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Numerous apparently native proteins have disordered regions and some are wholly 
disordered, yet both types of protein often utilize their unordered amino acids to carry out 
function.  How do such disordered proteins fit into the view that amino acid sequence codes 
for protein structure?  Our hypothesis was that disorder, like order, is encoded by the amino 
acid sequence. To test this hypothesis, intrinsically disordered protein was compared with 
ordered protein.  Initially, small sets of ordered and disordered sequences were compared by 
prediction of order and disorder.  Success rates much greater than expected by chance 
indicated that disorder is encoded by the sequence.  Once larger datasets of ordered and 
disordered proteins were collected, direct sequence comparisons could be made.  The amino 
acid compositions, sequence attributes, and evolutionary characteristics of disordered 
sequences differed from the corresponding features of ordered sequences in ways 
commensurate with our hypothesis that disorder is encoded by the sequence.  The differences 
between ordered and disordered sequences enabled the development of predictors of natural 
disordered regions (PONDRs).  Since sequence codes for structure and since sequence codes 
for disorder, it follows that disorder ought to be considered a category of native protein 
structure.  Two questions arise from this categorization: how common is native protein 
disorder and what functions are carried out by this category of structure? Application of a 
particular PONDR to genomic sets of sequences indicated that disordered regions are 
extremely common, especially in eukaryotic cells.  Since function depends on structure and 
since disorder is a type of structure, disorder-function relationships were examined.  A wide 
variety of functions were found to be associated with disordered structure, with the common 
use of disorder in signaling and information networks being especially interesting.   
I. Testing Whether Intrinsic Disorder is Encoded by the Amino Acid Sequence 
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In our usage, an ordered protein contains a single canonical set of Ramachandran 
angles, whereas a disordered protein or region contains an ensemble of divergent angles at 
any instant and these angles interconvert over time.  Intrinsically disordered protein can be 
extended (random coil-like) or collapsed (molten globule-like).   The latter type of disorder 
typically includes regions of fluctuating secondary structure, so disorder does not mean 
absence of helix or sheet.  Both types of disorder have been observed in apparently native 
proteins (Wright and Dyson, 1999; Dunker and Obradovic, 2001)  

Intrinsic disorder might not be encoded by the sequence, but rather might be the result 
of the absence of suitable tertiary interactions.  If this were the general cause of intrinsic 
disorder, then any subset of ordered sequences and any subset of disordered sequences would 
likely be the same within the statistical uncertainty of the sampling.  On the other hand, if 
intrinsic disorder were encoded by the amino acid sequence, then any subset of disordered 
sequences would likely differ significantly from samples of ordered protein sequences.  Thus, 
to test the hypothesis that disorder is encoded by the sequence, we collected examples of 
intrinsically ordered and examples of intrinsically disordered proteins and then determined 
whether and how their sequences were distinguishable.  

A. Using Prediction 
In our first attempts to determine whether sequence codes for disorder, lack of resources 

limited us to the collection of only a small number of disorder examples that contained only 
about 1,200 residues in total.  For such small numbers, differences between ordered and 
disordered sequences could not be discerned with statistical reliability.  Thus, we turned to 
prediction as a way to estimate whether ordered and disordered sequences are the same or 
different (Romero et al., 1997b).    

In these initial studies, disordered regions were sorted according to length: short = 7 � 21, 
medium = 22-39, and long = 40 or more residues.  As described in more detail previously 
(Romero et al., 1997b) and below in Section II,A, predictors were developed for each length 
class and for the three length classes merged together.  For predictor training, an initialization 
is required: 5 independent initializations were used for each predictor.  Also, 5-cross 
validation on disjoint training and testing sets was used, so each result is based on 5 x 5 = 25 
sets of predictions.   

Since equal numbers of disordered and ordered residues were used for training and 
testing, prediction success would be about 50% if disordered and ordered sequences were the 
same.  In contrast to this 50% value, prediction success rates for the short, medium, long, and 
merged datasets were 69% ± 3%, 74 ± 2%, 73% ± 2%, and 60% ± 3%, respectively (Romero 
et al., 1997b), where the standard errors were determined over about 2,200, 2,600, 2,000 and 
6,800 individual predictions, respectively.   

The success rate of every prediction set was greater than the value of 50% expected by 
chance.  Specifically, the various sets of predictions differed from the 50% value by about 3 
standard deviations (for the lowest success rate, which was for the merged data) to about 12 
standard deviations (for the highest success rates, which were for the medium and long 
regions of disorder).  Overall, these data provided very strong support for our hypothesis that 
disorder is encoded by the amino acid sequence (Romero et al., 1997b). 

B. Database Comparisons 
To obtain statistically significant comparisons of ordered and disordered sequences, 

much larger datasets were needed.  To this end, disordered regions of proteins or wholly 
disordered proteins were identified by literature searches to find examples with structural 
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characterizations that employed one or more of the following methods: 1. x-ray 
crystallography, where absence of coordinates indicates a region of disorder; 2. nuclear 
magnetic resonance (NMR), where several different features of the NMR spectra have been 
used to identify disorder; and 3. circular dichroism (CD) spectroscopy, where whole-protein 
disorder is identified by a random-coil type CD spectrum.   

Once sufficient numbers of intrinsically disordered and ordered protein sequences were 
collected, it became possible to compare them directly.  The sequences in these databases 
were examined for differences in amino acid composition, sequence attributes, and 
evolutionary characteristics. 

1.  Databases of Ordered and Disordered Proteins 
Three groups of disordered proteins have been assembled, with the groups defined by the 

experimental method used to characterize the lack of ordered structure.  Because the focus 
has been on long regions of disorder, an identified disordered protein or region was not 
included in these groups if it failed to contain 40 or more consecutive residues.  Disordered 
regions from otherwise ordered proteins as well as wholly disordered proteins were 
identified. Table I summarizes the collection of sequences in this database.  

Three groups of ordered sequences have been developed from the Protein Data Bank 
(PDB) for various purposes.  The first group, called Globular 3-D, was formed from NRL 3-
D (Pattabiraman et al., 1990) by deletion of the nonglobular proteins.  NRL-3D contains 
essentially all of the residues with backbone coordinates in PDB.  Globular 3-D has the 
advantage of containing the largest number of ordered chains and residues, but has the 
disadvantage of also containing many proteins with high sequence similarity or even identity.  
The second group was constructed by deleting the unobserved residues and keeping the 
observed residues from a non-redundant subset of proteins called PDB_Select_25 (Hobohm 
and Sander, 1994), yielding the collection called O_PDBS25. Since PDB_Select_25 was 
formed by grouping PDB proteins into sets having 25% or more sequence identity, the 
sequence identity between any two proteins in O_PDBS25 is less than 25%. The third group 
was assembled from the proteins in PDB_Select_25 having no unobserved residues, giving 
the completely ordered subset or CO_PDBS25.  These three groups of ordered proteins are 
described in Table II.   

2.  Comparing Amino Acid Compositions 
Since different protein folding classes can be identified by differences in their amino acid 

compositions (Nakashima et al., 1986), we reasoned that, if disorder were encoded by the 
sequence, then regions of disorder would be analogous to a new folding class and so should 
be distinguishable by amino acid compositional differences compared to ordered protein.  

Figure 1 shows the amino acid compositions and compositional differences of the various 
protein groups versus amino acid type, where the amino acids are arranged using the 
�flexibility� scale of Vihinen and co-workers.  In this arrangement, the tendency to be buried 
increases to the left and the tendency to be exposed increases to the right (Vihinen et al., 
1994).  The compositions of the three disordered sets are very similar to each other (Fig. 1, 
top), and the compositions of the three ordered sets are even more similar to each other (Fig. 
1, middle).  The compositional differences show systematic distinctions between ordered and 
disordered protein (Fig. 1, bottom).  Since the differences are calculated as (disorder � order) 
/ (order), positive peaks represent fractional enrichments and negative peaks represent 
fractional depletions of amino acids in disordered as compared to ordered protein.     
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Although the disordered proteins were characterized by three different methods, all three 
datasets of disordered amino acids showed semi-quantitatively similar changes for 16 of the 
20 amino acids (Fig. 1, top).  Since the three methods rely on completely different underlying 
biophysical principles for determining disorder, substantial compositional differences among 
the datasets were expected but surprisingly not observed.  Thus, the compositions of the 
disordered proteins  (Fig. 1, top) likely indicate inherent tendencies of this type of protein.  

A few proteins are extremely over-represented in PDB and CO_PDBS25 does not contain 
very many proteins, so Globular 3-D, O_PDBS25 and CO_PDBS25 might exhibit 
compositional differences.  The three groups, however, have nearly the same composition for 
every amino acid (Fig. 1, middle), so over-representation of some proteins in Globular 3-D 
and the smaller number of sequences in CO_PDBS25 did not lead to significant amino acid 
biases.  

The compositional differences (Fig. 1, bottom) show that, compared to ordered protein, 
the three disordered datasets exhibit large and significant depletions of 8 amino acids, namely 
W, C, F, I, Y, V, L, and N, enrichments in 7, namely K, E, P, S, Q, R and A, and inconsistent 
changes for 5, namely H, M, T, G, and D.   

All the disorder-specific depletions except one are from the leftmost, typically buried 
amino acids.  The one exception, N, is out-of-place in being both a surface-preferring residue 
and an order-promoting residue.  Perhaps the short side chain with its propensity to hydrogen 
bond to the backbone (Presta and Rose, 1988; Richardson and Richardson, 1988) tends to 
induce local structure.  This order-inducing tendency might explain the out-of-place behavior 
of N.   

The disorder-specific enrichments are mainly from the rightmost, typically exposed 
amino acids, with the exceptions of N, T, G, and D.  Like N as discussed above, T and D also 
have groups with hydrogen-bonding potential attached to the β-carbon and so can readily 
form hydrogen bonds with the backbone.  Thus, the tendencies of T and D to be less 
disorder-promoting than their neighbors might also be due to the ordering effects of such 
hydrogen bonding.   

Here G is classified as order-disorder neutral, whereas in a previous study G was 
classified as disorder-promoting (Williams et al., 2001).  This change in classification arises 
from very small differences between the disordered data in the two studies. The data then and 
now are not statistically different from each other, neither are the data significantly different 
between order and disorder for this residue.    

During the development of the �flexibility scale� a dual behavior was noticed for G.  
Specifically, when flanked by residues with high flexibility indices, G exhibited a high 
average flexibility index, but when flanked by residues with low flexibility indices, G 
exhibited a low average flexibility.  The context dependence of the flexibility index of G was 
much larger than the context dependence of any other residue.  To explain these data, it was 
suggested that, when in a flexible region, G enhances the flexibility by being able to adopt 
many conformations, but when in a rigid, buried region, G enhances the rigidity by 
facilitating tight packing (Vihinen et al., 1994).  This dual structural role for G may account 
for its neutrality with respect to the promotion of order or disorder. 

The last two amino acids, H and M, are inconsistent across the three datasets, but both are 
found between the order-promoting and disorder-promoting sets.  Thus, these amino acids 
exhibit intermediate tendencies to be buried or exposed and like-wise exhibit intermediate 
tendencies to promote order or disorder, respectively.   
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The enrichments and depletions displayed in Figure 1 are concordant with what would be 
expected if disorder were encoded by the sequence (Williams et al., 2001).  Disordered 
regions are depleted in the hydrophobic amino acids that tend to be buried and enriched in 
the hydrophilic amino acids that tend to be exposed.  Such sequences would be expected to 
lack the ability to form the hydrophobic cores that stabilize ordered protein structure.  Thus, 
these data strongly support the conjecture that intrinsic disorder is encoded by local amino 
acid sequence information, and not by a more complex code involving, for example, lack of 
suitable tertiary interactions.  

Others have studied the relationship of amino acid composition and protein structure 
from different points of view.  Karlin identified sequences with unusual compositions (Karlin 
and Brendel, 1992), while Wootton used Shannon�s entropy to estimate sequence 
complexity, showed that nonglobularity was associated with low complexity, and found that 
sequence databases were much richer than PDB in proteins with regions of low complexity 
(Wootton, 1993; Wootton, 1994b; Wootton, 1994a; Wootton and Federhen, 1996).   Our 
extensions of Wootton�s work revealed that not one of the more than 2.6 x 106 overlapping 
45-residue segments in Globular 3-D contains fewer than 10 different amino acids nor a 
Shannon�s entropy value less than 2.9 (Romero et al., 1999).  Attempts to select a folded but 
simplified SH3 domain by phage display (Riddle et al., 1997) yielded a protein with a greatly 
reduced average value for Shannon�s entropy and a reduced average amino acid alphabet 
size, yet the lowest of the resulting reduced complexity values were very similar to the lowest 
observed in Globular 3-D.  The near coincidence of the lowest complexity values for both 
laboratory and natural selection suggested the possibility of a lower bound for the sequence 
complexity of ordered, globular protein structure (Romero et al., 1999). 

3. Comparing Sequence Attributes 
Another way of studying amino acid sequences is by means of sequence attributes such 

as hydropathy, net charge, side chain volume, bulkiness, etc.  If P (S | x) is the conditional 
probability of observing structure type S in a region of sequence having an attribute value of 
x, graphs of P (S | x) versus x were previously shown to provide useful insight regarding 
sequence-structure relationships (Arnold et al., 1992).   

For S = order or disorder, and for x = average Sweet & Eisenberg hydropathy (Sweet and 
Eisenberg, 1983) over a window of 21 amino acids, plots of P (S | x) versus x derived from a 
balanced set of ordered and disordered 21-residue segments gave the data of Figure 2. As 
expected from the compositional biases displayed in Figure 1, increasing hydropathy values 
correlate with the formation of ordered structure; e.g. the more hydrophilic the sequence the 
greater the tendency to be disordered, whereas the more hydrophobic the sequence the 
greater the tendency to be ordered.  

Dividing the area between the two curves in Figure 2 by the total area gives the area ratio 
(AR), which provides a means for ranking different attributes (Xie et al., 1998).  AR values 
were used to rank 265 attributes using balanced numbers of ordered and disordered segments 
having 21 residues each.  When this approach was used to compare the x-ray, NMR, and CD-
characterized sets of disorder with the same (randomly selected) set of ordered segments, the 
rankings were very similar but not quite identical across the three disorder datasets, 
suggesting only very slight differences among the disorder characterized by the three 
different methods (Williams et al., 2001).  These results are consistent with the small 
compositional differences between the differently characterized disordered regions shown in 
Figure 1.  
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Uversky and co-workers recently used a pair of sequence attributes, specifically the Kyte 
and Doolittle hydropathy scale and net charge, to distinguish between folded and �natively 
unfolded� proteins (Uversky et al., 1999).  With an AR of 0.42, the Kyte & Doolittle scale 
ranked 79th among the 265 scales, well below 5 other hydropathy scales.  The Sweet & 
Eisenberg scale, which ranked 3rd overall with an AR value of 0.538 (Williams et al., 2001), 
was the best of this type for discriminating between the order and disorder in our datasets.  
Since the Sweet & Eisenberg scale was developed by determining each amino acid�s average 
degree of exposure in a set of structures from PDB, it is interesting that this scale out-
performs other hydropathy scales with regard to discriminating between ordered and 
disordered segments.  Furthermore net charge, with an AR value of 0.236, ranked 174th. 
Thus, the hydropathy-net charge pair is almost certainly not the best pair of attributes for 
discriminating ordered and disordered sequences.  Nevertheless, the work of Uversky and co-
workers was a very important contribution due to its simplicity and the insight it provided.  
Also, this pair of attributes could be optimal for some particular groups of natively unfolded 
proteins.   

Like the differences in composition, the sequence attribute differences between ordered 
and disordered sequences are exactly as would be expected if disorder were encoded by the 
sequence.  Attribute values of course depend on amino acid compositions, so the composition 
and attribute results are not independent.  However, the attribute analysis is nevertheless 
useful because it provides a biophysical perspective, allowing insight into the amino acid 
properties that are important for promoting order or disorder.   

4. Comparing Evolutionary Characteristics 
A third way of comparing ordered and disordered sequences is by their relative changes 

over evolutionary time.  Constraints are imposed on ordered protein by the requirement to 
form well-packed protein cores, and these constraints are absent in disordered regions. 
Disordered regions are generally expected, therefore, to exhibit higher rates and different 
patterns of amino acid substitution over evolutionary time as compared to ordered regions.  
However, since function, not structure, is the property subjected to natural selection, special 
circumstances could mitigate against the expected general trend.  Such exceptions could 
potentially provide additional insight regarding the importance of intrinsic disorder. On a 
related matter, if differences in evolutionary characteristics are found between ordered and 
disordered regions, such a result would be a strong indicator that disorder exists in vivo.   

a. Construction of Disordered Protein Families 
In order to test the hypothesis that disordered and ordered proteins differ both in the 

quantity and the quality of their evolutionary change, families of disordered proteins were 
developed. Families were constructed for proteins from each of the three disordered groups 
in Table I and include both proteins that are wholly disordered and proteins with regions of 
disorder and order. The entire protein sequence was used to identify homologous members of 
the protein family by BLASTP searches (Altschul et al., 1990; Altschul et al., 1997) on the 
nonredundant protein database at NCBI (www.ncbi.nlm.nih.gov).  Homologues were aligned 
using the default settings of CLUSTALW (Thompson et al., 1994) at the Baylor College of 
Medicine website (Smith et al., 1996).  Except for the wholly disordered proteins, aligned 
sequences were then partitioned into ordered sequences and disordered sequences based on 
alignment with the structurally-characterized sequence.   This procedure is outlined in Figure 
3. 

b. Comparing Substitution Patterns 
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To test whether disordered and ordered proteins differ in the pattern of their evolutionary 
change, substitution matrices were constructed based upon 55 aligned disordered protein 
families.  The substitution matrix based upon disordered protein families was then compared 
to the commonly used substitution matrices, which are based upon mostly ordered protein 
families. To develop the disordered matrix, initial alignments were performed (Fig. 3) using 
the BLOSUM62 substitution matrix and the usual first-gap/gap-extension penalties. From the 
aligned disordered sequences, a new substitution matrix was built. New sequence alignments 
were developed using the new matrix for disorder. This new-alignment/new-matrix cycle was 
continued until the change of the matrix in two successive iterations dropped below a pre-
specified threshold, thus yielding a substitution matrix specifically for regions of intrinsic 
disorder. The relative improvement of the final matrix over published substitution matrices 
was confirmed by tests that used Hidden Markov Models of aligned family and non-family 
sequences (Radivojac et al., 2002).    

This procedure led to a substitution matrix for aligning disordered protein that was 
different from the commonly used substitution matrices, such as BLOSUM62 (Fig. 4).  The 
matrix for disordered protein is generally better than order-based matrices for aligning 
disordered proteins whose sequence identities are between 20 - 50%.  These results indicate 
that disordered and ordered protein can be distinguished by their patterns of evolutionary 
change. 

c.  Comparing Substitution Rates 
To test whether disordered protein evolves more rapidly than ordered protein, 

comparisons were made between the ordered and disordered regions of 26 protein families 
with both order and long regions of disorder (Brown et al., 2002). Twenty-four of the 
families had been structurally characterized by NMR or X-ray crystallography.  The ordered 
and disordered regions in the two CD-characterized proteins had been dissected by limited 
proteolysis.  The pair-wise genetic distance for each ordered region was compared to the 
pair-wise genetic distance for the corresponding disordered region from the same protein 
pairs.  The average difference between these pair-wise genetic distances (∆) was calculated 
for each protein family (Table III).  An appropriate statistical test was designed to determine 
whether ∆ was significantly different from zero (ie. if ordered and disordered regions differed 
in their rates of evolution).  For five families, there were no significant differences in pair-
wise genetic distances between ordered and disordered sequences.   The disordered region 
evolved significantly faster than the ordered region for 19 of the 26 families.  The functions 
of these disordered regions are diverse, including binding sites for protein, DNA, or RNA 
and also including flexible linkers.  The functions of some of these regions are unknown.  
The disordered regions evolved significantly slower than the ordered regions for the two 
remaining families.  The functions of these more slowly evolving disordered regions include 
sites for DNA binding.  These results indicate that, in general, disordered regions of proteins 
evolve more rapidly than their ordered regions. Understanding the exceptions to these rules 
may help to further characterize the roles of disorder in protein function. 
II. Prediction of Order and Disorder from the Amino Acid Sequence 

The results described in Section I suggest that amino acid sequence codes for intrinsic 
protein disorder.  In this circumstance, constructing a predictor of order and disorder would 
be useful as a means to extend and generalize from the current experimental results.  

The steps involved in building disordered predictors are the following: 1. Develop 
datasets of ordered and disordered protein; 2. Identify a set of features or attributes for 
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discriminating between order and disorder; and 3. Use an appropriate set of features or 
attributes as the basis for predictors of intrinsic order and disorder, while taking care to use 
disjoint subsets of sequences for training and testing.  Each of these steps has been 
investigated in some detail as described above in Section I,A or as reported previously 
(Romero et al., 1997a; Romero et al., 1997b; Li et al., 1999; Romero et al., 2000; Vucetic et 
al., 2001). 

A.  Predictors of Natural Disordered Regions (PONDRs) 
Applying standard machine learning algorithms and approaches to databases and 

sequence information as described above in Section I, a series of predictors of intrinsic 
disorder and order called PONDRs have been developed.  These predictors use amino acid 
sequence as inputs and give numerical outputs, with 0.0 to < 0.5 indicating order and with > 
0.5 to 1.0 indicating disorder.  Various data representations for the inputs have been tried, 
such as the compositions of selected amino acids or the averaged values of selected sequence 
attributes including hydropathy, net charge, aromaticity, etc. In addition, the data 
representation typically involved calculating the inputs over sliding windows, and some 
experimentation to optimize window size has been carried out.   Finally, various operations 
on the input data have been tried, including both linear data modeling, such as logistic 
regression, and non-linear modeling, such as artificial neural networks, to yield predictors of 
intrinsic order and disorder (Li et al., 1999; Vucetic et al., 2001).  The various experiments 
suggested that data representation, window size, and linear or nonlinear data modeling make 
relative small differences in prediction accuracies.   

To distinguish among the several PONDRs that resulted from the various experiments 
described above, a two-letter extension and a version number were added.  The first letter, X, 
N, or V, indicates the method of structural characterization of the training data, namely x-ray 
diffraction, NMR, or various means, respectively.  The second letter, S, M, L, N, C or T, 
indicates the length or position of the disordered regions in the training data, with S for short 
(length = 9 to 20 residues), M for medium (length = 21 to 39 residues), L for long (length ≥ 
40 residues), N for amino termini, C for carboxy termini, and T for both termini (length = 5 
to 14 residues).  Although predictors were initially developed for the three indicated length 
classes (Romero et al., 1997b), since then the focus has been on long regions of disorder 
(Romero et al., 1998).  PONDRs have also been developed that use disorder information 
from a single family of proteins; the extension for these PONDRs is the abbreviation of the 
name of the representative family member.  For example, the putative disordered regions 
from 13 calcineurin (CaN) proteins were used to construct PONDR CaN (Romero et al., 
1997a).  Finally, as stated above, for each type of predictor, a version number is specified.  

One recent predictor is called PONDR VL-XT (Romero et al., 2001), because it is a 
merger of PONDR VL1 (training set = variously characterized, long regions of disorder) with 
PONDR XN and PONDR XC, i.e. PONDR XT (training set = x-ray characterized chain 
termini) (Li et al., 2000), while another is called PONDR VL2 (training set = variously 
characterized, long regions of disorder, version 2) (Vucetic et al., 2002).  

B.  PONDR Accuracies 
The success of the initial PONDRs based on small databases of disordered protein 

motivated attempts to improve predictor accuracy.  The main limitation for such attempts has 
been and continues to be the lack of low-noise structural data for both ordered and disordered 
protein, where noise means ordered regions misclassified as disordered and vice-versa.   



 9

The accuracies of the various PONDRs were estimated (Table IV) by applying them to 
the ordered sequences in O_PDBS25 as summarized in Table II and to the merged set of 
disordered proteins described in Table I.  Overall, the prediction accuracy of each PONDR 
was much better on the 222,116 ordered residues of O_PDBS25 than on the 18,833 residues 
of the merged disorder set.  Thus, prediction of order generalized much better than prediction 
of disorder.   

Even when as few as 502 ordered and 502 disordered residues were used for predictor 
development, the accuracy of 73 ± 4% estimated from 5-cross validation during training 
matched within 1 standard deviation the accuracy of 71% observed when the predictor was 
applied to O_PDBS25, which had 222,116 ordered residues.  Since O_PDBS25 contains one 
representative from each protein family in PDB, this database spans the information on 
ordered protein structure.  Such a good generalization from such a small training set was 
totally unexpected.  Every PONDR so far tested, including some others not among the 5 
examples given in Table IV, show comparably good generalization for prediction of protein 
order.   

The poorer generalization of the prediction of disorder probably arises from two or 
perhaps three sources.   These relate to differences in the training sets, possible differences in 
the volumes of sequence space occupied by ordered and disordered protein, and differences 
in the levels of noise in the ordered and disordered testing data.   

The ordered training data involved non-overlapping ordered segments randomly selected 
from different proteins, whereas the disordered training data involved overlapping windows 
that were generated by sliding windows in single-residue steps.  This strategy was chosen to 
maximize use of the limited amount of disordered data.  Thus, the disordered training data 
spanned a smaller volume of sequence space than did the ordered data.   

The volume of sequence space occupied by natively disordered proteins might simply be 
much larger than the corresponding region for ordered proteins. Lattice-model 
approximations of protein folding suggest that only a small fraction of random sequences 
fold into specific structure (Abkevich et al., 1996).  A random library containing 80-residue 
sequences designed to have helical periodicities with an average hydrophobicity level similar 
to that of natural proteins yielded only a small fraction that exhibited cooperative folding 
behavior (Davidson et al., 1995), providing further evidence that folding sequences represent 
a small proportion of all sequences.  If the ordered and disordered sequences utilized in 
nature reflect their statistical abundances, then disordered protein sequence space would be 
much larger than ordered protein sequence space.  In this case, a greater number of disorder 
examples would be needed to achieve the same level of generalization as observed for the 
ordered data.  Note the especially poor performance of PONDR CaN on the disordered set; 
the poor performance probably relates substantially to the small region of disordered 
sequence space sampled by the CaN regions of disorder.   

A third possible origin of the reduced performance of disorder prediction is that the 
disordered data may simply be noisier than the ordered data, i.e. the disordered data might 
simply contain more ordered residues that are misclassified as disordered than vice versa.  
NMR probably yields the best characterization of disorder, yet NMR-characterized regions of 
disorder very likely contain significant regions of misclassified order (Garner et al., 1999).  
The misclassification problem is likely to be worse for both the CD- and x-ray characterized 
data as compared to the NMR data.   Since CD spectra provide estimates of the structure 
averaged over the entire sequence, an ordered domain within a sea of disorder could easily be 
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missed in the CD spectrum.  Long regions of missing coordinates in x-ray structures could be 
structured but wobbly domains rather than true disorder.       

Despite obtaining all the ordered data from crystal structures, which gives accurate 
structural information and despite the removal of the unobserved (disordered) residues, it still 
cannot be assumed that the ordered data in Globular 3-D, O_PDBS25, and CO_PDBS25 are 
noiseless.  For example, examination of segments from O_PDBS25 having the longest 
consecutive (putatively false positive) predictions of disorder shows many of these segments 
to be associated with DNA, with other large ligands including other proteins, or with the 
contacts that form the crystal lattice.  Since disorder-to-order transitions upon complex 
formation or upon crystallization can occur, it is difficult to know whether such segments are 
ordered or disordered in the absence of the inter-molecular association. Thus, these segments 
very possibly correspond to segments that are actually disordered when not ligand-associated 
or when not in the crystal, in which case these segments would represent noise in the ordered 
data.   

The next phase of testing PONDR accuracy will be the careful comparison of experiment 
and prediction on individual proteins. Figure 5 shows results from one such analysis, in 
which proteolysis was used to test PONDR VL-XT accuracy. This test was based on the 
knowledge that disordered protein is orders of magnitude more sensitive to protease digestion 
than is ordered protein (Fontana et al., 1997).   The sequence of Xeroderma pigmentosum 
group A (XPA), which is a DNA damage-recognition protein, was the test case.  The 
predictions indicated that the XPA sequence has long regions of intrinsic disorder at both 
ends.  Identification of hypersensitive trypsin digestion sites by mass spectrometry revealed a 
remarkable agreement between predicted disorder and protease sensitivity, showing that the 
PONDR indications of disorder were very accurate for this protein.  These results suggested 
that the combination of PONDR predictions + protease digestion + mass spectrometry offers 
a useful approach for the analysis of protein disorder (Iakoucheva et al., 2001). 
III. PONDR Estimations of the Commonness of Intrinsically Disordered Proteins   

More than 30 proteomes have been PONDRed to estimate the commonness of putative 
disorder.  We have used 40 or more consecutive predictions of disorder (e.g. a putative long 
disordered region, or LDR) as a convenient indicator, and then scored each proteome by 
estimating the fraction of proteins predicted to contain at least one LDR.  As shown in Table 
V, proteins with putative LDRs are quite common.  The wide range of putative LDRs among 
the proteomes from eubacteria and archaea was quite surprising.  A second surprise was the 
large jump in putative LDRs in the eukaryota compared to the eubacteria and archaea.  

Further discussion of prediction errors provides more insight into these estimates of 
the commonness of disorder.  Based on O_PDBS25, VL-XT gave a false positive prediction 
of disorder of ~ 20% on a per-residue basis (Table IV); this error decreases to ~ 0.4% for 
consecutive predictions of 40 or longer (Romero et al., 2001).  These error rates lead to ~6% 
of the non-redundant proteins from PDB having consecutive false positive predictions of 
disorder ≥ 40 residues in length.  As discussed above in Section II,B, this may be an over-
estimate of the false positive error rate because many of the apparent consecutive errors 
correspond to regions of disorder that are ordered in the crystal due to ligand binding or 
crystal contacts.   Also, since disordered regions of length ≥ 40 residues are often missed due 
to false negative predictions of order, the data in Table V probably represent lower bounds on 
the amount of disorder per genome.   
VI. Functions of Intrinsically Disordered Regions 
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We are attempting to understand the biological significance of the large variations in 
frequency of putative LDRs, whether between different types of bacteria or archaea, or 
between pro- and eukaryota.  We have carefully studied the literature of more than 90 
example proteins selected from our disordered protein databases and found reports on the 
functions most of the disordered regions (Dunker et al., 2002).  The observed functions and 
the number of examples in each functional class are given in Table VI.  As indicated, four 
major functional classes were found: molecular recognition, molecular assembly or 
disassembly, protein modification, and entropic chains.   

For two of the categories, molecular recognition and protein modification, the proteins in 
Table VI are mostly involved in signaling, control or regulation. Thus, our current hypothesis 
is that an increased requirement for signaling, regulation and control is the underlying cause 
for the significantly larger fractions of proteins with long regions of intrinsic disorder in 
some organisms as compared to others (Dunker & Obradovic, 2001). Consistent with our 
current hypothesis but developed without regard to the role of protein disorder, recent 
proteomic comparisons indicate that eukaryotes are much richer in regulatory proteins than 
are the prokaryotes and archaea (Liu and Rost, 2001). Tests are underway to determine 
whether the increased amount of predicted disorder is indeed associated with an increased 
number of regulatory proteins in the various proteomes.  

V.  Conclusions 
The experiments and data presented herein support the proposals that protein disorder is 

encoded by the amino acid sequence and that protein disorder is essential for many important 
biological functions.  Thus, intrinsic disorder ought to be considered a distinct category of 
native protein structure.  Categorization is of course an essential step in the development of 
knowledge (Lakoff, 1987), so the concept that intrinsic disorder represents a category of 
native protein structure, rather than being simply an intermediate on the way to the native 
structure, has important implications (Dunker et al., 1997; Dunker et al., 2001; Dunker et al., 
2002).  The association of protein disorder with function is not a new idea. Experiments 
reported more than 50 years ago gave strong indications that an ensemble of structures 
enabled serum albumin to bind a structurally-diverse set of ligands (Karush, 1950), and 
numerous additional papers were published on disorder/function relationships about 20 years 
ago for several other proteins (Stubbs et al., 1977; Bloomer et al., 1978; Bode et al., 1978; 
Jardetzky et al., 1978; Huber, 1979; Schulz, 1979; Blow, 1982; Holmes, 1983; Bennett and 
Huber, 1984).  Our extensions of current disorder knowledge by predictions upon whole 
proteomes leads to the conclusion that functions carried out by disordered regions are likely 
to be very common, especially with regard to signaling and regulatory functions in 
eukaryotic cells.     
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Table I. Number of proteins and residues in databases of intrinsically disordered protein 
characterized by various methods.  
Detection Method Number of Proteins Number of Residues 
X-ray 59 3,907 
NMR 43 4,108 
CD 55 10,818 
Merged 157 18,833 
                                                                                       
 
 
Table II. Number of proteins and residues in databases of intrinsically ordered protein. 
Name Number of Proteins Number of Residues 
Globular 3-D 14,540 2,610,197 
O_PDBS25 1,021 222,116 
CO_PDBS25 130 32,509 
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Table III.  Average difference in genetic distance, ∆∆∆∆, between ordered and disordered regions 
of 26 protein families.   

Protein Family Reference Detection 
Methoda 

# 
Seq. ∆b p-valuec 

Replication protein A (Jacobs et al., 1999) NMR 7 1.92 0.001 
NF-ΚB p65 (Schmitz et al., 1994) NMR 4 1.18 0.001 
Glycyl-tRNA synthetase (Logan et al., 1995) X-ray 24 1.69 0.002 
Regulator of G-protein 
signaling 4 (Tesmer et al., 1997) X-ray 17 0.96 0.001 

Topoisomerase II (Berger et al., 1996) X-ray 28 0.87 0.001 

Calcineurin (Kissinger et al., 
1995) X-ray 23 0.84 0.001 

c-Fos (Campbell et al., 
2000) NMR 23 0.82 0.001 

Thyroid transcription 
factor  (Tell et al., 1998) CD, LP 12 0.76 0.001 

Sulfotransferase (Bidwell et al., 1999) X-ray 12 0.74 0.013 
Phenylalanine-tRNA 
synthetase (Mosyak et al., 1995) X-ray 14 0.69 0.001 

Coat protein, tomato bushy 
stunt virus  (Hopper et al., 1984) X-ray 7 0.63 0.001 

Gonadotropin (Lapthorn et al., 1994) X-ray 9 0.61 0.001 
Coat protein, sindbis virus  (Choi et al., 1991) X-ray 6 0.60 0.025 
Histone H5 (Aviles et al., 1978) NMR 9 0.41 0.001 
Small heat shock protein (Kim et al., 1998) X-ray 6 0.36 0.457 
Telomere binding protein (Horvath et al., 1998) X-ray 8 0.29 0.001 
Cytochrome BC1 (Iwata et al., 1998) X-ray 7 0.27 0.034 
DNA-lyase (Gorman et al., 1997) X-rayd 8 0.18 0.001 

Bcl-xL (Muchmore et al., 
1996) 

X-ray, 
NMR 7 0.13 0.001 

Coat protein, southern 
bean mosaic virus 

(Silva and Rossmann, 
1985) X-ray 6 0.09 0.100 

α-Tubulin (Jimenez et al., 1999) NMR 80 0.06 0.034 
Epidermal growth factor (Louie et al., 1997) X-ray 10 0.03 0.736 
Prion (Riek et al., 1997) NMR 72 0.03 0.636 
Glycine N- 
methyltransferase (Huang et al., 2000) X-ray 11 0.09 0.095 

ssDNA binding protein (Tucker et al., 1994) X-ray 20 0.37 0.010 

Flagellin (Vonderviszt et al., 
1989) LP 34 0.66 0.023 

 
aDisordered state detected by NMR=nuclear magnetic resonance, X-ray=X-ray 
crystallography, CD=circular dichroism, LP=limited proteolysis 
bNegative values of ∆∆∆∆ indicate disordered regions are evolving faster than ordered. 
c P-values for a two-sided test of the null hypothesis. 
d Useful crystallization only in the absence of most of the disordered region. 
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Table IV. Accuracies of neural network predictors of natural disordered regions (PONDR). 
Accuracy % 

Name Training Set # Disordered  
Residues Train Order Disorder 

XL1 7 X-ray 502 73 + 4 71 47 

CaN 13 CaN 1,175 83 + 5 84 29 

VL1 7 NMR 
8 X-ray 1,366 83 + 2 83 45 

VL-XT Merger of VL1, XN and XC 80 60 

VL2 
35 NMR 
52 X-ray 
56 CD 

16,854 79 + 4 83 75.5 
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Table V.  Prevalence of predicted disorder in genomes of various speciesa.   
Kingdom Species # seqs Disorder     Lengths > 40b

Archaea Methanococcus jannaschii 1714 9% 
Archaea Pyrococcus horikoshii 2062 16% 
Archaea Pyrococcus abyssi 1764 19% 
Archaea Archaeoglobus fulgidus 2402 20% 

Archaea Methanobacterium 
thermoautotrophicum  1869 34% 

Archaea Halobacterium sp.NRC-1 2057 35% 
Archaea Aeropyrum pernix K1 2694 37% 
Bacteria Ureaplasma urealyticum 611 7% 
Bacteria Rickettsia prowazekii 834 6% 
Bacteria Borrelia burgdorferi 845 7% 
Bacteria Campylobacter jejuni 2309 6% 
Bacteria Mycoplasma genitalium 480 8% 
Bacteria Helicobacter pylori 1532 9% 
Bacteria Aquifex aeolicus 1522 15% 
Bacteria Haemophilus influenzae 1708 13% 
Bacteria Bacillus subtilis 4093 15% 
Bacteria Escherichia coli 4281 17% 
Bacteria Vibrio cholerae  3815 16% 
Bacteria Mycoplasma pneumoniae  675 14% 
Bacteria Xylella fastidiosa  2761 17% 
Bacteria Thermotoga maritime 1842 18% 
Bacteria Neisseria meningitidis MC58 2015 17% 
Bacteria Chlamydia pneumoniae 1052 18% 
Bacteria Synechocystis sp 3167 20% 
Bacteria Chlamydia trachomatis 894 19% 
Bacteria Treponema pallidum 1028 11% 
Bacteria Pseudomonas aeruginosa  5562 24% 
Bacteria Mycobacterium tuberculosis  3916 31% 
Bacteria Deinococcus radiodurans chr 1 2580 33% 
Eukaryota Plasmodium falciparum chr II, III 422 35% 
Eukaryota Caenorhabditis elegans  17049 36% 
Eukaryota Arabodiopsis thaliana 7849 41% 
Eukaryota Saccharomyces cerevisiae 6264 40% 
Eukaryota Drosophila melanogaster  13885 51% 
aFrom (Dunker et al., 2000) 
bThe percentages of proteins in the indicated genomes predicted to have at 
least one region of disorder of  > 40 amino acids.  Predictions were made by 
PONDR VL-XT (Li et al., 1999; Romero et al., 2001). 
  



 19

Table VI.  Functional categories for disordered regions of proteins  
Category Number Transition Description 
Molecular 
Recognition 

113 D → O Protein, ssDNA, dsDNA, tRNA, rRNA, 
mRNA, nRNA, bilayers, ligands, co-factors, 
metals, autoregulatory  

Molecular Assembly / 
Disassembly 

>13 D → O 
O → D 

Hetero complexes, linear polymers, phages, 
viruses  

Protein Modification 36 Variable Acetylation, fatty acylation, glycosylaion, 
methylation, phosphorylation, ADP-
ribosylation, ubiquitination, proteolytic 
digestion 

Entropic Chains 17 None Linkers, spacers, bristles, clocks, springs, 
detergents, self-transport 
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Figure 1.  Comparisons of amino acid compositions of ordered protein and disordered 
protein.  (Top) Amino acid compositions of three disordered datasets. (Middle) Amino acid 
compositions of three ordered datasets. (Bottom) Compositions of disordered datasets 
relative to the Globular 3-D dataset. The ordinates are (% amino acid in disordered dataset - 
% amino acid in Globular 3-D) / (% amino acid in Globular 3-D) = (D-O)/O.  Negative 
values indicate that the disordered database has less than the ordered, positive indicates more 
than the ordered.  Error bars are one standard deviation. 
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Figure 2.  Conditional probability plot for Sweet and Eisenberg�s (1983) hydropathy scale.  
The black line is the probability (y-axis) that a residue is ordered given the hydropathy score 
indicated on the x-axis.  The dashed line is the probability of disorder. Negative values for 
hydropathy indicate hydrophilicity, positive values indicate hydrophobicity.  The area 
between the two curves is divided by the total area of the graph to obtain the area ratio. 
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 Figure 3.  Procedures for identifying order and disorder in protein families. Black boxes 
indicate ordered sequences, gray boxes indicate disordered sequences, and open boxes 
indicate insertions relative to the starting sequence.   
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Figure 4.  Substitution matrix based upon disordered protein families.  Below the diagonal 
are the scores for each amino acid substitution. Above the diagonal are the differences 
between BLOSUM 62 and the disorder matrix. On the diagonal are the scores/differences. 
 

 C S T P A G N D E Q H R K M I L V F Y W B Z 

C 10/-1 -1 -2 -1 1 0 -2 0 0 0 -2 -2 0 -1 -1 0 -2 -1 -2 3 0 0 
S 0 3/1 0 -1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 
T 1 1 4/1 0 0 0 0 0 0 -1 -2 0 -1 0 0 1 0 0 -1 3 0 0 
P -2 0 -1 6/1 0 -1 -1 1 0 0 0 0 0 0 -1 -2 -1 -1 0 -3 1 0 
A -1 1 0 -1 3/1 0 -1 -1 0 0 0 1 0 0 0 0 0 0 0 2 -1 0 
G -3 0 -2 -1 0 5/1 0 0 0 0 -1 0 0 1 1 0 1 1 0 2 0 0 
N -1 1 0 -1 -1 0 4/2 0 0 -1 -1 0 0 0 0 0 0 -1 -1 -1 0 0 
D -3 0 -1 -2 -1 -1 1 4/2 0 0 0 0 0 1 1 0 1 1 1 0 2 0 
E -4 -1 -1 -1 -1 -2 0 2 4/1 2 1 1 1 1 0 0 0 1 1 1 0 1 
Q -3 0 0 -1 -1 -2 1 0 0 5/0 -1 0 1 1 -1 0 0 -1 -1 -1 0 2 
H -1 -1 0 -2 -2 -1 2 -1 -1 1 8/0 0 0 0 -1 -1 -1 -1 0 0 0 1 
R -1 -1 -1 -2 -2 -2 0 -2 -1 1 0 5/0 0 0 -1 0 -1 0 0 -3 0 1 
K -3 -1 0 -1 -1 -2 0 -1 0 0 -1 2 4/1 1 -1 0 0 0 0 0 0 1 
M 0 -2 -1 -2 -1 -4 -2 -4 -3 -1 -2 -1 -2 7/-2 0 0 0 -1 0 0 1 1 
I 0 -2 -1 -2 -1 -5 -3 -4 -3 -2 -2 -2 -2 1 4/0 0 0 -1 -1 -1 1 0 
L -1 -2 -2 -1 -1 -4 -3 -4 -3 -2 -2 -2 -2 2 2 4/0 0 -1 -1 0 0 0 
V 1 -2 0 -1 0 -4 -3 -4 -2 -2 -2 -2 -2 1 3 1 4/0 -1 0 1 1 0 
F -1 -2 -2 -3 -2 -4 -2 -4 -4 -2 0 -3 -3 1 1 1 0 7/-1 -1 2 1 1 
Y 0 -2 -1 -3 -2 -3 -1 -4 -3 0 2 -2 -2 -1 0 0 -1 4 8/-1 -1 1 1 
W -5 -3 -5 -1 -5 -4 -3 -4 -4 -1 -2 0 -3 -1 -2 -2 -4 -1 3 13/-2 0 1 
B -3 0 -1 -2 -1 -1 1 4 2 0 -1 -2 -1 -4 -4 -4 -4 -4 -4 -4 4/2 0 
Z -4 -1 -1 -1 -1 -2 0 2 4 0 -1 -1 0 -3 -3 -3 -2 -4 -3 -4 2 4/1



 24

Figure 5. Comparison of proteolysis data for Xeroderma pigmentosum group A (XPA) with 
PONDR predictions and NMR structure.  (Top) Full-length Xenopus laevis XPA is depicted 
as a bar, with all possible trypsin sites indicated by white vertical lines (X. laevis numbering). 
The line below represents the human Minimal Binding Domain of XPA in the same format, 
the structure of which has been determined by NMR.  Four regions with low certainty of 
assignment or high flexibility are indicated in gray.  Each of the unique experimentally 
observed trypsin proteolysis fragments are drawn as horizontal lines below; the end points of 
these lines indicate the trypsin sensitive sites.  (Below)  Disorder prediction for X. laevis 
XPA.  Each residue (x-axis) is assigned a disorder score (y-axis) by PONDR VL-XT.  
Disorder scores ≥ 0.5 signify disorder.  Note the coincidence between predictions of disorder 
and the observed cut sites, and note also the coincidence between predictions of order and 
lack of observed cut sites.   
 
 
 

 


