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Abstract

The low Mach number setting is a singular limiting situatiortompressible flows.

As Mach number approaches zero, compressible (density-basedjdleers suffer
severe deficiencies, both in efficiency and accuracy. Theréwe main approaches
advocated in the development of algorithms for the computation of laghMumber

flows; first, There is the modification of compressible solvedgn§ity-based)
downward to low Mach numbers; second, extending incompressible solvers (pressure-
based) towards this regime. Here, we present a brief reviglediterature in this

area. This addresses the modifications necessary to effgcaipply density-based
schemes and develop compressible pressure-based schemes to $vdabHawmber
configurations.

1. DENSITY BASED METHODS

Density-based methods represent a large class of schemes ddomechpressible
flows. Turkelet al. (1997) and Guillard and Viozat (1999) have identified that, in the
low Mach number limit, the discretized solution of the compressilliel flow
equations may fail to provide an accurate approximation to the incesipee
equations (quoting Guillard and Viozat (1999) in particular). As a ofdgumb’,
compressible schemes without modification become impracticallémh numbers
lower than around 0.3 (Roller and Munz, 2000), where, (Mach nurMeeis the
ratio of speed of sound to speed of flow).

Time-marching density-based schemes are employed widetyriputational fluid
dynamics for computation of steady and transient transonic, supersomi
hypersonic flows, where switch of type occurs hereMlagpasses through unity. In
the subsonic regime, when the magnitude of the flow-velocity #dl sim comparison
with the acoustic wave-speed, dominance of convection terms withirintiee
dependent equation system renders the system stiff and solvers eosi@sdy
(Choi and Merkle, 1993). Time-marching procedures may suffer setaiity and
accuracy restrictions and become inefficient for low Mach-nunfllogr regimes.
Here, for explicit schemes, the time-step must satisfyCiberant-Freidrichs-Lewy
(CFL) conditions, where numerical stability considerations leaghtall time-steps,
due to the prevailing acoustic wave-speeds. On the other hand, inmpdittiods
suffer from stiffness due to large disparity in the eigameslof the system. There, the
condition number is high and eigenvalues may vary by orders of mdgniRoller
and Munz, 2000). As a consequence, the unpreconditioned algebraic sysliem is i
conditioned, rendering iterative solutions excessively time consunimg effect of
system stiffness on solution convergence is well known, for both exgutidiimplicit
schemes.

Two distinct techniques have been proposed to capture solution convergence for
low Mach-number regimes, preconditioning and asymptotic. Both techraghes/e
rescaling of system condition numbers. The first technique isetanpitiply time-
derivatives by a suitable preconditioning matrix. Effectively, tlsisales the
eigenvalues of the system to similar orders of magnitude and retth@vdsparity in
wave-speeds, leading to a well-conditioned system (Twatkal, 1997). The second



technique introduces a perturbed form of the equations. This is known as the
asymptotic method. Here, specific terms are discarded, so thphyseal acoustic
waves are replaced by pseudo-acoustic modes.

1.1. Preconditioning Schemes

For preconditioning schemes, Turkel (1987) has introduced a family of
preconditioners for low Mach-number flows. Similarly, Van Lesral. (1991)
derived a symmetric preconditioner for the two-dimensional Eulertiegsa The
preconditioning can be utilised for either compressible or incompledtows, to
accelerate convergence towards a steady-state solution. Time draavback to
preconditioning methods is that the governing equations themselves $witype,

due to the additional transient term appended. The modified equations have only
steady-state solutions in common with the original system éyexme devoid of true
transients). A further drawback is the lack of robustness negmagtan points. This

may be due to artificial dissipation, where solution eigenvedberome almost
parallel (Wongget al., 2001, Darmofal and Schmid, 1996). For the application of these
methods to time-dependent problems, the ‘dual-time-stepping’ technique has
emerged, where the physical time-derivative terms aaéetleas source terms. During
each physical time-step, the system of pseudo-temporal equaticadvanced in
artificial time to reach a pseudo-steady-state, so that atklyy a divergence-free
constraint on the velocity field is satisfied (Liu and Liu, 1993).

Efficiency in preconditioner performance is known to be highly &dtédy the
eigenvalue-spectrum of the system, which must be taken into accoinn tie
design of the preconditioner. This arises for example, when gingleombustion
problems at low Mach numbers. However, finding suitable preconditionghs w
optimised properties for complex problems is far from straighdodwDarmofal and
Schmid (1996) analysed the influence of eigenvector properties offféhveness
of some preconditioners. Both theoretically and numerically, Darn&f&ichmid
have demonstrated, that due to the lack of eigenvector orthogonaligl] sm
perturbations in the linearised evolution problem could be significantbyifaed over
short time-scales. The long-time or asymptotic behaviour of tharigsel system is
governed by the eigenvalue spectrum. However, for practical applications to nonlinea
problems, this short-time non-normal growth may completely altemten-state, to
the extent that the predicted long-time asymptotic behaviour mmgtbdarmofal &
Schmid have demonstrated, through nonlinear preconditioned Euler predictions, that
non-normal amplification does arise, and in practice, generatgmificant lack of
robustness, particularly near stagnation points.

1.2. Asymptotic schemes

With the second technique, the asymptotic or perturbation approachydoeerform
of the equations is employed to eliminate system stiffnidsse, a Taylor series
expansion of variables in power terms of the Mach number is intrddudes
decouples the physical acoustic waves from the equations, replaemgoy a set of



pseudo-acoustic forms, whose speeds are comparable to the fluid vEldmiyand
Merkle, 1993, Tomboulides and Orzag, 1998). Application of perturbation methods to
extend compressible flow solvers to slightly compressible instance
straightforward, particularly for reactive flows. One may cdesi for example the
combustion setting where, due to the transient reactive terms, prmondi
schemes require a complex analysis. Although perturbation proceagdsighly
robust and applicable for both viscous and inviscid flows, the nature of the
perturbation limits their usage, particularly with respect tixeoh compressible-
incompressible flows.

The basic philosophy behind asymptotic methods is, to decrease theicalime
representation of the speed of sound artificially, by subtractounstant pressuie,
across the entire domain. In modifying away from the true spéesbund, the
numerical scheme may enjoy larger time steps (for morailsletee (Jenny and
Muller, 1999)). From a theoretical point of view, the situation is noWuvelerstood
in the inviscid limit: if the initial pressure fiel@ scales with the square of the Mach
numberMa, P(x,0)= P, + Ma? P,(x). Additionally, if the initial velocity field (at
t =0) is almost solenoidalu(x,0) = u,(x)+ Mau,(x) with div(u,)=0; then, the
compressible flow solution remains uniformly bounded as the Mach nueri@s to
zero. In the(Ma — 0) limit, the solution satisfies the 'reduced' equmtsystem for
the incompressible state (Roller and Munz, 2000).

A significant source of error at low Mach numbeises due to the fact that the
pressure term is of ordd/Ma?, which introduces considerable inaccuracy as Mach
number approaches zero. In this regime, comprdisgieffects have little influence
on momentum transfer, since, pressure becomesaowgyak function of density. To
prevent inaccuracyn the computation of pressure-gradients within thementum
equation, the pressure can be decomposed into dmpitsutions (Choi and Merkle,
1993, Tomboulides and Orzag, 1998)x,t)=P,(t) + P(x,t), with P,(t)/P, =O(l)

and P (x,t)/ P, =0O(Ma?). Here, P,(t) and P(x,t) are termed the ‘thermodynamic

pressure’ and the ‘hydrodynamic pressure’, respelgtiand P, is simply a reference

pressure. With this variable decomposition, onby tthermodynamic pressure appears
in the equations of energy and state. In the moumergquation, the gradient of the
thermodynamic pressure vanishes, leaving only thedignt of hydrodynamic
pressure.

2. PRESSURE-BASED METHODS

In contrast, pressure-based methods were originalpnceived to solve
incompressible flows, adopting pressure as a pyimariable. With this approach,
pressure variation remains finite, irrespective oMach number, rendering
computation tractable throughout the entire spectnf Mach number (Karki and
Patankar, 1989), hence circumventing the shortcgsniof density-based methods.
The first implementation of pressure-based scheoresompressible flow is widely
attributed to the early contribution of Harlow aAthsden (1968, 1971), based on a
semi-implicit finite difference algorithm.



Pressure-correction, or projection methods, arespre-based fractional-staged
schemes with correction for velocity and pressuPeyfet and Taylor, 1983),
introduced through the pioneering work of Chorifg&) and Temam (1969). Such
methods have been employed effectively within savefinite volume
implementations, say through the SIMPLE (Semi-leipPressure Linked Equations)
family of schemes (Patankar, 1980). Karki and Ratan(1989) developed the
SIMPLER method for compressible flows, applicalie & wide range of problem-
speeds. These SIMPLE methods are first-order ie.tiunzet al. (2003) extended
the SIMPLE scheme for low Mach number flow emplgyimultiple pressure
variables, each being associated with differentsgay response. Similar procedures
have been adopted by others (Bijl and Wesseling31®laryet al., 2000, Roller and
Munz, 2000). Pressure-correction was taken forwaittiin finite differences to a
second-order by Van Kan (1986). Alternatively, witfinite elements, Doneet al.
(1982) introduced a pressure-correction fractimep method, designed to
significantly reduce computational overheads ingrent incompressible viscous flow
situations.

More recently in the finite element context, Zieswicz and coworkers
(Zienkiewicz et al., 1999, see Zienkiewicz and Codina, 1995, Zienldevet al.,
1995, Zienkiewicz and Taylor, 2000) hawve#roduced the characteristic-based-split
procedure (CBS). This implementation is a TayloteBan/Pressure-Correction
scheme, suitable for both incompressible and cossphie flow regimes. The crux
here, is to split the equation system into twogaatpart of convection-diffusion type
(discretised via a characteristic-Galerkin procegland one of self-adjoint type. With
the CBS-scheme, one may solve both parts of theersysn an explicit manner.
Alternatively, one may use a semi-implicit schemoe the first part, allowing for
much larger time-steps, and solve the second papliditly, with its advantage of
unconditional stability. The CBS procedure has hested successfully on a number
of scenarios, for example, transonic and supersibmics, low Mach number flows
with low and high viscosity, and in addition, orabw-water wave problems.

In the incompressible viscoelastic regime, compatal methods have matured
significantly over the last two decades or so (Bdtaand Piau, 1994, Guénette and
Fortin, 1995, Baaijens, 1998, Walters and Webs2663). Here, it is desirable to
extend the methodology into the weakly-compresgigigme, and particularly so for
viscous polymeric liquid flows. In this regard, dég-based preconditioning or
asymptotic methods often demand significant reapd®n the other hand, extending
an existing incompressible flow code to accommodatapressibility would appear
somewhat more straightforward. This is the thesid atarting point adopted for
implementation throughout the current study. Pedgjsour aim is to modify a
pressure-correction technique for incompressibliyrperic flows to accommodate
weakly-compressible, yet highly-viscous, flows afvlMach number. This presents a
natural extension to our earlier incompressiblevfitudies for viscous (Hawkest
al., 1990), inelastic (Dingt al., 1995, three-dimensional) and viscoelastic (Maital
et al., 1998, Wapperom and Webster, 1998) fluids, wherdave developed a hybrid
schema to attain second-order accuracy.



3. GOVERNING FLOW EQUATIONS FOR VISCOUS LIQUIDS

The conservation of mass and momentum equationsogetpin the simulation of
compressible steady Newtonian fluid under isothéroaditions may be considered
as follows:

0p _
2 +0.(pU) =0 (1)
paa—L::[D.r—pU.DU - OP] @)

where independent variables atx)( time and space, and dependent field variables
arep, U, r, P, density, velocity vector, stress tensor and pressespectively.

Stress is related to the kinematic field througtoastitutive law, which is defined for

2
compressible Newtonian fluids a&; = { (ZD”- —E(D.U)djj (3)

+ T
w} is the

where u is the viscositydij is Kronecker delta tensor arid :(
rate of deformation tensor (here, superscritenotes tensor transpose). To extract
non-dimensionalized governing equations, we deteefollowing quantities, which

relate the physical variables, such as velocitgetision, density, pressure, stresses
and time, respectively, to their non-dimensionalizeunterparts (notation *):

0o

o} o} 2
U=U%U"; x=xXL ;p=p p°% P:(—/JU jP*; r:(’uu jr*;t:t* L'
L L M

This dimensionless form is very suitable for vissalominated flows, of present
interest. In addition, we introduce the dimensiealgroup Reynolds number and the
dimensionless gradient operator, respectively, as:

R=F=—=; 0=, (5)

Following the above, the non- dimensionalized maumen equation may be
expressed as:

*aaltj* U T -RpU MU -0, )

which, upon rearranging and discarding * notatiendarity leads to:

,oaa—LtJ:D.r—RepU mu -0P. 7)



Correspondence in the continuity equation provides:
0p _
5 FRE(U) =0. (8)

To complete the two sets of governing equationy@pibis necessary to introduce an
equation of state relating density to pressurelifaids, we consider the modified
Tait (Tait, 1888) equation of state, in the form

P+B:[p] ©)

P+B |p,

where,m andB are parameters and®, , p, denote the reference value of pressure

and density, respectively. Note, that this equascapplied only to isentropic change.
Nevertheless, it can be utilise with reasonablei@my in the general case, since m is
independent of entropy a®land p, are constants (Brujan, 1999).After rearranging

and differentiating the equation of state and agsgmsentropic condition, we gather:

oP m1_ MP+B) _ ,
—=m =——————~=¢C 10
5 = (10)

(R+B)
28
distributed in spacex and timet .

where k = is a constant an@ ,, is the speed of sound, a field parameter,

The next step is to incorporate the above theotlyimwa discrete representation.

4. PRESSURE-CORRECTION SCHEME FOR COMPRESSIBLE
FLOWS

Taylor-Galerkin (TG) schemes have emerged, via drasgries expansions, to
provide high-order time-stepping schemes of varifuums, see Donea (1984) and
Lohner et al. (1984). The principle constructive methodology tes discretised
advection-based equations first, in time, and s&écon space (Galerkin). Time
derivatives may be replaced by spatial equivalefitan the original differential
equation (Lax-Wendroff (1960)). This introduces leipor implicit-type schemes, of
various orders of accuracy, and of one-step orgigp-implementations (see Léhner
et al. (1984) and Appendix B). Such schemes have beahwigkly to solve model
problems to more complex flows (Hawkenal., 1990, Dinget al., , Balochet al.,
1995, Townsend and Webster, 1987, Wapperom and téreldi®998). Extension to
include diffusion terms (viscous) demands careetain stability, typically Crank-
Nicolson discretisation, introducing implicitnessthe formulation. To advance from
advection-diffusion equations to Navier-Stokes,imgaquires further sophistication.
Pressure-correction may deal with this in the inpmssible regime, being a



fractional-staged procedure (Hawketral., 1990, Townsend and Webster, 1987). We
outline below how this may be extended to the casgible regime.

To describe the two-step TG-scheme for compres#Hinies, let us first consider
the momentum equation:

oU
pF:D.r—RepU.DU -0P., (11)

For viscous fluids, the TG-scheme may be expregsedgh the doublet:

at a half-step (t=n+1/2)

1
n+=

AU 2

1
=07 4+[-R.pu.0U -0OP]" 12
P Ts [-Rp ] (12)

and thecorrection-step (t=n+1)

n+1 N+l !
%:D.r 2+[-R,pUu.OU -OP]""2 (13)

where, the operata()™’ is defined asA()™ =()"’-()" and semi-implicit
representation of diffusion terms is implied, viz,

Or" 2= == Z_DI + 00",

(14)

For pressure gradient &t n+ 6, we may adopt thé -representationd =1/2,
Crank-Nicolson)

op™ =0pP"+e0(P ™ -P")=0P " +60(aP™), (15
so that Eq.(13) becomes:

AU n+l n+£ n+1 +1
=07 2 - [R,pU.OU]"2 -OP" - 60 (AP") (16)

To introduce the projection method into the abdwe hore details see (Townsend
and Webster, 1987)), it is convenient to utiliseaariliary variableJ , such as:

um=u- - [%}em (aprt), (17)

from which, using notatiorAU” =U"-U", we observe:



AU n+l AU O -
TP -60(aP™). (18)

Substitution of Eq.(18) into Eq.(16) provides

: nsl ]
P%=DJ 2 - [R,pU.OU]"2 -OP". (19)

Taking the divergence of both sides of Eq.(17), gahers:

0.(pu )= 0.(ou " )- atenz (AP (20)
from which, by appealing to the continuity Eq.(@)e extracts:
n+1
R;lAZt +O.(pU") = AtOO2(AP™) . (21)

In addition, by employing the chain rule upon E@)(Zand taking difference
operations, we may relate density increment tospresincrement through,

n+l n+l
Ap™ _ 21 AP | 22)
At ¢l At

where Cx) is defined in Section(2). To obtain Eq(10), weuassd isentropic

conditions, following Karki and Patankar (1989)e&@kiewicz and Condina (1995)
and Brujan (1999). Other alternatives assumptioresy rhe adopted, such as
isenthalpic (1993) or homenthalpic (Mue al., 2003). Note, under steady-state
conditions, pressure changes (hence pressure)vailish. Consequently, steady
solution will be independent of any of the aboveuasptions. However, this may
affect transient results and convergence propesfiéise associatesichemes. Finally,
we substitute Eq.(22) into Eq.(21) to realise a passible temporal evolutionary
expression for pressure, of the form:

1 APn+1

- Ate0°(AP"™) = -0 (pU ). 23
R.c7 . At ( ) (pU ) (23)

This is the new equation that we introduce intoitltempressible TG-formulation
at stage 2 (see below). In summary, the TG-solgitategy would encompass:

stage 1-a: solution of Eq.(12) to yield velocityhalf-stepu™ >
(momentum equation)

stage 1-b: solution of Eq.(19) to yield predictéd

(momentum equation)



stage 2: solution of Eq.(23) to yield pressuréeddnceAP™*
(continuity equation)
stage 3: solution of Eq.(17) to yield correct#ti*

(pseudo equation)

5. CONCLUSION

We have effectively covered the relevant matemaif the literature on numerical
solvers for compressible flow, where we are paldidy interested in low Mach

number scenarios. In this manner, we have laiccouent thinking on density-based
and pressure-based approaches. We also highlighdvau derivation of a pressure-
correction scheme we propose for compressible flows
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