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Abstract 

The low Mach number setting is a singular limiting situation in compressible flows. 
As Mach number approaches zero, compressible (density-based) flow solvers suffer 
severe deficiencies, both in efficiency and accuracy. There are two main approaches 
advocated in the development of algorithms for the computation of low Mach number 
flows; first, There is the modification of compressible solvers (density-based) 
downward to low Mach numbers; second, extending incompressible solvers (pressure-
based) towards this regime.  Here, we present a brief review of the literature in this 
area. This addresses the modifications necessary to effectively apply density-based 
schemes and develop compressible pressure-based schemes to such low Mach number 
configurations.  

 

1. DENSITY BASED METHODS 

Density-based methods represent a large class of schemes adopted for compressible 
flows. Turkel et al. (1997) and Guillard  and Viozat (1999) have identified that,  in the 
low Mach number limit, the discretized solution of the compressible fluid flow 
equations may fail to provide an accurate approximation to the incompressible 
equations (quoting Guillard and Viozat (1999) in particular). As a ‘rule-of-thumb’, 
compressible schemes without modification become impractical for Mach numbers 
lower than around 0.3 (Roller and Munz, 2000), where, (Mach number, Ma is the 
ratio of speed of sound to speed of flow). 

Time-marching density-based schemes are employed widely in computational fluid 
dynamics for computation of steady and transient transonic, supersonic and 
hypersonic flows, where switch of type occurs here, as Ma passes through unity. In 
the subsonic regime, when the magnitude of the flow-velocity is small, in comparison 
with the acoustic wave-speed, dominance of convection terms within the time-
dependent equation system renders the system stiff and solvers converge slowly  
(Choi and Merkle, 1993). Time-marching procedures may suffer severe stability and 
accuracy restrictions and become inefficient for low Mach-number flow regimes. 
Here, for explicit schemes, the time-step must satisfy the Courant-Freidrichs-Lewy 
(CFL) conditions, where numerical stability considerations lead to small time-steps, 
due to the prevailing acoustic wave-speeds. On the other hand, implicit methods 
suffer from stiffness due to large disparity in the eigenvalues of the system. There, the  
condition number is high and eigenvalues may vary by orders of magnitude (Roller 
and Munz, 2000). As a consequence, the unpreconditioned algebraic system is ill-
conditioned, rendering iterative solutions excessively time consuming. The effect of 
system stiffness on solution convergence is well known, for both explicit and implicit 
schemes.  

Two distinct techniques have been proposed to capture solution convergence for 
low Mach-number regimes, preconditioning and asymptotic. Both techniques achieve 
rescaling of system condition numbers. The first technique is to pre-multiply time-
derivatives by a suitable preconditioning matrix. Effectively, this scales the 
eigenvalues of the system to similar orders of magnitude and removes the disparity in 
wave-speeds, leading to a well-conditioned system (Turkel et al., 1997). The second 
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technique introduces a perturbed form of the equations. This is known as the 
asymptotic method. Here, specific terms are discarded, so that the physical acoustic 
waves are replaced by pseudo-acoustic modes.  

 

1.1. Preconditioning Schemes  

For preconditioning schemes, Turkel (1987) has introduced a family of 
preconditioners for low Mach-number flows. Similarly, Van Leer et al. (1991) 
derived a symmetric preconditioner for the two-dimensional Euler equations. The 
preconditioning can be utilised for either compressible or incompressible flows, to 
accelerate convergence towards a steady-state solution. The main drawback to 
preconditioning methods is that the governing equations themselves switch in type, 
due to the additional transient term appended. The modified equations have only 
steady-state solutions in common with the original system (hence, are devoid of true 
transients). A further drawback is the lack of robustness near stagnation points. This 
may be due to artificial dissipation, where solution eigenvectors become almost 
parallel (Wong et al., 2001, Darmofal and Schmid, 1996). For the application of these 
methods to time-dependent problems, the ‘dual-time-stepping’ technique has 
emerged, where the physical time-derivative terms are treated as source terms. During 
each physical time-step, the system of pseudo-temporal equations is advanced in 
artificial time to reach a pseudo-steady-state, so that ultimately, a divergence-free 
constraint on the velocity field is satisfied (Liu and Liu, 1993). 

 Efficiency in preconditioner performance is known to be highly affected by the 
eigenvalue-spectrum of the system, which must be taken into account within the 
design of the preconditioner. This arises for example, when simulating combustion 
problems at low Mach numbers. However, finding suitable preconditioners with 
optimised properties for complex problems is far from straightforward. Darmofal and 
Schmid (1996) analysed the influence of eigenvector properties on the effectiveness 
of some preconditioners. Both theoretically and numerically, Darmofal & Schmid 
have demonstrated, that due to the lack of eigenvector orthogonality, small 
perturbations in the linearised evolution problem could be significantly amplified over 
short time-scales. The long-time or asymptotic behaviour of the linearised system is 
governed by the eigenvalue spectrum. However, for practical applications to nonlinear 
problems, this short-time non-normal growth may completely alter the mean-state, to 
the extent that the predicted long-time asymptotic behaviour may be lost. Darmofal & 
Schmid have demonstrated, through nonlinear preconditioned Euler predictions, that 
non-normal amplification does arise, and in practice, generates a significant lack of 
robustness, particularly near stagnation points. 

 

1.2.  Asymptotic schemes 

With the second technique, the asymptotic or perturbation approach, a perturbed form 
of the equations is employed to eliminate system stiffness. Here, a Taylor series 
expansion of variables in power terms of the Mach number is introduced. This 
decouples the physical acoustic waves from the equations, replacing them by a set of 
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pseudo-acoustic forms, whose speeds are comparable to the fluid velocity (Choi and 
Merkle, 1993, Tomboulides and Orzag, 1998). Application of perturbation methods to 
extend compressible flow solvers to slightly compressible instances is 
straightforward, particularly for reactive flows. One may consider, for example the 
combustion setting where, due to the transient reactive terms, preconditioning 
schemes require a complex analysis. Although perturbation procedures are highly 
robust and applicable for both viscous and inviscid flows, the nature of the 
perturbation limits their usage, particularly with respect to mixed compressible-
incompressible flows. 

The basic philosophy behind asymptotic methods is, to decrease the numerical 
representation of the speed of sound artificially, by subtracting a constant pressure P0 
across the entire domain. In modifying away from the true speed of sound, the 
numerical scheme may enjoy larger time steps (for more details see (Jenny and 
Muller, 1999)). From a theoretical point of view, the situation is now well-understood 
in the inviscid limit: if the initial pressure field P scales with the square of the Mach 
number Ma, ( ) ( )xPMaPxP 2

2
00, += . Additionally, if the initial velocity field (at 

0=t ) is almost solenoidal: ( ) ( ) ( )xuMaxuxu 100, +=  with ( ) 00 =udiv ; then, the 

compressible flow solution remains uniformly bounded as the Mach number tends to 
zero. In the ( )0→Ma  limit, the solution satisfies the 'reduced' equation system for 
the incompressible state (Roller and Munz, 2000). 

A significant source of error at low Mach number arises due to the fact that the 
pressure term is of order 1/Ma2, which introduces considerable inaccuracy as Mach 
number approaches zero. In this regime, compressibility effects have little influence 
on momentum transfer, since, pressure becomes only a weak function of density. To 
prevent inaccuracy in the computation of pressure-gradients within the momentum 
equation, the pressure can be decomposed into two contributions (Choi and Merkle, 
1993, Tomboulides and Orzag, 1998): ( ) ( )txPtPtxP o ,)(, += , with )1(/)( OPtP oo =  

and )(/),( 2MaOPtxP o = . Here, )(tPo  and ( )txP ,  are termed the ‘thermodynamic 

pressure’ and the ‘hydrodynamic pressure’, respectively and oP  is simply a reference 

pressure. With this variable decomposition, only the thermodynamic pressure appears 
in the equations of energy and state. In the momentum equation, the gradient of the 
thermodynamic pressure vanishes, leaving only the gradient of hydrodynamic 
pressure. 

 

2. PRESSURE-BASED METHODS 

In contrast, pressure-based methods were originally conceived to solve 
incompressible flows, adopting pressure as a primary variable. With this approach, 
pressure variation remains  finite, irrespective of  Mach number, rendering 
computation tractable throughout the entire spectrum of Mach number (Karki and 
Patankar, 1989), hence circumventing the shortcomings of density-based methods. 
The first implementation of pressure-based schemes for compressible flow is widely 
attributed to the early contribution of Harlow and Amsden (1968, 1971), based on a 
semi-implicit finite difference algorithm.  
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Pressure-correction, or projection methods, are pressure-based fractional-staged 
schemes with correction for velocity and pressure (Peyret and Taylor, 1983), 
introduced through the pioneering work of Chorin (1968) and Temam (1969). Such 
methods have been employed effectively within several finite volume 
implementations, say through the SIMPLE (Semi-Implicit Pressure Linked Equations) 
family of schemes (Patankar, 1980). Karki and Patankar (1989) developed the 
SIMPLER method for compressible flows, applicable for a wide range of problem-
speeds. These SIMPLE methods are first-order in time. Munz et al. (2003) extended 
the SIMPLE scheme for low Mach number flow employing multiple pressure 
variables, each being associated with different physical response. Similar procedures 
have been adopted by others (Bijl and Wesseling, 1998, Mary et al., 2000, Roller and 
Munz, 2000). Pressure-correction was taken forward within finite differences to a 
second-order by Van Kan (1986). Alternatively, within finite elements, Donea et al. 
(1982) introduced a pressure-correction fractional-step method, designed to 
significantly reduce computational overheads in transient incompressible viscous flow 
situations.  

More recently in the finite element context, Zienkiewicz and coworkers 
(Zienkiewicz et al., 1999, see Zienkiewicz and Codina, 1995, Zienkiewicz et al., 
1995, Zienkiewicz and Taylor, 2000) have introduced the characteristic-based-split 
procedure (CBS). This implementation is a Taylor-Galerkin/Pressure-Correction 
scheme, suitable for both incompressible and compressible flow regimes. The crux 
here, is to split the equation system into two parts: a part of convection-diffusion type 
(discretised via a characteristic-Galerkin procedure) and one of self-adjoint type. With 
the CBS-scheme, one may solve both parts of the system in an explicit manner. 
Alternatively, one may use a semi-implicit scheme for the first part, allowing for 
much larger time-steps, and solve the second part implicitly, with its advantage of 
unconditional stability. The CBS procedure has been tested successfully on a number 
of scenarios, for example, transonic and supersonic flows, low Mach number flows 
with low and high viscosity, and in addition, on shallow-water wave problems. 

In the incompressible viscoelastic regime, computational methods have matured 
significantly over the last two decades or so (Saramito and Piau, 1994, Guénette and 
Fortin, 1995, Baaijens, 1998, Walters and Webster, 2003). Here, it is desirable to 
extend the methodology into the weakly-compressible regime, and particularly so for 
viscous polymeric liquid flows. In this regard, density-based preconditioning or 
asymptotic methods often demand significant recoding. On the other hand, extending 
an existing incompressible flow code to accommodate compressibility would appear 
somewhat more straightforward. This is the thesis and starting point adopted for 
implementation throughout the current study. Precisely, our aim is to modify a 
pressure-correction technique for incompressible polymeric flows to accommodate 
weakly-compressible, yet highly-viscous, flows of low Mach number. This presents a 
natural extension to our earlier incompressible flow studies for viscous (Hawken et 
al., 1990), inelastic (Ding et al., 1995, three-dimensional) and viscoelastic (Matallah 
et al., 1998, Wapperom and Webster, 1998) fluids, where we have developed a hybrid 
schema to attain second-order accuracy. 
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3. GOVERNING FLOW EQUATIONS FOR VISCOUS LIQUIDS 

The conservation of mass and momentum equations employed in the simulation of 
compressible steady Newtonian fluid under isothermal conditions may be considered 
as follows: 

0).( =∇+
∂
∂

U
t

ρρ
        (1) 

]..[ PUU
t

U ∇−∇−∇=
∂

∂ ρτρ       (2) 

where independent variables are (t,x), time and space, and dependent field variables 
areρ ,  U , τ , P , density, velocity vector, stress tensor and pressure, respectively. 
Stress is related to the kinematic field through a constitutive law, which is defined for 

compressible Newtonian fluids as: 






 ∇−= ijijij UD δµτ ).(
3

2
2   (3) 

where µ  is the viscosity, ijδ is Kronecker delta tensor and 






 ∇+∇=
2

TUU
D  is the 

rate of deformation tensor (here, superscript T denotes tensor transpose). To extract 
non-dimensionalized governing equations, we define the following quantities, which 
relate the physical variables, such as velocity, dimension, density, pressure, stresses 
and time, respectively, to their non-dimensionalized counterparts (notation *): 

*oU U U= ; *x x L=  ; * oρ ρ ρ= ; *
oU

P P
L

µ 
=  
 

; *
oU

L

µτ τ 
=  
 

; 
2

*

o
L

t t
ρ

µ
= .  (4) 

This dimensionless form is very suitable for viscous-dominated flows, of present 
interest. In addition, we introduce the dimensionless group Reynolds number and the 
dimensionless gradient operator, respectively, as: 

o o

e

U L
R

ρ
µ

= ;  
L

*∇=∇ .       (5) 

Following the above, the non- dimensionalized momentum equation may be 
expressed as: 

*******
*

*
* PUUR

t

U
e ∇−∇⋅−⋅∇=

∂
∂ ρτρ ,    (6) 

which, upon rearranging and discarding * notation for clarity leads to: 

PUUR
t

U
e ∇−∇⋅−∇=

∂
∂ ρτρ . .      (7) 
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Correspondence in the continuity equation provides: 

0).( =∇+
∂
∂

UR
t e ρρ

.       (8) 

To complete the two sets of governing equations above, it is necessary to introduce an 
equation of state relating density to pressure. For liquids, we consider the modified 
Tait (Tait, 1888) equation of state, in the form 

m

BP

BP








=

+
+

00 ρ
ρ

        (9) 

where, m and B are parameters and  oP  , oρ  denote the reference value of pressure 

and density, respectively. Note, that this equation is applied only to isentropic change. 
Nevertheless, it can be utilise with reasonable accuracy in the general case, since m is 
independent of entropy and B and oρ  are constants (Brujan, 1999).After rearranging 

and differentiating the equation of state and assuming isentropic condition, we gather: 

2
),(

1 )(
tX

m c
BPm

mk
P =+==

∂
∂ −

ρ
ρ

ρ
      (10) 

where 
( )0

0

 
m

P B
k

ρ
+

=  is a constant and ),( tXc  is the speed of sound, a field parameter, 

distributed in space X  and time t . 

The next step is to incorporate the above theory within a discrete representation. 

 

4. PRESSURE-CORRECTION SCHEME FOR COMPRESSIBLE 
FLOWS 

Taylor-Galerkin (TG) schemes have emerged, via Taylor-series expansions, to 
provide high-order time-stepping schemes of various forms, see Donea (1984) and 
Löhner et al. (1984). The principle constructive methodology is to discretised 
advection-based equations first, in time, and second, in space (Galerkin). Time 
derivatives may be replaced by spatial equivalents, from the original differential 
equation (Lax-Wendroff (1960)). This introduces explicit or implicit-type schemes, of 
various orders of accuracy, and of one-step or two-step implementations (see Löhner 
et al. (1984) and Appendix B). Such schemes have been used widely to solve model 
problems to more complex flows (Hawken et al., 1990, Ding et al., , Baloch et al., 
1995, Townsend and Webster, 1987, Wapperom and Webster, 1998). Extension to 
include diffusion terms (viscous) demands care to retain stability, typically Crank-
Nicolson discretisation, introducing implicitness to the formulation. To advance from 
advection-diffusion equations to Navier-Stokes, again requires further sophistication. 
Pressure-correction may deal with this in the incompressible regime, being a 
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fractional-staged procedure (Hawken et al., 1990, Townsend and Webster, 1987). We 
outline below how this may be extended to the compressible regime. 

To describe the two-step TG-scheme for compressible flows, let us first consider 
the momentum equation: 

.  .e

U
R U U P

t
ρ τ ρ∂ = ∇ − ∇ − ∇

∂
.      (11) 

For viscous fluids, the TG-scheme may be expressed through the doublet:  

at a half-step (t=n+1/2) 

[ ]n
e

n
n

PUUR
t

U ∇−∇−+∇=
∆

∆ +
+

..
2/

4

12

1

ρτρ     (12) 

 and the correction-step ( t=n+1) 

[ ] 2

1
2

11

.. +++

∇−∇−+∇=
∆

∆ n
e

nn

PUUR
t

U ρτρ   (13) 

where, the operator( ) θ+∆ n.  is defined as ( ) ( ) ( )nnn ... −=∆ ++ θθ  and semi-implicit 
representation of diffusion terms is implied, viz, 

n
nnn

ττττ
αα

.
2

..
. 2 ∇+∇−∇=∇

++
.     (14) 

For pressure gradient at θ+= nt , we may adopt the θ -representation ( 21=θ , 
Crank-Nicolson) 

( ) ( )11 +++ ∆∇+∇=−∇+∇=∇ nnnnnn PPPPPP θθθ , (15) 

so that Eq.(13) becomes: 

[ ] )(.. 1
2

1
2

11
++++

∆∇−∇−∇−∇=
∆

∆ nnn
e

nn

PPUUR
t

U θρτρ .(16) 

To introduce the projection method into the above (for more details see (Townsend 
and Webster, 1987)), it is convenient to utilise an auxiliary variable U*, such as: 

( )1*1 ++ ∆∇






 ∆−= nn P
t

UU θ
ρ

,     (17) 

from which, using notation  nUUU −=∆ ∗∗ , we observe: 
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( )1
1

+
∗+

∆∇−
∆

∆=
∆

∆ n
n

P
t

U

t

U θρρ .      (18) 

Substitution of Eq.(18) into Eq.(16) provides 

[ ] nn
e

n
PUUR

t

U ∇−∇−∇=
∆

∆ ++
2

1
2

1*

.. ρτρ .   (19) 

Taking the divergence of both sides of Eq.(17), one gathers: 

( ) ( ) )(.. 12*1 ++ ∆∇∆−∇=∇ nn PtUU θρρ    
(20) 

from which, by appealing to the continuity Eq.(8), one extracts: 

)().( 12*
1

1 +
+

− ∆∇∆=∇+
∆

∆ n
n

e PtU
t

R θρρ
.   (21) 

In addition, by employing the chain rule upon Eq.(10) and taking difference 
operations, we may relate density increment to pressure increment through,  

t

P

ct

n

tX

n

∆
∆=

∆
∆ ++ 1

2
),(

1 1ρ
,  

      
(22) 

where ( ),X tc  is defined in Section(2). To obtain Eq(10), we assumed isentropic 

conditions, following Karki and Patankar (1989), Zienkiewicz and Condina (1995)  
and Brujan (1999). Other alternatives assumptions may be adopted, such as 
isenthalpic (1993) or  homenthalpic (Munz et al., 2003). Note, under steady-state 
conditions, pressure changes (hence pressure) will vanish. Consequently, steady 
solution will be independent of any of the above assumptions. However, this may 
affect transient results and convergence properties of the associated schemes. Finally, 
we substitute Eq.(22) into Eq.(21) to realise a compressible temporal evolutionary 
expression for pressure, of the form: 

).()(
1 *12

1

2
),(

UPt
t

P

cR
n

n

tXe

ρθ −∇=∆∇∆−
∆

∆ +
+

.

  

(23) 

This is the new equation that we introduce into the incompressible TG-formulation 
at stage 2 (see below). In summary, the TG-solution strategy would encompass: 

stage 1-a:  solution of Eq.(12) to yield velocity at half-step Un+1/2   

(momentum equation) 

stage 1-b:  solution of Eq.(19) to yield predicted U*                

(momentum equation) 
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stage 2:  solution of Eq.(23) to yield pressure difference 1+∆ nP         

(continuity equation) 

stage 3:  solution of Eq.(17) to yield corrected Un+1                               

(pseudo equation) 

 

5. CONCLUSION 

We have effectively covered the relevant material from the literature on numerical 
solvers for compressible flow, where we are particularly interested in low Mach 
number scenarios. In this manner, we have laid out current thinking on density-based 
and pressure-based approaches. We also highlight our own derivation of a pressure-
correction scheme we propose for compressible flows.  
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