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Abstract

We discuss balanced binary representations.

1 Introduction and Definitions

Every non-negative integer n can be represented essentially uniquely in base 2, as follows:

n =
∑

0≤i≤j

ei2
i

where ei ∈ {0, 1} and ej 6= 0 for n 6= 0. We consider the consequences of enlarging the digit
set to {−1, 0, 1}. We call such an expansion a signed-digit expansion.

One immediate consequence is that every integer, positive, negative, or zero, can be
represented using the digits {−1, 0, 1}. In fact,

Theorem 1.1 Every nonzero integer has an infinite number of signed-digit expansions.

Proof. We prove this for positive integers n, the proof for negative integers being essentially
identical. Write the ordinary base-2 representation of n−1 as (n−1)2 = ejej−1 · · · e0. Choose

any k > j, and consider the representation of 1 as 1

k
︷ ︸︸ ︷

−1 − 1 · · · − 1. Now add these two
representations, term by term. The result is a representation of n using only the digits 1, 0,
and −1.
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We now restrict our attention to a particular type of signed-digit expansion.

Theorem 1.2 Every integer has a signed-digit representation containing no two adjacent
nonzero digits.

Proof. It suffices to prove the result for non-negative integers. We use induction on n.
Clearly the result is true for n = 0. Now, if n is even, take a representation of n/2 and
concatenate 0. If n ≡ 1 (mod 4), take a representation of (n − 1)/4 and concatenate 01. If
n ≡ −1 (mod 4), take a representation of (n + 1)/4 and concatenate 0 − 1.

Theorem 1.3 Every nonzero integer has exactly one representation containing no two ad-
jacent nonzero digits and no leading zeroes.

Proof. Suppose n =
∑

0≤i≤j ei2
i =

∑

0≤i≤j fi2
i an integer with at least two distinct repre-

sentations. Without loss of generality we may assume n > 0 and n is the least such integer.
Consider both of these expansions modulo 2. If e0 ≡ 0 (mod 2), then f0 ≡ 0 (mod 2). Hence,
by dropping the least significant bit, we get two expansion for n/2 < n, a contradiction.

Similarly, by considering these expansions modulo 4, we find that either (i) e0 = f0 = 1
and e1 = f1 = 0, or (ii) e0 = f0 = −1 and e1 = f1 = 0. In the former case, (n − 1)/4 has
two distinct representations, and in the latter (n + 1)/4 has two distinct representations.

We call such a representation the balanced binary representation.
We define the weight of a signed-digit representation to be the number of nonzero digits.

Theorem 1.4 Balanced binary representation minimizes the weight over all signed-digit rep-
resentations.

Of course, there can be several signed-digit representations achieving the minimum
weight, such as 1 0 −1 and 11 for 3.

Theorem 1.5 There are tn = 2n−(−1)n

3
distinct representations of length n.

Proof. Any representation of length n must either end in 0 or 1 or −1. In the former
case, the representation consists of a valid representation of length n− 1 concatenated with
0. In the latter case, the representation consists of a valid representation of length n − 2
concatenated with either 01 or 0 −1. Thus tn = tn−1 + 2tn−2. Also t1 = 1 and t2 = 1, which
gives the result.

2 Algorithms

The following algorithm computes the balanced binary representation for a non-negative
integer n.
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BBR(n)
(1) if (n = 0) then
(2) return(ε)
(3) else
(4) determine e such that 2e ≤ n < 2e+1

(5) if (3n > 2e+2) then
(6) return(2e+1, -BBR(2e+1 − n)
(7) else
(8) return (2e, BBR(n− 2e))

The following algorithm computes an alternative signed-digit representation that also has
minimal weight:

BBR2(n)
(1) if (n = 0) then
(2) return(ε)
(3) else
(4) determine e such that 2e ≤ n < 2e+1

(5) if (2e+1 − n ≤ n− 2e) then
(6) return(2e+1, -BBR2(2e+1 − n)
(7) else
(8) return (2e, BBR2(n− 2e))

Note the outputs are different: BBR(11) gives 16−4−1, while BBR2(11) gives 8+4−1.
Both representations are of weight 3.

3 Transducers

We can convert from ordinary binary representation to balanced binary using the following
finite-state transducer:
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Figure 1: Transducer converting ordinary binary to balanced binary

The input is given starting with the least significant digit and the output has the same
order. The input may need two additional zeroes at the end to achieve the complete output.

For example, on input 010111100 the output is 010−100010.
On the other hand, it is easy to see that no finite-state transducer can convert an arbitrary

signed-digit binary expansion to ordinary binary. For example, if we take the most significant
digit first, then if the input is 10000 · · · 0, the transducer cannot output any correct output
until seeing the next digit. If it is 1, the output should be 10000 · · · 01. But if it is −1,
the output should be 01111 · · · 11. Thus there is arbitrarily long delay, and no finite-state
transducer will work.

However, we can convert from signed-digit binary to ordinary binary using a pushdown

transducer. (For more about pushdown transducers, see [6, 7, 9, 8, 14].) Suppose we read
the input starting with the most significant digit, followed by an endmarker. On input 1, for
each following 0 you see, push a counter onto the stack until a 1 or −1 is seen. If you see a
1, output a 1 followed by a 0 for each counter on the stack (popping stack as you output).
If you see a −1, output a 0 and then a 1 for each counter on the stack (popping stack as you
output). Finally, there is an endmarker, which is treated like a 1.

4 k-automatic and k-regular sequences

It follows from the transducer in Section 3 that a sequence (sn)n≥0 is 2-automatic using an
automaton processing the ordinary base-2 representation of n iff it is 2-automatic using an
automaton processing the balanced binary representation of n.

Suppose we define s(n) to be the sum of the digits in the balanced binary expansion of
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n. Then we have, for n ≥ 0,

s(2n) = s(n);

s(4n + 1) = s(n) + 1;

s(4n + 3) = s(n + 1)− 1.

It follows from this that

s(8n + 1) = s(4n + 1);

s(8n + 3) = s(n) + s(2n + 1)− s(4n + 1);

s(8n + 5) = −s(n) + s(2n + 1) + s(4n + 1);

s(8n + 7) = s(4n + 3);

and hence s is 2-regular.
Suppose we define w(n) to be the weight (number of non-zero terms) in the balanced

binary expansion of n. Then following the argument in Theorems 1.2 and 1.3 we find, for
n ≥ 0, that

w(2n) = w(n);

w(4n + 1) = w(n) + 1;

w(4n + 3) = w(n + 1) + 1.

It follows that

w(8n + 1) = w(4n + 1);

w(8n + 3) = −w(n) + w(2n + 1) + w(4n + 1);

w(8n + 5) = w(8n + 3);

w(8n + 7) = w(4n + 3);

and so (w(n))n≥0 is a 2-regular sequence in the sense of Allouche and Shallit [1].
The sequence w(n) has the following expansion as a sum of pattern sequences:

w(n) = a1(n)−
∑

i≥0

a11(01)i1(n).

Here aP (n) denotes the number of occurrences of the pattern P in the (ordinary) binary
representation of n.

Note added January 1994: The sequence (w(n))n≥0 also appears in a paper of Weitzman
[20].

Theorem 4.1 Suppose we define t(n) :=
∑

0≤k<2n (w(n)− s2(n)), where s2(n) counts the

sum of the digits in the (ordinary) binary representation of n. Then t(n) = 1
6
n2n − 4

9
2n +

− 1
18
(−1)n + 1

2
.
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5 Previous work

Booth [3] discussed the use of binary numbers with both positive and negative digits, as did
Avizienis [2] and Takagi & Yajima [18].

There are evident links between ordinary binary representation and addition chains. In
the same way, there are links between signed-digit representation and addition/subtraction
chains. See, for example, [17, 19, 4] and [11, Solution to Exercise 4.6.3.30, p. 638].

Reitwiesner [16] and Jedwab & Mitchell [10] proved that balanced binary represention
gives a minimum weight representation.

Morain & Olivos [15], Eg̃eciog̃lu & Koç [5], and Koblitz [12] independently gave an
application of balanced binary representation to speeding up computations on an elliptic
curve. Koyama & Tsuruoka [13] discussed a signed-digit representation in which the average
run-length of the blocks of zeroes is increased, while still retaining the minimum weight.
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[5] O. Eg̃eciog̃lu and C. K. Koç. Fast modular exponentiation. In Proc. 1990 Bilkent Int’l.

Conf. New Trends in Communication, Control, and Signal Processing, Vol. 1, pages 188–194.
Elsevier, 1990.

[6] J. Evey. Application of pushdown store machines. In Proc. 1963 Fall Joint Computer Confer-

ence, pages 215–227. AFIPS Press, 1963.

[7] P. C. Fischer. On computability by certain classes of restricted Turing machines. In Proc. 4th

Ann. IEEE Symp. Switching Circuit Theory and Logical Design, pages 23–32, 1963.

[8] S. Ginsburg and S. A. Greibach. Mappings which preserve context-sensitive languages. Inform.

Control 9 (1966), 563–582.

[9] S. Ginsburg and G. F. Rose. Preservation of languages by transducers. Inform. Control 9

(1966), 153–176.

[10] J. Jedwab and C. J. Mitchell. Minimum weight modified signed-digit representations and fast
exponentiation. Electronics Letters 25 (1989), 1171–1172.

[11] D. E. Knuth. The Art of Computer Programming. Volume 2: Seminumerical Algorithms.
Addison-Wesley, 1981. 2nd edition.

6



[12] N. Koblitz. CM-Curves with good cryptographic properties. In J. Feigenbaum, editor, Ad-
vances in Cryptology—CRYPTO ’91 Proceedings, Vol. 576 of Lecture Notes in Computer Sci-

ence, pages 279–287. Springer-Verlag, 1991.

[13] K. Koyama and Y. Tsuruoka. Speeding up elliptic cryptosystems by using a signed binary
window method. In E. F. Brickell, editor, Advances in Cryptology—CRYPTO ’92 Proceedings,
Vol. 740 of Lecture Notes in Computer Science, pages 345–357. Springer-Verlag, 1993.

[14] P. M. Lewis, II and R. E. Stearns. Syntax directed transduction. J. Assoc. Comput. Mach.

15 (1968), 465–488.

[15] F. Morain and J. Olivos. Speeding up the computations on an elliptic curve using addition-
subtraction chains. RAIRO Inform. Théor. App. 24 (1990), 531–544.
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