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DISCLAIMER 

 

This study, along with all results presented in this report and the accompanying Software tool, 

is based on a research conducted at the Centre for Advanced Numerical Simulation 

(CANSIM) in the Department of Civil and Geological Engineering, University of 

Saskatchewan. Part of this work was a result of an M.Sc. program of Md. Shahabul Alam 

under the supervision of Professor Amin Elshorbagy. The student, his supervisor (the 

principal investigator), and the co-investigator made every possible effort to adhere to good 

and widely acceptable practices of science and research with regard to the methodology 

adopted in this study. However, due to the nature of the study, the results and findings are 

subject to uncertainties due to various factors outlined in the study. The study aims at raising 

issues pertaining to climate change and bringing them to the attention of the city of 

Saskatoon. The use of the results reported here should be subject to the judgment, and solely 

on the responsibility, of the user.  
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EXECUTIVE SUMMARY 

 

Intensity-Duration-Frequency (IDF) curves are among the standard design tools for various 

engineering applications, such as storm water management systems. The current practice is to 

use IDF curves based on historical extreme precipitation design values (quantiles). A warming 

climate, however, might change the extreme precipitation quantiles represented by the IDF 

curves, emphasizing the need for updating the IDF curves used for the design of urban storm 

water management systems in different parts of the world, including Canada.  

This study attempts to construct the future IDF curves for Saskatoon, Canada, under possible 

climate change scenarios. For this purpose, LARS-WG, a stochastic weather generator, is 

used to spatially downscale the daily precipitation projected by Global Climate Models 

(GCMs) from coarse grid resolution to the local point scale. Ensembles of stochastically 

downscaled daily precipitation realizations were further disaggregated into ensemble hourly 

and sub-hourly (as fine as 5-minute) precipitation series, using a disaggregation scheme 

developed using the K-nearest neighbor (K-NN) technique. Another stochastic disaggregation 

method, developed within this study, was also employed to disaggregate the daily rainfall 

series into hourly resolution. This two-stage modeling framework (downscaling to daily, then 

disaggregating to finer resolution) is applied to construct the future IDF curves in the city of 

Saskatoon. By using the simulated hourly and sub-hourly precipitation series and the 

Generalized Extreme Value (GEV) statistical distribution, future changes in the IDF curves 

and associated uncertainties are quantified using a large ensemble of projections obtained for 

the Canadian and British GCMs (CanESM2 and HadGEM2-ES) based on three 

Representative Concentration Pathways (future climate change projections); RCP2.6, RCP4.5, 

and RCP8.5 available from CMIP5 – the most recent product of the Intergovernmental Panel 

on Climate Change (IPCC).  The constructed IDF curves are then compared with the ones 

constructed using another method based on a symbolic regression technique, called genetic 

programming.  

The results show that the sign and the magnitude of future variations in extreme precipitation 

quantiles in Saskatoon are sensitive to the selection of GCMs and/or RCPs, which seem to 

become intensified towards the end of the 21st century. Generally, the percentage change in 

precipitation intensities with respect to the historical intensities for CMIP5 climate models 

(e.g., CanESM2: RCP4.5) is less than those for the outdated CMIP3 climate models (e.g., 

CGCM3.1: B1), which might be due to the inclusion of climate policies (i.e., adaptation and 

mitigation) in CMIP5 climate models. The adopted framework enables quantification of 

uncertainty due to natural internal variability of precipitation, various GCMs and RCPs, and 

downscaling methods. In general, uncertainty in the projections of future extreme 

precipitation quantiles increases at shorter durations and for longer return periods. The two-

stage method adopted in this study and the GP method reconstruct the historical IDF curves 

quite successfully during the baseline period (1961-1990); this suggests that these methods 

can be applied to construct IDF curves at the local scale under future climate scenarios. The 

most notable precipitation intensification in Saskatoon is projected to occur with shorter storm 

durations, up to one hour, and longer return periods of 25 years or more. 

Compared to a historical (baseline) annual maximum precipitation (AMP) value of 117 

mm/day for a 100-year storm, a maximum value of 144 mm/day is projected for the 2011-

2040 period with CanESM2 and RCP2.6. Similarly, an intensity of 265 mm/hr for a 5-minute 
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historical storm with a 100-year return period is projected to increase to an intensity of 317 

mm/hr for the 2011-2040 period with CanESM2 and RCP2.6, while an intensity of 275 

mm/hr is projected for the same period with HadGEM2-ES and RCP2.6. During 2041-2070, 

the same historical storm is projected to intensify to values of 281 mm/hr and 381 mm/hr by 

RCP4.5 and RCP8.5, respectively, based on HadGEM2-ES. Compared to a 1-hr storm with a 

historical precipitation intensity of 84 mm/hr for a 100-year return period, an intensity of 140 

mm/hr is projected for the 2071-2100 time period with the same GCM/RCP using the LARS-

WG and K-NN-based downscaling-disaggregation method. 

For improving the results of the research conducted in this study and for gaining more 

confidence in its recommendations, it is recommended that the current study be extended to 

include several other Global Climate Models (GCMs) available through CMIP5; 

improvement in the collection fine-resolution precipitation data at various gauges of the city; 

and dynamical downscaling methods using multiple regional climate models (RCMs). 
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1. INTRODUCTION 

 

1.1. Background of the problem 

 

The use of Intensity-Duration-Frequency (IDF) curves, which incorporate the frequency and 

intensity of maximum rainfall events of various durations, for design of hydrosystems is a 

standard practice in many places. The amounts of maximum daily and sub-daily rainfall values, 

similar to those represented by IDF curves, have shown increasing trends in many locations of 

the world including Canada (Arnbjerg-Nielsen, 2012; Denault et al., 2002; Waters et al., 2003). 

The frequency or the return period of a particular rainfall event (i.e., storm) is subject to change 

over time as a result of non-stationarity (Mailhot and Duchesne, 2010). The Intergovernmental 

Panel on Climate Change, IPCC (2012) concluded that the return period of a given Annual 

Maximum Precipitation (AMP) amount will decrease significantly by the end of the 21st century 

with extreme rainfall events occurring more frequently. For example, if an urban storm water 

collection system was designed 30 years ago based on the 50-year 10-min rainfall storm, the 

design might only satisfy up to 25-year design storm under non-stationary climatic conditions. 

Such conditions may significantly increase the vulnerability of urban storm water collection 

systems, which are associated with design-storm durations of less than a day and even less than 

an hour in many cases.  

 

In the City of Saskatoon, the event of 24 June 1983 has been identified and selected as the design 

storm for the storm water retention ponds. However, the most recent rainfall events are not like 

the past as the total spring and summer rainfall in 2010, for example, is record breaking and is 

nearly 50% more than the previous maximum observed in 1920s. The wet summer of 2010, 

supported by other signs of possible climate change, emphasize the immediate need to revisit the 

design storm values in Saskatoon. Saskatoon’s storm water collection system consists of minor 

and major sub-systems (City of Saskatoon, 2008). The minor systems are designed to withstand 

storm events of either 2 or 5-year return periods, whereas the major systems must control peak 

runoff situations of a 100-year return period. The City of Saskatoon, at present, uses the IDF 

curves based only on historical data up to 1986, assuming that the future will behave like the 

past. Recent studies reveal that extreme events might not be following the historical frequency. 

 

Currently, there is no up-to-date study investigating the possible changes in the IDF curves and 

design storms in the city of Saskatoon under climate change or non-stationarity. The risk and rate 

of failure of systems designed using the historical design storms might be increased in face of 

non-stationary climatic condition (Mailhot et al., 2007; Adamowski et al., 2009). 

Characterization of the possible future changes in short-duration rainfall intensities faces several 

obstacles, and appropriate methods need to be developed for this purpose. First, the short-

duration rainfall events in the Canadian prairies, which includes Saskatoon, are mostly 

convective during the summer months (Shook and Pomeroy, 2012). Global Climate Models 

(GCMs) are now the standard too to quantify the outcome of possible climate change scenarios 

in the future. GCMs have the ability to represent weather variables at coarse grid scale (usually 

greater than 200 kilometers). Therefore, GCM simulations might be insufficient to reproduce the 

rainfall for a small area (Olsson et al., 2009). Second, the outputs of GCMs for a given site and 

time period vary tremendously among various GCMs and representative emission scenarios. 

However, no GCM can be preferred without a detailed study (Semenov and Startonovitch, 2010). 
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Moreover, the outputs of GCMs are not available for durations shorter than a day in previous 

runs of GMs or several hours in case of the most recent runs. The uncertainty due to the choice 

of GCMs requires multi-model ensembles of climate projections with several modeling 

alternatives for characterizing the future rainfall events. Furthermore, hourly and even sub-

hourly future rainfall scenarios are required for accurate modeling of the hydrological response 

of urban watersheds. Therefore, disaggregation of rainfall to fine temporal resolutions should be 

performed to assess the vulnerability of storm water collection systems in the City of Saskatoon 

with an estimation of uncertainty associated with the constructed IDF curves and the subsequent 

hydrological risks. This study is part of a sole source project funded by the city of Saskatoon to 

fill the above-identified knowledge gap. 

 

The goal of this project is to construct the Intensity-Duration-Frequency (IDF) curves/design 

storms for the City of Saskatoon under climate change scenarios. The specific objectives are: (1) 

To inspect if there is any trend in Saskatoon’s monthly, seasonal, and annual maximum rainfall 

across various durations from hourly to daily; (2) to evaluate the possibility of extending the 

historical trends into future and building a notion for future IDF curves;  (3) to generate 

representative long time series of hourly and sub-hourly precipitation for the City of Saskatoon, 

during the baseline period and under projections of climate change scenarios; (4) To construct a 

set of potential future IDF curves for design purposes in Saskatoon; and (5) To assess and 

quantify the uncertainties in the constructed IDF curves. 

 

This report is organized as follows: after the background presented in Section 1.1, the remainder 

of Section 1 summarizes some of the main methods and tools used worldwide for similar 

problems. The data and methods used in this study are presented and explained in details in 

Section 2, whereas the results and findings of the study are provided in Section 3. Finally, the 

conclusions and recommendations regarding future work are outlined in Section 4.  

 

1.2. Solutions: Canada and worldwide 

 

Understanding of the dynamics of hydrological processes and their impacts on urban storm water 

collection system requires a long record of fine resolution rainfall (Segond et al., 2006), but 

records of fine temporal and spatial resolution are often limited. Many regions have rainfall 

records at daily scale with limited hourly records. Obtaining sub-hourly rainfall records has 

become an important issue as climate change has been shown to cause increased rainfall 

intensities at fine temporal resolution in many parts of the world, including Canada (Waters et 

al., 2003). Global Climate Models (GCMs) have the ability to represent weather variables at 

coarse grid scale (usually greater than 200 kilometers), which is too coarse for climate change 

impact studies (Mladjic et al., 2011; Nguyen et al., 2008); especially in urban hydrology where 

the required scale is usually less than a few kilometers. The GCMs’ outputs are usually 

downscaled to the local scale using various downscaling methods, for instance, weather 

generators, such as Long Ashton Research Station Weather Generator (LARS-WG; Semenov 

and Barrow, 1997) to obtain required information for impact investigations. Other possible 

downscaling methods include regional climate models (RCMs), regression-based methods, and 

weather typing methods. It is not uncommon that further disaggregation of downscaled 

precipitation to finer temporal scale (hourly and sub-hourly) is adopted. More details and 

discussion of the above-mentioned methods are provided in the sections below. 
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1.3. Global circulation models 

 

Assessment of climate change is primarily based on Global Climate (or circulation) Models 

(GCMs). The GCMs are numerical models that can represent physical processes in the 

atmosphere, ocean, cryosphere, and land surface (IPCC, 2013). Currently, it is considered that 

the only scientifically sound way to predict the impact of increased greenhouse gas emissions on 

the global climate is through global scale simulation (Barrow, 2002). GCMs can simulate the 

responses of the global climate to increasing greenhouse gas concentrations (Taylor et al., 2012; 

Moss et al., 2010). GCMs are the most advanced tools currently available to climate research 

community thatcan incorporate the three dimensional nature of atmosphere and ocean simulating 

as many processes as possible. The coupling of atmosphere-ocean in GCMs (AOGCMs) is fully 

established with the inclusion of changes in biomes, atmosphere, ocean, and even soil chemistry 

(McGuffie and Henderson-Sellers, 2014). Global climate models with intermediate complexity 

are termed as Earth System Models (ESM). 

 

Previously, the GCMs’ simulations of climate variables based on three emission scenarios (A1B, 

A2, and B1) from Coupled Model Intercomparison Project Phase 3 (CMIP3) were commonly 

used. The Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change 

(IPCC) was supported by CMIP3 and the outputs of climate models included in CMIP3 were the 

basis of climate change impact studies conducted by the research community around the world 

since 2007 (IPCC, 2007; Taylor et al., 2012). The outputs of climate models from CMIP3 

provided multi-model impact assessment comprehensively for climate change projections during 

the 21st century based on the IPCC Special Report’s Emission Scenarios (SRES), i.e., A1B, A2, 

and B1. Scenarios describe plausible trajectories of the future climate conditions (Moss et al., 

2010) and act as an appropriate analytical tool to assess the influence of driving forces on future 

emission results and associated uncertainties (IPCC, 2007).  A1B, A2, and B1 scenarios 

represented “a rich world”, “a very heterogeneous world”, and “a convergent world”, 

respectively (Nakicenovic et al., 2000).  The models’ outputs were contributed by some 

modeling centres and archived in the Program for Climate Model Diagnosis and Intercomparison 

(PCMDI: http://pcmdi9.llnl.gov/).  

 

With the release of the Fifth Assessment Report (AR5) of the IPCC based on Phase 5 (CMIP5), a 

new set of GCMs’ simulations was made freely available to the research community. CMIP5 

climate models produce a comprehensive set of outputs with the inclusion of new emission 

scenarios, known as Representative Concentration Pathways (RCPs) (Moss et al., 2010; Taylor 

et al., 2012). With the introduction in September 2013 of AR5 based on CMIP5, updating the 

previous simulations of projected climate change based on CMIP3’ climate models became a 

requirement. Generally, CMIP5 includes more than 50 sophisticated climate models (GCMs) 

from more than 20 modeling groups and a set of new forcing scenarios (Taylor et al., 2012). 

Examples of these GCMs includes: ACCESS1.0, BCC-CSM1.1, CanESM2, CESM1-BGC, 

CSIRO-Mk3.6.0, HadGEM2-ES, INM-CM4, MIROC-ESM, MRI-CGCM3 (CMIP5, 2013). The 

policy actions to achieve a wide range of mitigation were included in the RCPs aiming to have 

different radiative forcing targets by the end of the 21st century. The RCPs are denoted by the 

approximate radiative forcing (Wm-2) they might reach by the end of the 21st century as 

compared to the year 1750. The values of radiative forcing represented by each RCP are 

indicative of the targets only by the end of year 2100. However, a range of 21st century climate 

http://pcmdi9.llnl.gov/
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policies can be represented by the RCPs as compared with the no-policy AR4 emission 

scenarios. The relative projections due to AR4 and AR5 emission scenarios/RCPs are shown in 

appendix A. 

 

The Integrated Assessment Models (IAMs) were used by the Integrated Assessment Modeling 

Consortium (IAMC) to produce the RCPs by considering various components, such as 

demographic, economic, energy, and climate (IPCC, 2013). Generally, IAMs combine a number 

of component models, which mathematically represent findings from different contributing 

sectors. IAMs are broadly of two categories: policy optimization models and policy evaluation 

models (Weyant et al., 1996); and policy alternatives for the control of climate change can be 

evaluated by combining technical, economic and social aspects of climate change in an IAM 

(Kelly and Kolstad, 1998). 

 

1.4. Downscaling methods 

 

Assessment of climate change is primarily based on outputs from GCMs, although the climate 

variables at the local scale – scale of influence for hydrological processes and infrastructure – 

show large differences when compared with those at the coarse scale of GCMs (Zhang et al., 

2011; Hashmi et al., 2011). To overcome this problem, various downscaling approaches are 

usually used, and they are broadly of two categories: dynamical and statistical downscaling 

methods (Hashmi et at., 2011; Franczyk and Chang, 2009). A brief description of these 

downscaling methods is provided in the following sections. 

 

1.4.1. Dynamical downscaling 

Dynamical downscaling is performed by running Regional Climate Models (RCMs) of finer 

scales using the outputs of GCMs (Xue et al., 2014; Sharma et al., 2011) as boundary conditions. 

Originally, RCMs were developed as physically based downscaling tools; however, currently 

their use for simulating physical processes has been increased (Giorgi and Mearns, 1999). 

Examples of RCMs include Canadian regional climate model (CRCM), climate high resolution 

model (CHRM), Hadley center regional model (HadRM), regional climate model system 

(RegCM), and the Fifth Generation Pennsylvania State University/National Center for 

Atmospheric Research mesoscale model (MM5). Typically, the high resolution (10-50 km) 

RCMs are nested within the coarse resolution (typically greater than 200 km) GCMs for the 

purpose of dynamical downscaling, although the use of RCMs as a downscaling tool is 

computationally expensive. 

  

Downscaling RCM outputs employs bias correction as biases in the GCMs’ and RCMs’ 

simulations restrict their direct use in climate change impact studies, which need what is known 

in the literature as “bias correction”. In the simulations of RCMs, the biases could be due to the 

improper boundary conditions provided by the GCMs and lack of consistency in the 

representation of physics between GCMs and RCMs, and parameterizations of RCMs (Ehret et 

al., 2012). Out of many bias-correction methods available in the literature, the following list only 

provides a glimpse of the methods: correction of monthly mean (Fowler and Kilsby, 2007), delta 

change method (Hay et al., 2000; Olsson et al., 2012a), quantile-based method (Kuo et al., 2014; 

Sun et al., 2011). Biases in the output of RCMs may be overcome and /or reduced, if not fully, 

through reduction of bias by improving the model predictability, use of multi-model ensembles 
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of GCMs and/or RCMs (to estimate uncertainty bounds), and reduction of bias by processing the 

model output afterwards (Ehret et al., 2012). Fowler and Kilsby, 2007 applied simple monthly 

mean correction to the mean monthly precipitation from RCM (HadRM3H) and found it an 

effective method to estimate observed precipitation variability during the baseline period. They 

preferred this simple correction method to a complex quantile-based method (used by Wood et 

al., 2004) as a reasonable estimate of the observed climate variability was provided by the simple 

method with slight underestimation of the variability due to simplification of the method. 

However, the method used probability distributions for correcting model bias and assumed that 

they will remain stable over time, which may not be the case in reality.  

 

Olsson et al. (2012a) demonstrated how precipitation from RCM projections can be further 

downscaled using the delta change approach to fine resolutions in time and space suitable for the 

impact assessment of climate change on urban hydrology. The delta change approach (also 

known as change factor) has been widely used and applied in climate change impact studies in 

many different ways, one of which is the multiplicative change factor. The multiplicative change 

factor (also called relative change factor) is the ratio between the future and the baseline 

simulations obtained from GCMs, which is then multiplied by the observed data (e.g., 

precipitation) to generate climate change scenarios of precipitation at the local scale (Anandhi et 

al., 2011). Kuo et al. (2014) concluded that the IDF curves constructed with bias corrected MM5 

precipitation data using quantile-based method were consistent with the IDF curves at the rain-

gauges in Edmonton. Sharma et al. (2011) used statistical downscaling method (SDSM) and a 

data-driven technique for downscaling the RCM data; and found that the further downscaled data 

were closer to the observed data than the raw RCM data. 

 

1.4.2. Statistical downscaling 

Statistical downscaling is based on the statistical relationship between the GCMs’ outputs and 

the local scale observed data (e.g., precipitation) (Wilby et al., 1998). Statistical downscaling is 

classified into three sub-types: weather typing approaches, regression-based methods, and 

stochastic weather generators (Wilby and Wigley, 1997).  

 

i. Weather typing approaches 

Local meteorological data are categorized by weather type according to the patterns prevailing in 

the atmospheric circulation. Mean precipitation or the entire precipitation distribution is 

associated with a particular weather type of large-scale variables provided by GCMs. The 

downscaling method is founded on the relationships between the large-scale climate variables 

(predictor) and local scale observed weather variables (predictand). However, instead of creating 

continuous relationship between the variables, local scale climate variables (e.g., precipitation) 

are generated either by resampling from the observed data distribution conditioned on the 

atmospheric circulation patterns given by GCMs or by producing sequences of local scale 

weather patterns by Monte Carlo simulation method and then resampling from the observed data 

(Wilby and Dawson, 2004). To downscale a future daily precipitation event produced by a GCM, 

an analogous condition is searched in the observed data of climatic variables, and the local scale 

observed precipitation for the same event is selected as downscaled future precipitation. 

Generally, pressure fields produced by GCMs are used as predictors. So, weather types are 

classified using a classification scheme based on the pressure fields.  
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This weather typing downscaling method prevents the selection of an extreme precipitation event 

in future beyond the most extreme events in the historical records, only allowing the 

modification of the sequence and frequency of historical precipitation. However, the limitation 

can be overcome if the changes in the atmospheric circulation are considered along with changes 

in other atmospheric predictors (e.g., temperature, humidity) (Willems et al., 2012; Wilby and 

Dawson, 2004). Willems and Vrac (2011) compared the performance of weather typing 

downscaling method with that of quantile-perturbation based method (based on quantiles) in 

terms of changes in the IDF curves in Belgium. The changes in short-duration precipitation 

extremes were produced similarly by the two methods with the weather typing method using 

temperature as a large-scale predictor in addition to the atmospheric circulation. 

 

ii. Regression-based methods 

The regression-based methods are also known as transfer function methods, which involve 

developing relationships between the local scale (i.e., point station) variables (i.e., precipitation) 

and global scale (i.e., GCM) variables. Several studies used regression-based downscaling 

techniques, such as multiple linear regression (Wilby et al., 2002; Jeong et al., 2012), generalized 

linear models (GLM) (Chun et al., 2013; Yang et al., 2005; Chandler and Wheater, 2002), 

canonical correlation analysis (Busuioc et al., 2008; Von Storch et al., 1993), artificial neural 

networks ( Schoof and Pryor, 2001; Hewitson and Crane, 1996), and genetic programming-based 

method (Hassanzadeh et al., 2014).  

 

Artlert et al. (2013) used the SDSM, a multiple regression-based statistical downscaling model 

(Wilby et al., 2002), to establish relationship between the GCM-scale climate simulations and 

local scale precipitation characteristics. They analysed future precipitation characteristics based 

on the projected trends from the British GCM (HadCM3) and the Canadian CGCM3, which 

showed huge differences between the future precipitation projections. The differences in the 

future precipitation projections indicate a high uncertainty in the GCM-based climate 

simulations. The precipitation data obtained through downscaling are also uncertain, depending 

on the GCMs and downscaling methods used (Willems et al., 2012). Jeong et al. (2012) used a 

hybrid downscaling approach as a combination of a regression-based (multiple linear regression) 

and stochastic weather generation techniques to simulate precipitation at multiple sites in 

Southern Quebec, Canada. They found that the addition of stochastic generation approach to the 

multivariate multiple linear regression method improved the performance of downscaling daily 

precipitation from the Canadian CGCM3. The use of a hybrid downscaling approach can 

overcome the shortcomings of multivariate multiple linear regression and stochastic generation 

approach when they are used separately. Yang et al. (2005), and Chandler and Wheater (2002) 

used the GLM framework for generating daily precipitation sequences conditioned upon several 

external predictors, which offers superiority in simulating non-stationary sequences as the 

external predictors may have spatial and temporal variations.  

 

Hewitson and Crane (1996) applied Artificial Neural Networks (ANNs) for learning the linkage 

between the atmospheric circulation produced by GCMs and the local scale precipitation. The 

ANNs were trained for each rain gauge station to predict daily precipitation values using the 

linkage learned by the ANNs. However, ANNs result in generalized relationships, which always 

predict the same precipitation for a given circulation. Chadwick et al. (2011) used ANNs to 

reproduce temperature and precipitation dynamically downscaled by nested RCM within a GCM 
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over Europe and concluded that ANNs were capable of reproducing the corresponding climate 

variables but missed high precipitation values over some mountain areas. The ANNs trained with 

only 1960-1980 data were not able to reproduce temperature or precipitation well for 1980-2000 

or 2080-2100 periods, although the performance was improved by training ANNs using different 

time periods. The GP-based quantile downscaling (Hassanzadeh et al., 2014) using is a novel 

type of statistical downscaling methods because it maps the relationship between extreme 

precipitation (quantiles) at both global and local scale without having to generate the continuous 

precipitation record. GP has the advantage of producing explicit mathematical equations for the 

downscaling relationship. 

 

iii. Stochastic weather generation 

Quantification of the uncertainty due to internal natural weather variability based on stochastic 

weather generators has a number of applications in design and/or operation of many systems, 

such as, water resources systems, urban drainage systems, and land management changes 

(Srikanthan and McMahon, 2001). Historically, efforts were made to describe precipitation 

processes in constructing weather generators, since precipitation is the most critical climate 

variable for many applications, and very often, its value is precisely zero (Wilks and Wilby, 

1999). The process of precipitation occurrence describes two states, wet and dry, which forces 

many weather generators to model separately the occurrence and intensity of precipitation (Wilks 

and Wilby, 1999).  

 

The first statistical model for simulating the occurrence of daily precipitation was developed by 

Gabriel and Neumann (1962) using a first-order Markov chain model. They assumed that the 

probability of precipitation occurrence is conditioned only on the weather condition of the 

previous day, i.e., wet or dry. Later, the first-order Markov chain model of daily precipitation 

occurrence was combined with a statistical model (i.e., exponential distribution) of daily 

precipitation (with nonzero value) amounts by Todorovic and Woolhiser (1975). These initial 

models were constructed for the simulation of a single climate variable, generally daily 

precipitation, for hydrological analysis. The simulation of other climate variables (e.g., daily 

precipitation, temperature, and solar radiation) became possible using stochastic weather 

generators in the early 1980s, which were developed by Richardson (1981) and Racsko et al. 

(1991). Climate change increased interest in stochastic weather generators for stochastic 

simulation of local weather (Semenov and Barrow, 1997). 

 

A stochastic weather generator is used to simulate daily time series of weather variables having 

statistical characteristics similar to the observed weather variables (Wilks and Wilby, 1999). 

Various tools (Semenov and Barrow, 1997; Wilks, 1999; Wilks and Wilby, 1999; Wilby and 

Dawson, 2007; Sharif and Burn, 2007; Hundecha and Bardossy, 2008; King et al, 2014) have 

been proposed as weather generators. Multiple regression models and stochastic weather 

generators are examples of the statistical downscaling techniques that are widely used (Wilks, 

1992, 1999), since they are less computation intensive, easy to use, and efficient (Semenov et al., 

1998; Dibike and Coulibaly, 2005). Hashmi et al. (2011) conducted a comparison between a 

multiple regression-based model (i.e., SDSM) (Wilby et al., 2002) and a weather generator (i.e., 

LARS-WG), which showed their (SDSM and LARS-WG) acceptability with reasonable 

confidence as downscaling tools in climate change impact assessment studies.  
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Two weather generators, LARS-WG and the Agriculture and Agri-Food Canada weather 

generator (AAFC-WG), were used by Qian et al. (2008) to reproduce daily extremes (maximum 

daily precipitation, the highest daily maximum temperature, and the lowest daily minimum 

temperature) over the period 1971-2000. Both weather generators were found to reproduce 

extreme daily precipitation values quite satisfactorily while LARS-WG was found to perform 

better in preserving the historical statistics (e.g., absolute maximum and minimum temperature, 

mean and standard deviation of precipitation) (Irwin et al., 2012). Chun et al. (2013) compared 

the downscaling abilities of LARS-WG and GLM-based weather generator (GLM-WG, 

Chandler and Wheater, 2002) using the climate variables during the baseline (1961-1990) and 

future (2071-2100) periods. GLM-WG, a stochastic precipitation model, was developed based on 

the GLM structure and two-stage precipitation model (first, modeling the sequence of wet/dry 

days using logistic regression and second, modeling the precipitation amount using gamma 

distributions, Coe and Stern, 1982). LARS-WG uses observed daily precipitation to generate 

synthetic daily precipitation series at a specific site (Semenov and Barrow, 2002), while GLM-

WG simulates daily precipitation based on large-scale climate information at a particular time 

and location (Chandler and Wheater, 2002). In that particular study by Chun et al. (2013), both 

weather generators showed equal performance in simulating monthly and annual precipitation 

totals, while GLM-WG showed superiority in simulating annual daily maximum precipitations 

due to the information of large-scale climate used in GLM-WG.  

 

Qian et al. (2004) and King et al. (2012) concluded that LARS-WG performed better in 

simulating daily precipitation but its performance in simulating temperature related statistics 

(e.g., absolute maximum and minimum temperature) was not adequate when compared to the 

corresponding performances of AAFC-WG, SDSM, and K-NN weather generator with Principal 

Component Analysis (WG-PCA). However, LARS-WG was found to perform well in simulating 

climatic extremes across Europe (Semenov and Barrow, 1997). The IPCC’s Fourth Assessment 

Report (AR4) (Solomon et al., 2007) used multi-model ensemble, out of which 15 climate 

models have been incorporated in the new version (Version 5) of LARS-WG for climate 

projections. The model ensemble allows estimation of uncertainties associated with the impacts 

of climate change originating from uncertainty in climate predictions (Semenov and 

Stratonovitch, 2010).  

 

Several studies, using LARS-WG for climate change impact assessment (Semenov and Barrow, 

1997), suggested that LARS-WG can be used as a downscaling model with substantial 

confidence to conduct climate change impact assessment by extracting site-specific climatic 

characteristics (Hashmi et al., 2011; Semenov and Stratonovitch, 2010; Qian et al., 2008; 

Semenov and Barrow, 1997). LARS-WG can be used to generate synthetic daily precipitation 

data by calculating site-specific weather parameters from observed daily data of at least 20 years 

(Semenov and Barrow, 1997). The LARS-WG is capable of producing daily climate scenarios 

for the future at the local scale based on the GCMs’ predictions and emission scenarios, 

providing the means for exploring the uncertainty in climate change impact assessment 

(Semenov and Stratonovitch, 2010).  

 

LARS-WG was adopted for this research as a stochastic weather generator tool to simulate 

climate data (e.g., temperature, precipitation) in Saskatoon, Canada, during the baseline period 

and under future climatic conditions. Since LARS-WG was used for simulating daily 
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precipitation series in this study. The simulated data are in the form of synthetic daily time-series 

having similar characteristics to the observations. LARS-WG provides a computationally 

inexpensive platform for generating daily future climate data (e.g., temperature, precipitation) of 

many years under the projections of climate change scenarios, which are of spatial and temporal 

resolution suitable for local scale climate change impact studies. LARS-WG can reproduce 

changes in the mean climate and in the climate variability at the local scale. The first version of 

LARS-WG was developed in 1990, while the latest version was developed in 2002 incorporating 

series approach (Racsko et al., 1991), which in this context means that the weather generation 

begins with the simulation of wet/dry spell length and then the precipitation amount is modelled 

(Semenov and Barrow, 2002). The performance of LARS-WG was compared with the 

performance of another popular stochastic weather, WGEN (Richardson, 1981), over several 

sites with diverse climates and was found to perform as well as WGEN (Semenov et al., 1998). 

 

The weather generation process in LARS-WG is based on semi-empirical distribution (SED), 

which is defined as the cumulative probability distribution function describing the probability 

that a random variable X with a given probability distribution takes on a value less than or equal 

to x. The semi-empirical distribution is represented by a histogram with 23 semi-closed intervals, 

[ai-1,ai), where ai-1, ai indicates the number of events in the observed data in the i-th interval and 

i=1,2,……..,23. The values of the events are selected randomly from the semi-empirical 

distributions, where an interval is selected first using the fraction of events in every interval as 

the probability of choice and subsequently a value is chosen from that interval using a uniform 

distribution. SED provides a flexible distribution with a possibility to approximate a wide range 

of shapes through adjustment of the intervals, [ai-1,ai). The choice of the intervals, [ai-1,ai) is 

dependent on the weather variable type; for example, the intervals are evenly spaced in case of 

solar radiation, while the interval size is increased with the increase in i for the wet/dry spell 

lengths and for precipitation in order to restrict the use of very coarse resolution intervals for 

extremely small values (Semenov and Stratonovitch, 2010; Semenov and Barrow, 2002). The 

steps for generating daily precipitation time-series using LARS-WG are provided with in 

appendix B. 

 

1.5. Rainfall disaggregation 

 

To overcome the lack of high-resolution temporal and spatial precipitation data crucial for 

hydrological, meteorological, and agricultural applications, disaggregation of available data from 

one temporal and spatial scale to another seems to be the most efficient alternative (Sivakumar et 

al., 2001). Several disaggregation techniques exist in water resources literature enabled the 

generation of high-resolution temporal and spatial precipitation data using the widely available 

daily precipitation data. The disaggregation techniques include Bartlett-Lewis rectangular pulse 

model (Rodriguez-Iturbe et al., 1987, 1988; Khaliq and Cunnane., 1996; Bo et al., 1994), 

Generalized linear model (GLM) (Chandler and Wheater, 2002; Segond et al., 2006), the 

Multifractal cascade process (Shook and Pomeroy, 2010; Lavellee, 1991), the Chaotic approach 

(Sivakumar et al., 2001), and non-parametric methods such as, Artificial Neural Networks  

(Burian et al., 2000), and K-nearest neighbor (K-NN) technique (Lall and Sharma, 1996; Yates et 

al., 2003;  Sharif and Burn, 2007; Buishand and Brandsma, 2001). In this study, downscaling 

refers to the generation of daily precipitation time series at the local scale using the daily 

precipitation series at the global scale, while disaggregation refers to the generation of 
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precipitation series from the coarse temporal scale to the fine temporal scale (e.g., transforming 

daily precipitation to hourly and to sub-hourly).    

 

Yusop et al. (2013) and Abdellatif et al. (2013) used Bartlett Lewis Rectangular Pulse (refer to 

Rodriguez-Iturbe et al., 1987, 1988 for details) model to disaggregate daily precipitation into 

hourly precipitation. Segond et al. (2007, 2006) and Wheater et al. (2005) used GLM to simulate 

daily precipitation while the Poisson cluster process was used as a temporal disaggregation 

method to generate precipitation at finer resolutions (i.e., hourly). Lu and Qin (2014) used an 

integrated spatial-temporal downscaling-disaggregation approach based on GLM, K-NN, and 

MudRain (Koutsoyiannis et al., 2003) methods to evaluate future hourly precipitation patterns in 

Singapore. Olsson (1998) and Rupp et al. (2009) used cascade model for disaggregation of daily 

precipitation to hourly precipitation. Burian et al. (2000) implemented a disaggregation model in 

ANNs for the disaggregation of hourly precipitation to sub-hourly time steps (15 minutes). The 

ANN disaggregation model performed better, in obtaining the maximum depth and the time of 

15-min precipitation, when compared with two empirical precipitation disaggregation models 

developed by Ormsbee (1989). It was not clear whether the ANN disaggregation model was able 

to preserve the historical statistics, specifically the variance of the historical precipitation.  

 

Yates et al. (2003) developed and applied a non-parametric weather generator based on K-NN 

for the simulation of regional scale climate scenarios. Sharif and Burn (2007) made an 

improvement of the K-NN based weather generator, developed by Yates et al. (2003), by adding 

a random component in order to obtain precipitation data beyond the range of historical 

observations; which is important in simulating the hydrologic extremes (Irwin et al., 2012). 

Prodanovic and Simonovic (2007) used the improved K-NN based weather generator, developed 

by Sharif and Burn (2007), to simulate daily precipitation, and the same approach was used to 

disaggregate daily precipitation to hourly precipitation. The K-NN technique is a non-parametric 

method and easy to implement. Resampling from observed data forms the foundation of the 

method that enables the disaggregated precipitation data to preserve the statistical characteristics 

of the observed data with high likelihood (Prodanovic and Simonovic, 2007). The ability to 

preserve statistical characteristics of the observed data makes it a feasible approach to be adopted 

in this study to disaggregate precipitation data from daily scale to hourly and sub-hourly scale.  

 

The K-NN technique is a form of nearest neighbour (NN) search, which is also known as closest-

point or similarity or proximity search, whose aim is to identify the most similar or closest points 

to the point of interest. The similarity or closeness is measured by Euclidean or Mahalanobis 

distance or other distance metrics (Elshorbagy et al., 2000). The more similar the points, the 

closer they are to the point of interest. K-NN technique can be defined as follows: if a space S 

contains a set P of points and a point of interest k is k ∈ S, the K-NN finds the closest points 

(measured by the distance metrics) to k in P (Liu, 2006).  

 

The days in the historical time series for which the observed weather variable is similar to the 

simulated weather variable of a given day are known as nearest neighbours. Generally, the K-NN 

technique involves finding K similar or closest points to the point of interest.  K-NN 

wasoriginally used for pattern recognition; which was later demonstrated as a resampling (i.e., 

bootstrap) method by Lall and Sharma (1996). The resampling approach based on K-NN was 

extended to a stochastic weather generator for a single (Rajagopalan and Lall, 1999) and for 
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multiple sites (Yates et al., 2003; Buishand and Brandsma, 2001), which was further improved 

by Sharif and Burn( 2007) as perturbation of historical data enabled extrapolation of weather 

data beyond the historical record. The method developed by Sharif and Burn (2007) was further 

adopted by Prodanovic and Simonovic (2007) for the disaggregation of precipitation from daily 

to hourly time scale. The K-NN technique was adopted in this study for temporal disaggregation 

of daily precipitation to hourly and sub-hourly scales. 
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2. DATA AND METHODS 

 

This section provides a description of the study area, the precipitation data used for developing 

the two-stage downscaling-disaggregation method, trend analysis, and the methodology followed 

for conducting the modeling and the analysis needed to achieve the study objectives. The model 

development and analysis consist of two consecutive steps: (1) downscaling of daily 

precipitation from the coarse GCMs’ scale (i.e., gridded precipitation) to the local scale (i.e., 

point/gauged precipitation); and (2) disaggregation of daily precipitation to hourly and 

subsequently to sub-hourly (i.e., 5-min) precipitation at the local scale. LARS-WG, the 

stochastic weather generator, was the main downscaling method used in this study. A method 

based on the K-nearest neighbour (K-NN) technique, previously used to disaggregate daily 

precipitation to hourly time scale and adopted in this study with few modifications for the 

disaggregation of precipitation from daily to hourly and subsequently,  to sub-hourly (i.e., 5-

minute), is presented in this section. The section also includes a description of the Generalized 

Extreme Value (GEV) distribution used for the construction of IDF curves in Saskatoon. 

 

2.1. Data preparation 

 

The Canadian Prairies are characterized by the grassland, numerous lakes, and relatively flat 

landscape. Relatively wet summer months and dry winter months are not uncommon in the 

region based on seasonal precipitation totals during 1961-2003 from four sites at Calgary, Banff, 

Saskatoon, and Winnipeg (Chun et al., 2013). The amount of annual precipitation in the prairies 

is generally less than 500 mm, since these provinces are too far away to receive cyclonic 

precipitation originated from either the west or the east coast (Gan, 2000). Approximately, 30% 

of the annual total precipitation occurs in the form of snowfall in the Canadian prairies including 

Saskatchewan. Saskatoon (106.70 W, 52.20 N, and approximately 218 km2) is the largest city in 

Saskatchewan located on the banks of South Saskatchewan River (SSR) with mean annual 

precipitation amount of 352 mm during 1961-2003 according to the daily precipitation records 

available through the Canadian Daily Climate Data (CDCD) portal 

(www.climate.weatheroffice.gc.ca) and 421 mm according to the adjusted precipitation data 

available through the Adjusted and Harmonized Canadian Climate Data (AHCCD) data portal 

(http://www.ec.gc.ca/dccha-ahccd/). The SSR basin expects to observe extreme precipitation 

events more frequently under climate change (Martz et al., 2007). A study of daily precipitation 

during 1950-2009 showed increasing trend in the AMP in Saskatoon (Nazemi et al., 2011). 

However, data only up to 1986 were included in the construction of the current IDF curves; 

which are currently used for the design of storm water collection system in Saskatoon. The study 

area selected for this research, the City of Saskatoon, is shown in Figure 1. 

 

The observed daily precipitation data at Saskatoon Diefenbaker Airport station during the 

baseline period (1961-1990), measured by Environment Canada (EC), were considered for the 

calibration and validation of the employed weather generator (LARS-WG). The data are freely 

available through Environment Canada’s official website (climate.weather.gc.ca) for the entire 

baseline period after the data have been reviewed through quality control, which is done for 

majority of the Environment Canada’s observed data. The daily precipitation data, in 

combination with observed hourly precipitation data (obtained from Environment Canada) for 

the months of April-September (1961-1990), were used in developing a model for the 

http://www.climate.weatheroffice.gc.ca/
http://www.ec.gc.ca/dccha-ahccd/
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disaggregation of precipitation from daily to hourly time scale. The City of Saskatoon operates 

tipping bucket rain gauges in the city to measure sub-hourly rainfall to capture the spatial 

variability of the fine temporal resolution rainfall in the city. The sub-hourly rainfall data from 

the rain gauges in Saskatoon between April-September were pre-processed and aggregated to 

obtain rainfall of 5-minute resolution. In this study, the 5-minute precipitation data at various city 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Location of the study area (Saskatoon, SK). 

 

gauges were analyzed for consistency and length of records. The analysis showed that the sub-

hourly rainfall recorded at Acadia Reservoir (shown as Acadia in Figure 2) rain gauge has the 

longest record (1992-2009), and it is more consistent with the Environment Canada’s daily 

precipitation. However, there are missing data during the period of 2002-2004. 

 

The 5-minute rainfall data recorded at Acadia Reservoir rain gauge were used in developing a 

model for the disaggregation of precipitation from hourly to the sub-hourly time scale in this 

study. Details of the precipitation consistency analysis are included in appendix C. 
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Figure 2. Location of rain gauges in Saskatoon (Source: City of Saskatoon). 

 

The observed daily and hourly precipitation records at Saskatoon’s Diefenbaker Airport station 

during 1961-1990 are plotted in Figure 3. The observed daily record contains precipitation data 

from January to December, while the observed hourly record contains rainfall data from April to 

September in each year. The hourly rainfall data were recorded during those months of the year 

only and made available to this study. 

 

The observed daily and hourly precipitation record at the Saskatoon’s Diefenbaker Airport 

station during 1961-1990 are described by the statistics presented in Table 1. Both the daily and 

hourly observed precipitation records are positively skewed. The annual mean precipitation 

amount is consistent with the precipitation characteristics in the prairie region, typically less than 

500 mm. 
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Figure 3. Observed daily (upper panel) and hourly (bottom panel) precipitation at Saskatoon’s 

Diefenbaker Airport station during 1961-1990 (Source: Environment Canada). 

 

Table 1: Statistics of the observed daily and hourly precipitation at Saskatoon’s Diefenbaker 

Airport station during 1961-1990 

Statistic Daily record (Jan-Dec) Hourly record (Apr-Sep) 

Mean (mm) 0.95 0.05 

Standard deviation (mm) 3.35 0.51 

Coefficient of variation 3.53 9.98 

Skewness 8.99 42.47 

Annual mean (mm) 346.61 224.92 

Maximum (mm) 96.60 73.90 
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2.2. Trend analysis 

 

The most commonly addressed form of non-stationarity in hydroclimatic variables is the 

existence of monotonic trends. Trends in monthly, seasonal, and annual maximum precipitations 

(MMPs, SMPs, and AMPs, respectively) can portray significant changes in dynamics of extreme 

rainfall over time. Here the objectives of this section are (1) to inspect if there is any trend in 

Saskatoon’s MMPs, SMPs, and AMPs across various durations from hourly to daily; (2) to 

evaluate the possibility of reconstructing the historical IDF curves using fitted trend models; and 

(3) to evaluate the possibility of extending the historical trends into future and building a notion 

for future IDF curves. 

 

2.2.1. Methodology 

Various methods are available in the literature to inspect significant trends in the data. Here we 

used simple linear regression and the Mann-Kendall non-parametric test with Sen’s slope to 

inspect the significant trends in MMPs, SMPs, and AMPs across various durations. In simple 

linear regression, the evolution of data X over time can be described by a constant term, a 

temporal term, and a residual term. If the temporal term is significant at a specific confidence 

level, then there is a significant linear trend over time. The fundamental assumption of linear 

regression is the existence of independent and identically distributed residuals in the form of a 

white noise (i.e. normal distribution with zero mean). If this fundamental assumption is violated, 

then the results might not be reliable and extending the results into future is not justified – see the 

details in Chapter 12 of Helsel and Hirsch (1992).  

 

We also used the popular Man-Kendall non-parametric trend test (Mann, 1945; Kendall, 1975). 

This 1-sample statistical test is a tool for determining if the central values in a time series tend to 

monotonically change within a time sequence or not – see the details in Chapter 12 of Helsel and 

Hirsch (1992). This test has been widely used in the literature to diagnose non-stationarity in 

hydroclimatic variables (e.g. Hirsch et al., 1982; Burn, 1994; Lettenmaier et al., 1994; Burn and 

Elnur, 2002). As Mann-Kendall test is a non-parametric test, test results do not depend on the 

distribution of the data and/or residuals; however, it can be affected by the possible 

autocorrelation in the time series (von Storch and Navarra, 1999). We investigated the existence 

of autocorrelation in Saskatoon’s MMPs, SMPs, and AMPs and realized that the lag 1 auto-

correlation is significant across various durations. This was considered in model development – 

see Table 2 below. The null hypothesis of Mann-Kendall test is rejection of trend in the data at a 

particular significance level, with the alternative hypothesis that the trend is significant. Trend 

tests are often accompanied by slope estimates, which determine the sign and magnitude of 

existing trends. Here we used the Sen’s slope estimator, which selects the median slope among 

all lines through data samples. Sen’s slope estimator is a robust method for linear regression and 

has been frequently used in quantifying trends in hydroclimatic variables (Cunderlik and Burn, 

2003; Walvoord and Striegl, 2007; Hodgkins and Dudley, 2007; Klaus et al., 2014).  

 

2.2.2. Data and modeling procedure  

We considered Environment Canada’s hourly rainfall total from 1960 to 1992, measured at 

Saskatoon’s Diefenbaker airport and extracted 1-hour to 24-hour monthly maximum 

precipitation (MMPs) (i.e., April, May, June, July, August, and September), SMPs (Spring and 

Summer) and AMPs in Saskatoon. We were not able to extend the trend analysis to finer 
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durations (i.e. hourly and less) as the period of sub-hourly data is not sufficient for a reliable 

trend analysis. For the purpose of our analysis, we used both original and lag-transformed data. 

Combining these with two methods of trend analysis provides four models for inspecting 

monotonic evolutions of MMPs, SMPs and AMPs in each time duration – see Table 2. 

 

Table 2. Models of trend analysis considered for inspecting the monotonic evolution in 

Saskatoon’s monthly, seasonal, and annual maximum rainfall. 

 

ID Data/method Formulation 

L1 
Original data/ linear 

regression  

L2 
Log-transformed/linear 

regression 
 

 
S1 Original data/Sen Slope  

S2 Log-transformed/ Sen Slope  

 
 

2.2.3. Results and discussion 

i. Inspected trends and associated significance levels 

Figures 4 to 7 show the results of trend analysis using L1, L2, S1, and S2, respectively. Each 

figure contains two panels. Panel (a) shows the signed monotonic trends (mm/day/year or 

log((mm/day)/year); whereas panel (b) represents associated p-values obtained from the Mann-

Kendall test. These p-values highlight the significance of trend. Higher p-value mean lower 

significance of the trend. For instance a p-value of 0.9 means that the there is only 10% chance 

that the identified trend is significant. In each panel, the horizontal axis is related to rainfall 

duration (i.e., 1-hr to 24-hr) and the vertical axis represents the period in which maximum 

rainfall is calculated (from bottom, April – A, May – M, June – J, July – J, August – A, 

September – S, Spring – SPR, Summer – SUM as well as Spring and Summer – Year). Slopes 

and p-values are shaded using the color schemes shown on the right side of each panel. In 

general, the estimated trends are dependent on the model considered for analyzing the trend. For 

instance, while L1 mainly shows decreasing linear trends; slope estimates obtained from S1 

model are mainly positive. Similar argument can be made for L2 and S2. While L2 shows 

consistently decreasing trends in all spring months, S2 shows increasing trend in May. 

Regardless of these differences, associated p-values in all models do not confirm existence of 

any strong trend. None of the models shows significant trends at the 90% confidence level or 

higher in any of the considered durations. 

.  
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(a) (b) 

Figure 4. The results of trend analysis based on model L1; a) linear trends in original data; b) p-

values associated to trend.  

  
(a) (b) 

Figure 5. The results of trend analysis based on model L2; a) linear trends in log-transformed 

data; b) p-values associated to trend.  

 

  
(a) (b) 

Figure 6. The results of trend analysis based on model S1; a) Sen’s slopes in original data; b) p-

values associated to trend. 
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(a) (b) 

Figure 7. The results of trend analysis based on model S2; a) Sen’s slopes in log-transformed 

data; b) p-values associated to trend.  

  

In order to provide a better look at the feasibility of considered models, we visualized the fitted 

trends and associated residuals for AMPs across various durations. The fitted trends and 

associated residuals are obtained based on the considered models (L1, L2, S1, and S2, 

respectively). Figures G1 to G5 (Appendix G) show this analysis. We noticed that both L1 and 

L2 deviate from the assumption of identically distributed normal error terms. These models can 

be, therefore, falsified without further consideration. Models S1 and S2 do not require this 

assumption; however lower bound limits in S1 approach to negative values and therefore falsify 

the physical constraint of precipitation (i.e., rainfall cannot be lower than 0). S2, therefore, can 

be considered as the only non-falsified model, and is discussed further here. Based on S2 (see 

Figure 7), there are weak decreasing trends in months April, June (except 1-hr duration) and in 

general in the spring. Trends in summer months are, in contrast, increasing but with weak 

significance. Considering AMPs, there are weak decreasing trends. Regardless, it should be 

noted that variability in AMPs are increasing substantially with time - see also figure G4. This 

can provide conditions in which AMPs increase over time although the central tendency is to 

decline. 

 

ii. Reconstructing the historical IDF curves using model S2 

By considering the extracted Sen’s slopes and associated lower and upper error bounds, various 

realizations for AMPs across different durations can be obtained by generating random error 

terms. We generated 100 realizations for random errors with the same length as the original data 

and considered them in model S2 to generated 100 realizations of AMPs during 1960 to 1992. 

Figure 8 shows the generated AMP realizations, in which the error in random realizations is 

more in short duration AMPs. It is again clear that the variability in AMPs increases by time, 

which can provide conditions in which the AMPs increase, despite declining trend. We further 

extracted the IDF curves based on these random realizations using the GEV distribution and 

compared the reconstructed IDF curves with the historical ones. Figure 9 shows this comparison, 

in which extreme intensities are largely underestimated in short durations. 
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Figure 8. 100 realizations of 1-hr to 24-hr AMPs from 1960 to 1992. Blues lines show 100 

random realizations and red lines show the historical AMPs. 
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Figure 9. 100 realizations for 1-hr to 24-hr IDF curves obtained from 1960 to 1992. Blues dots 

show IDF curves from 100 random realizations and red dots show historical IDF relationships. 

Both generated and historical IDF relationships are extracted using the GEV distribution. 

 

iii. Possibility of projecting future IDF curves 

Despite large errors in reconstructing short duration IDF relationships, we considered extending 

the extracted trends to assess the possibility of identifying future IDF curves. As model S2 uses 

log-transformed data, the lower bound would be always above zero. Nonetheless, the upper 

bound can increase drastically and result in a substantially large uncertainty. Figure 10 shows an 

example in which the extracted trend during 1961 to 1990 (panel a) is extended into the future 

and used to generate 1000 realizations of daily AMPs during 2021 to 2050 (panel b). The 

uncertainty in generated AMP sequences is substantially larger during the future period, which 

consequently results in large uncertainty in IDF relationships, particularly at larger return periods 

– see Figure G5. We therefore reject the possibility of extending the existing trends into the 

future for projecting the future IDF relationships due to the large uncertainty between lower and 

upper confidence limit and unrealistically large upper bound limit, particularly in short durations 

and large return periods – see Figure G5 (Appendix G). 
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(a) 

 
(b) 

Figure 10. Extending the historical trends into future using S2 model; (a) 100 random 

realizations of 24-hr AMPs (blue lines) vs. historical AMPs (red line); (b) 100 random 

realizations of 24-hr AMPs from 2021 to 2050. 

 

2.2.4. Conclusion and recommendations 

We investigated the existence of monotonic trends in historical MMPs, SMPs and AMPs across 

various durations from hourly to daily. We showed that there have been weak decreasing trends 

during spring, weak increasing trends during summer and overall, weak decreasing trends during 

“spring and summer” months. Despite decreasing trend, we showed that there is an increasing 

variability in AMPs. This can provide conditions in which future AMPs can be larger than 

historical values. We explored the possibility of reconstructing the historical IDF curves using 

identified trends and showed that the reconstructed IDF curves underestimate the short duration 

extremes substantially. Apart from this limitation, we showed that by extending the historical 

trends into future, the uncertainty increases exponentially and projected IDF curves would not 

have any practical value due to large uncertainty envelope. We recommend using climate 

models’ projections in conjunction with downscaling and disaggregation methods for 

constructing future IDF curves. 

 

2.3. Projections of future precipitation using GCMs 

 

In this study, the Canadian climate model CanESM2 and the British climate model HadGEM2-

ES (the Second Generation Earth System Model) were used and their daily precipitation outputs 

were obtained from CMIP5 data portal (http://pcmdi9.llnl.gov/) for the baseline period (1961-

1990) and for the projection period (2011-2100). The precipitation simulations were downloaded 

from the data portal for each of the selected GCMs based on three RCPs (RCP2.6, RCP4.5, and 

RCP8.5) and the first ensemble (run) out of five ensembles available. It is advisable to use 

http://pcmdi9.llnl.gov/
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several GCMs/RCPs for assessing broader representations of possible future precipitation and for 

better assessment of possible future changes in precipitation intensities with reasonable 

confidence through estimation of uncertainties. For the purpose of this study, it is believed that 

the six scenarios (three RCPs based on two GCMs) with multiple realizations (through the 

stochastic weather generator) cover a wide range of variability that is assumed to be sufficient 

for the investigation of the adopted two-stage modeling approach. Eight daily precipitation time 

series were extracted; two for the baseline period from the two GCMs, and six series 

representing future precipitation based on three RCPs and 2GCMs. 

 

2.4. Stochastic weather generation 

 

In this study, the stochastic weather generator LARS-WG (Racsko et al., 1991; Semenov and 

Barrow, 1997), which was developed based on the series approach (Racsko et al., 1991), was 

used. Using the series approach, the sequence of wet or dry series length was modelled first and 

then, the precipitation amount was modelled for each wet spell. As a stochastic weather 

generator, LARS-WG is capable of simulating synthetic precipitation time-series with statistical 

characteristics corresponding to the observed statistics at a site (Semenov and Barrow, 2002). 

LARS-WG was employed in this research for generating multiple realizations of daily 

precipitation at the local scale in Saskatoon. A synthetic precipitation time-series of arbitrary 

length (30 years in this study) was generated using the computed set of parameters by randomly 

sampling values from the probability distributions (Semenov and Startonovitch, 2010). 

  

LARS-WG uses relative change factors (RCFs) for each month to incorporate, at the local scale, 

possible changes in the future daily precipitation scenarios produced at the coarse scale by 

GCMs (Semenov and Barrow, 2002). RCFs are calculated based on the GCMs’ output at the 

coarse-grid resolution. RCFs, in general, are the ratios of future values over baseline period 

values. For example, RCF for the month of June is the ratio of future average precipitation 

amount in the month of June to that of the baseline period. LARS-WG (Version 5.0) contains 

RCFs for CMIP3’ GCMs and IPCC AR4 emission scenarios. For verification of the calculated 

RCFs, the RCFs for mean monthly precipitation amounts were calculated using the downloaded 

daily precipitation from CGCM3.1 (http://www.cccma.ec.gc.ca) based on three emission 

scenarios (A1B, A2, and B1) during the baseline period and under the projections of climate 

change; and compared with the RCFs embedded by the developers in LARS-WG. This 

verification step was needed because embedded RCFs are not available for CMIP5’ GCMs, so 

these were calculated in this study. 

 

The above-mentioned RCFs do not incorporate variability in future projections of precipitation 

due to wet and dry spell lengths.  Therefore, average wet and dry spell lengths for each month 

were calculated during the baseline and future periods. Monthly ratio of the average lengths of 

wet or dry spells during the future period to the same during the baseline period represent the 

RCFs related to wet or dry spell lengths. Wet day is defined as a day with non-zero precipitation. 

Changes in the average wet and dry spell lengths for any month are supposed to alter the mean 

monthly precipitation of that month, and this is expected to incorporate more variability in the 

future daily precipitation. However, LARS-WG does not incorporate the RCFs for wet and dry 

spell lengths in its archive since it considers only monthly output from GCMs. Because of the 

availability of daily precipitation for CMIP5, RCFs for wet and dry spell lengths were calculated 

http://www.cccma.ec.gc.ca/
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in this study. The RCFs for mean monthly precipitation amounts, and wet and dry spell lengths 

were calculated, and used in this study, using two GCMs’ (CanESM2 and HadGEM2-ES) 

precipitation available through CMIP5. The lengths of wet/dry spells were selected randomly 

from the probability distributions, constructed by LARS-WG, of wet/dry spells for the month in 

which the wet/dry spells begin. 

 

The future realizations of climate data for Saskatoon were produced using LARS-WG in 

conjunction with GCMs. First, LARS-WG was calibrated based on the historical precipitation 

data of Saskatoon. In this context, this means constructing probability distributions for the 

precipitation data in Saskatoon based on the observed record, and multiple realizations (1000) of 

the daily precipitation record during the baseline period were generated. The constructed 

probability distributions were updated, using the RCFs, and perturbed to generate multiple 

(1000) realizations of future daily precipitation series in Saskatoon for each GCM/RCP 

combination. Accordingly, 6,000 realizations of future daily precipitation in Saskatoon were 

generated. The use of LARS-WG to produce future projections was considered as a 

“downscaling” method in this study. 

 

It is worth noting here that the use of the term “downscaling” with stochastic weather generators 

is common in literature, but could be confusing to some readers. In the cases of dynamic and 

regression-based downscaling, actual “downscaling” occurs as models (RCMs or regression 

relationships) link data/variables at coarse spatial and temporal (global) scale to those at finer 

spatial and temporal (local) scale. The relationship developed based on the baseline period is 

used to downscale the future projections. However, the weather generator employs the statistical 

properties of observed variables at the local scale to generate multiple realizations at the same 

scale. Once future projections are produced by GCMs, a factor (RCF) is computed to quantify 

the shift in the data/variables from the baseline to the future periods. The same RCF is used to 

shift the variables/data generated at the local scale to produce the future projections. This 

argument is depicted graphically in Figure 11. Figure 11 (1) shows that a relationship is 

established between the global scale variable and the local scale variable during the baseline 

period, the relationship is then used to generate local scale future variable from the global scale 

future variable. In case of weather generator as shown in Figure 11 (2), RCFs are calculated for 

each month using global scale future and baseline scenarios, and these RCFs are applied to the 

local scale observed variable to generate local scale future variable.   
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Figure 11: Generation techniques of future climate change scenarios at the fine resolution (local) 

scale from the coarse-grid GCMs’ scale using (1) downscaling methods and (2) weather 

generators. 

 

2.5. K-NN disaggregation model 

 

2.5.1. Hourly disaggregation model 

It is often necessary to disaggregate precipitation generated at certain timescales (e.g., daily) to 

finer timescales (e.g., hourly, sub-hourly). In this study, the K-nearest neighbor (K-NN) method 

(Lall and Sharma, 1996; Yates et al., 2003; Sharif and Burn, 2007) was used for disaggregating 

precipitation data from daily to hourly scale. The hourly K-NN disaggregation model, developed 

based on the work by Sharif and Burn (2007), was conducted for precipitation from a single 

precipitation station for disaggregating both baseline and future daily precipitation of n years to 

hourly precipitation. Development of the disaggregation method is explained below.  

 

Let Xt be the vector of daily precipitation values xt, where t=1,………, 365n (it excludes 

February 29 of a leap year); n is the total number of years in the daily precipitation time series. 
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The algorithm starts with the reading of each daily precipitation value from the Xt vector and it 

continues for all the 365n days in the daily precipitation time series. The steps of the algorithm as 

shown schematically in Figure 12 are as follows: 

 

1. Suppose,  be the vector of 24 hourly precipitation values yt for day t of year i.  

 

2. A window of wd daily precipitation values in Figure 12 that includes xt is identified to include 

the nearest neighbors to the selected daily precipitation xt of a particular year i. If there is no 

rainy day within the window for the current year except xt, the window size is increased each 

time by one day until it contains at least one rainy day. Accordingly, the corresponding hourly 

data block L from the time series Yt of all years is identified. This way, the size of the hourly 

data block will be:  

 

Ld = [(n*wd)-1]*24                                                                    [1]  

 

3. In the work of Sharif and Burn (2007), wd (i.e. optimal window size) was chosen to be 15, 

including the xt under consideration. So, if the current day of simulation is July 15, then all 

corresponding hourly profiles between July 8 and July 22 are selected from all n years of hourly 

record, excluding the corresponding hourly profile for July 15 for the current year (to prevent the 

possibility of generating the same hourly profile as that corresponding to the current day). 

However, in this study the optimal window size was investigated and selected for the City of 

Saskatoon based on the simulated and observed annual maximum precipitation (AMPs) of 

various durations during the baseline period rather than using an arbitrary window size. Although 

wd is allowed to change dynamically whenever at least one rainy day is not available in the 

window, a fixed size of wd is used for rest of the cases (containing at least one rainy day). The 

size of the fixed window is mentioned for easy understanding afterwards.   

 

4. The daily precipitation amount (xt) is compared with the set of neighboring hourly totals. The 

square of differences between xt and each of the [(n*wd)-1] segments in the Ld block is 

calculated, and the segment showing the minimum squared difference compared to the daily 

precipitation amount is considered as the disaggregated hourly precipitation values for the 

current day. While doing so during the selection of optimal window size, more than one 

candidate among the nearest neighbors may be detected with the same minimum difference from 

the daily precipitation of the current day. So in addition to what was explained in Sharif and 

Burn (2007), the performance of the model can be assessed using both random (selection of a 

segment randomly from a number of candidate segments) and deterministic (i.e. selection of the 

first segment from a number of candidate segments) sampling approaches during the baseline 

period based on the simulated and observed AMPs of various durations. The hourly 

disaggregated precipitation sequences can be selected either randomly or deterministically from 

the hourly precipitation sequences of the nearest neighbors having equal minimum difference. 

The K-NN hourly disaggregation model was used to simulate the observed hourly precipitation 

sequences both randomly and deterministically using the optimal window size. The observed and 

simulated precipitation time series are accumulated to 24 different durations (1 to 24 hrs) and the 

corresponding AMPs are identified. AMPs obtained from both simulations 

(random/deterministic) can be compared with the observed AMPs of 24 durations to assess the 

effect of both selection approaches.  
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5. In case of climate change, when the future projected daily precipitation value is higher than 

the historical daily precipitation value, the hourly precipitation values may be scaled up by the 

same ratio as found for the daily scale. The steps (1-5) of the hourly disaggregation model are 

illustrated in Figure 12. 

 

 
 

Figure 12. K-NN hourly precipitation disaggregation model for a typical year. 

 

The steps (1-5) of the hourly disaggregation model were repeated for all days of all of the years 

in the daily precipitation time series. A set of 1000 realizations of the daily precipitation was 

generated using LARS-WG, and thus, ensembles of the hourly disaggregated precipitation values 

were created using the K-NN method.  

 

2.5.2. Sub-hourly disaggregation model 

The K-NN method was also used to disaggregate precipitation from hourly to sub-hourly (i.e., 5-

min) values in the City of Saskatoon using the approach described in Section 3.3. The algorithm 

starts with the reading of each hourly precipitation value from the  vector and it continues for 

the entire time series. Here, the steps of the algorithm (as described schematically in Figure 13) 

are similar to the K-NN hourly disaggregation model. Suppose,  be the vector of 12 sub-hourly 

(5-min) precipitation values for hour t of day j; where t denotes specific hour of the day and j 

denotes the specific day in a specific year. In this case, the size of the 5-min data block is: 

 

Lh = [(n*wh)*24-1]*12                                      [2]  

 

Where wh is the window size and n is the number of years in the hourly precipitation time series. 

The hourly precipitation amount (yt) is compared with the set of neighboring totals of 5-min 

precipitation values. The squared of differences between yt and each of the [(n*wh)*24-1] 

segments in the Lh block were calculated, and the segment showing the minimum square 

difference from the hourly precipitation amount was considered as the disaggregated 5-min 

precipitation values corresponding to the current hour. The extension of window size in absence 

of rainy hours, selection of optimal window size for Saskatoon, random/deterministic sampling, 
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and scaling of future sub-hourly precipitation values were considered for the K-NN sub-hourly 

disaggregation model in a similar way to that of the hourly model. The steps of sub-hourly 

disaggregation model are illustrated in the Figure 13. In Figure 13, t denotes a specific day of a 

specific year in selecting hourly and sub-hourly data block, and h denotes hours in a day in a 

specific year; where h=1,2,……….,24. 

 

 
 

Figure 13: K-NN sub-hourly precipitation disaggregation model for a typical year. 

 

2.6. Stochastic rainfall disaggregation 

 

Stochastic rainfall disaggregation is an alternative method, developed in the course of this 

project, for sub-daily disaggregation of continuous daily rainfall. This method can be considered 

parallel to the sub-daily KNN disaggregation model. Similar to the sub-daily KNN 

disaggregation model, the newly developed stochastic disaggregation method gets the daily 

rainfall realizations and divides them into hourly segments. Underlying assumptions for 

distributing the daily rainfall into hourly estimates are different in KNN and the stochastic 

algorithms. In KNN disaggregation, the algorithm searches for the most similar daily event 

during a particular window of the baseline data and uses the historical hourly hyetograph of the 

identified “most-similar” rainfall to convert the daily rainfall realizations into hourly estimates. 

Stochastic disaggregation relaxes this assumption and distributes the daily rainfall into hourly 

values without considering the exact historical hyetograph; however, it uses the historical hourly 

distributions to come up with a basis to randomly generate new hyetographs. The stochastic 

disaggregation algorithm, therefore, acknowledges the fact that hourly rainfall distributions 

under future climate change conditions might be different from the most similar rainfall event 

during the baseline period. It should be noted that in principle, the stochastic disaggregation can 

be used for distributing the hourly rainfall into sub-hourly segments, similar to the KNN method. 

Nonetheless, our investigations showed that the length and quality of sub-hourly data in 

Saskatoon does not allow developing robust empirical basis, with which hourly cumulative 

rainfalls are disaggregated into 5-minute intervals. Therefore, we use this algorithm only for 

disaggregating daily rainfall totals into hourly hyetographs. 
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The proposed stochastic rainfall disaggregation is a non-parametric stochastic method, which is 

solely based on historical events during the baseline period. For a particular rainfall event, the 

algorithm considers the daily cumulative rainfall and the month, in which the event takes place. 

The algorithm then uses historical distributions of all daily rainfall events during that month to 

generate a new random rainfall distribution. The algorithm is based on the concept of Rainfall 

Distribution Functions (RDFs) that represents the empirical progression of a daily rainfall event 

in time and has the same characteristics as probabilistic Cumulative Distribution Function 

(CDFs). In simple words, a RDF determines ratios of the total daily rainfall that occurred in each 

hourly resolutions. RDFs can be simply computed using the historical rainfall events. Figure 14 

shows how the RDF can be calculated based on a hypothetical rainfall event. In panel (a), an 

hourly rainfall hyetograph for a daily event with cumulative value of 70 mm is shown. This 

hyetograph can be converted into a cumulative rainfall distribution (panel b) and consequently, 

to an RDF, if cumulative hourly rainfalls are divided by the total daily value, i.e., 70 mm in this 

example. 

 

 
Figure 14. Calculation of an RDF from the hourly hyetograph of a daily rainfall event. 

 

In principal, RDFs are normalized cumulative distributions; therefore, by considering empirical 

properties of RDFs during a certain month, a basis for random generation of rainfall distributions 

during that month can be obtained. Here, we try to explain this using a simple example. Figure 

15 shows all RDFs that are obtained for the month of April during the baseline period (i.e. 1961 

to 1990). For every hourly time step, a set of normalized ratios (i.e. between zero and one) are 

available that identify different proportions of daily rainfall, precipitated in each hour. By 

considering these historical hourly ratios, a set of secondary empirical distribution functions can 

be obtained that provide a basis for generating random realizations of rainfall ratios in each hour. 

As an example, Figure 16 shows the secondary empirical distributions of rainfall ratios during 

6th, 13th and 20th hours during the month of April. By considering these empirical distributions 

during all 24 hours, new ratios can be randomly generated for every sub-daily time steps (i.e., 

hourly throughout this report). 

 

It should be noted that the randomly generated distributions should satisfy the continuity 

condition and the mass balance. This means that the sum of randomly generated hourly ratios 

during a daily event should equal to one. To make sure the continuity condition is satisfied, we 
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developed an adaptive stochastic scheme that consider generating random rainfall ratios during 

each hour based on the sum of ratios generated in the previous hours. Figure 17 shows the step-

by-step procedure of the developed framework through an algorithmic pseudo-code. Below, we 

try to explain this algorithm in simple words. 
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Figure 15. Daily RDFs for April in the city of Saskatoon during the baseline period (1961-1990). 
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Figure 16. Empirical distributions of historical RDFs in 6th, 13th, and 20th hours of a typical daily 

rainfall event during Aprils of 1961 to 1990. 
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Figure 17. The pseudo-code of the developed stochastic disaggregation algorithm. 

 

First the hourly RDFs for all daily event during the baseline period should be calculated 

according to the procedure shown in Figure 14, and accumulated together based on each month 

(April to September; See Figure 15 for the month of April). This pre-simulation step provides 

empirical distributions (Figure 16), with which the daily rainfall realizations can be 

disaggregated into hourly segments. For each daily rainfall event, first 24 random numbers are 

generated corresponding to 24 hourly time steps. For each time step, first, the sum of generated 

ratios up to the considered time step is calculated (zero for the first time step). Only RDFs that 

generate greater or equal cumulative ratios up to the considered time step are used for sampling 

random ratios in the this time step. Second, the rainfall ratio during the considered hourly step n 

is then generated by the following formula:   

  

 
[3] 

 

Equation 3 guarantees that the sum of ratios during a daily event equals to 1. The randomly 

generated hyetograph can be then identified by multiplying the total daily rainfall by the 

randomly generated ratios, calculated based on Equation 1. This process can be repeated multiple 

times to provide multiple realizations of the disaggregated rainfall.   

 

2.7. Genetic programming 

 

The concept of biological evolution led to the way for the development of Genetic programming 

(GP), which was introduced by Koza (1992) as an extension of genetic algorithms, which are 

optimization methods for searching for the global optimum of a function. GP, a data driven 

technique, was developed to induce computer programs as solutions to the search problems that 

uses intelligent and adaptive search. Depending on the search problem, GP takes on a special 

form called genetic symbolic regression (GSR) for establishing relationships as equations 

between the predictor and the predictand. The equations are optimized through adaptive random 

search providing the insight into the functional (structural) form of the regression relationships 
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between the input and the output, which is not the case for other regression methods. This 

technique of GP was utilized in this study for obtaining equations that express mapping 

relationships between the global scale daily AMP quantiles to the local scale sub-daily (1 to 24 

hours) AMP quantiles. 

 

Babovic and Keijzer (2000), Savic et al. (1999), and Koza (1992) provided detailed explanation 

of GP and GSR methods, while for detailed explanation of how GP can be applied to find 

relationships between local scale and global scale AMP quantiles, refer to Hassanzadeh et al. 

(2014). This study used GPLAB 3 package (Silva, 2007) for conducting experiments involving 

the local scale and global scale data. 

 

Briefly, the GP search started with the creation of initial population of models (equations) in the 

form of parse trees without using prior information. The individual equations were assessed 

based on a goodness-of-fit measure, and the individuals with better fitness survive to create new 

individuals. Some operators originated from the concept of genetic evolution, specifically 

mutation and crossover, were considered for forming new parse trees using randomly selected 

parents during mating, and thus, the next generation was created. A threshold for the number of 

total function evaluations and the convergence criterion were predefined as stopping criteria for 

the GP search. Because GP-based method for producing future IDF curves for the City of 

Saskatoon was developed and published by Hassanzadeh et al. (2014), it was considered in this 

research to be a viable reference method for comparison with the developed two-stage modeling 

approach. In this study, various statistical error measures were used to evaluate the performance 

of the mapping equations (shown in appendix D).  

  

Strong relationships were observed between the global scale’s (using the daily output of 

CGCM3.1) AMP quantiles and the corresponding daily and sub-daily local values (Hassanzadeh 

et al., 2014). Based on the same rationale and hypothesis, the relationships between the global-

scale (using the output of CanESM2 and HadGEM2-ES) and the corresponding daily and sub-

daily local values were investigated in order to map GCM quantiles to the corresponding local 

daily and sub-daily quantiles. Figure 18 is a visual verification of the hypothesis of this GP-based 

downscaling method; it compares the global scale (using CanESM2) AMP quantiles and the 

corresponding daily and sub-daily local scale quantiles for the baseline period. The similar 

comparison using the output of HadGEM2-ES is shown in appendix D. 
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Figure 18. Quantile-Quantile plots of the GCM-scale (using output of CanESM2) daily AMP 

quantiles and the corresponding local-scale daily and sub-daily AMP quantiles during the 

baseline (1961-1990) period in Saskatoon (durations are indicated above the plots). 

 

The daily AMP data were extracted from the 30 years’ record during the baseline period. 

However, long record of data are required for the modeling purpose using the data-driven GP, 

which includes data for training and validation. GEV distributions were fitted to the observed 30 

AMPs. For the modeling purpose, a set of 10,000 uniform random numbers was generated first 

to represent non-exceedance probability, P ∈ [0 1] and then the corresponding AMP quantiles 

were sampled from the GEV distributions at the GCM-scale daily precipitation, and the local-

scale daily and sub-daily precipitation data. The first 6000 data pairs (i.e., the GCM-scale daily 

AMP quantiles, and the local-scale daily and sub-daily AMP quantiles) were chosen as the 

training dataset from the randomly selected 10,000 data pairs for extracting each of the mapping 

equations using GP. A total of 24 mapping equations were extracted to describe the relationships 

between the GCM-scale daily AMPs and the local-scale sub-daily AMPs. The GCM-scale daily 

AMPs was used as the inputs, while the outputs were the local-scale AMPs of a specified 

duration. The remaining 4000 data pairs were used as the validation dataset. In addition, the 

original 30 AMPs for the GCM-scale daily precipitation and the local-scale daily and sub-daily 

precipitation were used as a completely unseen testing dataset to verify the developed equations. 

For detailed explanation of the GP method implementation with setting internal parameters of 

the model, refer to appendix D. 
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2.8. GEV Distributions and the construction of IDF curves 

 

Intensity-Duration-Frequency (IDF) curves were used in this study to represent extreme 

precipitation properties of short durations at the point scale. The construction of IDF curves 

involves collecting/generating precipitation time series of various durations. Once the 

precipitation data were collected/generated, annual maximum precipitation (AMP) values at 

various durations were extracted. The Generalized Extreme Value (GEV) distribution, which is a 

family of parametric probability distributions, was used to estimate the frequency of the AMP as 

a random variable. Gumbel, Fréchet, and Weibull probability distributions are combined in the 

GEV distribution, which takes the following form (Katz, 2012):  

 

                               [4] 

where , F ∈ [0 1] denotes the non-exceedance probability of the random 

variable x,   µ ∈ R is the location parameter, σ > 0 is the scale parameter, and ξ ∈ R is the shape 

parameter. The shape parameter ξ controls the tail behaviour of the distribution. The GEV 

distribution converges to Gumbel, Fréchet, and Weibull distributions when ξ = 0, ξ > 0, and ξ < 

0, respectively.  

 

The GEV distribution with maximum likelihood method for parameter estimation was used in 

this study for the construction of IDF curves in the City of Saskatoon during the baseline period 

and the future projection period, as it was used successfully in previous studies (Beniston et al., 

2007; Cameron et al., 2000, Hashmi et al., 2011; Hassanzadeh et al., 2014; Kharin and Zweris, 

2005; Yilmaz and Perera, 2014). The GEV distribution was used for the construction of IDF 

curves, although it increases the computation intensity due to the involvement of three 

parameters (shape, scale, and location) instead of two parameters in Gumbel distribution. 

However, the GEV distribution provides better description of the upper tail behavior of the data 

by introducing an additional parameter (Overeem et al., 2008). Figure 19 shows the ability of 

GEV distribution to fit empirical cumulative distribution functions (ECDF) of daily and sub-

daily AMPs in Saskatoon. The goodness of GEV fit to the AMPs was confirmed by the 

Kolmogorov-Smirnov test with 95% significance level. 

 

IDF curves can be constructed based on the GEV fitting using the inverse of the fitted GEV 

distributions, given the return period (T) and precipitation quantiles (Qx), as follows: 

 

                                                                                                 [5]      
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Figure 19. Comparison between the GEV (blue line) and empirical fit (black dots) for the local 

AMPs in Saskatoon with 95% confidence intervals of GEV fit shown by the red lines.  

 

Eventually, the hourly and sub-hourly disaggregation models, based on the K-NN method, were 

used to generate long time-series of hourly and sub-hourly precipitation values for both baseline 

and future periods (2011-2100). The AMPs of the disaggregated hourly and sub-hourly 

precipitation time series were used to construct two different sets of IDF curves based on 

quantiles obtained from the GEV distribution: (a) the IDF curves derived from historical data 

(observations), which currently form the basis of the design and evaluation of Saskatoon’s storm 

water collection system; and (b) the IDF curves based on the models developed in this study. 

Furthermore, a third set of IDF curves was constructed using the Genetic Programming (GP) 

method, which was introduced by Hassanzadeh et al. (2014) and was re-implemented in this 

study with new data based on CMIP5 simulations. The GP method employs a fundamentally 

different route for constructing the IDF curves because it generates AMPs at the local scale 

directly without having to generate the time series of continuous precipitation values. 

Accordingly, the GP method provides a solid reference for comparison with the two-stage 

modeling method developed in this study, and also helps show variability in IDF curves due to 

the adoption of various downscaling methods. The comparative analyses of the results took into 

consideration the various GCMs, RCPs, and the downscaling/disaggregation methods. 
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2.9. Likelihood of extreme storm events 

 

The future IDF curves/tables were constructed using 1000 realizations of fine-resolution 

continuous rainfall series from the two disaggregation methods: (i) LARS-WG and K-NN and 

(ii) LARS-WG and Stochastic downscaling-disaggregation methods. So, the likelihood 

assessment of any storm represented by the IDF curve/table or the continuous series within the 

generated ensemble is conducted suing the 1000 realizations. The likelihood measure would 

characterize the probability of non-exceedance of a certain storm event for the selected GCMs, 

RCPs, time periods, disaggregation methods, and return periods. The LARS-WG and K-NN 

method generates hourly and 5-minute rainfall series, while the LARS-WG and Stochastic 

downscaling-disaggregation method generates only hourly rainfall series. The critical hourly and 

5-minute rainfall profiles are calculated based on a pre-selected time window ( 2, 3, 4, 5, 6, 7, or 

30 days) for the user defined combination.  

 

2.9.1. Storm likelihood measurement 

The GEV distribution is fitted to the 30 AMPs from each of the 1000 realizations to calculate 

quantiles for the selected GCMs, RCPs, return periods, storm durations, time periods, and 

disaggregation methods. The quantiles for each of the mentioned combinations are sorted in 

ascending order and the non-exceedance probability of the quantiles is calculated by i/(1000+1), 

where I ranges from 1 to 1000. The quantiles are expressed as mm/hour and plotted against the 

probability calculated above, which shows the likelihood measure of the storm represented by 

the IDF curves/table. The mean of the quantiles from 1000 realizations was plotted as IDF curves 

in the remaining part of the report. The likelihood measures cannot be shown for GP method 

since it does not generate multiple realizations.       

 

2.9.2. Calculation of critical profile 

The critical profile within a fine-resolution (i.e., hourly or 5-minute) rainfall time series can be 

calculated using a time window of several days (e.g., 2, 3, 4, 5, 6, 7, and 30). For the selected 

time window, all the hourly or 5-minute data points within the time window of all moving 

windows are identified and accumulated. This search is conducted for the critical value of the 

window-accumulated rainfall along the entire time series, and the maximum value is identified, 

along with its time location. This procedure is repeated for the 1000 realizations; the 1000 

critical values are sorted in ascending order and the non-exceedance probability is calculated in a 

similar way mentioned in the previous section. The cumulative values of the critical profiles are 

plotted against the probabilities to show the likelihood of the critical profiles. The procedure can 

be repeated for any pre-selected time window.        

 

 

 

 

 

 

 

 

 

 



37 

 

3. RESULTS AND ANALYSIS 

 

The results of the stochastic weather generation, the disaggregation technique, and the GP 

method are presented in this section. The results related to the generated long time series of site-

specific daily precipitation during the baseline period and under the projections of climate 

change scenarios for Saskatoon using LARS-WG are provided in Section 3.2. The hourly and 

sub-hourly disaggregation models developed using the K-nearest neighbours (K-NN) technique 

are presented and analyzed in Section 3.3. Variations in the future IDF curves, produced using 

both the K-NN and the GP method, as compared to the baseline IDF curves are presented and 

analyzed based on two GCMs and three RCPs during the 21st century in Section 3.4. Different 

sources of uncertainties and their contributions to the total uncertainty and uncertainties 

associated with the prediction of future IDF curves are included in Section 3.5. 

 

3.1. Verification of the stochastic weather generator 

 

LARS-WG was provided with Saskatoon’s observed daily precipitation data during the baseline 

period (1961-1990) to obtain the parameters of the probability distributions of the local station’s 

precipitation. This set of parameters was then used to generate 1000 realizations of the observed 

precipitation series. The performance of the calibrated model is shown in Figure 20. The weather 

generator was calibrated based on the p-value calculated for all statistics (e.g., KS-, t-, and f-

statistics) concerning the hypothesis test (e.g., Kolmogorov–Smirnov test) to determine if the 

observed and simulated precipitation series belong to the same distribution. The model was then 

validated using Saskatoon’s observed daily precipitation during the period of 1991-2009.   

 
 

Figure 20. Performance of LARS-WG based on the observed monthly properties (solid lines) and 

1000 realizations of synthetic (box plots) precipitation time-series during the baseline period 

(1961-1990) in Saskatoon. 
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Figure 20 shows a comparison between the observed mean daily precipitation (20a) and mean of 

extreme daily precipitation (20b) in each month and the corresponding ones of the synthetic daily 

precipitation in each month shown as boxplots based on 1000 realizations obtained from LARS-

WG during the baseline period. The mean daily precipitation was calculated as the mean of daily 

precipitation in each month over a period of 30 years (1961-1990), the 30 years have 30 AMPs 

and the mean of 30 AMPs in each month was termed as mean extreme precipitation, while the 

maximum of the 30 AMPs in each month was denoted as maximum extreme precipitation in 

Figure 20. The figures show that LARS-WG generated the mean and mean of the extreme 

precipitation properties quite well during the baseline period. However, LARS-WG seems to 

slightly underestimate the maximum of the extreme precipitation in the month of June (Figure 

20c) due to low success rate of the weather generator in reproducing maximum of the extreme 

precipitation values, which might contribute to some uncertainty in simulating the future 

maximum extreme precipitation. Other months outside the summer season are not considered of 

importance for this study. 

 

Generation of daily precipitation series using LARS-WG requires calculation of relative change 

factors (RCFs) related to the precipitation amounts, wet spell lengths, and dry spell lengths for 

each month. The relative change factors (RCFs) related to monthly precipitation amounts for 15 

GCMs from CMIP3 are embedded in the current version of LARS-WG. Nevertheless, the RCFs 

for the GCMs from CMIP5 are not included in LARS-WG archive, which need to be calculated 

using downloaded output of the corresponding GCMs. For verification, the downloaded output 

of CGCM3.1 (a CMIP3 model) was used to calculate the RCFs related to the monthly 

precipitation amounts and compared with the corresponding values embedded in LARS-WG.  

   

Table 3 shows a comparison between the relative change factors (RCFs), for each month, based 

on the embedded and downloaded precipitation values of GCMs. The comparison shows that the 

sign and magnitude of change in mean monthly precipitation amount as presented by the 

calculated RCFs are not very different from those embedded in LARS-WG. 

 

Table 3: Relative changes in monthly precipitation amounts between baseline and future (2020s, 

2050s, and 2080s) climate as calculated from CGCM3.1 output (ratio of A1B future scenario to 

baseline scenario) as compared to the RCFs embedded in LARS-WG.  

 (2011-2040) (2041-2070) (2071-2100) 

Month LARS-WG Calculated LARS-WG Calculated LARS-WG Calculated 

Jan 1.17 1.20 1.18 1.16 1.21 1.15 

Feb 1.15 1.20 1.21 1.20 1.26 1.16 

Mar 1.15 1.12 1.25 1.14 1.47 1.22 

Apr 1.17 1.20 1.36 1.44 1.63 2.02 

May 1.14 1.16 1.41 1.74 1.43 1.58 

Jun 1.03 1.10 1.24 1.28 1.10 1.14 

Jul 0.98 0.97 1.06 0.95 0.96 0.91 

Aug 0.96 0.97 1.01 1.23 0.95 0.86 

Sep 1.00 0.96 1.01 0.90 1.07 0.97 
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Oct 1.08 1.07 1.11 1.16 1.24 1.27 

Nov 1.11 0.99 1.17 1.12 1.27 1.20 

Dec 1.15 1.23 1.15 1.10 1.24 1.32 

 

 

The calculated RCFs for the mean monthly precipitation amounts, and wet and dry spell lengths 

are shown in Table 4, which were used in LARS-WG to generate realizations of future daily 

precipitation scenarios using CanESM2 (shown in Table 4) and HadGEM2-ES (shown in 

Appendix D) based on three RCPs (i.e. RCP2.6, RCP4.5, and RCP8.5). 

 

Table 4: Relative change factors for CanESM2 during 2011-2040.   

 Mean monthly precipitation Wet spell length Dry spell length 

Month RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 

Jan 0.88 1.15 1.16 0.93 1.01 1.20 0.96 0.93 1.00 

Feb 1.03 1.00 0.91 0.96 0.94 0.97 0.93 0.97 1.12 

Mar 1.61 1.11 1.29 1.37 1.39 1.19 0.94 1.11 0.92 

Apr 1.33 1.49 1.80 0.88 1.15 1.05 0.91 0.88 0.76 

May 1.07 1.16 0.96 0.92 0.90 0.93 0.87 1.08 0.98 

Jun 0.91 0.72 0.81 0.88 0.75 0.93 0.83 1.20 1.06 

Jul 1.08 1.10 1.03 1.09 1.25 0.97 1.34 1.27 1.11 

Aug 0.98 0.88 0.88 0.98 0.88 0.88 0.87 0.76 1.04 

Sep 0.85 0.87 1.19 1.01 1.07 1.08 0.95 0.97 1.00 

Oct 1.24 1.19 1.41 1.01 1.05 1.22 1.00 0.92 0.81 

Nov 1.05 1.05 1.06 1.14 1.13 1.09 1.06 1.09 1.05 

Dec 1.25 1.42 1.41 1.08 1.05 1.33 0.86 0.88 0.90 

          
 

Two sets of relative change factors were calculated for each GCM of the CMIP5 based on all 

RCPs, one including wet and dry spell lengths together with the mean monthly precipitation 

amount, and another by considering the mean monthly precipitation amounts only. The 1000 

realizations of future daily precipitation time series for the GCMs/RCPs were simulated using 

each of the two sets of relative change factors were used to differentiate between the 

contributions of changes in the mean monthly precipitation amounts and changes in wet/dry spell 

durations.  

 

The annual maximum precipitation (AMPs) of the realizations of future daily precipitation 

projections, obtained from the simulations based on CanESM2 with and without using RCFs 

related to wet/dry spell lengths, were used to estimate the expected values and 95% confidence 

intervals using the Generalized Extreme Value (GEV) distribution as shown in Figure 21. 

Although the RCFs of mean monthly precipitation amounts are the major contributors to the 

changes in the future daily precipitation values, the RCFs of wet/dry spell lengths can affect the 
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changes in the future daily precipitation values. The expected values and 95% confidence 

intervals of extreme precipitation quantiles for CanESM2 based on three RCPs seem to change 

when the RCFs of wet/dry spell lengths are used, particularly in longer return periods. 

  

The uncertainty in determining the sign and magnitude of change in future extreme precipitation 

seems to be more dependent on the RCPs and time periods. For the CanESM2 and a 100-year 

return period as shown in Figure 21, the future expected precipitation intensities during 2041-

2070 – using the RCFs related to wet/dry spell lengths for RCP2.6, RCP4.5, and RCP8.5, 

compared to the observed expected precipitation intensity of 115 mm/day during the baseline 

period – are 115, 96, and 123 mm/day, respectively. The corresponding future expected 

precipitation intensities, without using RCFs related to wet/dry spell lengths for RCP2.6, 

RCP4.5, and RCP8.5 are; 114, 84, and 107 mm/day, respectively. Future expected precipitation 

intensities, using RCFs related to wet/dry spell lengths during the time slices 2011-2040, 2041-

2070, and 2071-2100, are 118, 95, and 96, respectively, using the RCP4.5 of CanESM2 and a 

100-year return period. The corresponding future expected precipitation intensities without using 

RCFs related to wet/dry spell lengths into consideration for 2011-2040, 2041-2070, and 2071-

2100 are 105, 84, and 96 mm/day, respectively, when the RCP4.5 of CanESM2 and a 100-year 

return period are considered. The results for HadGEM2-ES are shown in Appendix B. 
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Figure 21: Variations in the future projections of daily AMP quantiles in the City of Saskatoon 

according to CanESM2 forced with three RCPs using two sets of change factors: with wet/dry 

spell (blue) and without wet/dry spell (red) effects. The expected quantiles (solid lines) and their 

95% confidence intervals (dashed lines) are shown with the corresponding quantiles during the 

baseline period (black). 

 

The AMP quantiles of 1000 realizations of daily precipitation obtained from LARS-WG based 

on CanESM2 and HadGEM2-ES, forced with three RCPs using both sets of RCFs, were 

calculated. Figure 22 shows the variability of the 2-year storm value (shown in the boxplots). 

The quantiles were estimated by fitting GEV distributions to the daily AMPs from LARS-WG. 

The figure for the 100-year return period is presented in Appendix E. The extreme daily 

precipitation quantiles seem to vary depending on whether wet/dry spell effects were considered 

or not in the case of both GCMs and all three RCPs. The sign and magnitude of variation due to 

the inclusion of RCFs related to wet/dry spell lengths depend largely on the choice of 

GCM/RCP, return period, and time slice. Hence, the future daily precipitation simulated with 

consideration of wet/dry spell effects shows differences from the same values simulated without 

considering the wet/dry spell effects, which might cause variations in the future IDF curves. 

Figure 22 also reveals that in most cases, the variabilities in the future IDF curves due to the 

choice of GCMs can be larger than those due to the inclusion/exclusion of wet and dry spells. 

Including the wet/dry spell effects in a 100-year return period, the future expected precipitation 
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intensity is 131 mm/day for CanESM2 and RCP2.6 during 2011-2040, compared to the observed 

expected precipitation intensity of 115 mm/day during the baseline period, which is 100 mm/day 

for HadGEM2-ES and RCP2.6 during 2011-2040. Considering a 2-year return period, the future 

expected precipitation intensity is 35 mm/day for CanESM2 and RCP2.6 during 2011-2040, 

compared to the observed expected precipitation intensity of 33 mm/day during the baseline 

period, which is 37 mm/day for HadGEM2-ES and RCP2.6 during 2011-2040. The variations 

due to the choice of GCMs seem to increase with an increase in the return period.   

 

 
Figure 22: Variations in the future projections of daily AMP quantiles for 2-year return period in 

the City of Saskatoon according to CanESM2 and HadGEM2-ES forced with three RCPs using 

two sets of change factors, i.e. with wet/dry spell and without wet/dry spell effects along with the 

expected quantiles during the baseline period.  

 

 

3.2. K-NN Disaggregation models 

 

3.2.1. Selection of optimum window size 

In order to develop the most appropriate K-NN hourly disaggregation model, the optimal 

window size (i.e. number of nearest neighbors to the current day of disaggregation) was selected 

using the observed daily and hourly precipitation data during the baseline period (1961-1990). 
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The K-NN hourly disaggregation model was used to disaggregate the observed daily 

precipitation to hourly precipitation sequences using 30 different window sizes (i.e., 3 days to 61 

days) to identify the most appropriate memory length of the hydrological system for the City of 

Saskatoon. Each window size was used to generate the hourly precipitation sequences based on 

the daily precipitation values. Subsequently, the corresponding AMPs were identified for 

different durations (i.e., 1-hour to 24-hour). The simulated AMPs of various durations were then 

compared with the corresponding observed AMPs, and the performance of each window size 

was evaluated based on the Root Mean Squared Error (RMSE in Equation 6, where X= 

normalized AMPs and i=1, 2, 3,……,n (total number of years in the time series).  

 

                                                [6] 

 

The RMSE values resulted from 30 widow sizes, as shown in Figure 23, were evaluated to 

determine the optimal window size for the K-NN hourly disaggregation model. Among the 30 

windows, the window with 3 days (half window) on both sides of the current disaggregation day, 

i.e., a window of 7 days, provided the lowest RMSE of 0.12 when compared with other window 

sizes. Therefore, the optimal window size of 7 days was chosen for the K-NN hourly 

disaggregation model. 
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Figure 23: The performance of various windows obtained for selecting optimal window size for 

the K-NN hourly disaggregation model. 

 

The K-NN hourly disaggregation model was used to simulate the observed hourly precipitation 

sequences both randomly and deterministically using the optimal window size. As far as the 

extreme precipitation quantiles were concerned, it was found that random selection of hourly 

precipitation sequences had no significant effect on the hourly disaggregation simulations. Also 

the use of deterministic or random sampling approach produced the same optimal window size 

based on the RMSE measure. However, random sampling can result in selecting a wide range of 

possible hourly disaggregated precipitation sequences than the deterministic sampling approach. 

Hence, the sampling in K-NN hourly disaggregation model using random selection approach of 

one sequence can be adopted using a single random realization, which reduces the modeling 

complexity and computational time tremendously without compromising the efficiency of the 

model. 

 

The calculation of optimum window size was repeated with sub-hourly precipitation data. The 

RMSE values resulted from investigating 120 different widow sizes, shown in Figure 24, were 

evaluated to determine the optimal window size for the K-NN sub-hourly disaggregation model. 

Among the 120 windows, the window with 110 hours (half window) on both sides of the 

disaggregation hour, i.e., a window of 221 hours in total shows the minimum RMSE of 0.165. 
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However, a window size of 221 hours would be too large for a sub-hourly disaggregation model 

because it increases the model complexity as well as the computational time. Any smaller 

window with reasonably good performance (with reasonable RMSE) can be more acceptable 

choice for the K-NN sub-hourly disaggregation model. Keeping these criteria in mind, the half 

window size of 56 hours, i.e., a window of 113 hours shows an RMSE of 0.219. This window 

size is almost half of the optimum window size and has a very similar RMSE. Therefore, the 

optimal window size of 113 hours was chosen for the K-NN sub-hourly disaggregation model. 

Similar to the K-NN hourly disaggregation model, the K-NN sub-hourly disaggregation model 

was used to simulate the observed sub-hourly precipitation sequences randomly and 

deterministically using the selected optimal window size. These simulations revealed that the 

random selection of sub-hourly precipitation sequences had no significant effect on the sub-

hourly disaggregation simulations, when compared with the deterministic selection, as far as the 

extreme precipitation quantiles were concerned. 

 

 
 

Figure 24: The performance of various windows obtained in selecting optimal window size for 

the K-NN sub-hourly disaggregation model. 

 

3.2.2. Performance of the disaggregation models 

The K-NN hourly disaggregation model was provided with 1000 realizations of daily 

precipitation obtained from LARS-WG and the Saskatoon’s observed hourly precipitation data 

during the baseline period (1961-1990) to obtain 1000 realizations of hourly precipitation during 

the same baseline period. The disaggregation model used the optimal window size to generate 

1000 realizations of observed hourly precipitation series. The performance of the calibrated 
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model is shown in Figure 25 during the spring and summer months (April-September). The K-

NN hourly disaggregation model seems to simulate the observed mean hourly precipitation, the 

mean of maximum hourly precipitation, and the maximum extreme precipitation quite well 

except in June with regard to the maximum of the extreme precipitation.  

 

 
 

Figure 25: Performance of K-NN hourly disaggregation model based on the observed monthly 

properties (solid lines) and 1000 realizations of disaggregated (box plots) hourly precipitation 

time-series during the baseline period (1961-1990). 

 

Similarly, the K-NN sub-hourly disaggregation model was provided with 1000 realizations of 

hourly precipitation obtained from the K-NN hourly disaggregation model and the Saskatoon’s 

observed 5-min precipitation data during the period 1992-2009 (May-September) to obtain 1000 

realizations of 5-min precipitation values during the same period. The disaggregation model used 

the selected optimal window size to generate 1000 realizations of the 5-min precipitation series. 

The performance of LARS-WG and the K-NN hourly and sub-hourly disaggregation models are 

shown in Figure 26 during the period 1992-2009 (May-September). The 5-min precipitation data 

from Acadia Reservoir rain gauge were aggregated to daily and hourly precipitation to conduct 

this part of the study.   

 

Similar comparisons to those shown in Figure 20 and Figure 25 are shown in Figure 26(a-f) in 

addition to comparison between the observed and simulated 5-min precipitation in each of the 
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five months based on 1000 realizations obtained from K-NN sub-hourly disaggregation model 

during the period 1992-2009 (Figure 26g-i). All figures show that LARS-WG, K-NN hourly, and 

K-NN sub-hourly disaggregation models generated mean, mean extreme, and maximum extreme 

precipitation properties reasonably well during the period 1992-2009, except Figure 26(c), where 

LARS-WG appears to underestimate the maximum extreme precipitation in most of the months, 

which might contribute to the uncertainty in simulating the future maximum extreme 

precipitation. Only 14 years of 5-minute precipitation data were available for conducting this part 

of the study; however, 20-30 years of daily precipitation data are generally required in order to 

simulate synthetic daily precipitation series in LARS-WG and capture the climate properties of 

the precipitation station (Semenov and Barrow, 2002). Since the baseline period used in this 

study is 30 years (1961-1990), this issue of underestimation can be minimized during the 

baseline period as shown in Figure 20(c).    

 

 
Figure 26: Performance of LARS-WG (1st panel), K-NN hourly disaggregation model (2nd 

panel), and K-NN Sub-hourly Disaggregation Model (3rd panel) based on the observed monthly 

properties (solid lines) and 1000 realizations of downscaled/disaggregated (box plots) daily, 

hourly, and 5-min precipitation time-series, respectively, during 1992-2009. 

 

After developing/calibrating K-NN sub-hourly disaggregation model (Figure 26), an attempt was 

made to validate the K-NN sub-hourly disaggregation model as shown in Figure 27. The K-NN 

sub-hourly disaggregation model was provided with 1000 realizations of hourly precipitation 

obtained from the K-NN hourly disaggregation model during the baseline period (1961-1990) 
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and the Saskatoon’s observed 5-min precipitation data during the period 1992-2009 (April-

September) to obtain 1000 realizations of 5-minute precipitation during the baseline period. The 

simulated 5-min precipitation was aggregated to obtain 1000 realizations of hourly precipitation 

series during the baseline period.  Thus, the performance of the validated model is shown in 

Figure 27 during the spring and summer months (April-September) of the baseline period.  

  

Similar comparisons to those shown in Figure 25 are shown in Figure 27. Figure 27 (a-c) shows 

that the hourly (i.e., by aggregating 5-min precipitation to hourly time-scale) mean, mean 

extreme, and maximum extreme precipitation properties were successfully reproduced by the K-

NN sub-hourly disaggregation model during the baseline period. The use of 5-min precipitation 

from a different time period seems to be applicable in generating 5-min precipitation of other 

time periods. Hence, the same 5-min precipitation series can be used to generate future 5-min 

precipitation in order to create future IDF curves based on the performance of the K-NN hourly 

and sub-hourly disaggregation models. 

 

 
Figure 27: Performance of K-NN Sub-hourly Disaggregation Model based on the observed 

monthly properties (solid lines) of  hourly precipitation time-series and 1000 realizations of 

disaggregated (box plots) 5-min precipitation time-series (aggregated to produce hourly 

precipitation) during the baseline period (1961-1990). 
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3.3. The IDF-curves under future climate scenarios 

 

3.3.1. Variations obtained for CMIP5 climate models 

Intensity-Duration-Frequency (IDF) curves for the City of Saskatoon were constructed using the 

GEV distribution for the baseline and the projection periods based on two GCMs (CanESM2 and 

HadGEM2-ES) and three RCPs (RCP2.6, RCP4.5, and RCP8.5) for nine selected durations (5-, 

10-, 30-min, 1-, 2-, 3-, 6-, 18-, and 24-hour) and four different return periods (2-, 5-, 25-, and 

100-year). The IDF curves are shown in  

Figure 28, and the design values during the baseline and projection periods are presented in 

Table 5 and Table 6, respectively. It can be seen that variations in the future precipitation 

quantiles, as represented by the IDF curves, are more significant at shorter durations and for 

longer return periods, which (the variations) seem to get intensified towards the end of the 21st 

century. The significant variations in the quantiles emphasize the importance of disaggregation 

to fine temporal resolution; e.g., 5-min precipitation as GCMs provide precipitation mostly in the 

daily temporal scale. The sign and the magnitude of future variations in extreme precipitations at 

different durations and/or return periods are highly sensitive to the selection of GCMs and/or 

RCPs. 

 

 
 

Figure 28: Variations in the future IDF curves in the City of Saskatoon according to CanESM2 

and HadGEM2-ES based on three RCPs. 
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Generally, it is observed that there are changes (increase/decrease) in precipitation intensities in 

future compared to the baseline period (i.e., historical intensities) for all the return periods. The 

HadGEM2-ES: RCP8.5 IDF curve shows the highest relative change (i.e., 43.5%) in 

precipitation intensity for 5-min duration and 100-year return period during 2041-2070, while 

CanESM2: RCP2.6 shows the highest relative change (i.e., 31.5%) in precipitation intensity for 

6-hour duration and 100-year return period during 2011-2040. HadGEM2-ES: RCP4.5 shows the 

biggest relative decrease (i.e., 20.8%) in precipitation intensity for 6-hour duration and 100-year 

return period during 2071-2100, while CanESM2: RCP4.5 shows the biggest relative decrease 

(i.e., 15.6%) in precipitation intensity for 24-hour duration and 100-year return period during 

2041-2070. The relative change in precipitation intensities with respect to the historical 

intensities for the GCMs/RCPs is dependent on the duration, return period, and time periods 

during the 21st century.  

 

The results based on two GCMs (CanESM2 and HadGEM2-ES) and three RCPs (RCP2.6, 

RCP4.5, and RCP8.5) show changes (increase/decrease) in the future IDF curves for the City of 

Saskatoon. However, the relative changes in the extreme precipitation intensities (represented by 

the IDF curves) with respect to the historical intensities is dependent on the duration, return 

period, and time slice. The future IDF curves at sub-hourly (e.g., 5-min and 15-min) durations 

show increase in future precipitation intensities for most of the GCMs/RCPs during the 21st 

century with a maximum value of 43% (for HadGEM2-ES: RCP8.5 for 5-minute duration and 

100-year return period during 2041-2070) increase as compared to the historical intensities. The 

historical 5-min precipitation intensity during the baseline period (1961-1990) for 100-year 

return period in Saskatoon is 265 mm/hr, which might increase up to 320, 381, and 356 mm/hr as 

shown by the future IDF curves during 2011-2040, 2041-2070, and 2071-2100, respectively. The 

existing urban storm water collection systems are designed based on the historical IDF curves, so 

the projected increases in future sub-hourly precipitation intensities would make the urban 

systems more vulnerable when the variations in the future IDF curves are taken into account. 

However, the extent of the estimated vulnerability depends on the choice of GCMs/RCPs, return 

period, duration, and time slice. 

 

Table 5: The precipitation intensity (mm/hr) during the baseline period (1961-1990) for various 

return periods. 

Duration Return period (year) 

 2 5 25 100 

5-min 57.2 87.2 159.6 265.5 

15-min 36.5 57.2 107.6 183.1 

1-hr 13.9 22.2 47.4 94.5 

2-hr 9.2 14.0 26.5 46.3 

6-hr 4.2 6.4 11.7 19.6 

24-hr 1.4 2.1 3.4 4.9 
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Table 6: The expected precipitation intensity (mm/hr) for CanESM2 based on three RCPs obtained from CMIP5 during the 21st century for 

various return periods. 

 (2011-2040) (2041-2070) (2071-2100) (2011-2040) (2041-2070) (2071-2100) 

 Return period (year) 

 2 5 25 100 2 5 25 100 2 5 25 100 2 5 25 100 2 5 25 100 2 5 25 100 

 CanESM2: RCP2.6 HadGEM2-ES: RCP2.6 

5-min 59 92 178 317 57 87 160 265 56 87 162 274 56 87 162 275 61 97 199 373 61 97 194 356 

15-min 37 60 119 214 37 57 108 185 36 57 109 189 35 56 108 189 39 64 130 241 39 64 128 233 

1-hr 15 24 54 115 14 22 47 94 14 23 48 93 14 22 47 93 16 26 58 126 16 25 57 121 

2-hr 10 15 29 53 9 14 27 47 10 15 27 46 9 14 26 44 11 16 32 56 11 16 31 53 

6-hr 4 7 14 26 4 7 12 19 4 6 11 19 4 6 11 19 5 7 14 22 5 7 13 21 

24-hr 1 2 4 6 1 2 3 5 1 2 3 5 2 2 3 4 2 2 4 5 2 2 4 5 

 CanESM2: RCP4.5 HadGEM2-ES: RCP4.5 

5-min 59 91 177 312 57 89 170 291 56 86 156 259 58 91 172 294 57 89 166 281 55 86 161 272 

15-min 37 59 116 204 36 57 109 186 36 56 105 179 37 59 114 199 37 58 109 185 35 56 106 184 

1-hr 15 24 52 106 14 22 45 86 14 22 46 90 14 23 52 109 14 23 47 94 15 23 46 85 

2-hr 10 15 28 49 9 14 27 46 9 14 26 44 10 15 28 49 10 15 27 45 10 15 27 44 

6-hr 4 7 13 21 4 6 11 18 4 6 11 17 4 7 12 21 4 7 11 17 5 7 11 16 

24-hr 2 2 4 5 2 2 3 4 1 2 3 4 1 2 4 5 2 2 3 4 2 2 3 4 

 CanESM2: RCP8.5 HadGEM2-ES: RCP8.5 

5-min 56 87 165 283 58 90 171 299 56 87 165 285 59 93 180 320 60 97 202 381 55 88 175 315 

15-min 36 57 111 194 37 59 113 196 35 56 110 195 38 61 123 226 39 63 128 233 35 58 117 218 

1-hr 14 23 50 105 14 23 51 106 14 22 48 97 15 25 56 124 16 26 54 108 15 24 49 96 

2-hr 9 14 27 48 10 15 29 51 9 14 28 49 10 15 30 52 11 17 31 52 10 15 29 49 

6-hr 4 6 12 22 4 7 12 20 4 6 12 20 5 7 13 23 5 7 12 18 5 7 12 18 

24-hr 1 2 3 5 2 2 4 5 1 2 3 5 2 2 4 5 2 3 4 5 2 2 4 5 
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3.3.2. Variations obtained with the GP method and the K-NN hourly disaggregation model 

The adopted downscaling/disaggregation (LARS-WG and K-NN) method was compared 

with the GP method developed by Hassanzadeh et al. (2014), and re-implemented in this 

study, in terms of variations in the constructed future IDF curves according to two GCMs and 

three RCPs for various return periods. As an example, a return period of 2-year is shown in 

Figure 29. Generally, the IDF curves constructed using two different approaches seem 

comparable in quantifying historical IDF curves as shown in Table 7. The GP method uses 

sets of equations evolved to map the global scale daily AMP values directly to the local scale 

daily and sub-daily AMPs (1 to 24 hrs durations). The GP method seems to be more accurate 

for larger return periods (i.e. 100-year) and at shorter durations. The historical precipitation 

intensity of 1-hr duration and 100-year return period is 84.6 mm/hr, which was simulated as 

88.4 mm/hr and 84.7 mm/hr by two sets of GP extracted equations (based on CanESM2 and 

HadGEM2-ES output during baseline period) while the same was simulated as 105.2 mm/hr 

by the K-NN hourly disaggregation model. However, both methods reconstruct the historical 

IDF curves successfully during the baseline period (1961-1990) with less than 10% absolute 

error. 

 

 
 

Figure 29: Comparison between the future IDF curves (2011-2100) according to CanESM2 

(solid lines) and HadGEM2-ES (dashed lines) based on three RCPs and 2-year return period 

obtained using two different downscaling approaches, i.e. GP method and LARS-WG 

combined with K-NN Hourly Disaggregation Model. 
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Table 7: Comparison between the performance of K-NN hourly disaggregation model and GP 

method in simulating the expected precipitation intensity (mm/hr) during the baseline period 

(1961-1990) for various durations and return periods.  

 Return period (year) Return period (year) 

 2 5 25 100 2 5 25 100 

Duration Historical (observed) hourly 

precipitation  

(1961-1990) 

 

Simulated hourly precipitation (Using 

K-NN Hourly Disaggregation Model)  

(1961-1990) 

 

 1-hr 12.8 21.0 44.9 84.6 13.2 21.5 48.6 105.2 

2-hr 8.7 13.5 25.5 42.7 9.0 13.8 26.2 46.2 

3-hr 6.7 10.4 18.7 29.3 6.8 10.4 20.2 36.8 

4-hr 5.5 8.5 15.0 22.8 5.5 8.4 15.9 28.1 

6-hr 4.2 6.3 10.3 14.7 4.2 6.3 11.7 19.7 

12-hr 2.5 3.6 5.4 7.3 2.5 3.7 6.2 9.6 

18-hr 1.8 2.5 3.9 5.3 1.8 2.6 4.4 6.5 

24-hr 1.4 2.0 3.0 4.1 1.4 2.1 3.4 4.9 

 

Simulated hourly precipitation (Using 

GP for CanESM2) (1961-1990) 

 

 

Simulated hourly precipitation (Using 

GP for HadGEM2-ES) (1961-1990) 

 

 
1-hr 13.0 20.9 45.9 88.4 12.7 20.6 43.9 84.7 

2-hr 8.6 13.3 25.0 41.7 8.7 13.2 25.6 43.5 

3-hr 6.7 10.5 18.8 29.3 6.7 10.4 18.7 29.4 

4-hr 5.4 8.4 14.9 22.9 5.5 8.4 14.9 23.0 

6-hr 4.2 6.1 10.1 14.8 4.1 6.3 10.4 14.7 

12-hr 2.5 3.5 5.3 7.1 2.5 3.6 5.5 7.2 

18-hr 1.8 2.5 4.0 5.4 1.8 2.6 3.9 5.2 

24-hr 1.4 2.0 3.1 4.1 1.4 2.0 3.1 4.2 

 

The relative changes in future precipitation intensities with respect to the historical intensities 

range from a minimum of -8.9% to a maximum of 81.7% using the GP Method, whereas 

from -0.6% to 75.6% using the K-NN hourly disaggregation model as shown in  
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Table 8. The GP method shows the highest precipitation intensity of 154 mm/hr for 

CanESM2: RCP4.5 of 1-hour duration and 100-year return period during 2071-2100, while 

the K-NN hourly disaggregation model shows the highest precipitation intensity of 126 

mm/hr for CanESM2: RCP2.6 of 1-hour duration, and 100-year return period during 2011-

2040. Similar to the K-NN hourly disaggregation model, the changes in the future 

precipitation intensities obtained from the GP method depend on the selection of 

GCMs/RCPs, duration, return period, and time period. The difference in the results of the two 

methods in generating future precipitation intensities might be due to different approaches 

used for developing the disaggregation methodology, which contribute to the uncertainty in 

creating future IDF curves using different methods.  

 

Generally, the IDF curves constructed using two different approaches (the GP-based method 

and the two stage method adopted in this study) seem comparable in quantifying variations in 

the future IDF curves. However, some differences were observed in the results produced by 

the two methods due to different underlying approaches used for developing the methods. 

The adopted two-stage downscaling/disaggregation method was based on the combination of 

a stochastic precipitation generator (LARS-WG) and a disaggregation model (K-NN) for 

generating continuous precipitation series, while the GP method was based on the genetic 

programming (GP) used to map the daily extreme precipitation qauntiles at the global scale to 

the corresponding daily and sub-daily extreme precipitation quantiles at the local scale. The 

AMP quantiles of various durations (1 to 24 hrs) extracted from the adopted method (K-NN 

and LARS-WG) are largely dependent on the downscaled daily precipitation series from the 

global to the local scale by LARS-WG as it could be the main contributor to the total 

uncertainty. On the other hand, the performance of the GP method entirely depends on how 

perfectly the extreme precipitation quantiles at the global scale were mapped to the same at 

the local scale in the form of data driven equations extracted from genetic programming 

(Hassanzadeh et al., 2014). So, the different approaches used in the two methods would 

contribute to quantifying the uncertainty in creating future (2011-2100) IDF curves, although 

the two methods seem to reconstruct the historical IDF curves successfully during the 

baseline period (1961-1990). The use of two methods provides two sets of IDF curves that 

cover a wider range of likelihoods associated with the future designs of urban storm water 

collection systems under the plausible climate change scenarios. 
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Table 8: Comparison between the K-NN hourly disaggregation model and the GP method in simulating the expected precipitation intensity 

(mm/hr) for CanESM2 based on three RCPs during the 21st century for various durations and return periods.  

 GP Method K-NN Hourly Disaggregation Model 

 (2011-2040) (2041-2070) (2071-2100) (2011-2040) (2041-2070) (2071-2100) 

 Return period (year) Return period (year) 

 2 5 25 100 2 5 25 100 2 5 25 100 2 5 25 100 2 5 25 100 2 5 25 100 

CanESM2: RCP2.6 

1-hr 12 18 34 60 14 22 46 82 14 23 43 67 14 23 55 126 13 22 48 103 14 22 49 101 

2-hr 8 12 20 31 9 14 25 39 9 14 24 34 10 15 29 52 9 14 27 47 9 14 27 46 

3-hr 6 9 15 23 7 11 19 28 7 11 18 24 7 11 23 44 7 11 20 36 7 11 20 36 

4-hr 5 7 12 18 6 9 15 22 6 9 14 19 6 9 18 35 6 9 16 27 6 9 16 28 

6-hr 4 5 8 12 4 6 10 14 4 6 10 13 4 7 14 26 4 6 12 19 4 6 11 19 

12-hr 2 3 5 6 3 4 5 7 3 4 5 6 3 4 7 12 3 4 6 9 2 4 6 10 

18-hr 2 2 3 5 2 3 4 5 2 3 4 5 2 3 5 8 2 3 4 7 2 3 4 7 

24-hr 1 2 3 3 1 2 3 4 1 2 3 4 1 2 4 6 1 2 3 5 1 2 3 5 

CanESM2: RCP4.5 

1-hr 15 24 48 81 15 25 50 83 15 26 70 154 14 23 54 122 14 22 46 93 13 21 47 99 

2-hr 10 15 26 39 10 15 26 40 10 16 35 66 10 15 28 49 9 14 26 45 9 14 26 44 

3-hr 8 12 20 28 8 12 20 28 8 13 25 43 7 11 22 39 7 11 20 36 7 10 19 35 

4-hr 6 9 15 22 6 10 16 22 6 10 20 33 6 9 17 31 6 8 16 27 6 8 15 25 

6-hr 5 7 10 14 5 7 11 14 5 7 13 20 4 7 13 21 4 6 11 18 4 6 11 17 

12-hr 3 4 5 7 3 4 5 7 3 4 6 9 3 4 7 10 3 4 6 8 3 4 6 8 

18-hr 2 3 4 5 2 3 4 5 2 3 5 6 2 3 5 7 2 3 4 5 2 3 4 6 

24-hr 2 2 3 4 2 2 3 4 2 2 4 5 2 2 4 5 2 2 3 4 1 2 3 4 

CanESM2: RCP8.5 
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1-hr 16 23 37 50 17 28 59 105 16 25 49 84 13 22 51 120 14 22 52 115 13 22 49 105 

2-hr 10 15 21 27 11 17 30 48 11 16 26 40 9 14 26 47 10 15 29 52 9 14 27 50 

3-hr 8 11 16 20 9 13 22 33 8 12 20 28 7 11 21 39 7 11 22 40 7 11 21 40 

4-hr 7 9 13 16 7 11 18 26 7 10 16 22 5 8 17 30 6 9 17 30 6 9 17 30 

6-hr 5 7 9 11 5 7 12 16 5 7 11 14 4 6 12 22 4 7 12 20 4 6 12 20 

12-hr 3 4 5 5 3 4 6 8 3 4 5 7 2 4 7 10 3 4 7 10 3 4 6 10 

18-hr 2 3 4 4 2 3 5 6 2 3 4 5 2 3 4 7 2 3 5 7 2 3 4 7 

24-hr 2 2 3 3 2 2 3 4 2 2 3 4 1 2 3 5 2 2 4 5 1 2 3 5 
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3.4. Uncertainty analysis 

 

3.4.1. Uncertainty due to natural weather variability 

The two-stage modeling scheme (downscaling-disaggregation) can be used to estimate various 

sources of uncertainty contributing to the projections of extreme precipitation quantiles 

represented by the IDF curves. One of the advantages of stochastic weather generators (e.g., 

LARS-WG) is their ability to synthesize a time series of a variable, such as precipitation, and 

generate multiple realizations of a variable such as precipitation. Such realizations can be 

considered representations of possible sequences of precipitation at the same location, which is a 

realistic way of representing the natural internal variability (caused due to stochastic nature) of 

precipitation. The effect of such variability (uncertainty) on the IDF curves due to the natural 

variability of precipitation can be quantified using AMP quantiles extracted from each of the 

1000 realizations of daily precipitation obtained from LARS-WG during the baseline period for 

different return periods (2-, 5-, 25-, and 100-year) using the GEV distribution. The simulated 

AMP quantiles for various return periods were obtained by fitting GEV distribution to AMPs 

corresponding to the 1000 simulated 1000 realizations of daily precipitation, each realization 

having 30 years of daily precipitation. The mean of the AMP quantiles corresponding to the 

simulated 1000 realizations represents the expected intensity, while 97.5th and 2.5th percentiles 

represent the upper and lower bounds of 95% confidence interval. The observed AMP quantiles 

for various return periods were obtained by fitting GEV distribution to AMPs corresponding to 

the observed daily precipitation series. 

 

 In the case of the observed AMP quantiles, each of the three parameters of GEV distribution 

with three values were was used to obtain the expected intensity, upper, and lower bounds of the 

95% confidence interval. Figure 30 shows the expected values and the 95% confidence intervals 

obtained from LARS-WG simulations as compared to the corresponding theoretical quantiles 

derived for the observed daily AMPs. The simulated expected values slightly overestimate the 

theoretical expected quantiles, while the simulated confidence intervals systematically slightly 

underestimate the theoretical 95% bounds particularly at larger return periods. Two points are 

worth noting in Figure 30: first, the stochastic realizations produced by LARS-WG approached 

the theoretical confidence interval of the GEV distribution, and second, confidence intervals 

should be treated and understood carefully as Figure 30 clearly demonstrates wide variability 

around the baseline/historical IDF curves. Therefore, such variability around projected future 

IDF curves should not be attributed to uncertainty due to climate change. 
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Figure 30: Theoretical GEV estimation of extreme quantiles based on the historical AMPs 

(black) and simulated AMPs obtained from 1000 realizations of daily precipitation time series 

during the baseline period using LARS-WG (red) with the corresponding 95% confidence 

intervals (dashed lines). 

 

3.4.2. Uncertainty due to natural variability and disaggregation models 

The K-NN hourly disaggregation model was provided with 1000 realizations of daily 

precipitation values obtained from LARS-WG to create 1000 realizations of hourly precipitation 

sequences during the baseline period. The simulated hourly AMP values were extracted from the 

disaggregated series and GEV distributions were fit to them. The mean and the 95% upper and 

lower bounds of 1000 realizations were obtained in a similar way as discussed previously.  

Figure 31 shows a comparison between the simulated hourly AMP quantiles (expected value and 

95% confidence intervals) and the corresponding historical hourly quantiles. Similar to the daily 

values, the simulated expected values slightly overestimate the historical expected quantiles, 

while the simulated confidence intervals slightly underestimate the theoretical 95% bounds, 

particularly in larger return periods, with some exceptions (3-, 6-, 8-, and 12-hour durations). 
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Figure 31: The IDF curves based on historical AMPs (black) as compared to the simulated 

values obtained from 1000 realizations of baseline time series from K-NN hourly disaggregation 

model and LARS-WG (red) with corresponding 95% confidence intervals (dashed lines). 

 

The K-NN sub-hourly disaggregation model was provided with 1000 realizations of hourly 

precipitation obtained from LARS-WG and K-NN hourly disaggregation model to create 1000 

realizations of sub-hourly (i.e. 5-min) precipitation sequences during the baseline period (1961-

1990). The observed hourly precipitation was also provided to the K-NN sub-hourly 

disaggregation model to generate 5-min precipitation during the same baseline period (1961-

1990), which was used to estimate the historical 5-min quantiles. A similar process, mentioned 

above for the hourly precipitation quantiles, was repeated with the 30 years of 5-min 

precipitation series, both for simulated 1000 realizations and the observed precipitation. Figure 

32 shows a comparison between the simulated sub-hourly AMP quantiles and the corresponding 

sub-hourly quantiles for the gauged precipitation. In general, the simulated expected values and 

the lower bounds overestimate the gauged precipitation expected quantiles and their lower 

bounds in the shorter durations and longer return periods. However, the upper bounds of the 

simulated confidence intervals systematically underestimate the 95% upper bounds of the gauged 

precipitation in all durations and return periods, while the lower bounds systematically 

underestimate the theoretical lower bounds in the larger durations. The overestimation of the 

expected values seems to diminish as the storm durations increase. 
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Figure 32: The sub-hourly IDF curves based on observed AMPs (black) as compared to the 

simulated values obtained from 1000 realizations of baseline time series from K-NN hourly and 

sub-hourly disaggregation models and LARS-WG (red) with corresponding 95% confidence 

intervals (dashed lines). 

 

Regardless of the downscaling method, it is important to verify the results obtained by a 

downscaling method before using the results for purposes in order to reduce the associated risks. 

In this study, the results of the adopted two-stage downscaling-disaggregation method using 

LARS-WG and K-NN were compared with results obtained from a published method based on 

GP. Comparing the results of GP and K-NN can be considered a way to quantify 

uncertainty/variability due to disaggregation from daily to hourly precipitation. Hence, the 

expected hourly precipitation quantiles corresponding to 1000 realizations from LARS-WG and 

K-NN hourly disaggregation model , and the expected hourly precipitation quantiles from the GP 

method of 2-year return period for CanESM2 based on three RCPs during 2011-2040, 2041-

2070, and 2071-2100 periods are compared in Figure 33. The results for HadGEM2-ES and other 

return periods are provided in appendix F. The internal variability of precipitation represented by 

1000 realizations can be better explained by the box plots in Figure 33 and the values within the 

whiskers of the box plots seem to contain the simulations of the GP method for almost all the 
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cases. This would provide more confidence in using the simulations from the adopted method of 

this study as these are comparable to the results of the GP method. 

 

Figure 33: Expected 1-hr AMP corresponding to 1000 realizations from LARS-WG and K-NN 

hourly disaggregation model (boxplot), and the same from GP method (blue dots) of 2-year 

return period for CanESM2 based on three RCPs during the 21st century. 

 

3.4.3. Uncertainty in the projections of future IDF curves 

The K-NN sub-hourly disaggregation model was provided with 1000 realizations of hourly 

precipitation obtained from LARS-WG and the K-NN hourly disaggregation model to create 

1000 realizations of 5-min precipitation sequences during the projection period (2011-2100) 

according to two GCMs (CanESM2 and HadGEM2-ES) and three RCPs. The simulated AMP 

quantiles were extracted from the disaggregated sub-hourly precipitation series related to various 

return periods using the GEV distribution as explained earlier.  

Figure 34 shows comparison between the simulated sub-hourly AMP quantiles for both GCMs 

and the corresponding theoretical quantiles obtained from the GEV distribution fitted to the 

observed (historical) AMPs for 2-year return periods. The graphs representing other return 

periods and longer durations are provided in Appendix G. In general, uncertainty in the 

projections of future extreme precipitation quantiles increases at shorter durations and for longer 

return periods. Projections are highly sensitive to the choice of GCMs and/or RCPs. This 

includes uncertainty in projecting both the sign and the magnitude of future variations (relative 

change) in extreme precipitation quantiles at different durations and/or return periods. 
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Figure 34: Uncertainty in the projections of future extreme precipitation quantiles based on two 

GCMs and three RCPs obtained from CMIP5 and quantified by using GEV shown as 95% 

confidence intervals (dashed lines) with expected quantiles (solid lines). 

 

3.5. Discussion 

 

Generally, it is observed that there are changes in fine-resolution precipitation intensities in 

future with respect to the precipitation intensities during the baseline period (i.e., historical 

intensities) for all return periods. When the expected precipitation quantiles are compared, 

HadGEM2-ES: RCP8.5 shows the highest relative change (i.e., 43%) in precipitation intensity 

for 5-min duration and 100-year return period during 2041-2070, while CanESM2: RCP2.6 

shows the highest relative change (i.e., 25%) in precipitation intensity for 45-min duration and 

100-year return period during 2011-2040. HadGEM2-ES: RCP4.5 shows the biggest relative 

decrease (11%) in precipitation intensity for 35-min duration and 100-year return period during 

2071-2100, while CanESM2: RCP4.5 shows the highest relative decrease (9%) in precipitation 

intensity for 35-min duration and 100-year return period during 2071-2100. 
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The relative changes in precipitation intensity with respect to the historical intensities and the 

uncertainty bounds in the projections of future IDF curves for the GCMs/RCPs are dependent on 

the duration, return period, and time periods. These dependencies might be useful to consider 

while selecting the design values of storms (i.e., IDF curves) for the design of urban storm water 

collection systems in the City of Saskatoon. From a practical point of view, Table 9 provides an 

overall summary of possible changes in design values of rainfall intensities in Saskatoon due to 

climate change. The projected increase in future rainfall intensities intensifies at shorter 

durations and longer return periods. Shorter duration storms are of significance to minor system 

(e.g., street drainage inlets and storm sewers) and storms of longer return periods are of 

significance to major systems (e.g., storm detention ponds) (City of Saskatoon, 2012). 

 

Table 9.  Historical and projected rainfall intensities for selected durations and return periods of 

storms in Saskatoon. Base means historical values, Min means the lowest of future projection, 

and Max is the highest value of future projections. The “bold” values represent the projected 

highest change. 

Duration 

Intensity (mm/hr) 

2-year 5-year 25-year 100-year 

Base Min Max Base Min Max Base Min Max Base Min Max 

15 min 37 35 39 57 56 64 108 105 130 183 179 241 

1-hour 14 14 16 22 22 26 47 45 58 94 85 126 

2-hour 9 9 11 14 14 17 27 26 32 46 44 56 

 

3.6. Model verification for the Stochastic rainfall disaggregation  

 

We tested the proposed stochastic disaggregation procedures in two different modes, i.e. 

uncoupled and coupled with the LARS-WG model. In the uncoupled mode, we disaggregated 

historical daily rainfall totals during the baseline period (1961-1990) into hourly time-steps using 

100 realizations of the proposed stochastic algorithm. Accordingly, we compared historical 

AMPs with the simulated envelope of AMPs during the baseline period. Figure 35 shows the 

results of this analysis for 1-hr, 3-hr, 6-hr, 12-hr, 18-hr and 24-hr rainfall durations. For each 

sub-daily duration, the simulated AMP envelope (grey area) contains the corresponding 

historical time series (black solid line). It should be noted that uncertainty bounds in the 

simulated envelopes are wider at shorter durations. For 1-hr AMPs, the simulated envelope 

might slightly overestimate extremely low AMPs (e.g., for 1-hr AMPs around 1965). The 

algorithm, however, can capture average and large AMPs during all hourly durations quite well. 
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Figure 35. Comparison between historical AMPs (black solid lines) and corresponding simulated 

AMP envelopes (grey areas) obtained based on 100 realizations using the proposed stochastic 

disaggregation algorithm. 

 

To further investigate the efficiency of the proposed stochastic disaggregation method, we 

considered a coupled experimentation, in which multiple daily LARS-WG realizations during the 

baseline period are introduced to the stochastic model and disaggregated into hourly rainfall 

profiles. Accordingly, we compared historical and simulated AMPs across various rainfall 

durations and/or return periods. Figure 36 shows the results of this experimentation, in which 

100 realizations of the historical daily rainfall based on LARS-WG are disaggregated. Each daily 

realization is disaggregated 100 times, resulting into 10,000 realizations of hourly rainfall time 

series from 1961 to 1990. For each hourly realization, we extracted 1-hr, 3-hr, 6-hr, 12-hr, 18-hr 

and 24-hr AMPs and used the GEV distribution to quantify the AMPs across various return 

periods from 2-year to 100-year. In each panel of Figure 36, the black solid line shows the 

historical extremes based on fitting the GEV distribution to the observed AMPs. These lines can 

be compared with blue and red solid lines, which show the mean and median of simulated 

ensemble extremes, respectively. Similarly, dashed black lines in each panel show the theoretical 

95% confidence intervals obtained by fitting the GEV distribution to the historical AMPs. These 

intervals can be compared with the grey envelope that represent the simulated 95% confidence 

interval obtained from the disaggregated ensemble. As it can be observed, the simulated 

envelopes overestimate theoretical lower bounds and underestimate theoretical upper bounds. 

This behavior is mainly due to the quality of LARS-WG simulations (see Figure 19) that 

propagate into shorter durations through disaggregation; nonetheless, the ensemble mean and 

median estimates match the historical extremes quite well, although they slightly overestimate 

the historical extremes during long return periods. In summary, the proposed method can 
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sufficiently reproduce the historical daily and sub-daily AMPs; and the efficiency of the 

proposed method is comparable with the KNN model. Moreover, the fully coupled stochastic 

downscaling/disaggregation framework can reproduce expected AMP qunatiles during the 

baseline period and across different durations and/or return periods. 
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Figure 36. Comparison between observed and simulated extremes during baseline period and 

their corresponding 95% confidence intervals across various hourly durations and/or return 

periods. 

 

3. 7 Future simulations of the Stochastic rainfall disaggregation 

 

We linked the stochastic disaggregation method to downscaled realizations of Saskatoon’s daily 

rainfall from 2011 to 2100 according to projections obtained from 6 GCM/RCP combinations 

considered in the course of this study. For each GCM/RCP combination, we considered 100 

daily realizations obtained from LARS-WG and disaggregated each realization 100 times. This 

resulted into 10,000 realizations of hourly rainfall from 2011 to 2100. For each sub-daily 

duration, we extracted AMPs during three future control periods, i.e. 2011-2040, 2041-2070 and 

2071-2100. We further used the GEV distributions to calculate extreme rainfalls and 

corresponding 95% confidence intervals across various hourly durations and/or return periods. 

Estimated extremes and their corresponding 95% confidence intervals were then compared with 

those obtained for the baseline period (Figure 36). Figures 37 and 38 show parts of this analysis 

for projections obtained from CanESM2 and HadGEM2-ES, respectively (see Tables H1 to H6 

in appendix H for more extended results for each GCM/RCP combination). In these figures, rows 

and columns correspond to return periods (2-yr, 10-yr and 100-yr) and future control periods 

(2011-2040, 2041-2070 and 2071-2100), respectively. In each panel, solid lines represent the 

mean of the simulated ensemble of AMPs and dashed lines correspond to 95% confidence 

intervals, derived empirically from 10000 simulations. In addition, black lines are related to 

baseline simulations and red, green, and blue lines correspond to future projections based of 

RCP2.6, RCP4.5 and RCP8.5, respectively. Considering the overall results, projections largely 

vary depending on the particular GCM/RCP combination considered. Based on the results 



66 

 

obtained from 6 GCM/RCP combinations used, it can be concluded that the extreme rainfall 

quantiles in Saskatoon are subject to change during the 21st century; however, projected changes 

in sign, magnitude, and variability of AMPs differ across sub-daily durations and/or different 

return periods, and are highly sensitive to the choice of the GCM/RCP combination. In general, 

for all considered combinations, the magnitude and variability of change in AMPs are more 

pronounced at shorter duration and longer return periods. Comparing the results obtained from 

the two GCMs, projected changes and differences between three RCPs are stronger in 

HadGEM2-ES model. 
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Figure 37. Comparison between baseline and future AMPs according to projections of CanESM2 

across various duration and return periods. 
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Figure 38. Comparison between baseline and future AMPs according to projections of 

HadGEM2-ES across various duration and return periods. 

  

Having a large ensemble for future projections can enable a detailed analysis of future rainfall 

likelihood across different sub-daily durations and/or return period, as presented earlier in this 

report. This analysis extends the analysis provided in Figures 37 and 38 and look inside the 

ensemble projections within simulated envelopes. This analysis not only reflects the differences 

in future extreme rainfalls across different GCM/RCP combinations, but also can provide a basis 

for choosing a particular design rainfall according to the risk accepted in the design and 

operation of storm water system. Here, we just compare empirical distributions of 1-hr AMPs in 

three different return periods (for complete likelihood information please refer to the 

accompanying software tool (SaskIDF)). Figures 39 and 40 show this analysis for CanESM2 and 

HadGEM2-ES, respectively. In both figures rows and columns correspond to return periods (2-

yr, 10-yr and 100-yr) and future time episodes (2011-2040, 2041-2070, and 2071-2100), 

respectively. In each panel, blue, green, and red lines correspond to RCP2.6, RCP4.5, and 

RCP8.5, respectively. While the simulated envelops can be almost similar in some corresponding 

cases, the empirical characteristics of simulated envelopes can be largely different from one-

another. Moreover, the differences across different GCMs, forced with a particular RCP, can be 

quite substantial, highlighting a large uncertainty in the future projections obtained from GCMs. 

This can reflect the need for considering the IDF curves obtained from various GCM/RCP 

combinations and analyzing the corresponding likelihood information to choose a sub-daily 

design storms based on the risk accepted in design and operation. 
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Figure 39. Comparison between future 1-hr AMPs according to projections of CanESM2 across 

three different RCPs (2.6, 4.5 and 8.5), three different control periods (2011-2040, 2041-2070 

and 2071-2100) and three different return periods (2-yr, 10-yr and 100-yr). 

 

 
Figure 40. Comparison between future 1-hr AMPs according to projections of HadGEM2-ES 

across three different RCPs (2.6, 4.5 and 8.5), three different control periods (2011-2040, 2041-

2070 and 2071-2100) and three different return periods (2-yr, 10-yr and 100-yr). 
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4. CONCLUSIONS AND RECOMMENDATIONS 

 

4.1. Conclusions 

 

The two-stage downscaling-disaggregation method is a promising approach for generating long 

records of hourly and sub-hourly precipitation and constructing a set of IDF curves for design 

purposes in Saskatoon. This approach also enabled the quantification of uncertainties due to the 

natural internal variability of precipitation, and enabled a comparison with the GP method to 

quantify uncertainty in the disaggregation methods. 

  

LARS-WG performed well in reproducing the mean daily precipitation, mean extreme daily 

precipitation, and maximum extreme daily precipitation, underestimating variability of the 

maximum extreme daily precipitation only in the month of June. Including the distributions of 

wet and dry spell lengths helped in widening the range of variabilities of extreme precipitation 

generated by LARS-WG. Compared to a historical (baseline) AMP value of 117 mm/day for a 

100-year storm, a maximum value of 144 mm/day was projected for the 2011-2040 period with 

CanESM2 and RCP2.6. 

 

For the K-NN method of disaggregation, optimum window sizes for hourly and sub-hourly 

disaggregation models were found to be 7 days and 113 hours, respectively. Based on the sub-

hourly precipitation series, it was found that variations in the future extreme precipitation 

quantiles, as represented by the IDF curves, are more significant at shorter durations and for 

larger return periods when compared to historical IDF curves. The variations in future extreme 

precipitation quantiles seem to intensify toward the end of the 21st century. The sign and the 

magnitude of variations in future extreme precipitation quantiles at different durations and/or 

return periods are highly sensitive to the selection of GCMs and/or RCPs. 

  

A 15-minute storm with historical precipitation intensities of 37 mm/hr and 183 mm/hr for 2-

year and 100-year return periods, respectively, is projected to intensify to values of 39 mm/hr 

and 241 mm/hr. The same for a 1-hour storm are projected to increase to 16 mm/hr and 126 

mm/hr from historical values of 14 mm/hr and 94 mm/hr for the 2-year and 100-year return 

periods, respectively. The intensification is apparently more pronounced for shorter durations 

and longer return period storms. 

  

In general, uncertainty in the projections of future extreme precipitation quantiles increases at 

shorter durations and for longer return periods. Compared to an intensity of 265 mm/hr for a 5-

minute historical storm with a 100-year return period, an intensity of 317 mm/hr was projected 

for the 2011-2040 period with CanESM2 and RCP2.6, while an intensity of 275 mm/hr was 

projected for the same period with HadGEM2-ES and RCP2.6. During 2041-2070, the same 

return period storm is projected to intensify to values of 281 mm/hr and 381 mm/hr by RCP4.5 

and RCP8.5, respectively, based on HadGEM2-ES. Compared to a 1-hr storm with a historical 

precipitation intensity of 84 mm/hr for a 100-year return period, an intensity of 84.6 mm/hr was 

projected for 2071-2100 with HadGEM2-ES and RCP2.6 using a GP-based downscaling 

method, while an intensity of 140 mm/hr was projected for the same period with the same 

GCM/RCP using the LARS-WG and K-NN-based downscaling-disaggregation method. 
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The contribution of internal precipitation variability, represented by 1000 realizations using 

LARS-WG, to the uncertainty of AMP values should be taken into account and understood 

carefully. These realizations provide a wider uncertainty in future projections than other sources 

of uncertainty. However, a similar wide range of variability in the constructed IDF curves was 

produced during the baseline (historical) period; therefore, the uncertainty cannot be attributed to 

possible climate change. If such variability was always present, and the historical IDF curves 

were successfully employed, it is logical to consider this source of projected future variability as 

a source of additional information. Thus, the mean of the realizations can be considered for 

representation of the IDF curves; this is the approach adopted in this study for assessing future 

values of AMPs. 

 

4.2. Limitations of the study 

 

The assumptions and limitations of the current study are as follows. 

 The development of the K-NN sub-hourly disaggregation model used only 14 years of 5-

minute precipitation data, which might not be optimum for model calibration and 

validation. This was due to the data recorded over a limited time period (1992-2009 with 

some missing years). 

 Out of eight rain gauges in Saskatoon, only sub-hourly precipitation from the Acadia 

Reservoir rain gauge was considered in this study. This might not adequately represent 

the spatial variability in precipitation throughout the city; thus caution should be 

exercised in deciding on design criteria for urban storm water collection systems based 

on the variations observed in the future IDF curves in this study. However, the 

precipitation, when available, from any rain gauge can easily be included in the two-stage 

downscaling-disaggregation method adopted in this research. The general method 

adopted in this study can be applied to any rain gauge in the city considering any other 

GCM/RCP for constructing multiple sets of future IDF curves in order to produce a wider 

range of variations for future extreme precipitation quantiles in Saskatoon.  

 Two GCMs (the Canadian CanESM2 and the British HadGEM2-ES) were considered in 

this study, assuming that the two GCMs and the corresponding six RCPs (RCP2.6, 

RCP4.5, and RCP8.5) with multiple realizations would cover a wide range of variability, 

which was assumed to be sufficient to investigate the adopted two-stage modeling 

approach. However, the two-stage modeling approach adopted in this research can be 

implemented using other multiple GCMs. 

 Only LARS-WG was adopted as a downscaling technique. Other downscaling 

approaches, as presented earlier, can be used for better quantification of uncertainty due 

to the downscaling process. 

 

4.3. Recommendations 

 

For improving the results of the research conducted in this study and for gaining more 

confidence in its recommendations, it is recommended that the current study be extended in the 

following ways: 

 Inclusion of several other Global Climate Models (GCMs) available through PCMDI 

under CMIP5 to better understand the impact of climate change on the IDF curves in the 

City of Saskatoon, with better estimation of uncertainty due to GCMs using a multi-
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model ensemble. This is not difficult, given the framework already developed in this 

study. 

 Improvement in the collection of fine-resolution precipitation data at various gauges of 

the city should be done by performing quality check of the data, followed by spatial 

analysis to construct a representative precipitation record of fine temporal resolution. 

 The study may consider dynamical downscaling methods using multiple RCMs, and 

comparing the results with the statistical downscaling methods adopted in this study. 

 There is a body of literature (Westra et al., 2014) suggesting that intensification of sub-

daily extreme rainfall intensities occurs as a result of an increase in atmospheric 

temperature. With global warming in the northern hemisphere, it is recommended to 

investigate the rate of temperature increase in the Canadian prairies under climate 

change, and the empirical evidence of a relationship between increasing temperatures and 

extreme sub-daily rainfall intensities. 
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Appendix A 

 

Figure A.1: Comparison of the observed globally and annually averaged CO2 concentration, 

temperature anomaly, and mean sea level rise and those under the projections of climate change 

scenarios obtained from various IPCC assessment reports (e.g., AR4, AR5) (Source: IPCC Fifth 

Assessment Report, Climate Change 2013 with permission).    
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Figure A.2: Temperature increase obtained for SRES emission scenarios and RCPs based on 

CMIP3 and CMIP5 climate model simulations, respectively (Source:  Rogelj et al., 2012 with 

permission).   
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Appendix B 

B.1 Steps involved in LARS-WG 

Simulation of multiple realizations of daily precipitation using LARS-WG involves a 

number of steps as briefly described below. 

(i) Site Analysis 

The stochastic weather generation process in LARS-WG starts with Site Analysis in order 

to generate daily precipitation time series. It is necessary to update the information for Saskatoon 

in Site Analysis by specifying the local station name (e.g., Saskatoon), latitude, longitude, 

altitude, path of the folder where precipitation files are located, and format of the precipitation 

data files (as shown in Figure B.1).  

 

Figure B.1: Updated Site Analysis file for Saskatoon  

Site Analysis is performed when the file is updated using the Site Analysis option in LARS-WG, 

which produces three files namely a parameter file (Saskatoon.wgx), a statistics file 

(Saskatoon.stx), and a test file (Saskatoon.tst). LARS-WG uses the parameters located in the 

parameter file for generating synthetic precipitation time series, while the seasonal frequency 

distributions for wet/dry spell lengths and precipitation series are located in the statistics file. The 

statistical characteristics of the observed data and simulated data are compared and the results of 

comparison are located in the test file (Table B.1), where the simulated data are generated using 

the parameter files of the observed data. Among the important statistics, the test file contains test 

statistics (KS-, t-, and f-statistics) with the corresponding p-values, average wet/dry spell lengths 

for each month, and mean monthly precipitation amounts for each month. The statistics are used 

to assess the performance of LARS-WG by evaluating the corresponding p-values – evaluating if 

the observed and simulated data belong to the same distribution, i.e., the simulated precipitation 

is not significantly different from the observed data.  
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(ii) Generation of scenario files 

Scenario files are required in LARS-WG for determining the perturbation rule of the weather 

generator parameters located in the parameter files. In case of generating synthetic 

precipitation series based on the parameters calculated from the observed precipitation data, 

no perturbation of the parameter values is applied so that the statistical characteristics of the 

simulated and observed precipitation series remain the same. However, relative change 

factors (RCFs) are calculated corresponding to the mean monthly precipitation amounts, and 

wet and dry spell lengths for each month, which are then included in the scenario file for 

generating future precipitation time series of arbitrary length under climate change scenarios 

by perturbing the parameter values obtained from the observed data. An example of a 

scenario file of LARS-WG is shown in Figure B.2. For detailed explanation of LARS-WG 

weather generation procedures, please refer to Semenov and Barrow (2002). 

 

 

Figure B.2: Scenario file used in LARS-WG for the perturbation of parameter values obtained 

from the observed data 
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Table B.1: Relative change factors for CanESM2 during 2041-2070.   

 Mean monthly precipitation Wet spell length Dry spell length 

Month RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 

Jan 1.13 1.09 1.29 1.05 1.01 0.99 0.80 0.91 0.94 

Feb 0.96 0.84 1.13 1.01 1.12 1.11 0.86 0.99 0.84 

Mar 1.61 1.55 2.02 1.34 1.30 1.54 0.97 0.88 0.77 

Apr 1.64 1.90 1.38 1.11 1.27 1.21 0.78 0.81 0.90 

May 1.01 1.40 1.37 0.95 0.93 1.00 0.97 1.01 0.82 

Jun 1.00 0.78 1.14 0.93 0.94 0.89 1.07 1.00 0.88 

Jul 0.98 0.84 0.81 1.14 0.93 0.96 0.99 1.23 1.15 

Aug 1.22 0.98 1.30 1.07 0.92 0.96 0.90 0.93 0.79 

Sep 0.80 1.12 0.99 1.07 1.03 1.07 0.94 0.90 0.87 

Oct 1.48 1.58 1.84 1.33 1.23 1.40 0.78 0.78 0.91 

Nov 0.90 1.22 1.38 1.27 1.28 1.27 1.01 0.98 0.91 

Dec 1.37 1.47 1.20 1.29 1.27 1.45 0.95 0.80 0.91 

          

 

 

Table B.2: Relative change factors for CanESM2 during 2071-2100.   

 Mean monthly precipitation Wet spell length Dry spell length 

Month RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 

Jan 0.93 1.03 1.29 1.05 1.10 1.28 0.91 1.01 0.92 

Feb 0.96 1.16 1.23 0.99 1.04 1.25 0.93 0.87 0.78 

Mar 1.99 2.13 2.12 1.41 1.43 1.81 0.92 0.91 0.79 

Apr 1.89 1.87 1.64 1.06 1.21 1.10 0.79 0.81 0.73 

May 0.97 1.21 1.50 0.94 0.96 0.99 0.86 1.00 0.71 

Jun 1.22 1.04 0.87 1.07 0.96 0.77 0.92 0.93 1.14 

Jul 0.90 0.78 0.69 1.18 0.89 0.84 1.13 1.23 1.49 

Aug 0.94 1.05 1.29 1.08 0.99 1.09 0.82 0.91 0.78 

Sep 0.98 0.97 0.94 1.10 1.04 1.05 0.97 0.88 0.91 

Oct 1.26 1.61 2.45 1.31 1.37 1.95 0.82 0.81 0.85 

Nov 0.81 1.37 1.39 1.27 1.37 1.30 1.00 0.95 0.79 

Dec 1.31 1.51 1.02 1.09 1.11 1.25 0.92 0.91 0.90 
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Table B.3: Relative change factors for HadGEM2-ES during 2011-2040.   

 Mean monthly precipitation Wet spell length Dry spell length 

Month RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 

Jan 1.24 1.01 1.37 1.05 0.72 1.04 1.10 0.90 0.88 

Feb 1.17 1.06 1.13 0.76 1.06 0.94 0.90 0.87 0.94 

Mar 1.17 1.00 1.09 0.90 0.58 0.81 1.18 1.20 1.29 

Apr 1.48 1.05 1.36 0.96 0.85 0.88 0.93 1.17 1.07 

May 0.97 1.03 0.79 0.82 0.89 0.91 1.28 1.22 1.40 

Jun 0.74 0.98 1.00 0.76 0.88 0.78 1.01 0.93 0.74 

Jul 0.91 0.92 1.24 0.81 0.81 1.00 1.01 1.04 0.94 

Aug 0.82 0.90 1.00 0.94 1.20 1.20 1.13 1.20 1.11 

Sep 1.46 1.26 1.68 0.97 0.97 1.11 1.08 0.88 1.03 

Oct 1.48 1.02 1.29 1.01 0.79 1.07 0.98 1.04 1.30 

Nov 1.01 0.83 1.08 1.02 0.82 1.07 0.98 1.03 1.10 

Dec 1.08 1.11 1.14 1.00 1.19 0.88 0.94 1.17 1.01 

          

 

 

Table B.4: Relative change factors for HadGEM2-ES during 2041-2070.   

 Mean monthly precipitation Wet spell length Dry spell length 

Month RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 

Jan 1.11 1.07 1.13 0.94 1.13 0.97 0.86 0.81 1.06 

Feb 0.96 1.04 1.37 0.82 1.20 1.39 0.98 0.94 0.89 

Mar 1.37 1.47 1.62 0.80 0.95 0.86 1.17 1.27 1.57 

Apr 1.31 1.47 1.66 1.06 1.18 1.18 0.95 0.98 1.14 

May 1.19 1.19 1.47 0.83 0.95 0.87 1.26 1.12 1.17 

Jun 0.96 0.98 1.10 0.78 0.81 0.77 0.99 0.83 0.93 

Jul 1.06 0.84 0.76 0.84 0.79 0.75 1.03 1.03 1.05 

Aug 1.00 0.78 0.85 0.95 0.93 0.94 1.05 1.20 1.27 

Sep 1.48 1.08 1.63 0.89 0.80 0.99 1.00 1.29 1.11 

Oct 1.46 1.57 1.05 1.08 1.13 0.89 1.09 1.04 1.19 

Nov 1.19 1.35 1.21 0.93 0.81 1.13 1.06 0.94 0.84 

Dec 1.13 1.05 1.18 1.31 0.97 1.51 0.84 1.08 0.86 

          

 

 

 

 

 

 

 



89 

 

Table B.5: Relative change factors for HadGEM2-ES during 2071-2100.   

 Mean monthly precipitation Wet spell length Dry spell length 

Month RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 

Jan 1.24 1.33 1.06 1.04 0.87 0.76 0.87 1.10 0.75 

Feb 1.12 1.21 1.36 0.87 1.09 0.61 0.90 0.96 0.94 

Mar 1.00 1.22 1.59 0.98 0.55 0.59 1.11 1.49 1.19 

Apr 1.40 1.55 1.63 0.84 0.82 1.07 1.13 1.22 1.07 

May 1.14 1.21 0.84 0.90 0.75 0.52 1.12 1.07 1.38 

Jun 1.17 0.89 0.94 0.85 0.70 0.62 0.83 1.01 0.96 

Jul 1.01 0.68 0.60 0.73 0.80 0.64 0.89 1.01 1.11 

Aug 0.76 0.95 0.63 1.07 1.00 0.89 1.15 1.08 1.19 

Sep 1.62 0.99 1.12 1.09 0.78 0.93 0.96 1.13 0.98 

Oct 1.47 1.22 1.74 0.99 0.81 0.86 1.13 1.21 1.06 

Nov 1.05 1.45 1.41 1.26 1.13 1.17 0.90 0.96 0.90 

Dec 1.08 1.22 1.30 1.08 1.11 1.18 0.86 1.02 1.10 
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Figure B.3: Variations in the future projections of daily AMP quantiles in the City of Saskatoon 

according to HadGEM2-ES forced with three RCPs using two sets of change factors: with 

wet/dry spell (blue) and without wet/dry spell (red) effects. The expected quantiles (solid lines) 

and their 95% confidence intervals (dashed lines) are shown with the corresponding quantiles 

during the baseline period (black). 
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Figure B.4: Variations in the future projections of daily expected quantiles for 100-year return 

period in the City of Saskatoon according to CanESM2 and HadGEM2-ES forced with three 

RCPs using two sets of change factors, i.e. with wet/dry spell and without wet/dry spell effects 

along with the corresponding daily expected quantiles during the baseline. 
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Appendix C 

An attempt was made in this study to investigate the homogeneity of sub-hourly rainfall data 

recorded at four rain-gauges in the City of Saskatoon during the period 1992-2009 with missing 

records during 2002-2004. An attempt was also made to identify the representative rain gauge 

for the City of Saskatoon by evaluating the consistency between the rain gauges with comparison 

to the Environment Canada (EC) daily rainfall data during the same period.  

 

C.1 Double mass curve analysis 

Analysis of double mass curves was conducted for each of the four rain gauges to investigate the 

homogeneity of rainfall records over the period of operation. The double mass curves of the four 

rain gauges against EC measurement station show some fluctuations in the corresponding slopes. 

There are more fluctuations in slopes of the City Hall, the Diefenbaker Fire Hall (i.e., 

Diefenbaker), and the Warman Fire Hall (i.e., Warman) stations than that of the Acadia 

Reservoir rain gauge (i.e., Acadia). The slope of the Acadia record suggests that this gauge 

record might be more consistent with the EC data and thus, it might represent a reliable sub-

hourly data series for the City of Saskatoon. Other rain gauges, i.e., City Hall, Diefenbaker, and 

Warman contain substantial missing data in their records, which is approximately 19% each, 

whereas Acadia gauge has 11% missing data during the period of sub-hourly rainfall record. The 

amount of missing data seems to affect the fluctuations in the slopes of the corresponding rain 

gauges. The comparison of double mass curves among the rain gauges in Figure C.1 shows that 

Diefenbaker and Warman gauges might be consistent in recording sub-hourly rainfall, while no 

other two rain gauges seem to demonstrate such consistency. Examination of Figure C.1 reveals 

that the Acadia gauge seems to keep consistency with EC rainfall record in the early few years, 

and later deviated from that trend during the last few years due to underestimation. On the other 

hand, the remaining three rain gauges seem to underestimate the EC rainfall values except in 

1992 and part of 1993.           
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Figure C.1: Double mass curve of cumulative rainfall (mm) 

 

C.2 Efficiency of rain-gauges as compared to EC records    

The rain gauges seem to underestimate the annual total rainfall of EC in most of the years except 

in 1993, 1994, 2006 and 2007 where Acadia overestimated the EC annual total rainfall (Figure 

C.2). Overall, Acadia seems to estimate the annual total EC values better than the other rain 

gauges in most of the years, although some of the rain gauges estimate EC annual total rainfall 

quite closely in some years.      
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Figure C.2: Annual rainfall obtained from EC daily and Saskatoon’s rain gauge sub-hourly 

rainfall data. 

 

C.3 Tukey’s multiple comparison test  

The differences of mean between Diefenbaker-Acadia (D-A) and Warman-Acadia (W-A) rain-

gauges are significant at 10% significance level, since the p-values are less than 0.10. Also the 

differences of mean between Environment Canada-Diefenbaker (E-D) and Warman-

Environment Canada (W-E) are significant at 10% significance level since the p-values are less 

than 0.10  in Table C.1.  Figure C.3 shows that the differences in mean levels for C-A, E-C, D-C, 

W-C and W-D rain gauges includes the zero-line within their intervals and so, the differences 

may become zero anytime leading to a non-significant difference between two means at 10% 

significance level. But the differences in the results between Diefenbaker and Acadia; and 

Warman and Acadia are comparatively large with the highest difference between Warman and 

Acadia (W and A) rain gauges. As compared to EC data, the differences in the mean between EC 

and Diefenbaker; and EC and Warman are comparatively large with the highest difference 

occurs between Warman and EC (W and EC) rain gauges. Overall, Acadia has the lowest 

difference in the mean in comparison to EC, which is also suggested by the corresponding p-

value (i.e. p-value>>0.10).  
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Table C.1: Results of Tukey’s test for comparison between differences in multiple means 

Stations 
Difference 

in mean 

Lower 

limit 

Upper 

limit 
p-value 

City Hall-Acadia -0.209 -0.542 0.123 0.529 

Diefenbaker-Acadia -0.346 -0.678 -0.014 0.077 

Environment Canada-Acadia 0.075 -0.257 0.408 0.981 

Warman-Acadia -0.386 -0.719 -0.054 0.034 

Diefenbaker-City Hall -0.137 -0.469 0.195 0.850 

Environment Canada -City Hall 0.285 -0.047 0.617 0.216 

Warman-City Hall -0.177 -0.509 0.155 0.685 

Environment Canada-Diefenbaker 0.422 0.089 0.754 0.016 

Warman-Diefenbaker -0.040 -0.372 0.292 0.100 

Warman- Environment Canada -0.462 -0.794 -0.129 0.006 

 

 

Figure C.3: Differences in mean rainfall between the rain-gauges and EC station 

C.4 Extreme rainfall of the City rain gauges 

The extreme rainfall can be analyzed by the identification of annual maximum rainfall of various 

temporal resolutions at the four rain gauges in Saskatoon.  The annual maximum rainfall of 

different temporal resolutions (i.e., daily, 1-hour, 15-min, and 5-min) at each of the four rain 

gauges and the EC’s daily rainfall at Diefenbaker Airport Station were used to compare the 
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variability in the extreme rainfall (Figure C.4). It is apparent from the previous results shown in 

Figures C.1 to C.3 that Acadia rain gauge is more consistent with the EC daily rainfall data than 

other rain gauges in the city. However, the remaining three rain gauges seem to perform quite 

similar to Acadia in terms of median and inter-quartile ranges of the corresponding extreme 

rainfall values. The median and inter-quartile ranges of the rain gauges fall within the inter-

quartile range of the EC station in case of daily rainfall. The medians of extreme rainfall values 

at the rain gauges were not significantly different from each other in cases of other temporal 

resolutions. The annual maximum rainfall of 5-minute resolution at Acadia rain gauge shows 

quite similar variability as that of other rain gauges. However, the annual maximum rainfall of 

other temporal resolutions at Acadia rain gauge shows more variability than those of other rain 

gauges.      
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Figure C.4: Annual maximum rainfall of different temporal resolutions at the city rain gauges; A: 

EC: Environment Canada, Acadia, C: City hall, D: Diefenbaker, and W: Warman 

 

The analysis of double mass curve and other performance evaluation criteria show that the 

Acadia rain gauge might be more reliable showing higher consistency with EC data having mean 

value, which is not significantly different from the EC mean rainfall value. Therefore, the sub-

hourly rainfall data from Acadia rain gauge was considered for the hydrological study in the City 

of Saskatoon. 
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Appendix D 

 

Table D.1: Internal parameters used in the GP search for extracting equations representing the 

relationships between the AMPs at the GCM (CanESM2 and HadGEM2) and the local scales 

GP parameter Type of parameter Value  

Inicmaxlevel Variable parameters  

(internal settings) 

19, 20 

Dynamiclevel 24, 25, 26 

Realmaxlevel 30, 32, 35 

Minprob 0.025, 0.08 

Mathematical operations Fixed parameters {+, -, x, /, exp(x), x2} 

Terminal 24 

 

Table D.2: Internal parameters used in the GP search for extracting equations representing the 

relationships between the AMPs at the GCM (CGCM3.1) and the local scales 

GP parameter Type of parameter Value  

Inicmaxlevel Variable parameters  

(internal settings) 

17, 18 

Dynamiclevel 23, 24 

Realmaxlevel 29, 30 

Minprob 0.025, 0.08 

Mathematical operations Fixed parameters {+, -, x, /, exp(x), x2} 

Terminal 24 
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Table D.3: Equations extracted from GP based on CanESM2 and their performance statistics for training, validation and testing data sets  

Duration    

(h) 

Equations Training Validation Testing 

RMSE R MB MARE RMSE R MB MARE RMSE R MB MARE 

1 QLocal(x)=(QGCM(x)-24/QGCM(x)2-2)(23-QGCM(x)/exp(QGCM(x)/24)+QGCM(x)/8) 24.49 1.00 -5.78 0.02 16.00 1.00 -6.61 0.02 103.66 0.96 7.93 0.07 

2 QLocal(x)=QGCM(x)2/24+(36QGCM(x)+11QGCM(x)2)/(QGCM(x)+12)+24 9.36 1.00 1.74 0.01 5.25 1.00 1.82 0.01 52.71 0.97 8.08 0.07 

3 QLocal(x)=10QGCM(x)+exp(24/QGCM(x))-48 3.40 1.00 -0.69 0.01 2.55 1.00 -0.64 0.01 30.85 0.97 2.14 0.07 

4 QLocal(x)=119QGCM(x)/24+2.7183QGCM(x)-exp(24/QGCM(x))-24 3.24 1.00 0.56 0.01 2.48 1.00 0.51 0.01 24.06 0.98 2.81 0.08 

5 QLocal(x)=145QGCM(x)/24-QGCM(x)2/288-exp(24/QGCM(x)+1) 3.05 1.00 -0.27 0.02 2.93 1.00 -0.35 0.02 20.94 0.97 1.42 0.08 

6 QLocal(x)=31QGCM(x)/6-QGCM(x)2/192-exp(24/QGCM(x))-1) 4.57 1.00 -0.38 0.04 4.53 1.00 -0.61 0.04 17.69 0.97 0.93 0.09 

7 QLocal(x)=4QGCM(x)-exp(QGCM(x)/24)/QGCM(x)+576/QGCM(x)exp(24/(exp(exp(QGCM(x)/24)))) 6.57 0.99 1.18 0.05 6.34 0.99 0.95 0.05 15.93 0.97 2.26 0.10 

8 QLocal(x)=576/QGCM(x)2+3QGCM(x)-576/QGCM(x)-exp(QGCM(x)/24)/QGCM(x)+46 3.81 1.00 0.13 0.01 3.47 1.00 0.03 0.02 14.35 0.96 1.21 0.10 

9 QLocal(x)=3QGCM(x)+24QGCM(x)2/(QGCM(x)2+576)+(24QGCM(x)-QGCM(x)2)/(576-QGCM(x)) 3.24 1.00 0.99 0.03 3.21 1.00 0.84 0.03 13.76 0.96 1.89 0.09 

10 QLocal(x)=3QGCM(x)+QGCM(x)2/24exp(QGCM(x)/24)+QGCM(x)/24-QGCM(x)2/288 2.35 1.00 -0.90 0.03 2.35 1.00 -1.00 0.03 12.29 0.96 -0.22 0.08 

11 QLocal(x)=25QGCM(x)/12-QGCM(x)2/576+exp(24/QGCM(x))-576/QGCM(x)+47 2.08 1.00 0.83 0.02 1.93 1.00 0.80 0.02 12.01 0.95 1.46 0.08 

12 QLocal(x)=2QGCM(x)-QGCM(x)2/288-552/QGCM(x)+47 2.72 1.00 1.72 0.04 2.71 1.00 1.75 0.04 11.18 0.94 2.15 0.10 

13 QLocal(x)=29QGCM(x)/24+(QGCM(x)2+48QGCM(x))/(QGCM(x)+24+exp(QGCM(x)/24)) 3.40 0.99 0.86 0.05 3.31 0.99 0.69 0.06 9.43 0.96 1.12 0.08 

14 QLocal(x)=QGCM(x)+24exp(1-24/QGCM(x))+24QGCM(x)2/(576+QGCM(x)2)+2.7183 1.30 1.00 -0.07 0.01 0.86 1.00 -0.07 0.01 8.95 0.94 0.16 0.09 

15 QLocal(x)=(576-QGCM(x)2/12-3QGCM(x))/(exp(exp(24/QGCM(x)))+24)+2QGCM(x) 1.50 1.00 0.66 0.02 1.57 1.00 0.68 0.03 9.16 0.94 1.08 0.10 

16 QLocal(x)=(QGCM(x)-8)(48-QGCM(x)+1152/QGCM(x))/192+2QGCM(x) 2.03 1.00 0.50 0.03 2.02 1.00 0.40 0.03 7.89 0.95 0.83 0.08 

17 QLocal(x)=(48-QGCM(x)+24/QGCM(x))/exp(48/QGCM(x))+24/(exp(24/QGCM(x))+QGCM(x))+2QGCM(x) 0.99 1.00 -0.02 0.01 0.82 1.00 -0.03 0.01 7.18 0.95 0.27 0.07 

18 QLocal(x)=(24QGCM(x)-576)/(exp(QGCM(x)/24)+24)+25QGCM(x)/24-24/QGCM(x)+25 1.37 1.00 0.58 0.02 1.49 1.00 0.60 0.02 6.44 0.96 0.71 0.02 

19 QLocal(x)=((6912+48QGCM(x)3)/QGCM(x))/(QGCM(x)2+576)+QGCM(x) 0.75 1.00 0.05 0.01 0.68 1.00 0.09 0.01 6.64 0.95 0.27 0.07 

20 QLocal(x)=23QGCM(x)/24+331776QGCM(x)/(25QGCM(x)2+576QGCM(x)+331776) 0.82 1.00 0.02 0.02 0.80 1.00 -0.01 0.02 5.96 0.96 0.24 0.07 

21 QLocal(x)=48/exp(24/QGCM(x))+exp(1-QGCM(x)4exp(QGCM(x)/24-24))+QGCM(x) 0.74 1.00 -0.31 0.01 0.46 1.00 -0.30 0.01 6.24 0.95 -0.04 0.07 

22 QLocal(x)=QGCM(x)-exp(24/QGCM(x))-exp(2QGCM(x)/(QGCM(x)+24))+(24QGCM(x)-576)/(24+QGCM(x))+24 1.41 1.00 0.09 0.02 1.19 1.00 0.09 0.02 6.11 0.95 0.39 0.06 

23 QLocal(x)=(48-(96QGCM(x)-576)/(576-QGCM(x)))/exp(24/QGCM(x))+QGCM(x) 0.55 1.00 0.45 0.01 0.57 1.00 0.46 0.01 5.76 0.95 0.65 0.07 

24 QLocal(x)=24QGCM(x)/(exp(exp(QGCM(x)/576))(exp(QGCM(x)/24+1)+24))+QGCM(x)+24/exp(24/QGCM(x)) 1.30 1.00 -0.30 0.01 0.79 1.00 -0.29 0.01 5.19 0.95 -0.08 0.07 

Units of RMSE and MB are mm/day. 
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Table D.4: Equations extracted from GP based on HadGEM2-ES and their performance statistics for training, validation and testing data sets  

Duration    

(h) 

Equations Training Validation Testing 

RMSE R MB MARE RMSE R MB MARE RMSE R MB MARE 

1 QLocal(x)=3QGCM(x)+QGCM(x)exp(1+QGCM(x)/24)-exp(49QGCM(x)/576)+73 28.85 1.00 3.93 0.01 24.36 1.00 3.58 0.01 1112.32 0.94 11.78 0.07 

2 QLocal(x)=QGCM(x)3/288+4QGCM(x)-48/QGCM(x)+72 9.32 1.00 -1.61 0.03 6.41 1.00 -2.07 0.03 46.48 0.97 1.06 0.08 

3 QLocal(x)=71QGCM(x)/12+23QGCM(x)3/13824+1 1.53 1.00 0.56 0.01 1.39 1.00 0.57 0.01 28.09 0.97 1.82 0.06 

4 QLocal(x)=48QGCM(x)2/(552-2QGCM(x)-7.3891)+2QGCM(x)+31.3891 4.03 1.00 -1.05 0.03 4.03 1.00 -1.23 0.03 16.68 0.98 -0.35 0.06 

5 QLocal(x)=QGCM(x)2/12+(QGCM(x)-24)/exp(QGCM(x)/12)+QGCM(x)/exp(8/(QGCM(x)+8))+QGCM(x)+24 2.02 1.00 0.84 0.01 1.43 1.00 0.81 0.01 14.38 0.98 1.26 0.06 

6 QLocal(x)=(27QGCM(x)+exp(QGCM(x)/24)+600)(QGCM(x)+1)./576+2QGCM(x) 1.17 1.00 0.23 0.01 0.93 1.00 0.25 0.01 13.82 0.98 0.55 0.08 

7 QLocal(x)=(21QGCM(x)2+1632QGCM(x)+1152)./576 0.59 1.00 0.19 0.00 0.44 1.00 0.18 0.00 12.83 0.97 0.48 0.08 

8 QLocal(x)=QGCM(x)2/(48-QGCM(x)2/(1152-QGCM(x)))+71QGCM(x)/24 0.61 1.00 -0.20 0.01 0.64 1.00 -0.17 0.01 11.78 0.97 0.13 0.08 

9 QLocal(x)=QGCM(x)2/48+2.5QGCM(x)+exp(1-QGCM(x)/24)+exp(QGCM(x)/24)/24+exp(QGCM(x)/24) 0.34 1.00 -0.05 0.00 0.31 1.00 -0.03 0.00 10.24 0.97 0.28 0.08 

10 QLocal(x)=(QGCM(x)-2.7138)(QGCM(x)-24)/48+70QGCM(x)/24 1.14 1.00 0.36 0.01 1.03 1.00 0.40 0.01 9.11 0.97 0.57 0.07 

11 QLocal(x)=3QGCM(x)+(23QGCM(x)2+QGCM(x)3)/13824-24/exp(exp(24/QGCM(x)2)) 1.41 1.00 0.61 0.02 1.43 1.00 0.68 0.02 8.76 0.97 0.80 0.08 

12 QLocal(x)=3QGCM(x)-24QGCM(x)/(exp(QGCM(x)/12)+2QGCM(x)-24+576/QGCM(x)) 1.30 1.00 -0.14 0.01 1.09 1.00 -0.11 0.01 8.00 0.97 -0.11 0.07 

13 QLocal(x)=(QGCM(x)2-QGCM(x)exp(1/(24-exp(QGCM(x)/24))))/(QGCM(x)+24)+45QGCM(x)/23 0.81 1.00 0.03 0.01 0.73 1.00 0.06 0.01 7.62 0.97 0.04 0.07 

14 QLocal(x)=69QGCM(x)/24+24/exp(QGCM(x)/24)-23 0.72 1.00 0.24 0.01 0.74 1.00 0.25 0.01 6.74 0.97 0.23 0.07 

15 QLocal(x)=QGCM(x)2/144+2QGCM(x)+1/exp(QGCM(x)/12) 0.21 1.00 0.05 0.00 0.20 1.00 0.06 0.00 7.24 0.96 0.10 0.07 

16 QLocal(x)=1-((5QGCM(x)-24)(24-QGCM(x)))/576+exp(QGCM(x)/24)/24+2QGCM(x) 0.22 1.00 0.11 0.00 0.22 1.00 0.12 0.00 7.04 0.96 0.19 0.07 

17 QLocal(x)=((3QGCM(x)-96)(exp(QGCM(x)/24)+2QGCM(x)-24))/576+2QGCM(x) 0.37 1.00 -0.17 0.01 0.32 1.00 -0.15 0.01 5.98 0.97 -0.09 0.06 

18 QLocal(x)=45QGCM(x)/24-QGCM(x)(24-QGCM(x))(24+QGCM(x))/13824 0.95 1.00 -0.03 0.01 0.97 1.00 0.00 0.01 5.74 0.97 0.03 0.05 

19 QLocal(x)=727.4067QGCM(x)/(387.7032-QGCM(x))-121QGCM(x)/576 1.26 1.00 -0.18 0.02 1.20 1.00 -0.12 0.02 5.48 0.96 -0.15 0.06 

20 QLocal(x)=25QGCM(x)/24+QGCM(x)2/1152+(QGCM(x)3/72+24QGCM(x))/(QGCM(x)+24)-1 0.55 1.00 0.29 0.01 0.55 1.00 0.30 0.10 5.19 0.97 0.33 0.06 

21 QLocal(x)=(QGCM(x)exp(QGCM(x)/24)-24QGCM(x))/(0.5QGCM(x)+47.9765)+2QGCM(x) 1.04 1.00 -0.15 0.02 1.08 1.00 -0.10 0.02 5.48 0.96 -0.90 0.06 

22 QLocal(x)=0.5exp(1+QGCM(x)/24-576/(QGCM(x)2+24QGCM(x)))+1.5QGCM(x)-0.25 0.99 1.00 -0.11 0.02 0.98 1.00 -0.06 0.02 5.27 0.96 -0.03 0.06 

23 QLocal(x)=2QGCM(x)-(QGCM(x)-21.28)/(exp(QGCM(x)/24)+24/QGCM(x))-

24QGCM(x)/(exp(QGCM(x)/24)+24+QGCM(x)) 

0.77 1.00 0.02 0.00 0.61 1.00 0.02 0.00 4.75 0.96 0.00 0.06 

24 QLocal(x)=(2QGCM(x)3-4QGCM(x)2+192QGCM(x))/(QGCM(x)2+120QGCM(x)-576)+QGCM(x) 1.01 1.00 -0.03 0.02 0.99 1.00 0.00 0.02 4.50 0.96 -0.02 0.06 

Units of RMSE and MB are mm/day. 
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Table D.5: Equations extracted from GP based on CGCM3.1 and their performance statistics for training, validation and testing data sets  

Duration    

(h) 

Equations Training Validation Testing 

RMSE R MB MARE RMSE R MB MARE RMSE R MB MARE 

1 QLocal(x)=0.31482QGCM(x)2+0.31482QGCM(x)exp(QGCM(x)/24-exp(24/QGCM(x)))+96 57.35 0.99 -4.84 0.10 54.84 1.00 -2.71 0.10 75.38 0.97 1.70 0.16 

2 QLocal(x)=QGCM(x)2/6+0.90558/exp(-0.03773(24+QGCM(x)))+83.36069 23.23 0.99 3.10 0.07 21.78 1.00 3.19 0.07 42.79 0.97 7.07 0.12 

3 QLocal(x)=QGCM(x)2/12+2QGCM(x)+24/QGCM(x)+exp(QGCM(x)/24)+50 5.41 1.00 0.95 0.02 5.14 1.00 0.93 0.02 34.59 0.96 3.09 0.11 

4 QLocal(x)=(QGCM(x)+24)2/24+QGCM(x)+QGCM(x)/8+exp(QGCM(x)/24) 3.32 1.00 0.13 0.00 2.21 1.00 0.25 0.00 31.11 0.95 1.42 0.11 

5 QLocal(x)=24/(QGCM(x)/24+24/QGCM(x))+25QGCM(x)/24+24+QGCM(x)(24+QGCM(x))/24 2.75 1.00 -1.01 0.02 2.84 1.00 -1.15 0.02 25.25 0.95 0.14 0.11 

6 QLocal(x)=4QGCM(x)+(576/QGCM(x)+QGCM(x))/exp(24/exp(QGCM(x)/24))+exp(QGCM(x)-24)/24)) 2.82 1.00 0.19 0.03 2.77 1.00 0.31 0.03 21.63 0.94 1.05 0.12 

7 QLocal(x)=3QGCM(x)+(QGCM(x)2-QGCM(x)+24)/(48+QGCM(x))+48exp(QGCM(x)/24)/QGCM(x) 2.42 1.00 -0.18 0.02 2.57 1.00 -0.05 0.02 18.18 0.94 0.26 0.13 

8 QLocal(x)=QGCM(x)2/288+3QGCM(x)+72/QGCM(x) 2.80 1.00 0.24 0.02 2.63 1.00 0.32 0.02 16.54 0.94 0.63 0.13 

9 QLocal(x)=3QGCM(x)+72/QGCM(x)+(exp(QGCM(x)/24)-72)QGCM(x)/576 3.04 1.00 -0.70 0.02 3.31 1.00 -0.58 0.02 15.97 0.93 -0.30 0.13 

10 QLocal(x)=3QGCM(x)+24QGCM(x)/(72+2exp(24-QGCM(x))+exp(QGCM(x)/24)) 2.90 1.00 0.38 0.03 2.73 1.00 0.43 0.03 13.76 0.94 0.46 0.11 

11 QLocal(x)=2QGCM(x)+72/QGCM(x)+7QGCM(x)/16 2.12 1.00 0.03 0.02 2.08 1.00 0.09 0.02 12.86 0.93 0.25 0.12 

12 QLocal(x)=2QGCM(x)-exp(2.5417+1/QGCM(x)-1/QGCM(x)2)+24 2.15 1.00 0.05 0.01 2.13 1.00 0.08 0.01 12.10 0.93 0.15 0.11 

13 QLocal(x)=2QGCM(x)-QGCM(x)/(24+exp(24-QGCM(x))+QGCM(x))+6+24/QGCM(x) 0.50 1.00 -0.01 0.01 0.53 1.00 0.00 0.01 10.78 0.93 0.05 0.11 

14 QLocal(x)=2QGCM(x)+12/QGCM(x)-QGCM(x)/24+(3QGCM(x)+24)/QGCM(x) 1.77 1.00 -0.24 0.02 1.84 1.00 -0.21 0.02 9.71 0.93 -0.16 0.12 

15 QLocal(x)=23QGCM(x)/12+48/QGCM(x)-QGCM(x)/16.611+2 1.21 1.00 0.01 0.02 1.28 1.00 0.04 0.02 9.32 0.93 0.12 0.11 

16 QLocal(x)=1.5972QGCM(x)+QGCM(x)2/864+8 1.23 1.00 -0.64 0.02 1.18 1.00 -0.59 0.02 8.87 0.93 -0.54 0.10 

17 QLocal(x)=1081QGCM(x)/576+48/QGCM(x)-24/exp(48/QGCM(x)) 1.33 1.00 0.18 0.02 1.25 1.00 0.21 0.02 7.65 0.94 0.30 0.10 

18 QLocal(x)=QGCM(x)2/192+25QGCM(x)/24+14 0.91 1.00 0.10 0.02 0.92 1.00 0.07 0.02 7.05 0.95 0.22 0.08 

19 QLocal(x)=1.5QGCM(x)+QGCM(x)exp(QGCM(x)/24)/1152+12/exp(QGCM(x)/24) 1.02 1.00 -0.33 0.01 1.07 1.00 -0.29 0.01 6.75 0.95 -0.26 0.09 

20 QLocal(x)=4QGCM(x)/3-QGCM(x)(48-QGCM(x))/300+8 0.96 1.00 0.07 0.02 0.93 1.00 0.11 0.02 6.26 0.95 0.15 0.09 

21 QLocal(x)=QGCM(x)2/192+11QGCM(x)/12+12 0.45 1.00 -0.41 0.01 0.46 1.00 -0.42 0.01 6.00 0.95 -0.28 0.08 

22 QLocal(x)=QGCM(x)2/576+13QGCM(x)/12+9 1.38 1.00 -0.39 0.02 1.33 1.00 -0.37 0.02 6.10 0.95 -0.34 0.09 

23 QLocal(x)=(144+4QGCM(x)+exp((QGCM(x)+24))/24+QGCM(x) 1.01 1.00 -0.07 0.02 1.04 1.00 -0.01 0.02 5.85 0.94 0.00 0.09 

24 QLocal(x)=QGCM(x)2/576+25QGCM(x)/24+8/QGCM(x)+6.389 0.58 1.00 -0.02 0.01 0.54 1.00 0.01 0.01 5.30 0.95 0.04 0.09 

Units of RMSE and MB are mm/day. 
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Figure D.1: Comparison between the GCM-scale (using output of HadGEM2-ES) daily AMP 

quantiles and the corresponding local-scale daily and sub-daily AMP quantiles during the 

baseline (1961-1990) period in Saskatoon (durations are indicated above the plots.) 



102 

 

 

Figure D.2: Comparison between the GCM-scale (using output of CGCM3.1) daily AMP 

quantiles and the corresponding local-scale daily and sub-daily AMP quantiles during the 

baseline (1961-1990) period in Saskatoon (durations are indicated above the plots.) 
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Appendix E 

 

Figure E.1: Variations in the future IDF curves for 2-year return period in the City of Saskatoon 

according to CanESM2 and HadGEM2-ES based on three RCPs. 

 

 

Figure E.2: Variations in the future IDF curves for 5-year return period in the City of Saskatoon 

according to CanESM2 and HadGEM2-ES based on three RCPs. 
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Figure E.3: Variations in the future IDF curves for 25-year return period in the City of Saskatoon 

according to CanESM2 and HadGEM2-ES based on three RCPs. 
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Figure E.4: Comparison between the future IDF curves (2011-2100) according to CanESM2 

(solid lines) and HadGEM2-ES (dashed lines) based on three RCPs and 100-year return period 

obtained using two different downscaling approaches, i.e. GP method and LARS-WG combined 

with K-NN Hourly Disaggregation Model. 

 

 

 

 

 



106 

 

Table E.1: Comparison between the K-NN hourly disaggregation model and the GP method in simulating the expected precipitation 

intensity (mm/hr) for HadGEM2-ES based on three RCPs during the 21st century for various durations and return periods.  

 GP Method K-NN Hourly Disaggregation Model 

 (2011-2040) (2041-2070) (2071-2100) (2011-2040) (2041-2070) (2071-2100) 

 Return period (year) Return period (year) 

 2 5 25 100 2 5 25 100 2 5 25 100 2 5 25 100 2 5 25 100 2 5 25 100 

HadGEM2-ES: RCP2.6 

1-hr 15 22 39 68 19 29 48 65 17 27 51 84 13 22 48 99 15 25 59 133 15 25 60 140 

2-hr 10 14 23 36 12 18 27 35 11 17 29 43 9 14 26 44 10 16 31 56 10 16 30 54 

3-hr 8 11 17 25 10 14 20 25 9 13 21 29 7 11 20 35 8 12 24 44 8 12 23 41 

4-hr 6 9 14 20 8 11 16 19 7 10 16 23 6 8 16 27 6 10 19 34 6 10 18 31 

6-hr 5 6 10 13 6 8 11 13 5 8 11 15 4 6 11 19 5 7 14 22 5 7 13 21 

12-

hr 

3 4 5 7 3 4 6 7 3 4 6 7 3 4 6 9 3 4 7 11 3 4 7 10 

18-

hr 

2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 6 2 3 5 7 2 3 5 7 

24-

hr 

2 2 3 4 2 3 3 4 2 2 3 4 2 2 3 4 2 2 4 5 2 2 4 5 

HadGEM2-ES: RCP4.5 

1-hr 14 21 38 62 16 26 46 68 15 25 59 125 14 23 54 122 14 22 49 105 14 22 46 90 

2-hr 9 13 23 34 11 16 27 36 10 16 33 58 10 15 28 48 9 14 26 45 10 15 27 44 

3-hr 7 10 17 24 8 12 19 25 8 12 23 38 7 11 21 39 7 11 20 35 7 11 20 32 

4-hr 6 8 13 19 7 10 15 20 6 10 18 29 6 9 17 30 6 9 16 26 6 9 15 24 

6-hr 4 6 9 13 5 7 11 13 5 7 12 18 4 7 12 20 4 6 11 17 5 7 11 16 

12-

hr 

3 4 5 6 3 4 6 7 3 4 6 8 3 4 7 10 3 4 6 8 3 4 6 8 

18-

hr 

2 3 4 5 2 3 4 5 2 3 4 6 2 3 5 7 2 3 4 6 2 3 4 5 

24-

hr 

1 2 3 4 2 2 3 4 2 2 4 5 1 2 4 5 2 2 3 4 2 2 3 4 

HadGEM2-ES: RCP8.5 
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1-hr 14 26 89 303 17 28 51 78 15 25 42 59 14 24 58 139 16 25 56 124 14 23 51 104 

2-hr 9 17 45 110 11 17 29 41 10 16 25 33 10 15 29 51 11 16 31 52 10 15 29 49 

3-hr 7 13 30 66 9 13 21 28 8 12 18 23 7 12 23 41 8 12 23 39 7 11 21 37 

4-hr 6 10 24 48 7 11 16 22 6 10 15 18 6 9 18 33 7 10 18 29 6 9 17 28 

6-hr 5 8 15 26 5 8 11 14 5 7 10 12 5 7 13 23 5 7 12 19 5 7 12 18 

12-

hr 

3 4 7 11 3 4 6 7 3 4 5 6 3 4 7 11 3 4 7 9 3 4 6 9 

18-

hr 

2 3 5 9 2 3 4 5 2 3 4 4 2 3 5 7 2 3 5 6 2 3 5 7 

24-

hr 

2 2 4 7 2 2 3 4 2 2 3 4 2 2 4 5 2 3 4 5 2 2 4 5 
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Figure E.5: Expected 1-hr AMP corresponding to 1000 realizations from LARS-WG and K-NN 

hourly disaggregation model (boxplot), and the same from GP method (blue dots) of 100-year 

return period for CanESM2 based on three RCPs during the 21st century. 
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Figure E.6: Expected 1-hr AMP corresponding to 1000 realizations from LARS-WG and K-NN 

hourly disaggregation model (boxplot), and the same from GP method (blue dots) of 2-year 

return period for HadGEM2-ES based on three RCPs during the 21st century. 
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Figure E.7: Expected 1-hr AMP corresponding to 1000 realizations from LARS-WG and K-NN 

hourly disaggregation model (boxplot), and the same from GP method (blue dots) of 100-year 

return period for HadGEM2-ES based on three RCPs during the 21st century. 
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Figure E.8: Uncertainty in the projections of future extreme precipitation quantiles for 2-year 

return period based on two GCMs and three RCPs obtained from CMIP5 and quantified by using 

GEV shown as 95% confidence intervals (dashed lines). 
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Figure E.9: Uncertainty in the projections of future extreme precipitation quantiles for 5-year 

return period based on two GCMs and three RCPs obtained from CMIP5 and quantified by using 

GEV shown as 95% confidence intervals (dashed lines). 
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Figure E.10: Uncertainty in the projections of future extreme precipitation quantiles for 25-year 

return period based on two GCMs and three RCPs obtained from CMIP5 and quantified by using 

GEV shown as 95% confidence intervals (dashed lines). 
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Figure E.11: Uncertainty in the projections of future extreme precipitation quantiles for 100-year 

return period based on two GCMs and three RCPs obtained from CMIP5 and quantified by using 

GEV shown as 95% confidence intervals (dashed lines). 
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Figure E.12: Uncertainty in the projections of future extreme precipitation quantiles of durations 

from 5-min to 24-hour for 2-year return period based on two GCMs and three RCPs obtained 

from CMIP5 and quantified by using GEV shown as 95% confidence intervals (dashed lines). 
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Figure E.13: Uncertainty in the projections of future extreme precipitation quantiles of durations 

from 5-min to 24-hour for 5-year return period based on two GCMs and three RCPs obtained 

from CMIP5 and quantified by using GEV shown as 95% confidence intervals (dashed lines). 
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Figure E.14: Uncertainty in the projections of future extreme precipitation quantiles of durations 

from 5-min to 24-hour for 25-year return period based on two GCMs and three RCPs obtained 

from CMIP5 and quantified by using GEV shown as 95% confidence intervals (dashed lines). 
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Figure E.15: Uncertainty in the projections of future extreme precipitation quantiles of durations 

from 5-min to 24-hour for 100-year return period based on two GCMs and three RCPs obtained 

from CMIP5 and quantified by using GEV shown as 95% confidence intervals (dashed lines). 
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Appendix F 

F.1 Effect of wet and dry spell lengths 

 

Figure F.1: Variations in the future projections of daily AMP quantiles in the City of Saskatoon 

according to CGCM3.1 forced with three emission scenarios using two sets of change factors: 

with wet/dry spell (blue) and without wet/dry spell (red) effects. The expected quantiles (solid 

lines) and their 95% confidence intervals (dashed lines) are shown with the corresponding 

quantiles during the baseline period (black). 
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Figure F.2: Variations in the future projections of daily expected quantiles for 2-year return 

period in the City of Saskatoon according to CGCM3.1 forced with three emission scenarios 

using two sets of change factors, i.e. with wet/dry spell and without wet/dry spell effects along 

with the corresponding daily expected quantiles during the baseline. 
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Figure F.3: Variations in the future projections of daily expected quantiles for 100-year return 

period in the City of Saskatoon according to CGCM3.1 forced with three emission scenarios 

using two sets of change factors, i.e. with wet/dry spell and without wet/dry spell effects along 

with the corresponding daily expected quantiles during the baseline. 
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F.2 Variations in the future IDF curves obtained for CMIP3 climate models  

 

Figure F.4: Variations in the future IDF curves for 2-year return period in the City of Saskatoon 

according to CGCM3.1 and HadCM3 based on three AR4 emission scenarios. 
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Figure F.5: Variations in the future IDF curves for 5-year return period in the City of Saskatoon 

according to CGCM3.1 and HadCM3 based on three AR4 emission scenarios. 
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Figure F.6: Variations in the future IDF curves for 25-year return period in the City of Saskatoon 

according to CGCM3.1 and HadCM3 based on three AR4 emission scenarios. 
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Figure F.7: Variations in the future IDF curves for 100-year return period in the City of 

Saskatoon according to CGCM3.1 and HadCM3 based on three AR4 emission scenarios. 
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Table F.1: The expected precipitation intensity (mm/hr) for CGCM3.1 and HadCM3 based on three AR4 emission scenarios obtained from 

CMIP3 during the 21st century for various return periods. 

 (2011-2040) (2041-2070) (2071-2100) (2011-2040) (2041-2070) (2071-2100) 

 Return period (year) 

 2 5 25 100 2 5 25 100 2 5 25 100 2 5 25 100 2 5 25 100 2 5 25 100 

 CGCM3.1: A1B HadCM3: A1B 

5-min 62 98 199 373 64 102 208 394 61 98 200 376 56 86 159 267 58 88 162 272 55 85 156 261 

15-

min 

40 65 133 245 42 67 135 246 39 63 129 236 36 57 109 191 37 58 110 191 35 56 107 184 

1-hr 15 26 61 138 16 27 61 128 16 25 57 121 14 22 49 100 14 23 48 94 14 22 46 91 

2-hr 10 16 33 62 11 17 34 62 11 16 31 54 9 14 27 48 10 15 27 47 9 14 27 47 

6-hr 5 8 15 28 5 8 15 25 5 7 13 22 4 6 12 20 4 7 12 19 4 6 11 19 

24-hr 2 2 4 6 2 3 4 6 2 2 4 6 1 2 3 5 1 2 3 5 1 2 3 5 

 CGCM3.1: A2 HadCM3: A2 

5-min 61 98 204 389 61 95 183 327 62 96 189 343 59 93 178 311 58 90 170 292 60 94 183 326 

15-

min 

39 64 132 248 40 62 118 201 40 63 123 216 38 61 120 213 38 60 117 205 39 62 123 220 

1-hr 15 25 58 125 15 25 53 109 16 25 55 116 15 24 53 110 15 24 53 112 15 25 56 117 

2-hr 10 16 32 58 10 16 29 51 11 16 30 52 10 15 30 52 10 15 30 53 10 16 31 54 

6-hr 5 7 14 24 5 7 13 21 5 7 13 22 5 7 13 21 5 7 13 21 5 7 13 22 

24-hr 2 2 4 6 2 2 3 5 2 2 4 5 2 2 4 6 2 2 4 6 2 2 4 6 

 CGCM3.1: B1 HadCM3: B1 

5-min 61 97 190 341 60 94 184 330 62 100 203 379 56 87 161 271 57 87 160 268 55 85 156 261 

15-

min 

40 63 124 220 39 62 123 221 41 66 135 249 36 57 111 196 37 58 109 187 35 56 107 186 

1-hr 15 25 55 115 15 25 56 121 16 27 62 135 14 23 49 101 14 23 48 95 14 22 46 91 

2-hr 10 16 30 52 10 16 31 55 11 17 35 66 10 15 28 50 9 14 27 46 9 14 27 47 

6-hr 5 7 13 20 5 7 13 23 5 8 15 25 4 7 12 20 4 7 12 19 4 6 11 19 

24-hr 2 2 4 5 2 2 4 6 2 3 4 7 1 2 4 5 1 2 3 5 1 2 3 5 
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With the advent of CMIP5 climate models and their corresponding simulations, the previously 

available simulations for CMIP3 climate models have become outdated. However, temperature 

projections of RCP4.5 show similarities with those of B1 emission scenario with similar mean 

temperature scenarios at the global scale by the end of 2100 (Rogelj et al., 2012). In this study, 

an attempt was made to investigate variations in the future extreme rainfall quantiles using the 

same GCM, i.e., CGCM3.1 and CanESM2 and the corresponding equivalent (based on 

temperature projections) emission scenarios, i.e., B1 and RCP4.5 obtained from CMIP3 and 

CMIP5, respectively (Table F.2). Both CGCM3.1: B1 and CanESM2: RCP4.5 show that the 

rainfall intensities increase in shorter durations and longer return periods. CGCM3.1: B1 shows 

the highest rainfall intensity of 379 mm/hr for 5-min duration and 100-year return period during 

2071-2100, while CanESM2: RCP4.5 shows the highest rainfall intensity of 312 mm/hr for 5-

min duration and 100-year return period during 2011-2040.  The percentage change in rainfall 

intensity for the GCMs/RCPs is dependent on the duration, return period, and time slice. 

Generally, the percentage change in rainfall intensities with respect to the historical intensities 

for CanESM2: RCP4.5 is less than those for CGCM3.1: B1, which might be due to the inclusion 

of climate policies (i.e., adaptation and mitigation) in CMIP5 climate models. 
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Table F.2: Comparison between the expected rainfall intensity (mm/hr) for CGCM3.1: B1 and CanESM2: RCP4.5 obtained from 

CMIP3 and CMIP5, respectively, during the 21st century for various return periods. 

 
Rainfall intensity (mm/hr) 

 

% Change in rainfall intensity 

 
 (2011-2040) (2041-2070) (2071-2100) (2011-2040) (2041-2070) (2071-2100) 

 Return period (year) 

 2 5 25 100 2 5 25 100 2 5 25 100 2 5 25 100 2 5 25 100 2 5 25 100 

CGCM3.1: B1 

5-min 61 97 190 341 60 94 184 330 62 100 203 379 7 11 19 28 5 8 15 24 9 14 27 43 

15-min 40 63 124 220 39 62 123 221 41 66 135 249 8 10 15 20 6 9 14 21 11 16 25 36 

1-hr 15 25 55 115 15 25 56 121 16 27 62 135 10 13 17 22 8 11 18 28 16 21 31 43 

2-hr 10 16 30 52 10 16 31 55 11 17 35 66 12 13 13 12 9 11 15 20 18 23 33 42 

6-hr 5 7 13 20 5 7 13 23 5 8 15 25 12 11 7 3 10 11 14 18 20 23 25 27 

24-hr 2 2 4 5 2 2 4 6 2 3 4 7 16 14 7 1 10 11 14 18 20 23 30 40 

CanESM2: RCP4.5 

5-min 59 91 177 312 57 89 170 291 56 86 156 259 3 5 11 18 0 2 6 10 -2 -2 -2 -3 

15-min 37 59 116 204 36 57 109 186 36 56 105 179 2 4 8 11 -1 0 1 1 -2 -3 -2 -2 

1-hr 15 24 52 106 14 22 45 86 14 22 46 90 5 6 9 13 3 0 -4 -9 1 -1 -4 -5 

2-hr 10 15 28 49 9 14 27 46 9 14 26 44 6 7 7 7 3 2 0 -1 3 1 -2 -6 

6-hr 4 7 13 21 4 6 11 18 4 6 11 17 6 7 8 9 3 1 -4 -9 3 -1 -7 -14 

24-hr 2 2 4 5 2 2 3 4 1 2 3 4 8 8 6 4 12 6 -5 -16 6 2 -6 -13 
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F.3 Variations obtained with the GP method and the K-NN hourly disaggregation model 

 

Figure F.8: Comparison between the future IDF curves (2011-2100) according to CGCM3.1 

based on three AR4 emission scenarios and 2-year return period obtained using two different 

downscaling approaches, i.e. GP method and LARS-WG combined with K-NN Hourly 

Disaggregation Model. 
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Figure F.9: Comparison between the future IDF curves (2011-2100) according to CGCM3.1 

based on three AR4 emission scenarios and 100-year return period obtained using two different 

downscaling approaches, i.e. GP method and LARS-WG combined with K-NN Hourly 

Disaggregation Model. 
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Table F.3: Performance of the GP method based on CGCM3.1 in simulating the expected 

precipitation intensity (mm/hr) during the baseline period (1961-1990) for various durations and 

return periods.  

 Return period (year) Return period (year) 

 2 5 25 100 2 5 25 100 

Duration 
Historical (observed) hourly 

precipitation  

(1961-1990) 

 

Simulated hourly precipitation (Using 

GP for CGCM3.1) (1961-1990) 

 

 1-hr 12.8 21.0 44.9 84.6 12.3 22.8 50.2 88.4 

2-hr 8.7 13.5 25.5 42.7 8.1 13.6 27.8 46.5 

3-hr 6.7 10.4 18.7 29.3 6.5 10.3 19.2 30.2 

4-hr 5.5 8.5 15.0 22.8 5.5 8.5 14.9 22.4 

6-hr 4.2 6.3 10.3 14.7 4.2 6.3 10.2 14.6 

12-hr 2.5 3.6 5.4 7.3 2.5 3.6 5.3 6.9 

18-hr 1.8 2.5 3.9 5.3 1.8 2.5 3.8 5.2 

24-hr 1.4 2.0 3.0 4.1 1.4 2.0 3.0 4.0 
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Table F.4: Comparison between the K-NN hourly disaggregation model and the GP method in simulating the expected precipitation 

intensity (mm/hr) for CGCM3.1 based on three AR4 emission scenarios during the 21st century for various durations and return 

periods.  

 GP Method K-NN Hourly Disaggregation Model 

 (2011-2040) (2041-2070) (2071-2100) (2011-2040) (2041-2070) (2071-2100) 

 Return period (year) Return period (year) 

 2 5 25 100 2 5 25 100 2 5 25 100 2 5 25 100 2 5 25 100 2 5 25 100 

CGCM3.1: A1B 

1-hr 13 25 58 110 16 28 53 81 15 24 44 65 15 25 64 158 16 27 64 152 15 25 59 138 

2-hr 8 15 32 57 10 16 29 43 9 14 24 35 10 16 33 63 11 17 34 62 10 16 30 54 

3-hr 7 11 21 36 8 12 20 28 7 11 17 24 8 12 26 52 8 13 26 49 8 12 23 42 

4-hr 6 9 16 26 7 10 15 21 6 9 13 18 6 10 21 41 7 10 21 37 6 10 19 33 

6-hr 4 7 11 17 5 7 11 14 5 7 9 12 5 8 15 28 5 8 15 25 5 7 13 22 

12-hr 3 4 6 8 3 4 5 7 3 4 5 6 3 4 8 13 3 5 8 12 3 4 7 11 

18-hr 2 3 4 6 2 3 4 5 2 3 4 4 2 3 5 9 2 3 5 8 2 3 5 7 

24-hr 1 2 3 4 2 2 3 4 2 2 3 3 2 2 4 6 2 3 4 6 2 2 4 6 

CGCM3.1: A2 

1-hr 11 19 53 132 14 25 55 99 14 23 40 57 15 25 61 144 15 24 55 123 15 24 57 129 

2-hr 7 12 29 66 9 15 30 52 9 14 23 31 10 16 31 58 10 15 29 50 10 16 30 52 

3-hr 6 9 20 41 7 11 20 33 7 10 16 21 8 12 25 48 7 12 22 40 8 12 23 41 

4-hr 5 8 15 30 6 9 16 24 6 9 13 16 6 10 20 37 6 9 18 31 6 10 18 32 

6-hr 4 6 11 19 5 7 11 16 5 6 9 11 5 7 14 24 5 7 13 20 5 7 13 22 

12-hr 2 3 5 8 3 4 6 7 3 4 5 6 3 4 7 11 3 4 7 10 3 4 7 10 

18-hr 2 2 4 6 2 3 4 6 2 3 3 4 2 3 5 8 2 3 5 6 2 3 5 7 

24-hr 1 2 3 5 1 2 3 4 1 2 3 3 2 2 4 6 2 2 3 5 2 2 4 5 
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CGCM3.1: B1 

1-hr 12 21 64 207 19 30 41 48 13 20 30 38 15 24 58 133 14 24 57 132 15 26 65 153 

2-hr 8 13 35 95 12 17 23 26 9 12 17 21 10 16 30 53 10 15 30 56 11 17 35 67 

3-hr 6 10 23 58 9 13 16 18 7 9 13 15 8 12 23 41 7 12 24 45 8 13 27 51 

4-hr 5 8 18 41 8 10 13 14 6 8 10 12 6 9 18 31 6 9 19 34 7 10 21 38 

6-hr 4 6 12 24 6 7 9 10 4 6 7 9 5 7 13 20 5 7 13 24 5 8 15 25 

12-hr 3 3 6 10 3 4 5 5 3 3 4 5 3 4 7 10 3 4 7 11 3 5 8 13 

18-hr 2 2 4 8 2 3 3 4 2 2 3 3 2 3 5 7 2 3 5 8 2 3 6 9 

24-hr 1 2 3 6 2 2 3 3 1 2 2 3 2 2 4 5 2 2 4 6 2 3 4 7 
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Figure F.10: Expected 1-hr AMP corresponding to 1000 realizations from LARS-WG and K-

NN hourly disaggregation model (boxplot), and the same from GP method (blue dots) of 2-

year return period for CGCM3.1 based on three emission scenarios during the 21st century. 
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Figure F.11: Expected 1-hr AMP corresponding to 1000 realizations from LARS-WG and K-

NN hourly disaggregation model (boxplot), and the same from GP method (blue dots) of 100-

year return period for CGCM3.1 based on three emission scenarios during the 21st century. 
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F.4 Uncertainty in the projections of future IDF curves 

 

Figure F.12: Uncertainty in the projections of future extreme precipitation quantiles for 2-

year return period based on two GCMs and three emission scenarios obtained from CMIP3 

and quantified by using GEV shown as 95% confidence intervals (dashed lines). 
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Figure F.13: Uncertainty in the projections of future extreme precipitation quantiles for 5-

year return period based on two GCMs and three emission scenarios obtained from CMIP3 

and quantified by using GEV shown as 95% confidence intervals (dashed lines). 
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Figure F.14: Uncertainty in the projections of future extreme precipitation quantiles for 25-

year return period based on two GCMs and three emission scenarios obtained from CMIP3 

and quantified by using GEV shown as 95% confidence intervals (dashed lines). 
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Figure F.15: Uncertainty in the projections of future extreme precipitation quantiles for 100-

year return period based on two GCMs and three emission scenarios obtained from CMIP3 

and quantified by using GEV shown as 95% confidence intervals (dashed lines). 
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Figure F.16: Uncertainty in the projections of future extreme precipitation quantiles of 

durations from 5-min to 24-hour for 2-year return period based on two GCMs and three 

emission scenarios obtained from CMIP3 and quantified by using GEV shown as 95% 

confidence intervals (dashed lines). 
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Figure F.17: Uncertainty in the projections of future extreme precipitation quantiles of 

durations from 5-min to 24-hour for 5-year return period based on two GCMs and three 

emission scenarios obtained from CMIP3 and quantified by using GEV shown as 95% 

confidence intervals (dashed lines). 
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Figure F.18: Uncertainty in the projections of future extreme precipitation quantiles of 

durations from 5-min to 24-hour for 25-year return period based on two GCMs and three 

emission scenarios obtained from CMIP3 and quantified by using GEV shown as 95% 

confidence intervals (dashed lines). 
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Figure F.19: Uncertainty in the projections of future extreme precipitation quantiles of 

durations from 5-min to 24-hour for 100-year return period based on two GCMs and three 

emission scenarios obtained from CMIP3 and quantified by using GEV shown as 95% 

confidence intervals (dashed lines). 
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F.5 Overall changes in the future IDF curves obtained from CMIP3 climate models 

Table F.5: Historical and projected rainfall intensities based on two CMIP3 climate models 

(CGCM3.1 and HadCM3) and three emission scenarios for selected durations and return 

periods of storms in Saskatoon. Base means historical values, Min means the lowest of future 

projection, and Max is the highest value of future projections. The “bold” values represent the 

projected highest change. 

Duration 

Intensity (mm/hr) 

2-year 5-year 25-year 100-year 

Base Min Max Base Min Max Base Min Max Base Min Max 

5 min 57 55 64 87 85 102 159 156 208 265 261 394 

15 min 37 35 42 57 56 67 108 107 135 183 184 249 

1-hour 14 14 16 22 22 27 47 46 62 94 91 138 

2-hour 9 9 11 14 14 17 27 27 35 46 46 66 

6-hour 4 4 5 6 6 8 11 11 15 19 19 28 

24-hour 1 1 2 2 2 3 3 3 4 5 5 7 
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Appendix G 

 
(a) 

 
(b) 

Figure G1. Performance of model L1; (a) best lines fitted to AMPs from 1-hr to 24-hr; (b) 

model residuals when fitted to Saskatoon’s AMPs from 1-hr to 24-hr. Blue lines shows the 

original AMPs or associated errors. Black lines show the lower and upper bound limits for 

fitted lines or model residuals.  
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(a) 

 
(b) 

Figure G2. Performance of model L2; (a) best lines fitted to log-transformed AMPs from 1-hr 

to 24-hr; (b) model residuals when fitted to Saskatoon’s log-transformed AMPs from 1-hr to 

24-hr. Blue lines shows the log-transformed AMPs or associated errors. Black lines show the 

lower and upper bound limits for fitted lines or model residuals.  
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(a) 

 
(b) 

Figure G3. Performance of model L3; (a) best lines fitted to original AMPs from 1-hr to 24-

hr; (b) model residuals when fitted to Saskatoon’s original AMPs from 1-hr to 24-hr. Blue 

lines shows the original AMPs or associated errors. Black lines show the lower and upper 

bound limits for fitted lines or model residuals.  
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(a) 

 
(b) 

Figure G4. Performance of model L4; (a) best lines fitted to log-transformed AMPs from 1-hr 

to 24-hr; (b) model residuals when fitted to Saskatoon’s log-transformed AMPs from 1-hr to 

24-hr. Blue lines shows the original AMPs or associated errors. Black lines show the lower 

and upper bound limits for fitted lines or model residuals.  
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Figure G5. Future IDF curves (2021-2050) obtained by extending the historical trends using 

S2 model and generating random error terms with non-stationary variance – see Figure X7 

for generated. The top left panel is related to 1-hr extremes and the bottom right panel is 

related to 24-hr.   
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Appendix H 

Table H1. Lower bound, mean ensemble and upper bound values for Saskatoon’s sub-daily extreme rainfall during 21st century according to 

projection of CanESM2 forced with RCP 2.6. 
Extreme rainfall totals (mm); Lower bound – 0.025 non-exceedance probability 

Duration 

1st control period (2011-2040) 2nd control period (2041-2070) 3rd control period (2011-2040) 

Return period (year) Return period (year) Return period (year) 

2 5 10 25 50 100 2 5 10 25 50 100 2 5 10 25 50 100 

1-hr 16.88 25.41 31.41 38.59 43.43 48.04 17.07 24.98 29.94 35.50 39.06 42.19 16.44 24.06 28.90 34.40 38.04 41.11 

2-hr 19.34 28.71 35.42 43.41 48.99 54.04 19.50 28.39 33.99 40.10 44.35 47.89 18.78 27.35 32.83 38.67 42.33 45.84 

3-hr 20.83 30.86 37.92 46.32 51.90 57.49 21.09 30.50 36.30 42.73 46.98 50.71 20.32 29.48 35.05 41.05 44.98 48.46 

6-hr 23.36 34.33 41.97 51.03 57.58 63.72 23.76 33.99 40.28 47.26 51.78 55.61 23.03 32.75 38.77 45.22 49.38 53.18 

12-hr 25.88 37.69 46.14 56.79 64.19 71.56 26.48 37.51 44.32 51.83 56.47 60.46 25.60 35.99 42.41 49.70 54.39 58.83 

24-hr 29.07 42.00 50.96 64.03 73.98 83.70 29.91 41.73 49.30 56.58 61.37 65.53 28.87 39.71 47.19 55.51 60.70 65.12 

Extreme rainfall totals (mm); Mean ensemble 

Duration 

1st control period (2011-2040) 2nd control period (2041-2070) 3rd control period (2011-2040) 

Return period (year) Return period (year) Return period (year) 

2 5 10 25 50 100 2 5 10 25 50 100 2 5 10 25 50 100 

1-hr 20.56 31.98 42.14 59.42 76.85 99.86 20.31 30.54 39.09 52.81 65.89 82.28 19.73 29.85 38.50 52.68 66.49 84.13 

2-hr 23.37 36.06 47.27 66.16 85.06 109.77 23.13 34.51 43.94 58.93 73.13 90.80 22.43 33.69 43.24 58.80 73.83 92.90 

3-hr 25.17 38.59 50.36 70.08 89.74 115.43 24.94 36.95 46.82 62.41 77.07 95.23 24.20 36.10 46.17 62.45 78.09 97.78 

6-hr 28.14 42.68 55.28 76.18 96.93 124.52 27.89 40.87 51.43 67.95 83.32 102.16 27.07 40.02 50.91 68.44 85.16 106.05 

12-hr 31.08 46.66 59.97 81.68 102.64 129.13 30.74 44.65 55.92 73.43 89.60 109.24 29.79 43.72 55.43 74.21 92.02 114.13 

24-hr 34.87 51.83 66.17 89.23 111.16 138.44 34.36 49.53 61.72 80.43 97.42 117.71 33.34 48.58 61.27 81.40 100.29 123.45 

Extreme rainfall totals (mm); Upper bound – 0.975 non-exceedance probability 

Duration 

1st control period (2011-2040) 2nd control period (2041-2070) 3rd control period (2011-2040) 

Return period (year) Return period (year) Return period (year) 
2 5 10 25 50 100 2 5 10 25 50 100 2 5 10 25 50 100 

1-hr 25.19 39.86 55.99 92.87 139.72 211.39 24.47 37.41 50.59 79.15 113.03 163.85 24.03 37.23 50.80 80.31 116.51 173.94 

2-hr 28.61 44.92 62.17 101.79 151.62 231.15 27.55 41.93 56.56 87.79 125.69 181.87 27.20 41.82 56.67 88.33 127.53 187.51 

3-hr 30.69 47.97 66.03 108.75 162.40 245.35 29.68 44.72 60.30 93.31 132.77 190.59 29.19 44.77 60.06 92.69 133.25 192.64 

6-hr 34.20 52.80 71.81 116.10 171.77 255.96 33.03 49.28 65.32 99.24 139.29 198.53 32.43 49.29 65.51 99.03 140.22 199.32 

12-hr 37.59 57.54 75.92 120.39 173.83 255.37 36.27 53.66 70.05 104.50 145.24 202.69 35.36 53.33 70.48 102.95 143.12 200.77 

24-hr 41.95 63.45 81.42 123.43 173.14 244.68 39.86 59.28 76.44 110.44 149.40 203.96 39.48 58.64 76.35 110.59 154.69 216.94 
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Table H2. Lower bound, mean ensemble and upper bound values for Saskatoon’s sub-daily extreme rainfall during 21st century according to 

projection of CanESM2 forced with RCP 4.5. 
Extreme rainfall totals (mm); Lower bound – 0.025 non-exceedance probability 

Duration 

1st control period (2011-2040) 2nd control period (2041-2070) 3rd control period (2011-2040) 

Return period (year) Return period (year) Return period (year) 

2 5 10 25 50 100 2 5 10 25 50 100 2 5 10 25 50 100 

1-hr 17.00 25.50 31.45 38.19 42.77 46.81 17.28 25.06 29.85 35.01 38.52 41.44 17.31 25.35 30.36 35.60 38.83 41.31 

2-hr 19.38 29.04 35.74 43.44 48.16 52.70 19.94 28.52 33.97 39.83 43.66 47.06 19.89 28.84 34.31 40.19 43.68 46.81 

3-hr 21.06 31.42 38.44 46.62 51.98 56.74 21.75 30.90 36.49 42.84 46.91 50.35 21.68 31.26 37.09 43.12 47.06 50.31 

6-hr 23.82 35.13 43.09 52.54 58.21 63.31 24.62 34.59 40.65 47.57 51.86 55.65 24.60 34.98 41.38 47.78 51.80 55.22 

12-hr 26.42 38.81 47.78 57.97 64.65 70.37 27.47 38.04 44.69 52.32 57.31 61.67 27.43 38.65 45.00 51.74 55.88 59.34 

24-hr 29.96 43.07 53.81 65.05 72.14 79.15 31.13 42.24 49.13 56.96 62.68 66.80 30.98 42.97 51.15 59.40 63.44 66.98 

Extreme rainfall totals (mm); Mean ensemble 

Duration 

1st control period (2011-2040) 2nd control period (2041-2070) 3rd control period (2011-2040) 

Return period (year) Return period (year) Return period (year) 

2 5 10 25 50 100 2 5 10 25 50 100 2 5 10 25 50 100 

1-hr 21.21 32.41 41.80 56.89 71.28 89.32 21.04 31.14 39.17 51.49 62.75 76.37 20.74 30.73 38.74 51.12 62.52 76.43 

2-hr 24.26 36.73 47.01 63.24 78.49 97.34 24.12 35.39 44.19 57.42 69.26 83.30 23.74 34.84 43.60 56.94 69.04 83.62 

3-hr 26.29 39.49 50.21 66.88 82.29 101.09 26.19 38.13 47.32 60.93 72.94 87.01 25.73 37.48 46.64 60.40 72.74 87.47 

6-hr 29.65 43.92 55.24 72.48 88.18 107.28 29.63 42.48 52.06 65.86 77.72 91.31 28.99 41.65 51.34 65.64 78.28 93.17 

12-hr 33.01 48.24 60.00 77.45 92.85 110.89 33.08 46.69 56.45 70.05 81.35 93.94 32.16 45.65 55.80 70.57 83.43 98.42 

24-hr 37.29 53.84 66.28 84.28 99.75 117.43 37.45 52.00 62.00 75.36 86.05 97.56 36.10 50.66 61.44 76.92 90.23 105.59 

Extreme rainfall totals (mm); Upper bound – 0.975 non-exceedance probability 

Duration 

1st control period (2011-2040) 2nd control period (2041-2070) 3rd control period (2011-2040) 

Return period (year) Return period (year) Return period (year) 
2 5 10 25 50 100 2 5 10 25 50 100 2 5 10 25 50 100 

1-hr 25.78 39.57 53.79 84.40 121.72 177.34 24.99 37.32 49.16 73.36 102.17 143.50 24.69 37.17 49.35 74.70 104.76 148.55 

2-hr 29.41 44.60 59.55 90.96 128.10 183.01 28.55 42.11 54.81 80.31 109.24 150.59 28.10 41.73 54.80 82.03 113.98 158.76 

3-hr 31.82 47.63 62.77 94.18 131.76 186.55 30.96 45.05 57.73 83.55 112.67 153.60 30.34 44.75 58.34 85.67 117.27 160.99 

6-hr 35.74 52.46 67.39 98.36 134.67 186.49 34.88 49.53 62.12 88.77 118.60 158.52 34.02 49.38 63.30 91.25 125.08 170.29 

12-hr 39.80 56.98 71.21 101.11 135.79 185.66 38.93 53.94 65.81 91.22 118.75 155.80 37.39 53.56 67.83 98.32 133.43 182.39 

24-hr 45.36 62.80 76.75 106.65 140.14 185.94 44.09 59.64 71.83 94.49 118.54 149.72 41.62 58.17 74.35 103.94 136.00 181.54 
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Table H3. Lower bound, mean ensemble and upper bound values for Saskatoon’s sub-daily extreme rainfall during 21st century according to 

projection of CanESM2 forced with RCP 8.5. 
Extreme rainfall totals (mm); Lower bound – 0.025 non-exceedance probability 

Duration 

1st control period (2011-2040) 2nd control period (2041-2070) 3rd control period (2011-2040) 

Return period (year) Return period (year) Return period (year) 

2 5 10 25 50 100 2 5 10 25 50 100 2 5 10 25 50 100 

1-hr 16.31 23.93 29.00 35.00 38.92 42.76 17.51 25.63 30.96 36.72 40.77 44.38 17.09 25.07 30.36 36.07 39.86 43.30 

2-hr 18.57 27.06 32.75 39.43 43.61 47.45 20.05 29.18 34.96 41.31 45.38 49.15 19.67 28.64 34.29 40.71 44.79 48.43 

3-hr 20.05 29.04 35.09 41.77 46.20 50.42 21.74 31.39 37.48 44.26 48.70 52.70 21.32 30.78 36.90 43.63 48.04 51.94 

6-hr 22.52 32.26 38.52 46.04 51.02 55.61 24.53 34.97 41.34 48.87 53.32 57.54 24.04 34.32 40.93 48.44 52.79 56.81 

12-hr 24.72 35.10 41.82 49.93 55.74 61.13 27.21 38.56 45.28 53.11 58.51 63.11 26.87 37.84 44.89 52.98 58.17 63.25 

24-hr 27.66 38.83 46.01 55.13 61.76 67.97 30.48 43.06 50.26 58.82 64.99 70.61 30.16 42.04 49.97 59.61 66.20 71.56 

Extreme rainfall totals (mm); Mean ensemble 

Duration 

1st control period (2011-2040) 2nd control period (2041-2070) 3rd control period (2011-2040) 

Return period (year) Return period (year) Return period (year) 

2 5 10 25 50 100 2 5 10 25 50 100 2 5 10 25 50 100 

1-hr 19.81 30.33 39.50 54.78 69.90 89.47 21.27 31.92 40.77 54.86 68.20 84.83 20.72 31.32 40.14 54.20 67.54 84.16 

2-hr 22.51 34.19 44.26 60.90 77.23 98.22 24.27 36.13 45.88 61.23 75.61 93.32 23.70 35.49 45.17 60.41 74.68 92.28 

3-hr 24.27 36.58 47.11 64.34 81.06 102.36 26.21 38.78 49.05 65.13 80.11 98.51 25.63 38.12 48.28 64.12 78.80 96.74 

6-hr 27.11 40.38 51.63 69.85 87.38 109.54 29.38 42.98 54.01 71.15 87.01 106.34 28.82 42.34 53.20 69.92 85.23 103.76 

12-hr 29.82 44.01 55.97 75.18 93.49 116.40 32.48 47.07 58.83 77.02 93.79 114.19 31.92 46.41 57.91 75.44 91.31 110.32 

24-hr 33.40 48.82 61.61 81.86 100.83 124.14 36.39 52.23 64.87 84.23 101.86 123.08 35.74 51.46 63.80 82.37 98.95 118.48 

Extreme rainfall totals (mm); Upper bound – 0.975 non-exceedance probability 

Duration 

1st control period (2011-2040) 2nd control period (2041-2070) 3rd control period (2011-2040) 

Return period (year) Return period (year) Return period (year) 
2 5 10 25 50 100 2 5 10 25 50 100 2 5 10 25 50 100 

1-hr 24.35 38.47 53.01 84.17 124.21 187.43 25.82 39.51 53.34 81.32 115.21 164.12 24.97 38.38 52.08 81.21 116.08 167.69 

2-hr 27.70 43.08 58.72 92.77 135.28 199.75 29.33 44.46 59.53 90.30 127.09 180.60 28.49 43.23 57.93 89.25 125.29 177.94 

3-hr 29.60 46.05 62.01 96.02 140.14 205.01 31.59 47.77 63.70 95.75 134.58 188.49 30.70 46.21 61.47 92.99 129.72 183.05 

6-hr 33.02 50.20 66.35 101.61 144.90 209.11 35.20 52.58 69.32 102.55 142.90 202.01 34.31 50.88 66.81 100.41 139.25 195.89 

12-hr 36.24 54.31 70.67 106.74 151.52 217.63 38.88 57.24 73.90 107.04 148.48 209.24 37.93 55.32 71.44 106.67 148.43 206.60 

24-hr 39.91 59.93 75.62 112.19 159.80 227.30 43.40 62.56 79.55 115.50 158.10 218.95 42.33 60.57 77.93 114.36 153.03 205.91 
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Table H4. Lower bound, mean ensemble and upper bound values for Saskatoon’s sub-daily extreme rainfall during 21st century according to 

projection of HadGEM2-ES forced with RCP 2.6. 
Extreme rainfall totals (mm); Lower bound – 0.025 non-exceedance probability 

Duration 

1st control period (2011-2040) 2nd control period (2041-2070) 3rd control period (2011-2040) 

Return period (year) Return period (year) Return period (year) 

2 5 10 25 50 100 2 5 10 25 50 100 2 5 10 25 50 100 

1-hr 16.76 24.52 29.65 35.14 38.76 41.88 19.26 28.81 35.07 42.17 46.72 50.98 16.50 24.07 28.95 34.34 37.89 41.09 

2-hr 19.26 28.01 33.59 39.64 43.49 46.49 21.94 32.97 40.06 47.66 52.37 56.90 18.85 27.32 32.66 38.61 42.41 45.84 

3-hr 20.90 30.25 36.10 42.47 46.51 50.01 23.78 35.62 43.23 51.38 56.72 61.28 20.47 29.33 35.02 41.18 45.34 49.10 

6-hr 23.71 34.02 40.62 47.66 52.17 56.24 26.95 39.80 47.98 57.59 63.82 69.35 23.07 32.67 38.79 45.32 49.75 53.94 

12-hr 26.36 37.24 44.60 52.60 57.78 62.22 30.05 43.79 52.83 63.69 70.98 77.86 25.65 35.92 42.44 49.66 54.65 58.84 

24-hr 29.68 40.93 48.70 59.09 65.19 70.16 33.96 48.02 58.22 70.92 80.40 89.12 28.85 39.80 47.32 55.65 60.68 65.00 

Extreme rainfall totals (mm); Mean ensemble 

Duration 

1st control period (2011-2040) 2nd control period (2041-2070) 3rd control period (2011-2040) 

Return period (year) Return period (year) Return period (year) 

2 5 10 25 50 100 2 5 10 25 50 100 2 5 10 25 50 100 

1-hr 20.70 30.91 39.25 52.35 64.62 79.78 23.94 36.10 46.21 62.32 77.62 96.79 19.78 29.91 38.55 52.70 66.48 84.10 

2-hr 23.70 35.06 44.18 58.31 71.39 87.45 27.42 40.97 52.03 69.34 85.45 105.18 22.46 33.69 43.20 58.60 73.42 92.13 

3-hr 25.69 37.73 47.29 61.91 75.29 91.56 29.73 44.08 55.63 73.49 89.89 109.81 24.21 36.10 46.12 62.25 77.67 96.98 

6-hr 28.93 41.92 51.98 67.00 80.35 96.11 33.48 48.98 61.19 79.65 96.23 115.91 27.07 39.95 50.74 68.04 84.46 104.92 

12-hr 32.08 45.88 56.30 71.47 84.57 99.61 37.16 53.66 66.38 85.20 101.72 120.92 29.79 43.65 55.25 73.79 91.29 112.94 

24-hr 36.00 50.87 61.78 77.17 90.07 104.45 41.66 59.48 72.97 92.60 109.54 128.93 33.34 48.52 61.09 80.92 99.39 121.90 

Extreme rainfall totals (mm); Upper bound – 0.975 non-exceedance probability 

Duration 

1st control period (2011-2040) 2nd control period (2041-2070) 3rd control period (2011-2040) 

Return period (year) Return period (year) Return period (year) 
2 5 10 25 50 100 2 5 10 25 50 100 2 5 10 25 50 100 

1-hr 25.38 38.59 50.88 77.77 110.40 158.84 29.24 44.09 59.16 91.92 131.14 188.67 24.02 37.29 51.20 80.77 116.74 171.12 

2-hr 28.92 43.50 57.34 85.60 120.76 171.02 33.36 49.60 65.75 100.43 140.54 199.03 27.17 41.77 56.67 88.13 126.90 185.19 

3-hr 31.22 46.55 60.84 90.41 125.15 176.67 36.11 53.06 69.43 103.69 143.35 200.66 29.19 44.69 60.33 92.47 131.54 189.52 

6-hr 35.07 51.40 65.49 94.59 128.77 175.77 40.69 58.53 74.84 109.43 149.04 204.38 32.41 49.29 65.53 99.17 139.20 197.99 

12-hr 38.88 56.14 69.88 98.32 128.92 171.04 45.58 63.71 79.58 113.85 152.22 206.60 35.41 53.53 70.26 103.09 142.73 199.39 

24-hr 43.88 62.15 75.07 100.72 128.36 165.46 51.83 70.30 85.50 120.91 159.45 211.09 39.45 58.80 76.32 110.48 151.69 210.43 
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Table H5. Lower bound, mean ensemble and upper bound values for Saskatoon’s sub-daily extreme rainfall during 21st century according to 

projection of HadGEM2-ES forced with RCP 4.5. 
Extreme rainfall totals (mm); Lower bound – 0.025 non-exceedance probability 

Duration 

1st control period (2011-2040) 2nd control period (2041-2070) 3rd control period (2011-2040) 

Return period (year) Return period (year) Return period (year) 

2 5 10 25 50 100 2 5 10 25 50 100 2 5 10 25 50 100 

1-hr 17.18 25.44 30.77 37.01 40.96 44.62 17.81 25.97 30.91 36.20 39.42 42.11 18.39 26.65 31.68 36.75 39.72 42.24 

2-hr 19.64 28.92 34.76 41.56 45.91 49.98 20.51 29.72 35.15 40.77 43.99 46.91 21.24 30.49 36.02 41.49 44.91 47.53 

3-hr 21.30 31.06 37.37 44.54 49.34 53.54 22.32 32.07 37.92 43.65 47.06 49.95 23.15 33.07 38.96 45.11 48.77 51.71 

6-hr 24.00 34.67 41.61 49.56 54.59 59.20 25.37 35.95 42.46 48.92 53.04 56.45 26.31 37.36 43.74 50.07 53.78 56.57 

12-hr 26.51 37.89 45.67 53.72 58.56 63.27 28.15 39.72 46.83 54.15 58.47 62.34 29.41 41.53 48.22 54.41 57.53 60.11 

24-hr 30.19 42.22 50.74 57.62 61.63 65.49 31.52 44.41 52.89 61.19 66.10 70.78 32.81 46.47 53.61 60.31 63.60 66.47 

Extreme rainfall totals (mm); Mean ensemble 

Duration 

1st control period (2011-2040) 2nd control period (2041-2070) 3rd control period (2011-2040) 

Return period (year) Return period (year) Return period (year) 

2 5 10 25 50 100 2 5 10 25 50 100 2 5 10 25 50 100 

1-hr 21.00 31.91 41.03 55.66 69.61 87.12 21.31 31.30 39.24 51.40 62.50 75.89 21.93 32.03 39.75 51.14 61.16 72.85 

2-hr 23.96 36.07 46.06 61.85 76.69 95.06 24.42 35.51 44.16 57.12 68.69 82.37 25.19 36.43 44.85 57.01 67.50 79.54 

3-hr 25.91 38.72 49.15 65.43 80.53 98.95 26.46 38.20 47.22 60.57 72.35 86.14 27.38 39.31 48.12 60.69 71.38 83.53 

6-hr 29.10 42.95 54.02 70.96 86.35 104.77 29.80 42.45 51.93 65.66 77.49 91.05 30.96 43.84 53.12 66.06 76.84 88.84 

12-hr 32.19 47.03 58.75 76.48 92.43 111.36 33.04 46.49 56.40 70.50 82.46 96.01 34.42 48.09 57.73 70.91 81.66 93.44 

24-hr 36.06 52.19 64.84 83.92 101.09 121.55 37.02 51.59 62.14 76.90 89.18 102.82 38.42 53.09 63.22 76.81 87.72 99.47 

Extreme rainfall totals (mm); Upper bound – 0.975 non-exceedance probability 

Duration 

1st control period (2011-2040) 2nd control period (2041-2070) 3rd control period (2011-2040) 

Return period (year) Return period (year) Return period (year) 
2 5 10 25 50 100 2 5 10 25 50 100 2 5 10 25 50 100 

1-hr 25.43 39.19 53.26 83.71 119.25 171.61 25.58 38.01 49.78 74.23 102.86 143.36 26.14 38.31 49.71 71.96 96.93 132.30 

2-hr 29.00 44.14 59.11 91.08 128.66 184.57 29.25 42.75 55.29 80.54 108.81 148.51 29.91 43.32 55.25 78.40 103.96 139.29 

3-hr 31.22 47.17 62.59 94.92 132.44 188.10 31.54 45.83 58.63 83.81 112.60 152.06 32.52 46.48 58.75 82.16 108.43 143.81 

6-hr 35.00 52.08 67.80 100.12 137.80 190.65 35.35 50.44 63.43 89.05 116.64 154.60 36.51 51.41 63.92 88.02 114.79 150.01 

12-hr 38.51 56.66 73.19 106.05 142.95 195.21 39.08 54.76 67.88 93.99 123.27 163.95 40.38 55.92 68.25 92.86 119.88 154.20 

24-hr 43.26 62.15 80.61 116.66 156.75 212.65 43.81 60.46 74.15 100.29 129.00 167.59 45.41 62.37 73.56 100.32 130.19 168.80 
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Table H6. Lower bound, mean ensemble and upper bound values for Saskatoon’s sub-daily extreme rainfall during 21st century according to 

projection of HadGEM2-ES forced with RCP 8.5. 
Extreme rainfall totals (mm); Lower bound – 0.025 non-exceedance probability 

Duration 

1st control period (2011-2040) 2nd control period (2041-2070) 3rd control period (2011-2040) 

Return period (year) Return period (year) Return period (year) 

2 5 10 25 50 100 2 5 10 25 50 100 2 5 10 25 50 100 

1-hr 16.34 23.92 28.95 34.83 38.83 42.85 17.54 25.66 30.66 36.56 40.40 43.77 17.10 24.98 30.17 35.96 39.54 42.94 

2-hr 18.65 26.98 32.48 38.80 42.87 46.82 20.12 29.19 34.92 41.14 45.25 48.74 19.64 28.43 34.18 40.70 44.68 48.37 

3-hr 20.12 28.94 34.72 41.32 45.98 50.07 21.80 31.42 37.40 43.75 48.06 51.94 21.30 30.72 36.75 43.41 47.95 51.64 

6-hr 22.56 32.12 38.33 45.61 50.98 55.67 24.56 35.08 41.30 48.25 53.11 57.22 24.15 34.35 40.91 48.06 52.69 57.02 

12-hr 24.79 35.07 41.67 49.74 55.68 61.27 27.23 38.43 45.05 52.76 58.02 62.74 26.87 37.84 44.83 52.89 58.09 62.63 

24-hr 27.62 38.75 45.94 55.22 61.84 67.74 30.40 42.86 50.03 58.83 65.05 70.86 30.16 42.12 49.96 59.57 66.02 71.33 

Extreme rainfall totals (mm); Mean ensemble 

Duration 

1st control period (2011-2040) 2nd control period (2041-2070) 3rd control period (2011-2040) 

Return period (year) Return period (year) Return period (year) 

2 5 10 25 50 100 2 5 10 25 50 100 2 5 10 25 50 100 

1-hr 19.85 30.39 39.56 54.81 69.89 89.43 21.26 31.91 40.78 54.95 68.42 85.26 20.72 31.30 40.10 54.13 67.44 84.04 

2-hr 22.56 34.22 44.27 60.81 76.99 97.75 24.27 36.12 45.87 61.25 75.70 93.55 23.69 35.49 45.18 60.45 74.74 92.37 

3-hr 24.32 36.62 47.14 64.31 80.97 102.14 26.21 38.75 48.99 65.05 80.03 98.45 25.64 38.14 48.31 64.17 78.88 96.85 

6-hr 27.14 40.40 51.63 69.79 87.26 109.33 29.35 42.92 53.91 71.00 86.80 106.08 28.81 42.35 53.24 70.05 85.49 104.22 

12-hr 29.83 44.02 55.96 75.12 93.33 116.03 32.45 47.00 58.74 76.90 93.60 113.88 31.94 46.44 57.96 75.53 91.47 110.61 

24-hr 33.40 48.81 61.60 81.82 100.76 124.01 36.35 52.17 64.82 84.26 102.05 123.56 35.73 51.45 63.80 82.38 98.96 118.48 

Extreme rainfall totals (mm); Upper bound – 0.975 non-exceedance probability 

Duration 

1st control period (2011-2040) 2nd control period (2041-2070) 3rd control period (2011-2040) 

Return period (year) Return period (year) Return period (year) 
2 5 10 25 50 100 2 5 10 25 50 100 2 5 10 25 50 100 

1-hr 24.48 38.24 52.51 83.78 122.76 183.49 25.80 39.37 53.63 83.16 118.60 171.09 25.00 38.36 52.08 81.06 115.75 165.99 

2-hr 27.62 43.06 58.36 92.39 134.22 199.31 29.32 44.37 59.73 91.33 127.14 182.63 28.53 43.34 58.06 89.69 126.30 180.87 

3-hr 29.65 45.82 61.54 96.40 139.38 205.35 31.62 47.61 63.69 95.93 134.27 190.37 30.70 46.27 61.37 93.79 130.06 182.76 

6-hr 33.11 50.20 66.26 101.00 143.70 208.02 35.22 52.34 69.08 102.31 140.94 198.33 34.30 50.91 66.73 100.60 140.90 199.17 

12-hr 36.40 54.38 70.36 106.12 149.96 216.94 38.78 57.06 73.85 107.33 147.66 205.87 37.97 55.21 71.75 107.69 149.23 207.99 

24-hr 39.93 59.99 75.38 112.13 159.34 229.77 43.41 62.65 79.83 117.12 160.25 223.16 42.38 60.61 77.69 114.75 153.33 207.34 
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Abbreviations 

 

AAFC-WG             Agriculture and Agri-Food Canada Weather Generator 

ACCESS1.0            Australian Community Climate and Earth-System Simulator 1.0 

AMP                       Annual Maximum Precipitation 

ANN                       Artificial Neural Network 

AOGCM                 Atmospheric Ocean General Circulation Model 

AR4                        Fourth Assessment Report 

AR5                        Fifth Assessment Report 

BCCCSM1.1          Beijing Climate Center Climate System Model 1.1 

CanESM2               Second generation Canadian Earth System Model 

CDCD                    Canadian Daily Climate Data 

CESM1-BGC         Community Earth System Model, version 1-Biogeochemistry 

CGCM3                  The third generation Coupled Global Climate Model 

CHRM                    Climate High Resolution Model  

CMIP3                    Coupled Model Intercomparison Project, phase 3 

CMIP5                    Coupled Model Intercomparison Project, phase 5 

CO2                                     Carbon dioxide  

CRCM                    Canadian Regional Climate Model 

CSIRO-Mk3.6.0     Commonwealth Scientific and Industrial Research Organization,  

                                Mk3.6.0 version 

ECDF                      Empirical Cumulative Distribution Function 

ESM                        Earth System Model 

GCM                       Global Climate Model 

GEV                        Generalized Extreme Value 

GLM                       Generalized Linear Model 

GLM-WG               Generalized Linear Model-based Weather Generator 

GP                           Genetic Programming 

GSR                        Genetic Symbolic Regression 

HadCM3                 Hadley Centre Coupled Model, version 3 

HadGEM2-ES        The Earth System configuration of the Hadley Centre Global  

                                Environmental Model, version 2 

HadRM                   Hadley Center Regional Model 

IAM                        Integrated Assessment Model 

IDF                         Intensity-Duration-Frequency 

INM-CM4              Institute of Numerical Mathematics Climate Model, version 4.0 

IPCC                       Intergovernmental Panel on Climate Change 

K-NN                      K-Nearest Neighbor 

LARS-WG              Long Ashton Research Station Weather Generator 

MARE                     Mean Absolute Relative Error 

MB                          Mean Bias 

MIROC-ESM          Model for Interdisciplinary Research on Climate-Earth System Model 

MM5                       Fifth Generation Pennsylvania State University/National Center for  

                                Atmospheric Research Mesoscale Model 

MRI-CGCM3         Meteorological Research Institute-third generation Coupled Global  

                               Climate Model  

PCMDI                   Program for Climate Model Diagnosis and Intercomparison 

R                             Pearson’s correlation coefficient 

RCF                        Relative Change Factor 

RCM                       Regional Climate Model 
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RCP                         Representative Concentration Pathway 

RegCM                    Regional Climate Model System 

RMSE                      Root Mean Squared Error 

SDSM                      Statistical Downscaling Method 

SED                         Semi-Empirical Distribution 

SRES                       Special Report on Emission Scenarios 

WGEN                    Weather Generator 

WG-PCA                 K-NN Weather Generator with Principal Component Analysis 

 

 


