen Dik Lun LeeDepartment of Computer ScienceThe Hong Kong University of Science and TechnologyHong Kong, Chinafyipeng, dleeg@cs.ust.hkAbstractA meta-search engine acts as an agent for the par-ticipant search engines. It receives queries from usersand redirects them to one or more of the participantsearch engines for processing. A meta-search engineincorporating many participant search engines is bet-ter than a single global search engine in terms of thenumber of pages indexed and the freshness of the in-dexes. The meta-search engine stores descriptive data(i.e., descriptors) about the index maintained by eachparticipant search engine so that it can estimate therelevance of each search engine when a query is re-ceived. The ability for the meta-search engine to selectthe most relevant search engines determines the qual-ity of the �nal result. To facilitate the selection pro-cess, the document space covered by each search enginemust be described not only concisely but also precisely.Existing methods tend to focus on the conciseness ofthe descriptors by keeping a descriptor for a search en-gine's entire index. This paper proposes to cluster asearch engine's document space into clusters and keepa descriptor for each cluster. We show that cluster de-scriptors can provide a �ner and more accurate repre-sentation of the document space, and hence enable themeta-search engine to improve the selection of relevantsearch engines. Two cluster-based search engine selec-tion scenarios (i.e., independent and high-correlation)are discussed in this paper. Experiments verify thatthe cluster-based search engine selection can e�ectivelyidentify the most relevant search engines and improvethe quality of the search results consequently.1 IntroductionThe enormous and rapidly increasing amount of in-formation on the Web [10] has made the Internet veryvaluable for discovering useful information. Search en-

gines help users to unearth relevant web pages fromthe ocean of the Web, which contains billions of docu-ments nowadays. Since the Web is huge and the webpages are updated frequently, the index maintained bya search engine has to be refreshed periodically. Thisis extremely time and resource consuming because thesearch engine needs to crawl the Web and downloadweb pages to refresh its index [2]. Thus, it is very dif-�cult for a single search engine to cover a large part,let alone the entirety, of the Web and keep its indexup-to-date at the same time.A search engine indexing a smaller part of the Webmay refresh its index more frequently since it focuseson either a speci�c network domain (e.g., edu.hk) orweb servers in a local geographical area. Therefore, asmall but focused search engine can return more per-tinent and up-to-date web pages compared to a singleglobal search engine. However, its coverage of the Webis small and it may only contain some of the pages rel-evant to a user query. In order not to miss relevantdocuments, the user has to visit several search enginesindividually.A meta-search engine is a middleware (or agent)consisting of a number of participant search engines[13, 6]. Each participant search engine maintains itsown index and o�ers some descriptive information (i.e.,descriptors) about its index to the meta-search engine.The meta-search engine records the descriptors anduses them to estimate the relevance of the underly-ing search engines when a query is received. To reduceresource consumption, only the most relevant searchengines are invoked to process the query. The selectionof the most relevant search engines is referred to as theserver selection (or ranking) procedure.1 A good serverselection method can e�ectively identify the most rele-vant search servers and consequently the most relevant1Since a search engine is often run on a server (often as aserver process), we use the terms search engine and search serverinterchangeably.

set of documents.Compared to a single search engine, meta-search en-gines can provide a larger coverage of the Web and re-turn more up-to-date web pages because it can incor-porate a large number of search engines, each of whichcan index a small part of the Web e�ciently. How-ever, the document space covered by each search enginemust be described not only concisely but also preciselyin the meta-search engine. In general, we want to keepin the meta-search engine more descriptive informationabout each server's index to make server selection moreaccurate. However, the large amount of descriptive in-formation requires more resources on the participantsearch engines to collect and on the meta-search engineto store and process. It is clear that there is a tradeo�between the amount of descriptive data stored at themeta-search engine and the accuracy of the relevanceestimation.Existing server selection methods tend to focus onthe conciseness of the descriptors by keeping a descrip-tor for a search engine's entire index. For example,the descriptive information usually consists of the to-tal number of documents indexed by the search engine,and for each index term the total term frequency, anddocument frequency, etc [17, 11]. It is clear that in-formation such as "the word business appears in 1,000documents" doesn't mean much without knowing thecontext within which the word appears.In this paper, we adopt an approach that clusters asearch engine's document space into clusters and repre-sents a document space in the meta-search engine by itsclusters descriptors. We propose a new server rankingmethod which uses the cluster descriptors to estimate aserver's relevance. Since clustering can identify homo-geneous groups (clusters) of documents in the searchengine's document space, cluster descriptors not onlygive us a �ner representation of the document spacebecause each cluster represents only a part of the doc-ument space, but also a more accurate representationsince words appearing in the same cluster are likely tobear the same meanings. As a result, the selection ofrelevant search engines will be improved.It can be argued that clustering is expensive. How-ever, many fast clustering methods have been proposedin the literature [12, 18] to obtain document clustersand their descriptors (e.g., centroids) e�ciently. Wealso show in this paper that it is not necessary to gen-erate a large number of clusters in order to improve theperformance and that the descriptors are very concise.It is important to note that the participant searchengines don't have to physically cluster their documentspaces. They can retain their own physical organiza-tions and retrieval methods. They only need to im-

plement a clustering module to obtain the cluster de-scriptors and send them to the meta-search engine. Inthis sense, the meta-search engine is a cooperative sys-tem. In fact, all meta-search engines that make useof information provided by the participant search en-gines, including the existing works described in thenext section, are cooperative systems. We believe theeconomic incentive of getting high visibility and highranking on a meta-search engine will encourage the par-ticipant search engines to provide the descriptive in-formation. Furthermore, although this work has beenmotivated by web-based meta-search systems, the pro-posed method can be applied to non-web-based sys-tems which distribute and search documents on dif-ferent machines for system e�ciency, availability, ormanagement reasons.In this paper, we �rst de�ne the information keptin a cluster descriptor and then develop the server se-lection method based on cluster descriptors. Using adocument collection derived from TREC2, we evaluatethe performance of the proposed method and compareit to the existing methods. We show that our methodhas very good performance especially when we only se-lect a few candidates out of a large set of servers forevaluating the query, which is exactly the situation weexpect to encounter in a large-scale meta-search enginesystem.In the next section, we review the related work. InSection 3, our server ranking method using cluster de-scriptors is introduced; two ranking scenarios (i.e., in-dependent and high-correlation) are discussed. Section4 presents some experimental results. The conclusionis drawn in Section 5.2 Related WorkMeta-search is also referred to as the hierarchicaldistributed search. Many papers addressing this issueare published recently. As mentioned before, serverranking is the most critical problem in meta-search.1. gGloss server ranking [5, 6] is often regarded asthe baseline for other server ranking methods. Foreach document containing some query terms in aserver's index database, it computes the similaritybetween the document and the query. In gGlossranking, the ideal(0) goodness score of the serveris the sum of these similarity values.2. CORI [3, 11] adopts the inference network to esti-mate the relevance of each underlying server. Eachquery term's document frequencies (dfs) in all the2http://trec.nist.gov

servers and the inverse collection frequency (icf)are used in server ranking, which is basically adf � icf strategy.3. CVV [17] prefers terms that can distinguish oneserver from another. Terms with larger variancesin the cue validity values, which stand for the de-gree by which one server can di�er from others, aregiven greater weights in the server ranking. Intu-itively, larger variance indicates that some morerelevant servers can be separated from the irrele-vant servers.4. A recent server ranking method is proposed in[13, 15, 16]. It tries to rank the servers accord-ing to the document with the greatest similarity tothe query in each server so that the server rankingcan guarantee that the most similar documentsare always retrieved. For each server, the doc-ument with the greatest similarity to the queryis supposed to be a document with the maxi-mum normalized term weight for one of the queryterms and the average normalized term weights forother query terms. We refer to this server rankingmethod as MSD (the Most Similar Documents).5. A theoretical model proposed in [4] aims at retriev-ing a maximum number of relevant documents atthe minimum cost. Each server has its own perfor-mance curve in terms of recall and precision andthere are server-speci�c costs for the retrieval ofdocuments. Given a query, if the total cost ofretrieving n documents from the servers relatedto the query is minimized, the cost di�erentialsof these servers' cost functions are equal by usingLagrange multipliers, that is, the optimal numberof documents to be selected from each of theseservers can be anticipated. Moreover, this modelcan also be extended to optimize the retrieval costif the user wants to browse n relevant documents.6. Xu and Croft [14] proposed a cluster-based serverranking method and showed that it is very e�ec-tive. Given a query, the Kullback-Leibler diver-gence [14] between each cluster and the query iscalculated for each server. The server ranking isbased on the most similar cluster in each server.Our method is also cluster based, but we use adi�erent method to estimate a server's relevancefrom the cluster descriptors.3 Server SelectionTo improve the accuracy of server ranking, we mustdelineate the document space indexed by a search en-

gine in detail. More data beyond the contents in thepresent descriptors such as the document frequenciesused in CORI should be kept at the meta-search en-gine. Our motivation is to cluster the documents ineach underlying server's index database; similar doc-uments are grouped together. The descriptors of theclusters, which are concise in data size and informa-tive in describing the document space, are stored atthe meta-search engine. The server selection is basedon these descriptors of clusters. In case the documentsin a server's index database are not clustered or arealready tightly clustered, we may simply treat the doc-uments as one single cluster in the cluster-based serverranking.Besides, we assume that both the documents in theindex databases and the user queries are represented asvectors (i.e., the vector space model is adopted). Foreach document vector corresponding to a document,the weight of a term in the vector is de�ned as the rawterm frequency of the term divided by the maximumraw term frequency among all the terms in the docu-ment. The similarity between any two vectors is thecosine value between them, which is the two vectors'dot product divided by their two corresponding norms.If x = (x1; :::; xm) is a vector, the norm of x is usuallyde�ned as (x21 + :::+ x2m) 12 . When we cluster the doc-uments, the similarity between two document vectorsis computed. Similarly, when we answer a user query,the similarity between the query vector and a docu-ment vector representing the document to be retrievedis computed.
3.1 K-means ClusteringE�cient clustering algorithms have been discussedin [12, 18, 7]. The clustering procedure in these algo-rithms is based on main memory with the help of somedata structures (e.g., the Clustering Feature Tree inBIRCH [18]). Since these algorithms incur fewer diskoperations, their e�ciency is signi�cantly improved.Our objective is to study the e�ectiveness of thecluster-based server selection method and to determineif an e�cient, but not necessarily the most e�ective,clustering algorithm can still improve the quality ofserver selection. As such, we adopt the widely usedK-means clustering algorithm [8], which is an iterativealgorithm that converges quickly. The K-means clus-tering algorithm starts withK rough clusters and itera-tively adjusts the clusters until the clusters are satisfac-torily re�ned. Xu and Croft adopted this method andshowed that it is quite e�ective, although the versionthey used is a more straightforward and faster two-pass(iteration) algorithm [14].

3.2 Descriptors of ClustersOnce the clustering is done, the documents in thesame cluster can be briey represented by that clus-ter's descriptor, which contains some basic informationabout the cluster. Each cluster c's descriptor consistsof the following data:� The total number of documents in the cluster, N .� The centroid of the cluster, (aw1; aw2; :::; awm).awi is the average term weight of term ti over allthe documents in the cluster including the docu-ments do not contain ti.� The document frequency vector, (df1; df2; :::; dfm).dfi is the number of documents that contain ti inthe cluster.For term ti, awi is the average value among allthe documents no matter whether the documents con-tain the term or not. Given a query with multi-ple terms, only the documents containing the queryterms are related to the query. Thus, another vector(pw1; pw2; :::; pwm), which is referred to as the puri�edweight vector, can be deduced. pwi = awi �N=dfi isthe average term weight of term ti among all the doc-uments containing term ti in the cluster.
3.3 Similarity Weights of ClustersOur server ranking method is based on the clusterdescriptors. For each query, we calculate the similar-ity of a server according to the similarity weights ofits underlying clusters. Assume q = (qt1; qt2; :::; qtm)is the query vector; pi = dfi=N is the probability thatti is contained in a random document in the cluster.simc, the similarity of cluster c to the query, can beestimated via two di�erent scenarios, namely, the in-dependent scenario and the high-correlation scenario.3.3.1 Independent ScenarioThe independent scenario assumes that the distribu-tion of terms in the documents is mutually indepen-dent. For example, suppose q = (t1; t2) and p1 andp2 are the probabilities that a document contains t1and t2 respectively. The probability that the docu-ment contains both t1 and t2 is p1 � p2 due to theindependent distribution assumption. pr, the prob-ability that a random document in the cluster con-tains either t1 or t2, or both t1 and t2, is equal top1 + p2 � p1p2 = 1 � (1 � p1)(1 � p2). If q contains

m terms, pr, the probability that a random documentcontains some query terms, is de�ned as:pr = 1� (1� p1)(1� p2):::(1� pm):Thus, pr � N is the total number of documents in thecluster containing some query terms. To simplify thecomputation, we choose the puri�ed weight vector asthe representative of these documents. If simr is thesimilarity between the puri�ed weight vector and thequery vector, simc, the estimated similarity of clusterc, is de�ned as simr times the number of documentsthat contain some query terms in c:simc = prNsimr (1)= [1� (1� p1)(1� p2):::(1� pm)] N simr:3.3.2 High-Correlation ScenarioOur high-correlation scenario is more or less similarto that of gGloss [5] despite that our speci�cation isslightly di�erent. We make two assumptions in thesame manner as those made in gGloss [5]:1. Assume p1 � p2. If a document contains t1, thenit will also contain t2.2. The weight of a term is distributed uniformly overall the documents containing the term.For example, if q = (t1; t2; t3) and p1 � p2 � p3,the probability that a random document contains allof the three terms is p1, which corresponds to the rep-resentative vector rv1 = (pw1; pw2; pw3); the proba-bility that a document exactly contains t2 and t3 isp2�p1, which corresponds to the representative vectorrv2 = (0; pw2; pw3), and so on.Generally, if q has m terms t1; t2; :::; tm and p1 �p2 � ::: � pm, then phi = pi� pi�1 (i > 1) is the prob-ability that a document exactly contains ti; ti+1; :::; tm,which corresponds to the representative vector rvi =(0; :::; 0; pwi; pwi+1; :::; pwm). ph1, the probability thata document contains all m terms is equal to p1, whichcorresponds to rv1 = (pw1; :::; pwm).Assume simri is the similarity between vector rviand query q. simc, the estimated similarity betweencluster c and q can be computed as follows:simc = mXi=1 phi N simri (2)phi = (p1; i = 1;pi � pi�1; i > 1:Furthermore, if simri is de�ned as the dot productbetween the query vector and the corresponding rep-resentative vector rvi, and the inverse document fre-quencies are incorporated in the representative vector,

then simc is equal to the ideal gGloss weight (i.e., theideal(0) weight for cluster c).
3.4 Estimated Weights of ServersFor each query, we may use one of the aforemen-tioned scenarios to estimate the similarity of a cluster.Suppose the documents indexed by a search server scan be clustered into k clusters c1; c2; :::; ck. We de�nethe estimated similarity of s as the sum of the clus-ter weights of the top clusters. That is, assume thatsimci is the estimated similarity weight of ci and thatsimc1 � simc2 � ::: � simck . Then, sims, the esti-mated similarity of s, is de�ned as:sims = lXi=1 simci ; 1 � l � k : (3)In our server weight formula, the top clusters aresupposed to contain the majority of the relevant doc-uments within s's index. Therefore, the clusters withsmaller estimated similarity weights can be ignored inestimating s's similarity. Furthermore, if the num-ber of clusters in s is large, this method can reducethe amount of data stored at the meta-search engine,which selects the most similar servers when a query isreceived.4 Experimental ResultsTo justify the e�ectiveness of our cluster-basedserver ranking method, a simulation environment con-sisting of 50 pseudo-servers is constructed. Documentsfrom the Volume 4 and Volume 5 of the TREC collec-tion, consisting of over 500,000 documents of total sizeof about 2.1 Gbytes, are distributed randomly (uni-formly) among the 50 servers. If a skew distribution isadopted, given a query, the di�erence of the relevanceof the underlying servers tends to be more obvious andlarger servers are often very likely to be more relevant.The experiments are based on the uniform distributionof documents in this paper since it is more di�cult toe�ectively identify the most relevant servers when thedocuments are uniformly distributed. The documentsare indexed by each server and are further clustered.The cluster descriptors are kept at the meta-search en-gine, where the servers' similarity values are estimatedagainst each user query.For each query, the meta-search engine only selectsthe most similar servers for processing the query. Thenumber of selected servers is referred to as the castnumber. Each selected server evaluates the query andreturns the retrieved documents together with their

corresponding TFIDF values; the documents are sortedin descending order of the TFIDF values [1].The local inverse document frequencies are used inthe TFIDF formula since it has been shown that thee�ects of global inverse document frequencies and localinverse document frequencies on the ranking are aboutthe same especially when the documents are uniformlydistributed in the servers [13]. Furthermore, since theweb queries are usually short (about two terms on aver-age), both the e�ectiveness and the necessity of adopt-ing the inverse document frequencies are weakened.More importantly, maintaining global information isimpractical when the meta-search engine consists of alarge number of participant search engines.Finally, the meta-search engine merges the docu-ments retrieved from the selected servers to a �nal re-sult list and returns it to the user.The �fty queries used in the experiments are theTREC topics 301-350; the short query format isadopted since the web queries are usually short [9].Each short TREC query contains 2.48 terms on aver-age. Furthermore, since the number of returned docu-ments is usually large for the web queries and the useroften just browses a small number of them, the preci-sion of the top documents is taken as the most basicperformance criterion in our experiments.
4.1 Number of ClustersIf we generate a large number of clusters from thedocuments covered by a search server, each clustertends to contain a smaller number of highly similar doc-uments. Thus, the cluster descriptors would be moreprecise in describing the documents in the clusters.However, this will produce more cluster descriptors,which will take up more storage space at the meta-search engine. Furthermore, the cost of generating alarge number of clusters is high.In this experiment, we will examine the e�ect on re-trieval precision when di�erent numbers of clusters areused. We use the similarity weights of all the clusters ina server's index to generate the similarity weight of theserver. The precision values are obtained when the top10, 20, and 30 documents are considered. From Figure1, we notice that the precision values initially increasewhen the number of clusters increases. However, oncethe total number of clusters exceeds a certain value(about 12 clusters in the experiment), increasing it fur-ther will not a�ect the precision values much. This isan important result, since it means that we don't haveto spend a lot of resources, in terms of both clustergeneration and descriptor storage costs, to generate alarge number of clusters in order for our method to

work well.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Total No. of Clusters

P
re

ci
si

on

Top 10 Docs
Top 20 Docs
Top 30 Docs

Figure 1. Effect of the Total Number of Clus-
ters (Cast Number=5, Independent Scenario)

4.2 Evaluation RatioIn our cluster-based server selection method, we pro-pose to sum up the similarity values of its top clusterswhen the similarity weight of a server is estimated. Thepercentage of the clusters used in calculating the weightof a server is referred to as the evaluation ratio. If theevaluation ratio equals 1, the similarity weights of allthe clusters in the server are used. The rationale is thatthe relevant documents of a query should be similar toeach other and as such should be contained in a smallnumber of clusters. These clusters in turn should havehigh cluster similarity weights to the query. Therefore,the clusters with the highest similarity weights shouldcontain most of the relevant documents. We try toverify this intuition with an experiment. The result isshown in Figure 2. We can see that when we use morethan 30% top clusters (i.e., the evaluation ratio>0.3)to compute the server weight, the precision of the topdocuments does not improve very much. More clustersemployed in the ranking only result in some uctuationin the performance. This is also veri�ed in Figure 3,where the two ranking scenarios are compared.
4.3 Ranking ScenariosWhen we estimate the similarity of a cluster in aserver, we have considered the independent and high-correlation ranking scenarios. For the queries employed

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Evaluation Ratio

P
re

ci
si

on

Top 10 Docs, Cluster No=10
Top 10 Docs, Cluster No=20
Top 10 Docs, Cluster No=30
Top 10 Docs, Cluster No=40
Top 20 Docs, Cluster No=10
Top 20 Docs, Cluster No=20
Top 20 Docs, Cluster No=30
Top 20 Docs, Cluster No=40

Figure 2. Effect of the Evaluation Ratio (Cast
Number=5, Independent Scenario)in this experiment, we examine the performance of ourserver ranking method under both scenarios. The re-sult is depicted in Figure 3, which shows that the in-dependent ranking scenario performs better than thehigh-correlation scenario for various evaluation ratios.We believe that this phenomenon is attributed to thefact that the query terms employed in the TREC top-ics are not highly correlated. Therefore, we hereafteradopt the independent ranking scenario for our cluster-based server selection method.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Evaluation Ratio

P
re

ci
si

on

Independent, Cluster No=10
Independent, Cluster No=20
Independent, Cluster No=30
High−Correlation, Cluster No=10
High−Correlation, Cluster No=20
High−Correlation, Cluster No=30

Figure 3. Ranking Scenarios (Cast Number=5)

4.4 ComparisonIn this experiment, we compare our cluster-basedserver selection method against four existing methodsdescribed in Section 2. We evaluate our method whenthe number of clusters generated from the documentsunder each search server is 20 or 30. The evaluationratio for both cases is 0.3. We also examine the resultof the ranking methods when the precision values ofthe top 10 and top 20 documents are compared.The result of the experiment is shown in Figure4. When the cast number is small (e.g., cast num-ber=10), we can see that our method is signi�cantlybetter than the other ranking methods under the twocluster numbers and the two top document numbers.When the cast number increases, the di�erences be-tween the methods diminish. It is obvious that whenall of the servers are selected (i.e., cast number=50),the �ve methods become the same.Since the number of servers in a meta-search engineis expected to be very large, we can only select a smallnumber of relevant servers to evaluate a query in orderto speed up query execution and save system resource.Our cluster-based method can identify the most rele-vant servers accurately even if the cast number is small.Therefore, it is very suitable for the large-scale meta-search systems.5 ConclusionClustering is a useful method to identify data pat-terns. We suggest in this paper that the documentspace covered by a search server can be clearly andconcisely represented if it is clustered and representedby cluster descriptors. Consequently, the relevance ofa search engine to a user query can be estimated moreaccurately. We show by experiments that our cluster-based server selection is very e�ective in identifyingthe relevant search servers for a query. This is very im-portant for a large-scale meta-search engine since theserver selection mechanism must be able to identify asmall number of relevant servers from a large numberof underlying servers.The experiments also reveal some basic aspects ofthe cluster-based server selection. To characterize thedocument space with satisfactory accuracy, the docu-ments in the index do not have to be clustered intoa large number of clusters. Instead, a moderate num-ber of clusters is su�cient to describe the documentspace. This reduces the clustering cost as well as thestorage space at the meta-search engine. Furthermore,

5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Cast Number
P

re
ci

si
on

CORI
gGloss
CVV
MSD
Cluster−Based, Cluster No=20
Cluster−Based, Cluster No=30(a) Top 10 Documents

5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

Cast Number

P
re

ci
si

on

CORI
gGloss
CVV
MSD
Cluster−Based, Cluster No=20
Cluster−Based, Cluster No=30(b) Top 20 Documents

Figure 4. Different Server Ranking Methods

it is enough to use a small percentage of the cluster de-scriptors in estimating a server's relevance to the query.Thus, for each term, it is only necessary to store theinformation of the most similar clusters; this results inreduced storage cost with guaranteed performance.Finally, since only the cluster descriptors are usedin ranking the servers, the underlying server does notneed to cluster the documents physically. It only needsto periodically update the cluster descriptors and sendthem to the meta-search engine. As a result, faster orincremental clustering algorithms aiming at producingrough clusters can be designed in the same manner asthe clustering feature tree used in BIRCH [18].6 AcknowledgmentThe writing of this chapter was supported by Re-search Grants Council of Hong Kong, China (Projectnumbers HKUST-6154/98E).References[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Infor-mation Retrieval. Addison Wesley, Essex, England,1999.[2] S. Brin and L. Page. The anatomy of a large-scalehypertextual web search engine. WWW7 / ComputerNetworks, 30(1-7):107{117, 1998.[3] J. P. Callan, Z. Lu, and W. B. Croft. Searching dis-tributed collections with inference networks. In SI-GIR, pages 21{28, 1995.[4] N. Fuhr. A decision-theoretic approach to databaseselection in networked IR. ACM Transactions on In-formation Systems, 17(3):229{249, 1999.[5] L. Gravano and H. Garcia-Molina. GeneralizingGLOSS to vector-space databases and broker hierar-chies. In VLDB, pages 78{89, 1995.[6] L. Gravano, H. Garcia-Molina, and A. Tomasic.GLOSS: Text-source discovery over the Internet.ACM Transactions on Database Systems (TODS),24(2):229{264, 1999.[7] S. Guha, R. Rastogi, and K. Shim. CURE: An e�cientclustering algorithm for large databases. In SIGMOD,pages 73{84, 1998.[8] A. K. Jain and R. C. Dubes. Algorithms for ClusteringData. Prentice Hall, 1988.[9] B. J. Jansen, A. Spink, J. Bateman, and T. Saracevic.Real life information retrieval: A study of user querieson the Web. SIGIR Forum, 32(1):5{17, 1998.[10] S. Lawrence and C. L. Giles. Accessibility of infor-mation on the Web. Nature, Vol. 400:107{109, July1999.[11] A. L. Powell, J. C. French, J. P. Callan, and M. Con-nell. The impact of database selection on distributedsearching. In SIGIR, pages 232{239, 2000.

[12] C. Silverstein and J. O. Pedersen. Almost-constant-time clustering of arbitrary corpus subsets. In SIGIR,pages 60{66, 1997.[13] Z. Wu, W. Meng, C. T. Yu, and Z. Li. Towards ahighly-scalable and e�ective metasearch engine. In In-ternational World Wide Web Conference (WWW10),2001.[14] J. Xu andW. B. Croft. Cluster-based language modelsfor distributed retrieval. In SIGIR, pages 254{261,1999.[15] C. T. Yu, W. Meng, K.-L. Liu, W. Wu, and N. Rishe.E�cient and e�ective metasearch for a large numberof text databases. In CIKM, pages 217{224, 1999.[16] C. T. Yu, W. Meng, W. Wu, and K.-L. Liu. E�cientand e�ective metasearch for text databases incorpo-rating linkages among documents. In SIGMOD, 2001.[17] B. Yuwono and D. L. Lee. Server ranking for dis-tributed text retrieval systems on the Internet. InProceedings of the Fifth International Conference onDatabase Systems for Advanced Applications (DAS-FAA), pages 41{50, Melbourne, Australia, 1997.[18] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH:An e�cient data clustering method for very largedatabases. In SIGMOD, pages 103{114, 1996.

