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Zucker IH, Schultz HD, Patel KP, Wang H. Modulation of angiotensin II
signaling following exercise training in heart failure. Am J Physiol Heart Circ
Physiol 308: H781–H791, 2015. First published February 9, 2015;
doi:10.1152/ajpheart.00026.2015.—Sympathetic activation is a consistent finding
in the chronic heart failure (CHF) state. Current therapy for CHF targets the
renin-angiotensin II (ANG II) and adrenergic systems. Angiotensin converting
enzyme (ACE) inhibitors and ANG II receptor blockers are standard treatments
along with �-adrenergic blockade. However, the mortality and morbidity of this
disease is still extremely high, even with good medical management. Exercise
training (ExT) is currently being used in many centers as an adjunctive therapy for
CHF. Clinical studies have shown that ExT is a safe, effective, and inexpensive way
to improve quality of life, work capacity, and longevity in patients with CHF. This
review discusses the potential neural interactions between ANG II and sympatho-
excitation in CHF and the modulation of this interaction by ExT. We briefly review
the current understanding of the modulation of the angiotensin type 1 receptor in
sympatho-excitatory areas of the brain and in the periphery (i.e., in the carotid body
and skeletal muscle). We discuss possible cellular mechanisms by which ExT may
impact the sympatho-excitatory process by reducing oxidative stress, increasing
nitric oxide. and reducing ANG II. We also discuss the potential role of ACE2 and
Ang 1–7 in the sympathetic response to ExT. Fruitful areas of further investigation
are the role and mechanisms by which pre-sympathetic neuronal metabolic activity
in response to individual bouts of exercise regulate redox mechanisms and dis-
charge at rest in CHF and other sympatho-excitatory states.
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THIS ARTICLE is part of a collection on Exercise Training in
Cardiovascular Disease: Cell, Molecular, and Integrative
Perspectives. Other articles appearing in this collection, as
well as a full archive of all collections, can be found online at
http://ajpheart.physiology.org/.

Chronic heart failure (CHF) is a disease that impacts every
tissue and organ system. Many reviews have been written on
the pathogenesis of CHF (21, 37, 47, 81, 107, 114, 127, 130,
229), and there is little doubt that the early compensation to
cardiac dysfunction ultimately results in continued progression
of the disease when the compensatory mechanisms are severe
and prolonged. By the same token exercise training (ExT) also
exerts effects on every tissue and organ system (29). Casual
observers see the effects of ExT as an increase in endurance or
muscle mass or even maximal oxygen consumption (VO2max),
but it is less obvious that ExT has major effects on neuronal
function (36, 131, 135, 165, 172, 188), vascular function (41,
87, 168), renal function (97, 135, 215), and the immune system
(3, 23, 59), even in the normal state.

Although patients with CHF show a small increase in
VO2max (about 10–20% similar to normal subjects) following

an ExT regimen (9, 106), their absolute VO2max is below that
of normal subjects. Nevertheless, multiple studies now show
that ExT in the CHF state improves endurance, quality of life,
and survival (10, 26, 115, 116, 123, 139, 140, 173). Numerous
studies also have shown reductions in sympatho-excitation
following ExT in CHF (82, 101, 124, 125, 135, 153, 217).
Alterations in neurotransmitter release in various sympatho-
excitatory areas of the brain have been demonstrated (84, 85,
120, 210), along with changes in neuronal discharge sensitivity
(199, 206) in CHF. What has been somewhat of an enigma in
this field is defining the precise cellular and molecular mech-
anisms that transduce ExT into reductions in sympathetic nerve
activity in normal and disease states. For instance, ExT is well
known to increase endothelial function because of an increase
in shear stress that results in an increase in nitric oxide (NO)
synthase (NOS) expression and activity (61, 111, 183) and
ultimately more bioavailable NO. Although ExT has been
shown to upregulate NOS and NO in the central nervous
system (110, 214, 224) in disease states, the links between the
act of ExT and a change in autonomic activity are still not
completely understood.

Of all the mediators of sympathetic function, one that is
closely implicated in the pathogenesis of CHF is angiotensin II
(ANG II). Chronic heart failure is associated with increases in
both peripheral and central ANG II (229) and plasma renin
activity (184). In fact, many studies have documented activa-
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tion of multiple components of the central renin-angiotensin-
aldosterone system in both clinical and experimental CHF (50,
51, 66, 79, 101). It is well established that ANG II can modulate
sympathetic nerve activity at several loci in the neuraxis (148). This
includes medullary and hypothalamic nuclei such as the rostral
ventrolateral medulla (RVLM), the nucleus of the solitary tract
(NTS), and the paraventricular nucleus (PVN). It is well
known that high levels of ANG II decrease arterial barore-
flex function and promote sympatho-excitation (11, 12, 17,
22, 69, 73, 92, 157, 159, 207), in part, through an action in
the RVLM (58, 83, 113, 156). In the PVN ANG II can also
evoke sympatho-excitation by increasing the discharge sen-
sitivity of parvocellular neurons through its action on the
angiotensin type 1 (AT1R) receptor (85, 144, 217). Finally,
ANG II is well recognized to evoke major effects at sym-
pathetic ganglia (105, 149) and at the neuronal target-tissue
interface via its potentiation of norepinephrine release (15,
90, 161, 186).

The ability of ANG II to evoke oxidative stress in many cell
types, and certainly in neurons, has become a universal finding
in the field of autonomic control (179, 185, 213, 222, 228). The
fact that ANG II is elevated in CHF and is sympatho-excitatory
has made it a prime candidate for pharmacological modulation,
but it also may play an important role in the efficacy of
nonpharmacological interventions such as ExT in the CHF
state. Here we review the role of ExT on ANG II signaling and
the regulation of sympathetic outflow (primarily renal) in CHF.
Much of the data described comes from the author’s laborato-
ries, but the field is rapidly growing as the role of ExT becomes
more widely accepted as a therapeutic modality in CHF be-
comes more widely accepted (80, 140, 143, 202).

ANG II Contributes to Sympatho-Excitation in Chronic
Heart Failure

Clearly the renin-ANG II-aldosterone system is one of the
prime therapeutic targets in the treatment of CHF. The recog-
nition that ANG II participates in a major way to the progres-
sive worsening of the CHF syndrome has made the use of
angiotensin converting enzyme (ACE) inhibitors and angioten-
sin receptor blockers (ARBs) the first line of therapy for
patients with this disorder. Although the efficacy of these
agents is due, in part, to their effects on myocardial and
vascular function, they also have effects on autonomic balance
and have been shown to lower sympathetic outflow to the
kidney and other tissues in CHF (16, 35, 72, 75, 146). Studies
carried out in experimental CHF clearly show that central
AT1R signaling participates in the sympatho-excitatory process
(48, 54, 85, 162, 225, 227). Intracerebroventricular infusion of
the ARB losartan reduces renal sympathetic nerve activity in
rabbits with pacing-induced CHF (102). In dogs with CHF,
cerebrospinal fluid levels of ANG II are increased and are
markedly higher than in plasma (229). The latter finding
suggests either de novo synthesis of this peptide in the brain or
entry and concentration of peripheral ANG II. In this regard,
Biancardi et al. (13) have recently shown the ability of ANG II
to pass the blood brain barrier and affect presympathetic
neurons. Importantly, ANG II has ready access to receptors in
circumventricular organs that are richly endowed with AT1Rs
(27, 30, 43, 112, 117, 154). AT1R protein and mRNA are also
markedly increased in the medulla and hypothalamus of ani-

mals with CHF (54, 66, 76, 103). An early landmark study
demonstrating the pathophysiological relevance of these
changes in central AT1R expression in CHF was carried out in
a rat myocardial infarction (MI) model of CHF (218). This
study showed that intracerebroventricular administration of
antisense oligonucleotides against the AT1R resulted in a
significant reduction in renal sympathetic nerve activity com-
pared with administration of scrambled sense oligonucleotides.

ANG II, Abnormal Cardiovascular Reflexes, and Exercise
Training in Heart Failure

Abnormal cardiovascular reflexes are thought to play a role
in sympatho-excitation in the CHF state. These include a
blunted arterial and cardiopulmonary baroreflex and enhanced
cardiac sympathetic afferent reflex (CSAR) and arterial
chemoreflex (32, 34, 40, 71, 104, 132–134, 163, 182, 194, 196,
197, 223). One of mechanisms by which ANG II causes
sympatho-excitation in CHF is through its effects on these
sympatho-excitatory and inhibitory reflexes. There is now
convincing evidence that ANG II inhibits baroreflex function
both acutely and chronically (55, 160). Earlier studies from this
laboratory reported blockade of the AT1R by intravenous
infusion of the ANG II receptor antagonist L158809 reduced
sympathetic tone and enhanced arterial baroreflex function in
dogs and rabbits with pacing-induced CHF (121, 122). Subse-
quently, we have demonstrated that ExT enhances baroreflex
sensitivity by an ANG II-dependent mechanism in a conscious
CHF rabbit model (119).

Studies from our laboratories also suggest that a cardiogenic
sympatho-excitatory reflex, the so-called CSAR, is signifi-
cantly augmented and contributes to elevated renal and cardiac
sympathetic outflow in CHF (104, 194, 197, 219). Further-
more, the CSAR increases sympathetic outflow and depresses
baroreflex function, in part, via an NTS-AT1R-dependent
mechanism (198). However, whether ExT can attenuate the
enhanced CSAR in CHF by an ANG II-dependent mechanism
remains to be determined.

Many studies have also shown enhanced peripheral chemoreflex
sensitivity in both experimental and human CHF (24, 25, 38,
94, 96, 128, 163, 182). Sympatho-excitation can be reduced
by silencing input from these major sensory organs: the
aortic and carotid bodies. This has been demonstrated in
CHF following hyperoxia (5, 142, 205) or removal of the
carotid bodies (32, 108). Similar studies have been carried
out in hypertension following selective carotid body abla-
tion (1, 136). Li et al. (94) showed normalization of periph-
eral chemoreflex sensitivity following ExT in rabbits with
pacing-induced CHF. Importantly, these investigators also
demonstrated that afferent discharge in response to hypoxia
was reduced following ExT. Carotid bodies demonstrated
increases in AT1 receptor expression and reductions in
neuronal NOS (nNOS) in the CHF state that were reversed
following ExT. Finally, treatment with ANG II prevented
the beneficial effects of ExT (94).

In addition to the abnormal reflex control of sympathetic
outflow in CHF mediated by the reflexes discussed above,
recent studies (126, 170, 175, 176, 195) have also demon-
strated that an exaggerated exercise pressor reflex (EPR) con-
tributes to the elevated sympathetic outflow in a coronary
ligation-induced MI rat model. Studies from our laboratories
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(190, 191) have shown that both peripheral afferent and spinal
sensitization of the EPR contribute to the exercise-triggered
sympatho-excitation in CHF rats. However, the detailed mo-
lecular mechanisms underlying peripheral afferent and spinal
sensitization of the EPR in CHF remain largely unknown. It is
of particular importance to understand if peripheral and central
ANG II pathways play a critical role in mediating the sensiti-
zation of EPR in CHF. ExT initiated at an early stage of CHF
largely prevents the exaggerated EPR-mediated sympatho-
excitation and improves exercise intolerance in CHF rats (6,
192, 193). Other studies have also shown a reduction in plasma
ANG II following ExT (2, 53, 152).

Exercise Training Reduces Central AT1R Expression in
Heart Failure

We and others (46, 101, 119, 124, 125, 141, 153, 217, 226)
have shown that ExT reduces sympathetic nerve activity and
circulating ANG II levels in both animals and humans with
CHF. Furthermore, ExT in CHF normalizes arterial baroreflex
and peripheral chemoreflex sensitivity, in part, due to suppres-
sion of an ANG II-dependent mechanism (119, 162). At the
molecular level, several studies have shown increases in AT1R
expression (both protein and mRNA) in discrete presympa-
thetic nuclei in the hypothalamus and medulla in animals with
CHF (54, 57, 64, 66, 77, 119, 177) and in response to ANG II
infusion (129, 201). Although this increase appears to be part
of a positive feedback system that further exacerbates sympa-
tho-excitation, the transcriptional regulation of AT1R expres-
sion in the central nervous system is complex and little is
known about the effects and mechanisms by which ExT re-
duces AT1R expression. We do know, however, that this is an
ANG II-dependent mechanism because clamping plasma ANG
II at the levels observed in the CHF state abrogates the effects
of ExT on AT1R expression (119). In addition, blockade of the
AT1R reduces its upregulation in CHF (98, 99, 118, 201).

Because CHF is also an inflammatory state (81, 151), much
interest has been generated on the role of cytokines and their
downstream cellular mediators in mediating AT1R expression.
Exercise training may impact this pathway since it has been
shown that ExT reduces cytokine expression in cardiovascular
disease states (28, 59, 89, 124). In this regard, a major com-
ponent of cytokine signaling is mediated by NF-�B. Therefore,
it is of interest to understand the role of this important tran-
scription factor in mediating AT1R expression in the central
nervous system and the impact of ExT on this process. Central
cytokine signaling in the CHF state contributes to sympatho-
excitation, activation of NF-�B, and upregulation of the AT1R
(49, 62, 109, 167, 212). Data from cultured neurons show that
NF-�B inhibition reduces AT1R upregulation in CHF (67,
118). Because ExT reduces plasma ANG II and AT1R expres-
sion in the CHF state (101), it is likely that the cellular
signaling pathway involves NF-�B and its cytosolic inhibitor
I�B. Although there is no binding sequence for NF-�B on the
AT1R gene, there is a sequence for the transcription factor
activator protein 1 (AP1) (14, 70, 200). AP1 is a dimer of c-jun and
c-fos, and recent studies show that ANG II activates c-jun and
p-JNK in the RVLM of animals and in neuronal cell culture
(98, 99). Because NF-�B mediates an increase in c-fos through
the activation of Creb and Elk1 (67), it is likely that ExT
impacts AT1R expression by downregulation of the cytokine

and NF-�B pathway. Consistent with the above concept,
Llewellyn et al. (103) demonstrated decreased c-fos and AT1R
expression in the subfornical organ of rats with CHF following
an ExT regimen.

The changes in AT1R expression in the medulla and hypo-
thalamus following ExT in CHF animals may mediate de-
creases in renal sympathetic outflow through an NO and
reactive oxygen species mechanism. Although acute adminis-
tration of ANG II in rats has been shown to stimulate NO
release centrally (93), chronic ANG II signaling is likely to
reduce central nNOS and the inhibitory effects of NO on
sympathetic nerve activity in CHF (166). Similar mechanisms
may be at play in peripheral organs (147). Because, in general,
NO production in sympathetic nuclei is, in general, inhibitory
(68, 158, 209, 211), the interaction between NO and ANG II
signaling is important in understanding the central mechanisms
regulated by ExT. The influence of reduced ANG II and
increased NO signaling following ExT has been investigated in
rats with CHF (214, 217). These data strongly suggest that ExT
impacts specific molecular changes in presympathetic neurons
in the setting of CHF through a mechanism that involves both
ANG II and NO.

Although transcriptional regulation of the AT1R may be an
important mechanism in the sympatho-excitatory process and
one that can be modulated by ExT, there are additional mo-
lecular and cellular mechanisms that need to be kept in mind
and should be the target of future research. One such mecha-
nism relates to the phosphorylation and turnover of the AT1R
and its modulation by ExT. In a recent study carried out in rats
with CHF we showed that the AT1R is phosphorylated by G
protein receptor kinase 5 (GRK5) in the PVN and RVLM (66).
GRK5 binds to the AT1R and targets it for internalization by
�-arrestin. Interestingly, although the AT1R was upregulated in
the CHF state and decreased following ExT, there were similar
changes in GRK5 expression. At first this seems paradoxical
because one would expect decreases in GRK5 to result in an
increase in AT1R expression and vice versa. On the other hand,
we speculate that the increase in GRK5 in the CHF state
represents an attempt by the system to limit uncontrolled
increases in AT1R expression; that is, it is a reaction to the
primary event, which is the transcriptional upregulation of the
AT1R in CHF. In fact, this was clearly demonstrated in cell
culture where exogenous ANG II evoked an upregulation in
AT1R expression that was completely inhibited by concomitant
upregulation of GRK5. Importantly, overexpression of GRK5
also reduced the ANG II stimulation of NF-�B. Importantly,
suppression of GRK5 by short interfering RNA, on the other
hand, evoked an increase in AT1R expression in response to
ANG II. Recent data in the heart also implicates GRK signal-
ing in the nucleus, thereby potentially regulating AT1R expres-
sion at the transcriptional level (60). These molecular changes
may play an important role in the sensitivity of presympathetic
neurons in CHF and their decrease following ExT.

ANG II and Oxidative Stress

The ability of ANG II to evoke an increase in oxidative
stress, especially superoxide anion (O2

·�) is well known (65,
185, 228). Animals and humans with CHF exhibit elevated
reactive oxygen species (ROS) in the brain and periphery (33,
52, 54, 169, 208). Zimmerman et al. have demonstrated in-
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creased O2
·� production in the subfornical organ of mice

infused intracerebroventricular with ANG II (220, 221).
Schultz et al. have demonstrated increased ROS in the carotid
body of animals with CHF (38, 39, 95). Overexpression of
SOD1 but not extracellular SOD prevented the increase in ROS
and the ANG II-induced pressor response (221). In animals
with CHF central viral overexpression of either SOD1 or
SOD2 reduced sympatho-excitation and enhanced baroreflex
function (56) in response to ANG II. Increased levels of
cellular ROS are thought to mediate changes in ion channel
proteins, thereby contributing to an increase in discharge sen-
sitivity of presympathetic neurons (18–20, 222). In the setting
of CHF augmentation of many excitatory neurotransmitters
coupled with intracellular ROS provide an important stimulus
for increased sympathetic outflow. How does ExT impact this
process? There are several possible scenarios. First, ExT pro-
vides a stimulus for the upregulation of antioxidant enzymes.
In experimental CHF, ExT has been shown to increase the
expression of SOD1, SOD2 in the brain, and other tissues (56,
88, 155, 181). However, the precise transduction mechanism
that converts the act of ExT into changes in antioxidant enzyme
expression and activity is not known. One possibility is that the
increase in presympathetic nerve activity that accompanies the
act of exercise conditions neurons to cope with increased
oxidative stress (56, 86). This may actually be a more global
phenomenon than appreciated. During exercise, skeletal mus-

cle generates large amounts of ROS (91, 138, 171) that may,
through lipid peroxidation, provide a circulating stimulus to
other tissues, including the brainstem, causing a reactive re-
sponse to upregulate antioxidant enzymes. At the molecular
level, there may also be important effects of ExT on cytokine
and other pro-inflammatory molecules (23, 89, 174).

An intriguing pathway that may be important in the setting
of CHF, hypertension, and other sympatho-excitatory disorders
is the modulation of redox sensitive transcription factors such
as NF-�B and Nrf2 (100, 187, 189). These two transcription
factors have been shown to regulate and to be regulated by
ROS (100). Importantly, NF-�B has been implicated as an
important factor in the upregulation of the AT1R in cultured
neurons and in animals with CHF as well as in response to
chronic ANG II infusion. Preliminary data from this laboratory
suggest that knockdown of p65 (a prime subunit of NF-�B) in
the RVLM using viral delivery of p65 shRNA normalizes the
pressor response to systemic infusion of ANG II, suggesting
the importance of ANG II-induced neurogenic hypertension
and an important role for NF-�B (Fig. 1). Recent data show
that NF-�B and Nrf2 compete for binding to the nuclear creb
binding protein (100). Exercise training has been shown to
modulate both proteins (7, 74, 150, 180). Although complete
studies are not available to show that this competition may be
one mechanism by which oxidative stress and AT1R expres-
sion is upregulated in sympatho-excitatory areas of the brain,
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we speculate that in CHF and hypertension, NF-�B-Nrf2
competition may be an important pathway.

Exercise Training Impacts Central ACE2

Mounting evidence over the past 10 years or so has pointed
to the importance of ANG II metabolites in cardiovascular
regulation. One of these, Ang 1–7, has risen to the forefront as
an important peptide whose biological actions are opposed to
that of ANG II by signaling through the Mas receptor (45, 131,
145). The balance between ACE and ACE2 determines the
relative amount of each peptide in plasma and tissue. Chronic
administration of Ang 1–7 is anti-hypertensive and anti-hyper-
trophic (63, 164). In the central nervous system it has been
demonstrated that Ang 1–7 provides for sympatho-inhibition or
at the very least a break on the sympatho-excitatory effects of
ANG II (42, 78, 131). Furthermore, central ACE2 overexpres-
sion is sympatho-inhibitory in the CHF state (131, 204, 216);
therefore, it is reasonable to examine the role of ACE and
ACE2 in mediating the beneficial effects of ExT on sympa-
thetic nerve activity in CHF.

Central infusion of Ang 1–7 clearly reduces renal sympa-
thetic nerve activity and improves baroreflex function in con-
scious rabbits with pacing-induced CHF (78). This effect can
be inhibited by co-infusion of the Mas receptor antagonist
A779. In this same model of CHF, protein and mRNA expres-
sion of ACE2 was shown to be upregulated by ExT in the

RVLM and PVN (79). At the same time reciprocal changes in
ACE expression were observed. These changes appear to be
global since they occur in many organ systems and are poten-
tially regulated by changes in microRNAs (8, 44, 137). Fur-
thermore, ExT can reduce ACE2 shedding in the kidney by
inhibition of ADAM 17 (178). Increased ACE2 can profoundly
reduce oxidative stress in rats (203). In this regard, ExT has
been shown to reduce ACE and increase ACE2 along with a
decrease in oxidative stress in spontaneously hypertensive rats
(4). The end result of this process is to mitigate the sympatho-
excitatory effects of ANG II by a process that both enhances
degradation of ANG II and increases the production of the
sympatho-inhibitory peptide Ang 1–7.

Summary and Conclusions

There is little doubt that ExT is of benefit in patients with
CHF (9, 29, 31, 80, 174). The mechanisms responsible for the
effects of ExT in the setting of CHF are complex. Exercise
training has profound effects on sympathetic and vagal outflow
from the central nervous system, on inflammatory mediators,
on ROS, and of course, on systemic hemodynamics, including
endothelial function. All of these processes are abnormal in the
CHF state. Interestingly, ANG II has been shown to be in-
volved in activation of these processes primarily through the
AT1R. Figure 2 schematically summarizes these abnormal
processes and indicates that ExT reduces or reverses many of
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Fig. 2. A schematic depiction of some of the potential mechanisms by which exercise training (ExT) reduces sympathetic outflow in the heart failure state.
Components of the renin ANG II system and reactive oxygen species (ROS) play important roles in this process in both the central nervous system and in the
periphery. NO, nitric oxide.
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these processes in the CHF state. Although ExT reduces
circulating ANG II, AT1R expressions, and oxidative stress in
the CHF state, it also increases the central production of ACE2
and reduces ACE. It is still not completely clear how the act of
ExT is transduced into a reduction in sympathetic outflow in
CHF. Current data suggest, however, that modulation of the
balance between NF-�B and Nrf2 signaling and the modulation
of antioxidant enzyme production and thus oxidative stress
may also play an important role in this process.
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