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Abstract—Very recently, regulatory bodies worldwide have
started to approve the dynamic access of unlicensed networks
to the TV White Space spectrum. Hence, in the near future,
multiple heterogeneous and independently-operated unlicensed
networks will coexist within the same geographical area over
shared TV White Space. Although heterogeneity and coexistence
are not unique to TV White Space scenarios, their distinctive
characteristics pose new and challenging issues. In this paper,
the problem of the coexistence interference among multiple
heterogeneous and independently-operated secondary networks
in absence of secondary cooperation is addressed. Specifically, the
optimal coexistence strategy, which adaptively and autonomously
selects the channel maximizing the expected throughput in
presence of coexistence interference, is designed. More in detail,
at first, an analytical framework is developed to model the
channel selection process for an arbitrary secondary network
as a decision process. Then, the problem of the optimal channel
selection, i.e., the channel maximizing the expected throughput, is
proved to be computational prohibitive (NP-hard). Finally, under
the reasonable assumption of identically distributed interference
on the available channels, the optimal channel selection problem
is proved not to be NP-hard, and a computational-efficient
(polynomial-time) algorithm for finding the optimal strategy is
designed. Numerical simulations validate the theoretical analysis.

Index Terms—Spectrum Sharing, TV White Space, Cognitive
Radio, Coexistence, Interference, Optimality, Throughput.

I. INTRODUCTION

Very recently, regulatory bodies worldwide have approved

the dynamic access of Secondary Networks1 (SNs) to the TV

White Space (TVWS) spectrum. The existing rulings [2], [3],

[4] obviate the spectrum sensing as the mechanism for the

SNs to determine the TVWS availability at their respective

locations. Instead, they require the SNs to periodically access

to a geolocated database [5] for acquiring the list of TVWS

channels free from incumbents.
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1In the following, we refer to the unlicensed networks aiming at oppor-
tunistically exploiting the TV White Space spectrum when it is not used by
the licensed users as secondary networks.

Clearly, the introduction of a database for incumbent pro-

tection significantly simplifies the secondary access to the

TVWS spectrum, and the research community is actively

working on defining several new standards aiming at enabling

TVWS communications, such as IEEE 802.22 [6], IEEE

802.11af [7], IEEE 802.15m [8], ECMA 392 [9], and IEEE

SCC41 [10]. Hence, in the near future, multiple heterogeneous

and independently-operated SNs will coexist within the same

geographical area as shown in Fig. 1.

Although heterogeneity and coexistence are not unique to

TVWS scenarios, the distinctive characteristics of the TVWS

scenarios pose new and challenging issues [11], [12]. At

first, the excellent propagation characteristics of the TVWS

spectrum cause severe interference among the coexisting SNs

sharing the same spectrum band. In addition, the heterogeneity

among the TVWS standards can prevent the adoption of

interference-avoidance schemes based on cooperation. Finally,

experimental studies have shown that the TVWS spectrum is

significantly scarce in densely populates areas [13], [14]. As

a consequence, it is likely to expect several SNs sharing the

same spectrum band.

Hence, the research community is focusing on designing

solutions for the secondary coexistence in TVWS [15], [16],

as we discuss in detail in Sec. II-C.

In this paper, we investigate the problem of the interference

avoidance among multiple heterogeneous and independently-

operated SNs coexisting within the same geographical area in

absence of secondary cooperation.

Specifically, we design the optimal coexistence strategy,

which adaptively and autonomously selects the TVWS channel

allowing the SN to maximize the expected throughput in

presence of coexistence interference.

More in detail, at first, we develop an analytical frame-

work to model the TVWS channel selection process for an

arbitrary SN as a decision process, where the reward models

the data rate achievable on a channel and the cost models

the communication overhead for assessing the coexistence

interference. Then, we prove that the problem of the optimal

channel selection, i.e., the channel maximizing the expected

throughput, is computational prohibitive (NP-hard). Finally,

we prove that, under the reasonable assumption of identically

distributed interference on the available TVWS channels, the

problem of the optimal channel selection is not anymore NP-

hard. Specifically, we prove that the optimal strategy exhibits

a threshold behavior, and we exploit this threshold structure to

design a computational-efficient (polynomial-time) algorithm
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Fig. 1. Example of TVWS Scenario: two secondary networks coexist with
a TV broadcast station within the same geographical area.

Fig. 2. Coexistence Taxonomy in TVWS Scenarios.

for finding the optimal strategy.

The rest of the paper is organized as follows. In Sec. II,

we present the problem statement and we highlight the con-

tributions of the paper. In Sec. III, we describe the network

model along with some preliminaries. In Sec. IV, we design

the optimal strategy. In Sec. V, we validate the theoretical

framework through a case study. In Sec. VI, we conclude the

paper, and, finally, some proofs are gathered in the appendix.

II. PROBLEM STATEMENT

Let us consider the typical TVWS scenario shown in

Fig 1, in which a SN coexists with multiple heterogenous

and independently-operated SNs within the same geographical

area by sharing a certain number of TVWS channels declared

available from the TVWS database.

As shown in Fig. 2, there exist three different classes of

coexistence interference: i) the self-coexistence interference,

caused by SNs operating according to the same standard and

experienced mainly in dense scenarios; ii) the heterogenous

coexistence interference, caused by SNs operating according

to dissimilar standards or technologies; iii) the vertical coex-

istence interference, caused by the incumbents.

While the self-coexistence interference is handled within the

TVWS standards [6] and the vertical coexistence interference

is handled by a centralized database as mentioned in Sec. I, the

mitigation of heterogenous coexistence interference represents

an open problem as pointed out in Sec. II-A.

A. Challenges

The design of a strategy for the coexistence of heteroge-

neous and independently-operated SNs arises several chal-

lenges.

• Dynamic Interference.

In TVWS scenarios, the heterogenous coexistence in-

terference is both time and spatial-variant. In fact, as

recently proved in [16], such dynamics depend on several

factors, such as the number of SNs roaming within a

certain geographic area, the number of Secondary Users

(SUs) belonging to each SN, the interference range and

the traffic/mobility patterns of each SN, as well as the SN

interference ranges and the changes in wireless propaga-

tion conditions. Hence, any coexistence strategy should

be adaptive to such dynamics.

• Heterogeneity.

As mentioned in Section I, several TVWS standards have

been proposed in the last years. Although significant work

is currently ongoing [17], a complete interoperability

based on over-the-air communications among heteroge-

neous TVWS standards is still missing [11]. Hence, an

appealing characteristic of any heterogenous coexistence

strategy is to be autonomous, i.e., to be independent of

any form of coordination with the coexisting SNs.

• Harmless-to-Incumbents Interference.

In classical Cognitive Radio scenarios, any SN is required

to adopt the sense-before-talk strategy as mechanism

to protect the incumbents from harmful interference.

In TVWS scenarios, such a requirement does not hold

necessarily. Specifically, since the vertical coexistence

interference is managed through a database-based mech-

anism, any interference level on a channel granted by

the database is harmless against the incumbents. As a

consequence, a SN must handle only the heterogenous

coexistence interference caused by the peer coexisting

SNs. Hence, any strategy aiming at mitigating the co-

existence interference is discretionary, i.e., it should be

performed only when it is convenient. As an example,

let us consider Figure 3, in which only one TVWS

channel is available for secondary communications. As

we will prove in Sec. IV-B with Corollary 1, a SN

aiming at maximizing the expected throughput should

use the channel independently of any interference level.

Hence, any coexistence strategy should allow discre-

tionary interference-avoidance schemes.

B. Optimal Autonomous Coexistent Strategy Design

By taking into account the aforementioned challenges, in

this paper we design a coexistence strategy for TVWS scenar-

ios exhibiting the following attractive features.

1) The strategy is optimal, i.e., it allows the SN to maxi-

mize the expected throughput achievable by the SUs.
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Fig. 3. Harmless-to-Incumbents Interference: the SNs do not need a sense-

before-talk strategy as mechanism to protect the incumbents from harmful
interference.

2) The strategy is feasible, since it requires a reasonable

amount of a-priori knowledge, i.e., the first-order distri-

bution of the interference levels.

3) The strategy is iterative and adaptive to interference

dynamics.

4) The strategy is autonomous, since it allows the SN to

make its decisions independently of any other coexisting

network. Hence, it is low in complexity, and it can be

easily integrated with centralized or distributed mecha-

nisms to build hybrid strategies.

5) The strategy implements a discretionary interference

avoidance scheme, i.e., it accounts for the harmless-to-

incumbents property of interference in TVWS.

More in detail, we model the problem of choosing the

TVWS channel maximizing the expected throughput as a

decision process, where the reward models the data rate

provided by a channel and the cost models the communication

overhead (i.e., sensing times) for assessing the interference

caused by coexisting secondary networks.

Then, we prove that the problem of the optimal channel

selection is NP-hard by reducing it to the widely-known NP-

hard Traveling Salesman Problem (TSP) [18]. This is an

important result since it follows that: i) the optimal strategy

can be found only through exhaustive search, i.e., there is no

smart (computational efficient) way of searching the optimal

solution; ii) the wide literature on exact and approximate

algorithms for the TSP can be efficiently adopted for searching

the optimal solution.

Furthermore, we prove that, under the reasonable hypothesis

of identically distributed interference, the problem of the

optimal channel selection is not anymore NP-hard. Specifi-

cally, we prove that the optimal strategy exhibits a threshold

behavior. This result is valuable, since it allows us to design

a computational-efficient algorithm for searching the optimal

strategy by exploiting the threshold structure.

C. Related Work

In the last ten years, the primary-secondary coexistence

problem has been extensively studied in classical Cognitive

Radio networks, and several solutions for mitigating the ver-

tical coexistence interference have been proposed [19], [20],

[21], [22], [23], [24], [25], [26]. However, as pointed out in

Sec. II-A, the existing results cannot be applied in TVWS sce-

narios, since they are based on the assumption that the sense-

before-talk mechanism is mandatory. Hence, a more general

model that accounts for the unique TVWS characteristics is

required and we address this issue in Sections III and IV.

Very recently, the problem of secondary-secondary coex-

istence is gaining attention [15] and in [16], the intrinsic

relationship between environmental and system parameters in

affecting the secondary coexistence has been disclosed. Sev-

eral TVWS standards, such as IEEE 802.22 [6], IEEE 802.11af

[7] and ECMA 392 [9], define self-coexistence mechanisms

to mitigate the mutual interference among similar networks.

Nevertheless, none of these mechanisms can be applied to

mitigate the interference among heterogenous networks.

Finally, few works address the heterogenous coexistence

problem. Some works address the coexistence among low

vs high-power [27] or contention vs reserved-based [28]

networks. However, the proposed strategies are targeted to

couples of specific technologies and, hence, are not suitable for

heterogeneous scenarios such as the TVWS ones. Differently,

in this paper we design a general strategy allowing an arbitrary

SN to make its decisions independently of the coexisting

technologies. IEEE 802.16m [29] defines uncoordinated mech-

anisms for heterogenous coexistence. However, the standard

focuses on license-exempt spectrum and the proposed strategy

simply aims at selecting a channel with tolerable interference.

Differently, in this paper, we focus on licensed spectrum and

we propose an optimal strategy, i.e., a strategy maximizing

the expected throughput achievable by the SN. IEEE 802.19.1.

[17] aims at providing general solutions to the heterogenous

coexistence by envisioning a coexistence manager, acting as a

centralized resource allocator, and a coexistence enabler, aim-

ing at maintaining interfaces between the coexistence enabler

and coexisting CR networks. However, the proposed strategies

either focus on selecting non-overlapping channels or require a

certain degree of collaboration among the coexisting networks.

Differently, in this paper we design an autonomous strategy

allowing the SN to make its decisions independently of any

other coexisting network.

III. MODEL AND PRELIMINARIES

In this section, we first describe the system model in

Sec. III-A. Then, in Sec. III-B, we collect several definitions

that will be used through the paper.

A. System Model

We consider a SN operating within the TVWS Spectrum

according to the existing regulations and standards. Time is

organized into fixed-size slots of duration T , and by accessing

to the TVWS database, the SN obtains the list of channels free

from primary incumbents within an arbitrary time slot. In the

following, we denote the set of incumbent-free channels in a

given time slot with Ω = {1, 2, . . . ,M}.

Since multiple SNs are allowed to operate within the same

geographical region, a channel m ∈ Ω free from primary

incumbents can be affected by coexistence interference caused

by other heterogenous secondary networks coexisting within
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the same geographical area. Hence, a SU aiming at maxi-

mizing the available data rate assesses the strength of such

an interference2 by sensing the m-th channel for a certain

amount of time, say τs. Depending on the measured strength,

the SU can transmit over the m-th channel with a certain data

rate, whose value belongs to an ordered set of K discrete

rates3 {r̃0, r̃1, . . . , r̃K}, with r̃k increasing with k and r̃0
△
= 0

denoting a channel sensed as unusable due to excessive inter-

ference. By denoting with Rm the r.v. characterizing the data

rate achievable on the m-th channel during an arbitrary time

slot4, pm,k = P (Rm = r̃k) represents the probability of the

data rate achievable on channel m at time slot n being r̃k . The

SUs can estimate the first-order distribution of the achievable

data rates through the past-channel throughput histories.

After assessing5 the admissible data rate on channel m,

say rate rm, the SU decides whether to use or not to use

channel m by comparing rm with a certain threshold, say ym.

Whenever rm ≥ ym, the SU transmits over channel m for the

remaining of the time slot, whereas whenever rm < ym, the

SU skips channel m to sense another channel looking for better

communication opportunities. Clearly, the SU can decide to

use channel m without assessing the coexistence interference

by setting the threshold as6 ym = 0.

Both the sequence of channels to be sensed and the cor-

responding rate thresholds, referred to in the following as

stopping rules, deeply affect the performance of any secondary

network. Hence, the goal can be summarized as to find the

channel providing the highest data rate as quickly as possible.

In the next subsection, we rigorously formulate the problem.

B. Problem Formulation

Here, we formulate the problem of choosing a coexistence

strategy maximizing the expected data rate achievable by the

SU during an arbitrary time slot n. Without loss of generality,

in the following we omit the time dependence to simplify the

adopted notation, shown in Table I.

2We note that, although the transmitting SU should be concerned with
the interference levels present at the receiver side, it is likely that both the
transmitter and the receiver suffer similar interference, due to the excellent
propagation conditions of TVWS [30]. In any case, the conducted analysis
continues to hold since the interference can be estimated at the receiver based
on the previous transmissions. In fact, since we develop a probabilistic model
aiming at maximizing the expected reward, the instantaneous values of the
interference are not of interest, and the average interference levels can be
easily estimated based on the through the past channel-interference history
[31], [32].

3The data rate set depends on the communication standard of the arbitrary
SN. As an example, IEEE 802.11af defines eleven different data rates for
6MHz wide TVWS channels, as detailed in Sec. V-A.

4It is well-known [33] that: i) the achievable data rate over a channel is
deeply affected by the Signal-to-Interference-plus-Noise Ratio (SINR); ii) the
SINR range can be partitioned in different regions, each of one associated
with a certain data rate.

5The proposed framework can be easily extended to the case of imperfect
sensing by setting the k-th data rate for the m-th channel to pm,0(1−pfa)r̃k
as in [34], with pfa denoting the false-alarm probability of the adopted
sensing mechanism.

6Through the null threshold concept, we are able to design a discretionary

coexistence strategy as detailed in Sec. II-A.

TABLE I
ADOPTED NOTATION

Symbol Definition

M number of available channels
T duration of a time slot

{r̃k}
K
k=0

set of admissible data rates
pm,k probability of r̃k being the data rate achievable

on channel m
xm m-th channel to be sensed
r̃ym data rate threshold for channel xm

Vx,y expected average throughput
x∗,y∗ sensing sequence and stopping rule maximizing Vx,y

px,y(m) probability of using the m-th sensed channel
r̄x,y(m) expected data rate through channel xm

cy(m) portion of the time slot devoted to packet transmission by
using channel xm

Definition 1. (Sensing Sequence) The sensing sequence x is

the ordered sequence of channels to be sensed:

x =
(

x1, x2, . . . , xM

)

(1)

with xm ∈ Ω for any m, and xm 6= xl for any m 6= l.
In the following, we denote with X the set of all possible

sensing sequences and, by recognizing that a sensing sequence

is a permutation without repetition over the set Ω, it results

|X| = M !.

Definition 2. (Stopping Rule) The stopping rule y is the

ordered sequence of data rate threshold indices:

y =
(

y1, y2, . . . , yM
)

, ym = 0, . . . ,K (2)

where r̃ym
∈ {r̃0, . . . , r̃K} denotes the channel reward thresh-

old for the m-th sensed channel xm ∈ Ω. In the following, we

denote with Y the set of stopping rules and, by recognizing

that a stopping rule is a permutation with repetition over the set

of admissible discrete rates indices, it results |Y| = (K+1)M .

Remark. A stopping rule y is a M -tuple of integers in [0,K],
with the m-th integer ym denoting the minimum data rate, i.e.,

the data rate threshold, required to use the m-th sensed channel

xm. As an example, by assuming y = (2, 1, 4) with M = 3,

it results that: i) r̃2 is the threshold for the first sensed channel

x1; ii) r̃1 is the threshold for the second sensed channel x2;

ii) r̃4 is the threshold for the third sensed channel x3. Hence,

the first sensed channel x1 will be used if and only if it admits

a data rate equal or greater than r̃2. Clearly, channel x2 will

be sensed if and only if the first sensed channel admits a data

rate lower than r̃2, and it will be used if and only if it admits

a data rate equal or greater than r̃1.

Remark. At the beginning of an arbitrary time slot, the

SU can either: i) transmit over channel x1 regardless of the

coexistence interference; ii) sense channel x1 and, based on the

sensed interference, decide whether to use or not to use such a

channel. According to the adopted notation, the former case is

denoted with y1 = 0, whereas the latter is denoted with y1 = i
with i 6= 0. If the SU decides to skip the first sensed channel,

then it can either transmit or sense channel x2, based on the

value of y2. By iterating the above mentioned process, the SU

eventually selects one of the M incumbent-free channels to

be used for secondary communications.
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Remark. To simplify the notation, we assume in Definition 2

the thresholds belong to the set of admissible data rates

{r̃0, . . . , r̃M}. It is easy to recognize that such an assump-

tion is not restrictive by noting that for any threshold value

r ∈ (r̃m−1, r̃m] the SU uses the channel xm if Rxm
≥ r̃m,

whereas it skips such a channel if Rxm
< r̃m. Hence, any

r ∈ (r̃m−1, r̃m] can be replaced by rm without loss of

generality.

Definition 3. (Expected Reward) The expected reward Vx,y

denotes the expected throughput achievable by the SU in a

given time slot by following the sensing sequence x ∈ X and

the stopping rule y ∈ Y.

Remark. The expected reward represents a trade-off between:

i) the data rate achievable on the selected channel; ii) the time

spent for selecting the channel. In general, longer search times

assure higher data rates at the price of a shorter portion of the

time slot T devoted to packet transmission.

Problem 1. (Optimal Coexistence Strategy) The goal is to

jointly choose the optimal sensing sequence x∗ and the optimal

stopping rule y∗ maximizing the expected reward:

Vx∗,y∗ = argmax
x∈X,y∈Y

{Vx,y} (3)

Insight 1. We note that jointly finding the optimal sensing

sequence and the optimal stopping rule through brute-force

searching is computational unfeasible. In fact, for each of the

M ! sensing sequences, (K + 1)M stopping rules need to be

evaluated.

Remark. Through the general notion of reward, we abstract

the derived results from the particulars, making the conducted

analysis general. In fact, it can be easily applied to a variety of

real-world scenarios, by choosing the proper reward measure.

Within the manuscript, we adopted as performance metric the

data rate, hence the reward r̃ym
models the data rate achievable

on channel ym. Clearly, depending on the scenario, a different

performance metric can be more suitable [35], [36], e.g., the

channel reliability. In such a case, by simply modeling with

the reward r̃ym
the reliability of channel ym, all the results

derived within the paper continue to hold.

IV. OPTIMAL COEXISTENCE INTERFERENCE AVOIDANCE

STRATEGY

At first, in Sec. IV-A, we derive in Theorem 1 the closed-

form expression of the expected reward. Then, in Sec. IV-B,

we efficiently (polynomial-time complexity) compute the stop-

ping rule maximizing the expected reward for a given sensing

sequence with Algorithm 1. Stemming from this, we first prove

that the problem of computing the optimal sensing sequence

is NP-hard in Theorem 3, and then we compute both the

optimal sensing sequence and the optimal stopping rule with

Algorithm 2. Finally, in Sec. IV-C, we efficiently (polynomial-

time complexity) compute both the optimal sensing sequence

and the optimal stopping rule with Algorithm 3 under the

reasonable hypothesis of identically distributed coexistence

interference levels.

A. Preliminaries

Here, we derive in Theorem 1 the closed-form expression

of the expected reward. The proof of Theorem 1 requires the

following preliminary lemmas.

Lemma 1. (Conditional Stopping Probability) The condi-

tional stopping probability px,y(m), i.e., the probability of SU

using the m-th sensed channel given that it skipped the first

m− 1 sensed channels, is equal to:

px,y(m) =

K
∑

k=ym

pxm,k
△
= 1− p̄x,y(m) (4)

with x ∈ X denoting the adopted sensing sequence and y ∈ Y

denoting the adopted stopping rule.

Proof: See Appendix A.

Remark. The SU uses channel x1 with probability px,y(1)
whereas it skips x1 with probability p̄x,y(1). Given that

it skipped channel x1, it uses channel x2 with probability

px,y(2). Clearly, the lower is y1, the more likely the SU uses

channel x1 and, from Def. 2, we have y1 = 0 =⇒ px,y(1) = 1.

Lemma 2. (Rate Expectation) The rate expectation r̄x,y(m),
i.e., the expected data rate achievable by the SU through the

m-th sensed channel, is equal to:

r̄x,y(m) =

K
∑

k=ym

pxm,k

px,y(m)
r̃k (5)

with x ∈ X denoting the adopted sensing sequence and y ∈ Y

denoting the adopted stopping rule.

Proof: See Appendix B.

Remark. The lower is the threshold index ym, the lower is

the data rate threshold r̃ym
, the more likely the data rate on

channel xm exceeds the threshold. Hence, the more likely the

SU uses channel xm, but the lower is the expected data rate

r̄x,y(m) through channel xm.

Theorem 1. (Expected Reward) The expected reward Vx,y

achievable by the SU following the sensing sequence x ∈ X

and the stopping rule y ∈ Y is equal to:

Vx,y =

M
∑

m=1

px,y(m)qx,y(m)r̄x,y(m)cy(m) (6)

where the probability qx,y(m) of skipping the first m − 1
sensed channels is given by:

qx,y(m) =











1 if m = 1
m−1
∏

l=1

p̄x,y(l) otherwise
(7)

and the scaling factor cy(m) is given by:

cy(m) =

{

(1− (m− 1)τs/T ) if ym = r̃0

(1−mτs/T ) otherwise
(8)

Proof: See Appendix C.

Remark. The expected reward Vx,y allows us to estimate the

expected throughput achievable by the SU during the time slot.
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Specifically, Vx,y is the sum of the rate expectation r̄x,y(m)
on channel xm, weighted by the probability of using such

a channel. Since the more channels are sensed by the SU

the less time can be devoted to packet transmission, the rate

expectation for channel xm is weighted by the scaling factor

cym
(m), which accounts for the portion of the time slot T

devoted to packet transmission.

B. Optimal Coexistence Strategy

Here, we derive in Theorem 2 the optimal stopping rule

for a given sensing sequence. Stemming from this, we prove

with Corollary 2 that Problem 1 can be polynomial-time

reduced to another problem, referred to in the following as

Problem 2. Intuitively, a polynomial-time reduction proves that

the first problem is no more difficult than the second one,

because whenever an efficient algorithm exists for the second

problem, one exists for the first problem as well. Furthermore,

in Theorem 3 we prove that Problem 2 is NP-hard. Hence,

due to the reduction property, we can conclude that it does

not exists an efficient algorithm for the considered problem,

i.e., Problem 1.

The proof of Theorem 2 requires the following preliminary

lemmas.

Lemma 3. (Expected Remaining Reward) The expected re-

maining reward vx,y(m), i.e., the expected reward achievable

by the SU through channels xm+1, . . . , xM given that it

skipped the first m sensed channels, is given by:

vx,y(m) =

M
∑

l=m+1

px,y(l)

l−1
∏

i=m+1

p̄x,y(i)r̄x,y(l)cy(l) (9)

Proof: See Appendix D.

Remark. The expected remaining reward vx,y(m) allows us

to estimate the expected throughput given that the first m
sensed channels are skipped, i.e., qx,y(m+ 1) = 1.

Algorithm 1 Optimal Stopping Rule Given Sensing Sequence

1: // input: x = {x1, . . . , xM}
2: // output: v, y̆ = {y̆1, . . . , y̆M}
3: // base step

4: y̆M = 0
5: v = (1 − (M − 1)τs/T )

∑K

k=1 pxM ,krk
6: // recursive step

7: for m = M − 1 : 1 do

8: ỹm = mink{r̃k(1−mτs/T ) ≥ v
9: t0 = (1 − (m− 1)τs/T )

∑K

k=1 pxm,krk
10: t1 = (1 −mτs/T )

∑K

k=ỹm
pxm,krk +

∑ỹm−1
k=0 v

11: if t0 > t1 then

12: y̆m = 0, v = t0
13: else

14: y̆m = ỹm, v = t1
15: end if

16: end for

Lemma 4. Given the sensing sequence x ∈ X and the

stopping rule y ∈ Y with ym > 0, it results:

Vx,y ≤ Vx,ỹ (10)

with

ỹl = yl ∀ l 6= m ∧ ỹm = min
k

{r̃k(1−mτs/T ) ≥ vx,y(m)}

(11)

Proof: See Appendix E.

Remark. Lemma 4 allows us to establish, for an arbitrary

sensing sequence, the m-th stopping rule maximizing the

expected reward given that channel xm is sensed. Stemming

from this, in Theorem 2 we derive the optimal m-th stopping

rule for an arbitrary sensing sequence.

Theorem 2. (Stopping Rule Given Sensing Sequence) Given

the sensing sequence x ∈ X and the stopping rule y ∈ Y, it

results:

Vx,y ≤ Vx,y̆ (12)

with

y̆l = yl ∀ l 6= m (13)

y̆m =







0 if E[Rxm
] ≥

vx,y(m− 1)

1− (m− 1)τs/T

ỹm otherwise

(14)

with ỹm given in (11).

Proof: See Appendix F.

Corollary 1. (M-th Stopping Rule Given Sensing Sequence)

For any sensing sequence x ∈ X, the M -th component of the

stopping rule y ∈ Y maximizing the expected reward Vx,y is

given by:

yM = 0 (15)

Proof: The proof follows directly from Theorem 2 since

vx,y(M) = 0 for any x, y.

Remark. From Corollary 1, it follows that, when only one

channel is left, the SU reduces the achievable expected reward

by sensing such a channel instead of simply using it. This

is reasonable since, even if the SU senses the channel as

unavailable, i.e., RM = r0, there is no other option (channel)

left.

Remark. By iteratively applying Theorem 1, it follows that

Algorithm 1 effectively founds the stopping rule y̆ ∈ Y max-

imizing the expected reward for any given sensing sequence

x ∈ X. We note that the time complexity of Algorithm 1 is

linear with respect to both M and K , i.e., O(NK).

Stemming from Theorem 2, we can now reformulate Prob-

lem 1 as follows.

Problem 2. (Optimal Sensing Sequence) The goal is to

choose the optimal sensing sequence x∗ maximizing the

expected reward:

Vx∗,y(x∗) = argmax
x∈X

{Vx,y(x)} (16)

where y(x) is given by Algorithm 1 for any x.
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Corollary 2. (Problem Equivalence) Problem 1 can be

polynomial-time reduced to Problem 2.

Proof: The proof follows from Theorem 2 by accounting

for the time complexity of Algorithm 1.

Theorem 3. (Problem Complexity) Problem 2 is NP-hard.

Proof: See Appendix G.

Remark. As proved in Appendix G, the Optimal Coexistence

Strategy problem can be polynomial-time reduced to the Trav-

eling Salesman Problem (TSP). Hence, the existing literature

on exact/approximate algorithms for solving the TSP can

be efficiently adopted for searching the optimal/sub-optimal

strategy.

Insight 2. In scenarios of practical interest such as the urban

ones, it has been shown that the TVWS spectrum is scarce

with roughly five channels available to secondary access [13].

Hence, as we show in Sec. V-B, the optimal solution can

be found in almost real time with commercial hardware

through Algorithm 2. More in detail, with Algorithm 2: i) the

sensing sequence maximizing the expected reward is found

through exhaustive search; ii) the stopping rule maximizing

the expected reward for any given sensing sequence is found

through Algorithm 1. Furthermore, in Section IV-C, by consid-

ering identically distributed coexistence interference levels, we

derive an efficient (polynomial-time) algorithm for searching

the optimal strategy.

C. Optimal Coexistence Strategy under Identically Distributed

Interference

Here, we derive in Theorem 4 the optimal sensing strategy

when the coexistence interference levels are identically dis-

tributed among the available channels. Hence, in the following,

we denote with pk the probability of r̃k being the admissible

data rate for channel xm for any m ∈ Ω.

The proof of Theorem 4 requires the following intermediate

results.

Lemma 5. (Conditional Stopping Probability) For any sens-

ing sequence x ∈ X, it results:

px,y(m) =

K
∑

k=ym

pk
△
= py(m)

△
= 1− p̄y(m) (17)

with y ∈ Y denoting the adopted stopping rule.

Algorithm 2 Optimal Sensing Strategy

1: // input: X = permutations ({1, . . . ,M})
2: // output: x∗,y∗

3: // base step

4: v∗ = 0,x∗ = {0, . . . , 0},y∗ = {0, . . . , 0}
5: // iterative step

6: for x ∈ X do

7: v,y computed with Algorithm 1

8: if v∗ > v then

9: v∗ = v,x∗ = x,y∗ = y∗

10: end if

11: end for

Proof: See Appendix H.

Remark. In the following, we adopt the notation py(m)
to highlight the independence of the conditional stopping

probability from the sensing sequence due to the identical

distribution hypothesis.

Lemma 6. (Rate Expectation) For any sensing sequence x ∈
X, it results:

r̄x,y(m) =

K
∑

k=ym

pk
py(m)

r̃k
△
= r̄y(m) (18)

with y ∈ Y denoting the adopted stopping rule.

Proof: The proof follows by reasoning as in Appendix H.

Corollary 3. (Expected Reward) For any sensing sequence

x ∈ X, it results:

Vx,y =

M
∑

m=1

py(m)qy(m)r̄y(m)cy(m)
△
= Vy (19)

with y ∈ Y denoting the adopted stopping rule, cy(m) given

in (8) and qy(m) equal to:

qy(m) =











1 if m = 1
m−1
∏

l=1

p̄y(l)
△
=

m−1
∏

l=1

(1 − py(l)) otherwise
(20)

Proof: The proof follows from Lemmas 5 and 6.

Remark. The result of Corollary 3 is reasonable: since the

coexistence interference is identically distributed over the

available channels, the optimal sensing strategy: i) depends

on the stopping rule y; ii) does not dependent of the sensing

sequence x. Stemming from this, we can now derive in

Theorem 4 the optimal sensing strategy.

Algorithm 3 Optimal Sensing Strategy for Identically Dis-

tributed Channel Interference

1: // output: y∗

2: // base step

3: yM = 0
4: v = (1− (M − 1)τs/T )

∑K

k=1 pkrk
5: // recursive step

6: for m = M − 1 : 1 do

7: ỹm = mink{r̃k(1−mτs/T ) ≥ v
8: t0 = (1− (m− 1)τs/T )

∑K

k=1 pkrk
9: t1 = (1−mτs/T )

∑K

k=ỹm
pkrk +

∑ỹm−1
k=0 v

10: if t0 > t1 then

11: ym = 0, v = t0
12: else

13: ym = ỹm, v = t1
14: end if

15: end for
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TABLE II
PERFORMANCE EVALUATION PARAMETER SETTING

Symbol Definition Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8

M number of TVWS channels 4 4 2-8 4 2-8
r̃k admissible data rate {0,1.8,3.6,5.4,7.2,10.8,14.4,16.2,18,21.6,24}Mbit/s
τ normalized sensing time 0.01 0.01 0.01 0.01 0.01-0.5

pm,k probability of r̃k being the data rate uniformly distributed in [0, 1]
achievable on channel m

Fig. 4. Optimality: Algorithm 1 vs Exhaustive Search. Each dot refers to a
pair (x,y), where coordinate (x) denotes the sensing sequence index and
coordinate (y) denotes the expected reward Vx,y . Each circle refers to a
pair (x, y̆) with y̆ given by Algorithm 1, where coordinate (x) denotes
the sensing sequence index and coordinate (y) denotes the expected reward
Vx,y̆ .

Fig. 5. Optimality: expected reward vs. sensing sequence-stopping rule.

Theorem 4. (Optimal Sensing Strategy) The optimal stopping

rule y∗ ∈ Y is recursively defined as:

y∗m =























0 m = M

=











0 if

K
∑

k=0

pk r̃k ≥
vy(m)

1− (m− 1)τs/T

ỹm otherwise

m < M

(21)

with ỹm = mink{r̃k(1−mτs/T ) ≥ vy(m)} and vy(m) equal

to:

vy(m) =

M
∑

l=m+1

py(l)

l−1
∏

i=m+1

p̄y(i)r̄y(l)cy(l) (22)

Proof: See Appendix I.

Remark. From Theorem 4, it follows that Algorithm 3 ef-

ficiently (polynomial-time) founds the optimal sensing strat-

egy in presence of identically distributed interference levels.

Furthermore, in Sec. V-B, we evaluate the feasibility of Algo-

rithm 3 in presence of non identically distributed interference

levels.

Remark. By assuming a negligible sensing overhead, i.e.,

τs << T ,it is straightforward to prove that the optimal

stopping rule y∗m is equal to ỹm for any m < M .

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

coexistence strategy by adopting, as case study, an IEEE

802.11af networks operating in the TVWS spectrum.

A. Optimality

Here, we validate the optimality property of the proposed

coexistence strategy by showing that the sensing rule derived

in Algorithm 1 assures, for any sensing sequence, the highest

expected reward.

The simulation set, summarized in Table II, is as follows:

M=4 channels are available to secondary access and, by adopt-

ing 6MHz wide channels, the admissible data rates in IEEE

802.11af are {0, 1.8, 3.6, 5.4, 7.2, 10.8, 14.4, 16.2, 18, 21.6,

24}Mbit/s. The channel interference levels are independent of

each others and uniformly distributed within the corresponding

SINR regions, and the sensing process is characterized by a

normalized sensing time7 τs/T = 0.01.

In Fig. 4, for each of the M ! = 24 sensing sequences

we report: i) the expected reward achievable by using the

stopping rule y̆ derived in Algorithm 1; ii) the expected

rewards achievable by using any other stopping rule y ∈ Y,

with |Y| = (K + 1)M = 14641, found through exhaustive

7By abstracting from the sensing particulars, the notion of normalized
sensing time allows us to focus on the effects of the coexistence strategy
in terms of expected reward.



9

Number M of TVWS Channels
2 3 4 5 6 7 8

C
om

pu
ta

tio
n 

T
im

e 
[s

]

10 -5

100

105

1010

Exhaustive Search
Algorithm 2
Algorithm 3

Fig. 6. Time Complexity: running times vs number M of available TVWS
channels. Logarithmic scale for (y) axis.
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Fig. 7. Fast Computation: expected reward vs time in presence of indepen-
dent interference.

enumeration. First, we note that Algorithm 1 effectively finds

the stopping rule maximizing the expected reward for any

given sensing sequence. Hence, the proposed coexistence

strategy is optimal. We further observe that there is a signif-

icant variability among the different stopping rules in terms

of expected reward, ranging from roughly 8Mbit/s to over

16Mbit/s. This result highlights that, even when the TVWS

spectrum is scarce (M = 4), there exists a significant diversity

among the strategies in terms of expected throughput. Hence,

an optimal strategy design is crucial to take advantage of such

a diversity.

To better understand the effects of the strategy design in

terms of expected reward, in Fig. 5 we report the expected

reward as a function of the couple sensing sequence-stopping

rule. Specifically, each three-dimensional point refers to a pair

(x,y), where coordinate (x) denotes the sensing sequence

index, coordinate (y) denotes the stopping rule index, and

coordinate (z) denotes the expected reward Vx,y. We observe

that the expected reward achievable significantly changes not

only with the stopping rule, but also with the sensing sequence,

i.e., there exists two degree of freedom that must be explored

to design an optimal strategy. This agrees with the theoretical

results derived in Sec. IV. Furthermore, we note that, for a

given stopping rule, by changing the sensing sequence the

expected reward can vary up to a notable 40%, confirming the

considerations made for Fig. 4.

B. Feasibility

Here, we assess the feasibility of the proposed coexistence

strategy in terms of computational complexity. Specifically, we

compare the running times for computing the optimal coexis-

tence strategy with three different algorithms: i) Algorithm 2;

ii) Algorithm 3; iii) exhaustive search.

Fig. 6 presents the running times8 of the considered al-

gorithms as the number M of available TVWS channels

increases, with a logarithmic scale for the (y) axis. The

simulation set is as in Sec. V-A. First, we observe that the

8We note that the times have been obtained by running the algorithms on a
general purpose architecture (MacBook Pro). Hence, it is reasonable to believe
that a reduction of one or two orders of magnitude can be easily obtained by
adopting dedicated hardware.
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Algorithm 2
Sense-Before-Talk Algorithm

Fig. 8. Discretionary Interference Sensing: expected reward vs normalized
sensing time τs/T for different values of the number M of available TVWS
channels. Logarithmic scale for (x) axis.

time complexity of the exhaustive search makes this choice

unfeasible even in urban scenarios, with running times within

the order of magnitude of minutes and hours for M = 3 and

M = 4, respectively. On the other hand, we observe that

Algorithm 2 performs satisfactory in urban scenarios, with

running times within the order of magnitude of seconds or

less up to M = 8. Finally, we note that Algorithm 3 performs

considerably well in both urban and rural scenarios, with

running times in the order of 10−4 seconds also for the larger

values of M .

One question arises spontaneously: what if the considered

scenario is characterized by TVWS abundance in presence

of independent but non identically distributed interference?

In other words, what if we resort to Algorithm 3 when the

interference is not identically distributed?

We focus on such a scenario in Fig. 7. Specifically, the

figure presents the expected reward as a function of the time

for both Algorithm 2 and 3, along with the corresponding

time averages of the expected rewards. The simulation set is

as in Sec. V-A, with Algorithm 3 rate probability pk set to

the average value of the channel data rate probabilities pm,k,

i.e., pk = 1/M
∑M

m=1 pm,k. Clearly, Algorithm 2, i.e., the

algorithm designed for the considered scenario, outperforms
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Algorithm 3 both instantaneously and in average. Nevertheless,

the differences in terms of expected reward between the

optimal and the approximate algorithms are moderate. Hence,

Algorithm 3 represents a sub-optimal but efficient solution

when the running times of Algorithm 2 are unfeasible.

C. Discretionary Interference Sensing

Here, we analyze the benefits provided by a discretionary

interference sensing in terms of expected throughput. More in

detail, we compare the expected throughputs achievable with

the proposed coexistence strategy (Algorithm 2) with those

achievable by an algorithm that implements a mandatory in-

terference sensing, referred to as Sense-Before-Talk Algorithm.

As pointed out in Section II-A, the mandatory interference

sensing represents a requirement of the existing literature

on channel selection for CR networks. Hence, by comparing

the proposed coexistence strategy with the Sense-Before-Talk

Algorithm we aim at assessing the performance improvement

over the state of the art.

Fig. 8 presents the expected reward as the normalized

sensing time τs/T increases for different values of the number

M of available TVWS channels. The simulation set is as in

Sec. V-A. At first, we observe that the higher is the normalized

sensing time, the lower is the expected reward. This agrees

with both the intuition and Theorem 1. Furthermore, we

observe that the differences between the optimal and the

suboptimal strategies in terms of rewards increase as τs/T .

This result is reasonable since the larger are the sensing times,

the higher are the sensing overheads and hence the higher is

the positive impact of the discretionary interference sensing

in terms of reward. Finally, we observe that the differences

between the optimal and the suboptimal strategies in terms

of rewards increase as M decreases for a fixed normalized

sensing time. This is reasonable: the lower are the available

channels, the less are the sensing sequences, i.e., the less

significant are the effects of the channel diversity on the

expected reward. Consequently, the lower are the available

channels, the more significant are the stopping rules in terms

of expected reward.

VI. CONCLUSIONS

In this paper, we addressed the problem of the coexistence

interference among multiple heterogeneous and independently-

operated secondary networks coexisting within the same ge-

ographical area over shared TV white space in absence of

secondary cooperation. Specifically, we designed the optimal

coexistence strategy, i.e., the strategy that maximizes the

throughput achievable by an arbitrary secondary network. Such

a strategy exhibits several attractive features: i) feasibility,

since it requires a reasonable amount of a-priori knowledge;

ii) adaptivity to interference dynamics; iii) autonomous, since

it allows the secondary network to make its decisions inde-

pendently of any other coexisting networks; iv) discretionary

interference avoidance, since it accounts for the harmless-to-

incumbents property of interference in TVWS. More in detail,

we proved that the problem of the optimal channel selec-

tion, i.e., the channel maximizing the expected throughput, is

computational prohibitive (NP-hard). Nevertheless, under the

reasonable assumption of identically distributed interference

on the available TVWS channels, we prove that the optimal

channel selection problem is not anymore NP-hard. Specifi-

cally, we proved that the optimal strategy exhibits a threshold

behavior, and by exploiting this threshold structure, we de-

signed a computational-efficient (polynomial-time) algorithm.

The performance evaluation validated the proposed theoretical

analysis.

APPENDIX

A. Proof of Lemma 1

Proof: By observing that the SU uses the m-th sensed

channel, given that it skipped the first m− 1 sensed channels,

if and only if Rxm
≥ r̃ym

, it follows:

px,y(m) = P (Rxm
≥ r̃ym

) =

K
∑

k=ym

P (Rxm
= r̃k) =

=

K
∑

k=ym

pxm,k (23)

B. Proof of Lemma 2

Proof: By noting that the rate expectation r̄x,y(m) rep-

resents the expectation of Rxm
given that channel xm is used,

i.e., given that Rxm
≥ r̃ym

, it follows:

r̄x,y(m) = E[Rxm
|Rxm

≥ r̃ym
] =

∑K

k=ym
pxm,k r̃k

px,y(m)
(24)

where the last equality accounts for Lemma 1 and for the

definition of expectation of a truncated random variable.

C. Proof of Theorem 1

Proof: First, we observe that, when the m-th sensed

channel is used, the portion of the time slot devoted to packet

transmission is not greater than 1− (m− 1)τs/T . In fact, any

channel in {x1, . . . , xm−1} has been sensed, i.e., yk > 0 for

any k < m. Specifically, such a time slot fraction is equal

to 1 − (m − 1)τs/T when ym = 0, whereas it is equal

to 1 − mτs/T when ym > 0. Hence, the expected reward

achievable on channel xm is equal to r̄x,y(m)cy(m). Since

channel xm is used with probability px,y(m) if and only if

the previous m− 1 sensed channels were skipped, and since

such a probability is equal to qx,y(m) given in (7), the thesis

follows.

D. Proof of Lemma 3

Proof: Similarly to the proof of Theorem 1, the expected

reward achievable through a channel xl in xm+1, . . . , xK is

equal to r̄x,y(l)cy(l). Since channel xl is used with prob-

ability px,y(l) if and only if the channels xm+1, . . . , xl−1

were skipped, and since such a probability is equal to
∏l−1

i=m+1 p̄x,y(i), the thesis follows.
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E. Proof of Lemma 4

Proof: We prove the thesis with a reductio ad absurdum

by supposing there exists x ∈ X and y ∈ Y so that:

Vx,y > Vx,ỹ (25)

with ỹ given in (11). We have two cases.

i) Case ym < ỹm. Let us assume, without loss of generality,

ym = ỹm − 1. Hence, by accounting for (11), we have (26)

shown at the top of the next page.

By substituting (26) in (25) and by accounting for (4) and

(5), we obtain:

K
∑

k=ỹm

pxm,kr̃kcy(m) + pxm,ỹm−1r̃ỹm−1cy(m)+

+

ỹm−2
∑

k=0

pxm,kvx,y(m) >

K
∑

k=ỹm

pxm,k r̃kcy(m)+

+ pxm,ỹm−1vx,y(m) +

ỹm−2
∑

k=0

pxm,kvx,y(m) (27)

and, since r̃ỹm−1cy(m) = r̃ỹm−1(1 − mτs/T ) < vx,y(m)
from (11), (27) constitutes a reductio ad absurdum.

ii) Case ym > ỹm. Let us assume, without loss of generality,

ym = ỹm +1. By substituting (26) in (25) and by accounting

for (4) and (5), we obtain:

K
∑

k=ỹm+1

pxm,kr̃kcy(m) + pxm,ỹm
vx,y(m)+

+

ỹm−1
∑

k=0

pxm,kvx,y(m) >
K
∑

k=ỹm+1

pxm,k r̃kcy(m)+

+ pxm,ỹm
r̃ỹm

cy(m) +

ỹm−1
∑

k=0

pxm,kvx,y(m) (28)

and, since r̃ỹm
cy(m) = r̃ỹm

(1 − mτs/T ) ≥ vx,y(m) from

(11), (28) constitutes a reductio ad absurdum.

F. Proof of Theorem 2

Proof: i) Case E[Rxm
] ≥ vx,y(m−1)/(1−(m−1)τs/T ).

We prove the thesis with a reductio ad absurdum by supposing

there exists x ∈ X and y ∈ Y so that:

Vx,y > Vx,y̆ (29)

with y̆ given in (13). Hence, we have:

Vx,y̆ =
M
∑

l=1

px,y̆(l)qx,y̆(l)r̄x,y̆(l)cy̆(l) =

=

m−1
∑

l=1

px,y(l)qx,y(l)r̄x,y(l)cy(l)+

+ p̄x,y(m− 1)qx,y(m− 1)vx,y̆(m− 1) (30)

By substituting (30) in (29), we obtain:

vx,y(m− 1) =

K
∑

k=ym

pxm,kr̃kcy(m) +

ym−1
∑

k=0

pxm,kvx,y(m)

>

K
∑

k=0

pxm,k r̃kcy̆(m) (31)

By accounting for the hypothesis and by noting that cy̆(m) =
1− (m− 1)τs/T , (31) constitutes a reductio ad absurdum.

ii) Case E[Rxm
] < vx,y(m − 1)/(1 − (m − 1)τs/T ). By

following the same reasoning of Case i), the thesis follows.

G. Proof of Theorem 3

Proof: We prove the Theorem by adopting a typical tool

of computational complexity theory, i.e., reduction [18]. A

reduction is a procedure for transforming one problem into

another problem, and it can be used to show that the second

problem is at least as difficult as the first. Specifically, we

reduce Problem 2 to a notable NP-hard problem, the Traveling

Salesman Problem (TSP), by showing that there exists a one-

to-one mapping between Problem 2 and the single-machine

job-scheduling problem with sequence-dependent setup times.

Since such a problem can be polynomial-time reduced to the

TSP, we have the thesis.

Let us focus on the contribute of the m-th sensed channel

to the expected reward Vx,y(x):

px,y(x)(m)qx,y(x)(m)r̄x,y(x)(m)cy(x)(m) (32)

From Algorithm 1, it follows that the m-th component

ym(x) ∈ y(x) is a function of the last M−m+1 components

of x. Hence, by accounting for (4), (5) and (8), it follows that

(32) depends on (xm, . . . , xM ). Furthermore, by accounting

for (7), it follows that (32) depends on (x1, . . . , xm−1). Hence,

by denoting ym(x) as f(xm, . . . , xM ), it is easy to recognize

that the expected reward Vx,y(x) achievable by using the

sensing sequence x = (x1, . . . , xM ) is equivalent to:

Vx,y(x) =
M
∑

m=1

g(x1,...,xM)(m) (33)

with g(x1,...,xM )(m) recursively defined as in (34), shown at

the top of the next page.

By denoting with s(x1,...,xM)(m) = −g(x1,...,xM)(m), we

have:

max
x∈X

{

Vx,y(x)

}

= min
x∈X

{

M
∑

m=1

s(x1,...,xM)(m)

}

(35)

= min
x∈X

{

M
∑

m=1

pm +

M
∑

m=1

s(x1,...,xM)(m)

}

Hence, solving Problem 2 is equivalent to solve the single-

machine job-scheduling problem with: i) equal-release times

pm = 0; ii) sequence-dependent setup times s(x1,...,xM)(m).
Since such a problem can be polynomial-time reduced [37],

[38] to the TSP, we have the thesis.
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Vx,ỹ =

M
∑

l=1

px,ỹ(l)qx,ỹ(l)r̄x,ỹ(l)cỹ(l) =

=

m−1
∑

l=1

px,y(l)qx,y(l)r̄x,y(l)cy(l) + px,ỹ(m)qx,y(m)r̄x,ỹ(m)cy(m) + p̄x,ỹ(m)qx,y(m)vx,y(m) (26)

g(x1,...,xM )(m) =























































































M−1
∑

l=1

∏

k<f(xl,...,xM)

pxl,k





∑

k≥0

pxM ,k r̄k(1 − (M − 1)τs/T ) if m = M





m−1
∑

l=1

∏

k<f(xl,...,xM )

pxl,k



max



















K
∑

k≥0

pxm,kr̄k(1 − (m− 1)τs/T )

∑

k≥f(xm,...,xM)

pxm,k r̄k(1−mτs/T )



















if 1 < m < M

max



















K
∑

k≥0

px1,kr̄kT

∑

k≥f(x1,...,xM)

px1,kr̄k(1− τs/T )



















if m = 1

(34)

H. Proof of Lemma 5

Proof: By hypothesis, it results

pxm,k = P (Rxm
= r̃k) = pk ∀xm ∈ Ω (36)

Hence, by substituting (36) in (23), we have the thesis.

I. Proof of Theorem 4

Proof: We prove the thesis through backward induction.

i) Case m = M . The thesis follows by noting that, for any

ym 6= 0 and for any τs > 0, it results:

K
∑

k=0

pk r̃k(1− (m− 1)τs/T ) >
K
∑

k=ym

pkr̃k(1−mτs/T ) (37)

ii) Case m < M . It is straightforward to prove the thesis by

accounting for the results derived in Lemma 4 and Theorem 2.
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