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SUMMARY & CONCLUSIONS

In many computer systems, the contents of memory are protected by an error

detection and correction (EDAC) code.  Bit-flips caused by single event upsets (SEUs)

are a well-known problem in memory chips and EDAC codes have been an effective

solution to this problem.  These codes are usually implemented in hardware using extra

memory bits and encoding/decoding circuitry.  In systems where EDAC hardware is not

available, the reliability of the system can be improved by providing protection through

software.  Codes and techniques that can be used for software implementation of EDAC

are discussed and compared.
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We look at the implementation requirements and issues, and present some solutions.

We discuss in detail how system-level and chip-level structures relate to multiple error

correction.  A simple solution is presented to make the EDAC scheme independent of

these structures.

The technique presented in this paper was implemented and used effectively in an

actual space experiment.  We have observed that SEUs corrupt the operating system or

programs of a computer system that does not have any EDAC for memory, forcing us to

frequently reset the system.  Protecting the entire memory (code and data) may not be

practical in software.  However, we have demonstrated that software-implemented EDAC

is a low-cost solution that can provide protection for code segments and can significantly

enhance the availability of a system in a low-radiation space environment.  We also show

this reliability improvement through analytical estimates.  These estimates are based on

parameter values that closely match the environment of our satellite experiment.

For applications where read and write operations are done in blocks of words, such

as secondary storage systems made of solid-state memories (RAM discs), software-

implemented EDAC could be a better choice than hardware EDAC, because it can be

used with a simple memory system and it provides the flexibility of implementing more

complex coding schemes.
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 1. INTRODUCTION

Acronyms:

ARGOS Advanced Research and Global Observations Satellite

COTS Commercial Off-The-Shelf

CRC Cyclic Redundancy Checking

ECC Error-Correcting Codes

EDAC Error Detection And Correction

MBU Multiple-Bit Upset

OS Operating System

SbEC-DbED Single-byte-Error-Correcting, Double-byte-Error-Detecting

SEU Single Event Upset

SEC-DED Single-Error-Correcting, Double-Error-Detecting

SMU Single-word Multiple-bit Upset

Transient errors and permanent faults in memory chips are well known reliability

issues in computer systems.  Error detection and correction (EDAC) codes — also called

error-correcting codes (ECCs) — are the prevailing solution to this problem [1].

Typically, the memory bus architecture is extended to accommodate extra bits, and

encoding and checking circuitry is added to detect and correct memory errors.  This

additional hardware is sometimes omitted due to cost considerations.  If a computer is to

be designed using commercial-off-the-shelf (COTS) components that do not have EDAC

hardware for memory, the reliability problem has to be addressed with another form of
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redundancy.  Hardware redundancy techniques, such as duplication or triple modular

redundancy (TMR) [2], can be one solution, but they are very expensive.  When hardware

redundancy is not possible, we have to resort to software solutions.

In this paper, we discuss the implementation of EDAC in software and present a

technique for a system that does not have hardware EDAC but requires protection for

code and data that reside in the main memory.  The goal is to provide protection against

transient errors (soft errors) that manifest themselves as bit-flips in memory.  These errors

can be caused by single event upsets (SEUs) [3][4], power fluctuations or electromagnetic

interference.  Handling permanent faults (hard errors) in memory is discussed in the

literature [1] [5] and is not the focus of this paper.

The motivation behind this work came from an actual space experiment called the

Stanford ARGOS project [6].  ARGOS (Advanced Research and Global Observations

Satellite) is an experimental satellite that carries several experiments, one of which is the

USA experiment [7].  The USA (Unconventional Stellar Aspect) experiment includes a

computing test-bed that has two processor boards.  These boards are used for observing

the behavior of computer systems in a radiation environment.  One processor board uses a

radiation-hardened processor chip set, has redundant processors (as a self-checking pair),

and has EDAC hardware.  The other board uses only COTS components and does not

have EDAC hardware.  The experiment involves collecting the errors that occur during

the execution of programs in an actual space environment and comparing the

performance of the two boards.  We have observed that SEUs corrupt the operating

system or the main control program, forcing a system reset.  In order to effectively carry

out our experiments, these critical programs have to be protected against SEUs.  The
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objective of our experiment is to see whether software-implemented hardware fault-

tolerance — which can include software-implemented EDAC — can provide sufficient

reliability for COTS hardware to make it usable in low-radiation space applications.

Power fluctuation and electromagnetic interference may cause bit-flips in

memories.  It has been observed that radiation-induced transient errors also occur at

ground level [8].  Therefore, the technique presented in this paper can be useful for

terrestrial applications, too.

Previous discussions of software-implemented EDAC concentrate on

communications and secondary storage systems [9-14].  In Sec. 2, we review some of

these previous studies.  In Sec. 3, we look at the problem in more detail and discuss the

requirements of a scheme for the particular application presented above.  Four different

example EDAC coding schemes were implemented in software.  These schemes are

compared in Sec. 4.  Issues that have to be considered for handling multiple errors and

solutions to them are discussed in Sec. 5.  Finally, the EDAC program has to be

integrated into the whole system.  We present our implementation in ARGOS in Sec. 6.

The reliability improvement of an application in a space environment is estimated in Sec.

7.  We conclude the paper with a discussion in Sec. 8.

 2. PREVIOUS WORK

Error control coding is a well-developed field [5] [15].  EDAC codes are used to

protect digital data against errors that may occur in storage media or transmission

channels.  The encoding and decoding of data can be done in hardware, software or a

combination of both.  For example, in the memory management unit (MMU) of a HaL
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microprocessor, error detection is done by hardware but correction is done by software,

because hardware correction would increase the clock cycle time [16].

Since special hardware for a coding system can be expensive, researchers have

studied the feasibility of using general-purpose microprocessors for software

implementation of EDAC codes [9] [10].  Efficient software methods have been devised

to do Cyclic Redundancy Checking (CRC) using table look-up [11] [12].  A comparison

of fast implementation of different CRC codes is given in [13].  CRC codes are used for

detecting multiple-bit errors in communication systems where correction can be done by

retransmission.  In storage systems, a coding scheme with correction capability is used.

There are many different codes used in hard disks and tape backup systems.  Some of

these codes can be used for protecting data residing in memory chips.  For example, a

software implementation of a (255, 252) Reed-Solomon code that can do single-byte

error correction is proposed in [14] for protecting RAM discs of satellite memories.

However, there are differences between memory and secondary storage systems that need

to be addressed in order to choose an appropriate EDAC scheme for memories.

The contributions of this paper are: identifying the issues in implementing EDAC in

software, illustrating the options and differences in coding schemes by comparing four

example codes that may be considered for EDAC, devising a technique that addresses all

the requirements of software EDAC including multiple-bit error correction independent

of system-level and chip-level structures, analyzing the reliability of a system with

software EDAC for main memory, and finally presenting an actual implementation and

demonstrating its effectiveness in an actual experiment.
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 3. GENERAL CONSIDERATIONS

In this section, the requirements for an EDAC scheme that is to be implemented in

software are discussed.  Software EDAC is an alternative to hardware-implemented

EDAC.  Our goal is to provide the protection capabilities of hardware EDAC in software.

3.1 Systematic Codes

A coding scheme provides a mapping of input data words to what are called

codewords.  A codeword contains extra check bits that are used for error detection and

correction.  Let us consider a 64-bit data word represented by the row matrix

]...[ 6310 dddD .  A single-error-correcting, double-error-detecting (SEC-DED) Hamming

code will add 8 check bits to these 64 bits and create 72-bit codewords

]......[ 7106310 cccdddC —denoted as a (72, 64) code.  In this coding scheme, the data bits

are not changed and are separable from the check bits.  This type of code is called a

systematic (or separable) code.  In non-systematic codes, the data bits are not preserved

and are mixed with check bits.

In a communication system, input data is given to the EDAC encoder and the check

bits are calculated.  The produced codewords are transmitted through the channel and

given to the EDAC decoder at the receiving end.  After checking for possible errors and

correcting them, the decoded data is ready to be used.  Similarly, in a secondary storage

system such as a hard disk, the encoded data on the storage media is decoded when it is

retrieved into a memory buffer for usage.  Modifications are also made to the decoded

data in the memory buffer and the data is re-encoded for storage.  In these cases, the

codewords are not accessed directly; they are always decoded before being used.
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Therefore, the coding scheme used in these applications does not have to be systematic.

In contrast, for the application considered in this paper, we should use a systematic code.

As mentioned in the introduction, our objective is to devise a scheme to protect the

data residing in main memory.  For this application, the data that is protected by software

EDAC is fetched and used by the processor in the same way as unprotected data is

fetched and used.  We want the EDAC program to run as a background task and be

transparent to other programs running on the processor.  The protected data bits have to

remain in their original form if we want to make the scheme transparent to the rest of the

system.  This requires the use of a systematic code.

3.2 Checkpoints and Scrubbing

In memories with hardware EDAC, each word of memory is encoded separately1.

The encoding is checked on each read operation and new codewords are generated on

each write operation.  In addition, the contents of memory are read periodically and all

the correctable errors are corrected.  This latter operation is called periodic scrubbing and

avoids accumulation of errors, thereby reducing the probability of multiple errors that

may not be correctable.

If the same protection that is provided by hardware, is to be provided by software,

each read and write operation done by the processor has to be intercepted.  However, this

interception is infeasible because it imposes a large overhead in program execution time.

                                                

1 In “chipkill-correct” EDAC protected memories that are mainly used in server computers, the codewords

may expand over several words [17] and therefore, single-word write operations are done in a Read-

Modify-Write fashion.  This is all done in hardware using store buffers and is transparent to software.
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Therefore, we chose to do only periodic scrubbing for software-implemented EDAC.  If

memory bit-flip errors are not corrected by the periodic scrubbing before a program is

executed, we rely on other software-implemented error detection techniques (e.g.,

assertions, Error-Detection by Duplicated Instructions [18], or Control-Flow Checking

by Software Signatures [19]) to detect the errors.  When an error is detected, a scrub

operation is enforced before the program is restarted.

The EDAC program is given the address and size of the memory block that needs to

be protected.  It requests another block from the OS to be used for the check bits.  Then, it

calculates the check bits (encoding) and stores them in the allocated block.  On request, it

checks the block for errors (decoding) and corrects them if possible.  The content of the

memory block may be fixed or variable.  If it is fixed, the encoding is done once and the

check bits remain constant.  However, if the memory block is written to by the processor,

the check bits have to be recalculated.  There are two main types of information stored in

a memory: code and data.  Code segments contain instructions, and data segments contain

the data that is used or produced in computations.  After a program has been loaded and

linked by the operating system, the contents of the code segment are not changed (with

the exception of self-modifying codes that are not considered here).  Therefore, a fixed

set of check bits can be calculated for code segments.

Generally, the processor reads and writes to data segments and, as said earlier, it is

not feasible to intercept all the write operations to update the check bits because the

interceptions will incur significant performance overhead.  However, for data that does

not change, e.g., read-only data segments, or some calculation results that are stored for

later use, EDAC protection can be provided in software.  Application Program Interfaces
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(APIs) can be defined so that the programmer can make function calls to the EDAC

program and request protection for a specific data segment (an example API is given in

Sec. 6).  In this case, protection can also be provided for writable data segments.  Read

and write operations on these segments will be done through the APIs in blocks of words.

However, this method is not transparent to the application programs and the programmer

needs to take control of the reads and writes to the protected data and minimize the

execution overhead.

3.3 Overhead

The space used for check bits reduces the amount of memory available for programs

and data.  Therefore, we need to keep the overhead introduced by the check bits as low as

possible.  The simplest code is a parity code that is formed by adding a single bit to data

bits such that the total number of ones in the resulting codeword is even (or odd for odd

parity).  This code can detect only odd numbers of errors and cannot correct any errors.

Correction can be done by keeping a second copy of the parity-protected data but EDAC

codes can provide correction capability with fewer check bits.  We also need to handle

more than one error, because multiple errors may occur between scrub intervals.  Codes

that have more capability (correction and multiple detection), add more check bits (check-

bit overhead) and tend to have more complex encoding and decoding algorithms,

increasing both performance overhead and program size overhead.  We need to select a

code that can be implemented by a fast and small program and provides correction for

multiple errors.  If the program is fast, it imposes low overhead on system performance.

More importantly, a fast program is less vulnerable to transient errors that may occur in

the processor during execution of the program.  Similarly, small program size is
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important not just because it takes less memory space that could be used for other

programs, but more importantly because, it makes the EDAC program less vulnerable to

SEUs that may corrupt its own program.  In Sec. 6, we discuss how the EDAC program

can be protected.

Note that, the check-bit overhead of hardware EDAC is the extra memory chips that

are added to the memory system to contain the check bits.  There is no program size

overhead for hardware EDAC but there may be some performance overhead if the latency

of EDAC circuitry increases the access time of the memory.  With hardware EDAC, the

check bits are fetched from memory at the same time the corresponding data bits are

accessed.  However, with software EDAC, extra memory accesses are needed to fetch the

check bits.  In addition, there will be some memory accesses for fetching the EDAC

program into the processor cache.  Therefore, the total memory bandwidth used by

software EDAC is more than that of hardware EDAC.

 4. CODE SELECTION

4.1 Vertical vs. Horizontal Codes

In memory systems with hardware EDAC, the memory width is extended to

accommodate the check bits.  Figure 4.1(a) shows a diagram for a 32-bit memory word

that is augmented with seven check bits.  Each set of check bits is calculated based on the

bits of one word corresponding to one address.  We refer to this type of coding as a

horizontal code. When a horizontal code is implemented in software, each word is

encoded separately and the check bits are concatenated to form a word.  This check word

is saved in a separate address (Fig. 4.1(b)).
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32-bit data words 7 check bits

(a)

32-bit words

(b)

data words

check word

Figure 4.1 A horizontal code over bits of a word: (a) hardware implementation; (b) organization
of bits when the code is implemented in software.

Another type of coding is shown in Fig. 4.2.  Each set of check bits is calculated

over the bits corresponding to one bit-slice of a block of words in consecutive addresses.

This type of coding is used in some tape back-up systems [20] and we refer to it as a

vertical code.  This type of code matches well with the bitwise logical operations that are

present in all common instruction set architectures (ISAs).  When we discuss different

codes in Sec. 4.2, we will see that the logical ‘xor’ operation is used in the

implementation of most of the error detecting codes.  Many shifts and logical operations

are required for encoding each word in a horizontal code.  In contrast, vertical codes lend

themselves into very efficient algorithms that can encode all the bit-slices in parallel —

similar to the parallelism in a single-instruction multiple-data (SIMD) machine.

Therefore, a vertical code is preferred for a software-implemented EDAC scheme.
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32-bit words

.

.

.

8 check bits

64 data bits
(one bit-slice of

64 words)

.

..

Figure 4.2 A vertical code over bit-slices of words.

Another aspect of these two types of codes is their handling of multiple errors.  Let

us assume that a SEC-DED code is used for both types of codes.  If two bit- flips occur in

one word, the horizontal code cannot correct it; but, since each bit-flip belongs to a

different bit-slice, the vertical code will be able to correct both errors.  On the other hand,

if two bit-flips occur in one bit-slice of a block, a horizontal code will correct both, while

a vertical code will fail.  We discuss the occurrence and handling of multiple faults in

Sec. 5.

There are coding schemes that are not quite horizontal or vertical.  An advantage of

implementing EDAC in software is that it is very flexible and the designer can mix

different techniques and codes that would be expensive or infeasible in hardware.

4.2 Coding Schemes

In this section, we look at four different codes and compare them.  These codes

were chosen to illustrate the options, the differences, and the facts that need to be

considered in choosing a coding scheme.  The designer of a software-implemented

EDAC scheme may choose a code depending on the application.
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1) Scheme 1 is a (72, 64) Hamming code implemented as a vertical code over a

block of 64 data words with eight check-bit words.  The parity generation matrix was

optimized to have minimum-weight columns.  For example, the equation for the first

check bit 0c  is:

636261605651504847454338

35343129262019161513127600

dddddddddddd

ddddddddddddddc

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=
(1)

where ⊕ denotes the xor operation.  This equation can be used directly in the C program

that implements the EDAC algorithm.  By defining each ic  and id  in (1) as a 32-bit

word, we can implement a vertical code as shown in Fig. 4.2.  Using the bitwise ‘xor’

instruction, 32 xor’s will be done in parallel.  In other words, the encoding of all the 32

bit-slices can be done in parallel.  The decoding process is done in a similar way.

This Hamming code can correct single errors and detect double errors.  Therefore,

in this scheme, a single bit error can be independently corrected in each bit-slice.  In other

words, as many as 32 bit-flips can be corrected as long as each of them is in a different

bit-slice (this includes a single word correction).

2) Scheme 2 is also a vertical code with the same size but uses a cyclic code instead

of a Hamming code.  The (72, 64) cyclic code is based on the primitive polynomial:

1)( 278 +++= XXXXP .  The polynomial division used in this code was done by

implementing the Linear Feedback Shift Register (LFSR) shown in Fig. 4.3, in software.

Similar to Scheme 1, the encoding/decoding process of the 32 bit-slices is done in

parallel.  The correction capability of this scheme is the same as that of Scheme 1.
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Figure 4.3 The LFSR corresponding to polynomial 1)( 278 +++= XXXXP .

3) For Scheme 3, we chose a (1088, 1024) 2-dimentional parity code similar to a

rectangular code.  For simplicity, let us consider a block of four 4-bit words, 40−d .  Figure

4.4(a) shows a rectangular code where parity bits are calculated over each word

(horizontal parity) and each bit-slice (vertical parity).  A single error in the block will

cause one horizontal and one vertical parity error which will indicate the location of the

error.  As mentioned earlier, calculating the horizontal parities in software is not as fast as

calculating the vertical parities.  Therefore, in Scheme 3, the horizontal parity is replaced

with diagonal parity (similar to the scheme in [21]) which is essentially the same but

translates to a more efficient software implementation (Fig. 4.4.(b)).  The block size in

our implementation is 32 words, because of 32 bits in each word (hence a (n=k+64,

k=32×32) code).

 

d0
d1
d2
d3

 V

d0
d1
d2
d3

 V
 D

H

(a) (b)
Figure 4.4 Parity codes: (a) vertical + horizontal (rectangular); (b) vertical + diagonal.

4) Scheme 4 uses a (66, 64) Reed-Solomon (RS) code in )2( 32GF .  The polynomial

used for this code is: 1)( 22232 ++++= XXXXXP .  The equations for the check-bit
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words are: ∑=∑=∑= 2
210 ,, αα iii dcdcdc , where α is the field generator (the

∑ translates to the bitwise xor operation in a C program).  0c is simply the vertical

parity. 1c  and 2c are calculated by a software implementation of a Multiple-Input

Signature Register (MISR) [20].  The efficiency of software implementation of this

scheme is similar to Schemes 2 and 3.  With 0c  and 1c , the distance of the code (d) is 3

and a single word error can be corrected (SbEC).  With 0c , 1c  and 2c , the distance is 4

and in addition to SbEC, double word errors are also detected (DbED).  However, this

extra coverage will be at the expense of a larger EDAC code and longer execution time.

The block size for this code can be up to 1232 −  words, including the check-bit words.

Therefore, this code can have a very low check-bit overhead.  However, the probability of

multiple errors increases as the block becomes larger.  We keep the block size for this

scheme at 64 words; the same as those of schemes 1 and 2.

4.3 Overhead Comparison

We implemented the four schemes described in the previous section in software and

measured their performance on a 200MHz UltraSPARC-I microprocessor.  Table 4.1

shows the results.  Column 2 shows the size of the code segment of the program that does

the encoding and the error detection and correction.  Column 3 shows the overhead of the

check bits.  Notice that for Scheme 4, the block size can be larger and the overhead can

be reduced as long as the probability of multiple errors in the block remains below the

specifications.  The decoding (error detection) speed mainly determines the performance

overhead of each scheme because decoding is done more often than encoding or

correction.  The decoding speed (DS) of each scheme in terms of megabytes per second is
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shown in column 4.  Given the size of memory that is being protected (Smem) and the

scrubbing interval (Tscrub), performance overhead (OHperf) can be calculated using the

following formula:

DSST

DSS
OH

memscrub

mem
perf −

= .

Column 5 summarizes the error detection and correction capability of each scheme.

Table 4.1 Comparison of program size, check-bit overhead and decoding (error detection) speed
of the four coding schemes.

Scheme Program
Size (bytes)

Check-bit Overhead =
check-bit/data (words)

Decoding
Speed (MB/s)

Detection/Correction
Capability

Hamming 14,307 8/64=12.5% 187.80 bit-slice SEC-DED per block
Cyclic 6,731 8/64=12.5% 29.24 bit-slice SEC-DED per block
Parity 6,747 2/32=6.25% 34.68 SEC-DED per block
RS (d=3) 6,723 2/64=3.125% 24.41 SbEC per block

Notice that column 2 shows only the size of the core part of the EDAC program.

There are other parts of the program that: maintain the list of memory segments that are

scrubbed, implement the interleaving technique (discussed in Sec. 5.3), communicate

with other programs, etc.  The size of these parts, which is not included in column 2,

depends on the features of the EDAC program and is the same for all the coding schemes.

In our implementation, these parts were about 15,000 bytes in size.  The differences in the

core size are small compared to the size of the whole EDAC program.  Therefore, when

comparing the coding schemes, the core program size is a minor factor.

Scheme 1 has the highest decoding speed but also has the largest program size.  The

latter is a minor disadvantage as discussed in the previous paragraph.  Scheme 2 has the

same check-bit overhead and detection/correction capability as Scheme 1, but has a much

lower decoding speed (this speed may be acceptable depending on the application).
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Schemes 3 and 4 have lower check-bit overhead at the expense of less

detection/correction capability.

There are many other EDAC codes and the proper code has to be chosen depending

on application specifications.  A scheme that has smaller program size, lower check-bit

overhead and higher decoding speed is the preferred one.  The last decision factor is the

capability of the codes in handling multiple errors.

 5. MULTIPLE ERROR CORRECTION

Multiple errors occur in two ways.  Multiple SEUs can occur before the memory is

scrubbed for errors, or a single SEU causes multiple-bit upsets (MBUs).  In the former

case, the scrubbing frequency needs to be adjusted according to the SEU rate to avoid

exceeding the correction capability of the utilized EDAC code with a high level of

confidence.  The latter case has to be approached differently.

The probability of bit-flips in memories is increasing in new integrated circuit (IC)

technologies due to reduction of feature sizes and lowered supply voltage, which make

the stored charge in a cell comparable to the energy of a single particle.  The reduced

proximity between cells aggravates the problem.  It has been observed that a single

particle can affect multiple adjacent memory cells and cause multiple bit-flips [22] [23]

[24] [25].  MBUs occurred in 1-5% of SEUs in a set of satellite experiments [26].  The

fact that these multiple errors correspond to memory cells that are physically adjacent

should be considered when designing an EDAC scheme.  If the design is such that the

physically adjacent bits belong to separate codewords, these errors can be corrected.  To

achieve this, the designer of the EDAC scheme needs to know the mapping of physical
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bits of the memory structure, to the logical bits in memory address space (location of the

bits in a programmer’s view of the memory).  This mapping is determined by the system-

level structure and the chip-level structure.  We look at each of these separately.

5.1 System-Level Structure

Let us consider a system with 2MB of memory and a 32-bit data bus.  Each memory

chip that is used to build this memory can have 1, 4 or 8 data outputs, usually denoted as

a ×1, ×4 or ×8 chip, respectively.  For example, if 512K×1 chips are used, each chip will

provide one data bit of the bus and 32 chips will make 2MB of memory.  If 512K×8 chips

are used, each chip will provide 8 data bits of the bus and four chips are enough to make

2MB of memory.  In systems with hardware EDAC, the ×1 chips have the advantage that

if one whole chip becomes faulty, a SEC-DED code can compensate for this failure.  To

tolerate chip failures of the wider chips, more advanced EDAC designs have to be used

 these codes are beyond the scope of this paper; for a good discussion of this subject

the reader is referred to [17].

The errors caused by SEUs are independent in each memory chip.  This fact can be

used when designing EDAC for chips with a specified output width.  For example, if ×8

chips are used with Scheme 4, it will be beneficial to implement the Reed-Solomon code

in )2( 8GF  and have the check-bits over each 8-bit byte portion of a 32-bit word (byte-

slices as shown in Fig. 5.1).  This code will be capable of correcting multiple errors that

do not necessarily align in one word of the address space.  Therefore, the fact that

multiple dependent errors (caused by one SEU) do not cross the byte borders, can be used

to enhance to capability of the code in correcting multiple independent errors.  Notice that
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this is achieved with the same check-bit overhead but a more complicated code for doing

the encoding and decoding.  In addition, the size of the block can now be increased only

up to 128 − words.

32-bit words

c0
c1
c2

x

x

x

x

Figure 5.1 A byte-slice implementation of an EDAC code.  An example of a multiple error that
can be corrected is shown with the marked bytes.

Similarly, the vertical code shown in Fig. 4.2 can handle multiple independent

errors caused by multiple SEUs in different ×1 chips.  With ×1 chips, multiple errors that

are caused by a single SEU (MBUs) will all be in one bit-slice (not necessarily in

consecutive word addresses).  A horizontal code that is capable of SEC-DED for each 32-

bit word can easily handle these MBUs.  However, a vertical code will fail if these errors

map to the words of the same block.  This mapping depends on the internal structure of

the memory chip.  Even with wider chips such as ×4 or ×8 chips, one needs to look at the

structure inside the memory chips to know where these physically adjacent errors will be

in the logical memory address space.



19

5.2 Chip-Level Structure

In this section, several possible implementations of a 512K×8 memory chip are

analyzed.  Figure 5.2 shows three different implementations of such a memory taken

from the data sheets of Cypress Semiconductor Corporation [27].

512K × 8
ARRAY

Column Decoder

A0 - A10

A11 - A18

R
ow
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(a)

D0 - D7

128K × 8
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1 of 4
Decoder
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A17, A18

128K × 8
ARRAY

128K × 8
ARRAY

128K × 8
ARRAY

D0 - D7

256K × 4
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1 of 2
Decoder

A0 - A17

A18

256K × 4
ARRAY

256K × 4
ARRAY

256K × 4
ARRAY

D4 - D7

(b)

(c)

D0 - D3

Figure 5.2 Three different implementation of a 512K×8 memory chip: (a) one ×8 array (Cypress
CY62128), (b) four ×8 arrays (CYM1465), (c) four ×4 arrays (CYM1464).
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With the structure in Fig. 5.2(b), errors in the four arrays will be independent.  If

the structure in Fig. 5.2(c) is used, then errors in each nibble (4 bits) of a word will be

independent of errors in the other nibbles.  An EDAC design can take advantage of this

fact and enhance its correction capability in the same way as discussed for the example of

Fig. 5.1.

One important thing that the data sheets do not show is the mapping (physical

connection) of external address bits to internal address bits.  For example, it is not

necessarily the case that in Fig. 5.2(a), address bits A0 to A10 are connected to the row

decoder and in that order.

To completely derive the physical to logical mapping of the bits inside a memory

chip, we looked at the actual physical implementation of the four arrays in Fig. 5.2(b).

Each 128K×8 module is divided into 8 subarrays (groups).  Each subarray has 1024 rows

and 128 columns — not counting the redundant rows and columns that are used for yield

enhancement (defect tolerance).  Let us indicate the address bits connected to the group,

row and column decoders with AG, AR and AC, respectively.  The mapping of external

address bits (A0-A16) to these bits is shown in Table 5.1.

Table 5.1 Mapping of external to internal address bits in the 128K×8 array.

Internal Address Bits External Address Bits

AG 0,1,2 A 15,16,10

AR 0-9 A 4,5,6,7,8,9,11,12,13,14

AC 0-3 A 0,1,2,3

The order of the data bits that come out of each group also differs for each group.  If

we look at a small portion of one subarray, it will look like Fig. 5.3(b).  Bit 2 and bit 6 are
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physically adjacent.  The number in each cell corresponds to the logical address of the

word that contains that bit.  This correspondence is illustrated in Fig. 5.3(a) where the

same bits are numbered in a logical view of the memory.  Let us consider bit 2 of address

18.  This bit is physically adjacent to bit 2 of addresses 01, 02, 03, 17, 19, 33, 34 and 35

(we refer to this as type 1 adjacency)— if the geometries are small enough, we may have

to consider adjacency with a larger radius [25].  For a more interesting example, consider

bit 6 of address 16.  This bit is physically adjacent with bit 6 of addresses 00, 01, 17, 32

and 33 (type 1), and with bit 2 of addresses 15, 31 and 47 (we refer to this as type 2

adjacency); which is something not quite expected.  Adjacencies of type 2 are in different

bit-slices and vertical codes can correct MBUs of this type.  However, type 1 adjacencies

are in the same bit-slice and vertical codes may fail to correct the corresponding MBUs.

To handle type 1 adjacencies with a vertical code, a technique called interleaving can be

used (Sec. 5.3).

Notice that a horizontal code can correct the MBUs corresponding to both types of

adjacencies.  In other words, the internal structure of some memories (like the above

example) is such that hardware EDAC works well for all MBUs.  However, this is not

always true.  For example, the internal structure of a ×8 memory chip from Texas

Instruments is such that MBUs can occur within individual words [28].  Such single-word

multiple-bit upsets (SMUs) will defeat a SEC-DED horizontal code.  Therefore, in this

case, a well-designed software EDAC can be more effective than a hardware EDAC.
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Figure 5.3 Bit positions for a small portion of the memory array of Fig. 5.2(b): (a) logical
positions, (b) physical positions.

5.3 Interleaving

It was illustrated in the previous section that multiple errors can occur in one bit-

slice of a block of words protected by a vertical EDAC code.  If a SEC-DED code is

used, these errors cannot be corrected.  One solution is to use a code that can correct more

errors in a codeword.  However, codes with higher correction capability have higher

check-bit, performance and program size overhead.  Another solution is to logically

separate the adjacent bits so that each error occurs in a different codeword.  This can be

done by interleaving the words that belong to the protected blocks.  Interleaving is a

technique where logically adjacent bits are mapped to bits of the communication channel

or storage media that are not physically adjacent.  This technique is used for handling

burst errors.  For example, audio CDs employ the Cross-Interleaved Reed-Solomon Code

(CIRC) to overcome burst errors due to scratches and dust particles.  CD-ROMs use a
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two-dimensional version of CIRC.  Figure 5.4 shows a 4-way interleaved EDAC scheme

that has 64 data words and 8 check-bit words.  Starting from address 0, the words of a

protected block belong to memory addresses 0, 4, 8, 12, 16,…, 252.  Looking at Fig.

5.3(b), we see that having address 0 and 16 in the same block is not desirable.  Any i-way

interleaving scheme, where i is of the form ki 2=  (a power of 2), 12 −= ki  or 12 += ki ,

has the same problem.  Therefore, when choosing an interleaving factor, it is best to avoid

these numbers.  By doing so, the scheme will be independent of the internal structure of

the memory chips because for any internal structure, the adjacencies will have a relation

that has these three forms (with different k’s).

The geometrical model for multiple upsets presented in [25], assumes that a

memory cell will be upset if an ion comes within a distance R from its assumed center.

We refer to this distance as the sensitive radius of adjacency.  Notice that if R is larger

than one, the interleaving factor has to be chosen more carefully.  In our project, we

assumed this radius is one and we used 6=i  for our application.

(a) (b)

32-bit words

.

.

.

4*8 check bits

32-bit words

.

.

.

.

.

.

4*64 data

8 check bits

64 data

8 check bits

64 data

.

...
..

.

..

Figure 5.4 Logical mapping of words in a 4-way interleaving technique: (a) blocks of EDAC
protected data and the corresponding check-bit words; (b) the location of these words in memory

address space.
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 6. IMPLEMENTATION

We assume that the target system has a multi-tasking OS.  As mentioned earlier, the

EDAC program is an independent task that is executed periodically.  Timers can be used

to wake up the EDAC task periodically.  The task should also have higher priority than

normal programs so that it is executed at its fixed frequency, independent of the load on

the system.  Because this task has high priority, it will run to completion (one sweep of

memory) before normal programs are resumed.

The EDAC program needs to access the data and code segments of other tasks.

Direct access to the address space of another task is not always granted to a normal task.

The operating system in our system is VxWorks with a flat address space and no

protection option activated.  However, in many operating systems, for example, Unix, the

address space of a task is protected from being accessed by other tasks using hardware

and software mechanisms.  Only the operating system has unrestricted access to the

whole memory.  Therefore, in this case, the EDAC program has to be run at kernel level

or given proper access rights.

We used APIs to interface application programs to the EDAC program.  An

example set of APIs is shown in Table 6.1.  Since the EDAC program is a separate task,

the function parameters are sent to it through message passing.  The first time each

application program is loaded into memory, it sends the address of its first and last

instruction to the EDAC program using the EDAC_add_block function.  Using the same

mechanism, a program can also ask for protection of a data segment.  The read and write

functions are used for data segments.
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Table 6.1 An example set of APIs for software EDAC.

Function Name and Parameters Description

EDAC_add_block(StartAddr, EndAddr) Add the block between ‘StartAddr’ and ‘EndAddr’ to
the list of blocks to be scrubbed periodically.

EDAC_delete_block(StartAddr) Delete the protected block that starts at ‘StartAddr’.

EDAC_read(ReadAddr, Size, &Buffer) Read ‘Size’ words into ‘Buffer’ starting at ‘ReadAddr’
from the corresponding protected block.  The data
are checked for errors before copying into ‘Buffer’.

EDAC_write(WriteAddr, Size, Buffer) Write ‘Size’ words from ‘Buffer’ to locations starting
at ‘WriteAddr’.  New check bits are calculated for the
corresponding protected block.

Almost all modern microprocessors use caches to compensate for the slow access to

the main memory.  In a split cache architecture, the data and instruction caches are

separate.  When the EDAC program checks the code segment of another program for

errors, it reads the instructions of that program.  These instructions go through the data

cache because they are data for the EDAC program.  If any correction is done on these

instructions, the correction is written into the data cache.  Therefore, the EDAC program

should invalidate the instruction cache (if the corrected address exists in cache) and flush

the data cache after a correction is done.  This will force the correct instruction to be

fetched from memory and into the instruction cache next time that address is accessed.

During a normal sweep of the memory by the EDAC program (no errors detected),

all the checked addresses are accessed only once.  Therefore, there is no benefit in

caching these addresses.  Moreover, they will replace all the active lines of the caches

which will degrade the performance of the system by causing many cache misses after the

EDAC program finishes one scrub operation.  Therefore, it is better to treat the data

accesses of the EDAC program as non-cacheable addresses so that they do not pollute the
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data cache.  Notice that, even in this case, the cache has to be invalidated if a correction is

done on an address that exists in the cache.

The EDAC program resides in memory and therefore it is vulnerable to errors itself.

Read-only memories (ROMs) are less susceptible to SEUs hence, running the EDAC

program out of ROM is one way of protecting it against bit-flips in its code segment.

However, ROMs are not immune to SEUs and they are slower than RAMs.  In some

cases (for example, our ARGOS project) adding EDAC may be an after-thought in

project design, so it is not possible to put the EDAC program in ROM.  Notice that SEUs

that occur in the processor can also result in miscalculations in the EDAC program.

Therefore, in any case, some sort of redundancy is needed to ensure the correctness of

this process.  Time-redundancy (multiple executions) can be used to check for SEUs that

occur in the processor.  However, if an SEU corrupts the code segment of the EDAC

program, it needs to be corrected so that it does not produce a wrong result repeatedly.

This code segment can be protected by EDAC, similar to other programs that are being

protected.  However, a corrupt code cannot be trusted to correct itself.  Therefore, a

second copy of the EDAC program should exist.  Each copy can do checking and

correction on the other one (cross-checking).  Another possibility is to have a second

copy in ROM, and correct the errors simply by copying the image.  At any time, there

should be a healthy copy of the EDAC program that can be trusted to correct a possibly

corrupted one.

For the ARGOS project, we use the two copies scheme with cross-checking.  This

scheme is currently running on the satellite and has proved to be effective in enhancing

the availability of the system.  Our experiment is being carried on at the time of this
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writing and we do not have enough data to calculate the improvement in availability.

However, here are two examples where we have observed the effects.

After a system reset, we upload some programs and run them.  Then, a few days

later, we upload some new programs.  Without software EDAC, the second uploads fail,

sometimes causing exceptions or system reset.  We attribute the failure to the

accumulated bit-flips in the OS code that handles the uploading and linking, and in the

global symbol table — the global symbol table holds the addresses of global variables

and functions and is used in the linking process.  When the EDAC program is uploaded

and run with the first set of programs (shortly after a reset), the bit-flips in code segments

of the OS are scrubbed periodically.  In this case, most of the second uploads are

successful — the failures can be due to bit-flips in the global symbol table (which is a

data segment and is not protected against SEUs), or bit-flips in the OS code that have

occurred since the last scrub operation.

Another issue is the time it takes for the system to halt after a fresh start (total

reset).  Without software EDAC, the errors accumulate in the code segments of the OS

and our programs; after some time, the system gets an exception, for example, due to an

illegal instruction (caused by a bit-flip in an instruction).  This is a code that was running

correctly and stops because of a transient error in hardware and not a software bug.

When software EDAC is added, the frequency of these errors is significantly reduced and

the system can operate correctly for a longer period before it halts.

The observations explained above show that, in the absence of hardware EDAC,

system availability can be improved by software EDAC.  In the next section, we quantify

the reliability obtained by software EDAC for programs running in SEU prone
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environments.  As a reference for comparison, reliability estimates are derived for

programs running with both no EDAC and hardware EDAC support.  We also quantify

the sensitivity of program reliability to scrubbing interval.

 7. SCRUBBING INTERVAL AND RELIABILITY ANALYSIS

Several papers [29-32] present reliability analysis for memory systems using

hardware EDAC and scrubbing.  Building on this prior work, the analysis presented in

this section provides a framework for comparing hardware and software EDAC methods

from the standpoint of program reliability.  The environment assumed for this analysis

closely matches the environment for the ARGOS experiment.

Any program alternates between two states: run and dormant.  In the run state, the

program instructions are fetched and executed.  In the dormant state, the program

instructions are resident in memory and the program waits in this state until it is

scheduled by the OS to the run state.  With EDAC and scrubbing, the program will have

an additional scrub state.  During the scrub state, the program instructions are read and

rewritten (upon detection of correctable errors) with corrected data using hardware or

software EDAC methods.  The time between two successive scrub states is the scrubbing

interval.  By definition, the scrubbing interval will be the sum of run, dormant and scrub

state times.  The lifetime of a program, with EDAC and scrubbing, will be a renewal

event comprising a repetition of the sequence of run, dormant, and scrub states.  Table 7.1

lists the parameters used in the reliability analysis.
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Table 7.1 Program environment parameter definitions and typical values.

Parameter Description
u Upset rate (probability of single-bit upset in a cycle).  The units are

upset/bit-cycle. Typical value assumed is 5.52 x 10-19/bit-cycle.  This is
derived from 10 upsets/Mbyte-day using a clock rate of 25 MHz.

Tr
Number of cycles the program is in the run state. Typical value
assumed is 109 cycles.

Td
Number of cycles the program is in the dormant state. Typical value
assumed is 6.5 x 109 cycles.

TS
Number of cycles it takes to scrub the program data.  For hardware
EDAC, the typical value is 1.25x105 cycles. For software EDAC, the
typical value is 2.5 x 107. The scrubbing interval is Tr+Td+Ts (5 minutes
in 25MHz clock rate cycles).

n Horizontal bit width of program data. Typical values assumed are
n=32 for no EDAC or software EDAC and n=39 for hardware EDAC.

m Number of words in a block of vertical code (for software EDAC).
Typical value assumed is 72 (64 data words + 8 check-bit words).

S Number of program words protected by EDAC. Typical value assumed
is 131,072 (program size = 0.5 Mbyte).

S’ S plus number of check-bit words needed for S (S’ = S x 72/64).

Let us begin by estimating the reliability of a program running with no EDAC

protection.  Without EDAC protection, the lifetime of a program is a renewal event

comprising repetition of the sequence of run and dormant states.  The probability that a

program will survive one sequence of run and dormant states is given by:

)(
)1( dr TTnS

u
+− .

Using the values in Table 7.1, the reliability (probability that a program will survive

multiple sequences of run and dormant states) as a function of time (in minutes) is given

in Table 7.2.

Table 7.2 Survival probability of a program with no EDAC support.

Time (in Minutes) Reliability
10 0.97
20 0.93
30 0.90
40 0.87

1 day 0.0067
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Table 7.2 shows that without EDAC support, the probability of a program surviving

even for a day is very small.  Therefore, the necessity of protecting programs with EDAC

is demonstrated for these assumptions.  With SEC-DED hardware EDAC support, the

probability that a program survives one sequence of run, dormant, and scrub states is the

same as the probability that there is no more than a single-bit error in any program word

(horizontal codeword).  Simple combinatorial analysis shows this probability as:

SsTTTnnsTTT drdr unun ))1)(1()1((
)()1)(( ++−++ −−−− .

With software EDAC support, the program is unprotected against SEUs during the

run state.  Therefore for a program to survive, with a software SEC-DED EDAC support,

the program must not encounter any error during the run state and no more than a single-

bit error in any vertical codeword during the dormant and scrub states.  For the sake of

simplicity in analysis, we assume that the EDAC program is error-free.  We also assume

that due to physical locality of memory references, only 10% of the program code is used

in each scrubbing interval.  Using simple combinatorial analysis, the following

expression quantifies the reliability of a program for one sequence of run, dormant, and

scrub states:

)/()()1)((10 ))1)(1()1(()1( mSnsTTmmsTT
T
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n
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Again using the values in Table 7.1, Table 7.3 shows the reliability values for a

program with software EDAC and hardware EDAC.  This table shows that with software

EDAC, the reliability of a program is several orders of magnitude better than a program

without any EDAC protection.  Reliability of a program with no EDAC, hardware

EDAC, and software EDAC is shown in Fig. 7.1 for a period of 48 hours.  Note that the
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time axis is the sum of Tr and Td and therefore the graph shows the reliability comparison

for equal amount of work.  Since Ts is less than one percent of Tr + Td in both hardware

and software EDAC, total times (Tr + Td + Ts) are almost the same.

Table 7.3 Software and hardware EDAC reliability comparison.

Time (in Days) Reliability with
Software EDAC

Reliability with
Hardware EDAC

1 0.9355 ~1.0
2 0.8752 0.999999
3 0.8187 0.999999
4 0.7659 0.999998
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Figure 7.1 Reliability comparison using the parameters in Table 7.1.

The sensitivity of program reliability to the scrubbing interval and the upset rate is

shown in Table 7.4.  This analysis demonstrates that for low-radiation environments, the

scrubbing interval can be increased (thereby reducing the performance overhead) without

appreciably affecting reliability.
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Table 7.4 Software and hardware EDAC reliability sensitivity to scrubbing interval.

Reliability for a Period of One Day
Software EDAC Hardware EDAC

Scrubbing
Interval

u = 5.52 x 10-19 u = 5.52 x 10-18 u = 5.52 x 10-19 u = 5.52 x 10-18

10 minutes 0.935506 0.513345 0.999999 0.999904
20 minutes 0.935504 0.513274 0.999998 0.999808
30 minutes 0.935503 0.513202 0.999997 0.999712
40 minutes 0.935502 0.513130 0.999996 0.999617

1 day 0.935319 0.503198 0.999862 0.986297

 8. DISCUSSION

Solid-state memories, such as RAMs, are used for the main memory, secondary

storage, or processor caches in a computer system.  In this paper, we present a software-

implemented EDAC technique for protecting memories.  Let us consider EDAC

protection for main memory.  With software EDAC, the data that is read from main

memory may be erroneous, if the error occurs after the last scrub operation and before the

time of reading.  In other words, single-bit errors may cause failures.  In contrast,

hardware EDAC checks all the data that is read from memory, and corrects single-bit

errors.  Therefore, hardware EDAC provides better reliability and, when possible, should

be the first choice for protecting the main memory.  When hardware EDAC is not

available or affordable, software EDAC can be used as a low-cost solution for enhancing

the reliability of systems.

For cases where data is read and written in blocks of words rather than individual

words, software EDAC may be a better choice than hardware EDAC.  For example, when

solid-state memories are used for secondary storage (such as in satellites), the processor

can access the data through a buffer in main memory rather than directly from the

secondary storage (in this case, there is no need to restrict ourselves to systematic codes).
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For this secondary storage memory, EDAC protection can be provided in software by

periodic scrubbing and APIs (as explained in Sec. 3.2).  All read operations are checked

for errors, and single-bit errors in this memory will not cause failures.  Therefore,

assuming that the execution of the EDAC program is error-free, software EDAC can

provide the same reliability as hardware EDAC if they use the same coding scheme.

Considering the flexibility of software EDAC, it is possible to implement more capable

coding schemes that are infeasible in hardware, and thereby provide better reliability

through software.  Moreover, as mentioned in Sec. 5.2, there are cases of MBUs where

hardware EDAC will fail but software EDAC is able to correct the errors.  Therefore,

software EDAC could be a better choice for this application.

An extension of this work can be studying the feasibility of implementing software-

implemented EDAC for cache memories.
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Figure 4.1 A horizontal code over bits of a word: (a) hardware implementation; (b) organization

of bits when the code is implemented in software.
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Figure 4.2 A vertical code over bit-slices of words.
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Figure 4.3 The LFSR corresponding to polynomial 1)( 278 +++= XXXXP .
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Figure 4.4 Parity codes: (a) vertical + horizontal (rectangular); (b) vertical + diagonal.

Table 4.1 Comparison of program size, check-bit overhead and decoding (error detection) speed

of the four coding schemes.

Scheme Program

Size (bytes)

Check-bit Overhead =

check-bit/data (words)

Decoding

Speed (MB/s)

Detection/Correction

Capability

Hamming 14,307 8/64=12.5% 187.80 bit-slice SEC-DED per block

Cyclic 6,731 8/64=12.5% 29.24 bit-slice SEC-DED per block

Parity 6,747 2/32=6.25% 34.68 SEC-DED per block

RS (d=3) 6,723 2/64=3.125%* 24.41 SbEC per block
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Figure 5.1 A byte-slice implementation of an EDAC code.  An example of a multiple error that

can be corrected is shown with the marked bytes.
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Figure 5.2 Three different implementation of a 512K×8 memory chip: (a) one ×8 array (Cypress

CY62128), (b) four ×8 arrays (CYM1465), (c) four ×4 arrays (CYM1464).
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Table 5.1 Mapping of external to internal address bits in the 128K×8 array.

Internal Address Bits External Address Bits

AG 0,1,2 A 15,16,10

AR 0-9 A 4,5,6,7,8,9,11,12,13,14

AC 0-3 A 0,1,2,3

00 01 02 03 04 05 15

16 17 18 19 20 21 31

32 33 34 35 36 37 47

48 49 50 51 52 53 63

...

...

...

...

Bit #2

00 01 02 03 04 05 15

16 17 18 19 20 21 31

32 33 34 35 36 37 47

48 49 50 51 52 53 63

...

...

...

...

Bit #6

00

01

02

03

63

00

01

02

03

63

.

.

.

.

.

.

7 6 5 4 3 2 1 0

1 Byte

(b)

(a)

Figure 5.3 Bit positions for a small portion of the memory array of Fig. 5.2(b): (a) logical

positions, (b) physical positions.
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Figure 5.4 Logical mapping of words in a 4-way interleaving technique: (a) blocks of EDAC

protected data and the corresponding check-bit words; (b) the location of these words in memory

address space.

Table 8.1 An example set of APIs for software EDAC.

Function Name and Parameters Description

EDAC_add_block(StartAddr, EndAddr) Add the block between ‘StartAddr’ and ‘EndAddr’ to

the list of blocks to be scrubbed periodically.

EDAC_delete_block(StartAddr) Delete the protected block that starts at ‘StartAddr’.

EDAC_read(ReadAddr, Size, &Buffer) Read ‘Size’ words into ‘Buffer’ starting at ‘ReadAddr’

from the corresponding protected block.  The data

are checked for errors before copying into ‘Buffer’.

EDAC_write(WriteAddr, Size, Buffer) Write ‘Size’ words from ‘Buffer’ to locations starting

at ‘WriteAddr’.  New check bits are calculated for the

corresponding protected block.
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Table 7.1 Program environment parameter definitions and typical values.

Parameter Description
U Upset rate (probability of single-bit upset in a cycle).  The units are

upset/bit-cycle. Typical value assumed is 5.52 x 10-19/bit-cycle.  This is

derived from 10 upsets/Mbyte-day using a clock rate of 25 MHz.

Tr
Number of cycles the program is in the run state. Typical value

assumed is 109 cycles.

Td
Number of cycles the program is in the dormant state. Typical value

assumed is 6.5 x 109 cycles.

TS
Number of cycles it takes to scrub the program data.  For hardware

EDAC, the typical value is 1.25x105 cycles. For software EDAC, the

typical value is 2.5 x 107. The scrubbing interval is Tr+Td+TS (5 minutes

in 25MHz clock rate cycles).

N Horizontal bit width of program data. Typical values assumed are

n=32 for no EDAC or software EDAC and n=39 for hardware EDAC.

M Number of words in a block of vertical code (for software EDAC).

Typical value assumed is 72 (64 data words + 8 check-bit words).

S Number of program words protected by EDAC. Typical value assumed

is 131,072 (program size = 0.5 Mbyte).

S’ S plus number of check-bit words needed for S (S’ = S x 72/64).
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Table 7.2 Survival probability of a program with no EDAC support.

Time (in Minutes) Reliability

10 0.97

20 0.93

30 0.90

40 0.87

1 day 0.0067

Table 7.3 Software and hardware EDAC reliability comparison.

Time (in Days) Reliability with

Software EDAC

Reliability with

Hardware EDAC

1 0.9355 ~1.0

2 0.8752 0.999999

3 0.8187 0.999999

4 0.7659 0.999998
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Figure 7.1 Reliability comparison using the parameters in Table 7.1.

Table 7.4 Software and hardware EDAC reliability sensitivity to scrubbing interval.

Reliability for a Period of One Day

Software EDAC Hardware EDAC

Scrubbing

Interval

U = 5.52 x 10-19 u = 5.52 x 10-18 u = 5.52 x 10-19 u = 5.52 x 10-18

10 minutes 0.935506 0.513345 0.999999 0.999904

20 minutes 0.935504 0.513274 0.999998 0.999808

30 minutes 0.935503 0.513202 0.999997 0.999712

40 minutes 0.935502 0.513130 0.999996 0.999617

1 day 0.935319 0.503198 0.999862 0.986297


