
Mehmet Aksit

Ekkart Kindler

Ashley McNeile

Ella Roubtsova (Eds.)

Behaviour Modelling

in Model Driven Architecture

First European Workshop

on Behaviour Modelling in Model Driven Architecture

(BM-MDA)

Enschede, The Netherlands, June 23, 2009

Proceedings

Enschede, the Netherlands, 2009

CTIT Workshop Proceedings Series WP09-04

ISSN 0929-0672

Organisation

Organizing Committee

Mehmet Aksit. TU Twente, the Netherlands

Ekkart Kindler Technical University of Denmark

Ashley McNeile Metamaxim Ltd, UK

Ella Roubtsova Open University of the Netherlands

Programme Committee��

Mehmet Aksit. TU Twente, the Netherlands

Michael Jackson Open University, UK

Ekkart Kindler Technical University of Denmark

Reiko Heckel University of Leicester, UK

Dominik Stein University of Duisburg-Essen, Germany

Luis Gomes Universidade Nova de Lisboa, Portugal

Ashley McNeile Metamaxim Ltd, UK

Louis Birta University of Ottawa, Canada

Stewart Robinson University of Warwick, UK

João M. Fernandes Universidade do Minho, Portugal

Ella Roubtsova, Open University of the Netherlands

Stefan Hanenberg University of Duisburg-Essen,Germany

3

Table of Contents

Keynote:

Automatic generation of behavioral code – too ambitious or even unwanted?

G. Engels�� University of Paderborn, Germany

Preface…………………………………………………………………..……6

M.Aksit,University of Twente,Enschede, the Netherlands

E. Kindler,Technical University of Denmark, Copenhagen

A. McNeile, Metamaxim Ltd,London, UK

E. Roubtsova, Open University of the Netherlands

1. Weaving executability into UML class models at PIM level……….…... .10

 E. Riccobene University of Milan, Italy

 P. Scandurra University of Bergamo, Italy

2. Behaviour Modelling Notation for Information System Design……….....29

 A. Kalnins, E. Celms, E. Kalnina and A. Sostaks

Institute of Mathematics and Computer Science

University of Latvia

3. Composition Semantics for Executable and

 Evolvable Behavioral Modeling in MDA……………………....…41

 A. McNeile, Metamaxim Ltd, UK

E. Roubtsova, Open University of the Netherlands

4. Towards a Model Execution Framework for Eclipse………………….….57

M. Soden and H. Eichler.

Humbold University, Germany

5. Towards Model Structuring Based on Flow Diagram ….……………...…72

A. Rensink and M. Zimakova,

University of Twente, the Netherlands

6. Recursive Modeling for Completed Code Generation………………..…..86

S. Sulistyo and A.Prinz

University of Agder, Norway

7. Embedding Process Models in Object-oriented Program Code……...….100

M. Balz and M Goedicke

University of Duisburg-Essen, Germany

4

Keynote: Automatic generation of behavioral
code - too ambitious or even unwanted?

Gregor Engels

University of Paderborn, Warburger Str. 100 33098 Paderborn Germany
engels@upb.de

Abstract. Pushing the button and yielding automatically generated
code from behavioral models is one of the dreams of the Model-Driven
Architecture approach. Current practice shows that this works quite well
in certain domain-specific contexts or in case of low-level (textual) be-
havior specifications. But, in most cases, behavioral models are only used
in early phases of a software development project for documenting user
requirements. They are not used for an automatic code generation. This
also leads to the problem that behavorial models are separated from the
code, which finally even leads to dead models. The talk discusses the role
of behavioral models within software development processes. It addresses
and compares several approaches for behavior modeling (e.g. (visual)
pre-/post-conditions, protocol specifications, graph transformations) and
discusses importance and limitations of an automatic code generation. A
discussion on alternative usages of behavioral models like modPushing
the button and yielding automatically generated code from behavioral
models is one of the dreams of the Model-Driven Architecture approach.
Current practice shows that this works quite well in certain domain-
specific contexts or in case of low-level (textual) behavior specifications.
But, in most cases, behavioral models are only used in early phases of a
software development project for documenting user requirements. They
are not used for an automatic code generation. This also leads to the
problem that behavorial models are separated from the code, which fi-
nally even leads to dead models. The talk discusses the role of behavioral
models within software development processes. It addresses and com-
pares several approaches for behavior modeling (e.g. (visual) pre-/post-
conditions, protocol specifications, graph transformations) and discusses
importance and limitations of an automatic code generation. A discus-
sion on alternative usages of behavioral models like model-driven testing,
model-driven monitoring and models@runtime concludes the talk.

5

Preface

Mehmet Aksit1, Ekkart Kindler2, Ashley McNeile3 and Ella Roubtsova4

1 University of Twente, Enschede, the Netherlands, m.aksit@ewi.utwente.nl
2 Technical University of Denmark, Copenhagen, Denmark,eki@imm.dtu.dk

3 Metamaxim Ltd, London, UK, ashley.mcneile@metamaxim.com
4 Open University of the Netherlands, ella.roubtsova@ou.nl

BM-MDA is the first International Workshop on Behaviour Modelling in
Model Driven Architecture organized in Enschede (the Netherlands) on the 23d
of June 2009 in conjunction with the European Conference on Model Driven
Architecture.

The Model-driven Architecture (MDA) features the use of different kinds of
models during the software development process and automatic transformations
between them. One of the main ideas is the separation between models that
are platform independent (PIMs) and models that are platform specific (PSM).
From these models, some parts of the final code can be automatically generated.
Ultimately, the goal is to generate the complete software fully automatically from
these models. The purpose of the BM MDA workshop is to better understand
what is needed to adequately model behaviour in MDA, and what is still lacking
for universally modelling the behaviour of software in such a way that the code
can automatically be generated from them.

The papers accepted for the workshop show that fully automatic generation of
the code from models is still a dream and, if it works at all, restricted to specific
application areas. The contributions describe various approaches to providing
better support for the aims of MDA, including

– Various changes to the semantics and notations of UML behaviour modelling
techniques;

– The introduction of new modelling semantics;
– Improved approaches to providing execution semantics for behavioural mo-

dels.

Several papers in the program of the workshop propose to extend or replace
the semantics of the behavioural diagrams in the UML in order to achieve exe-
cutability of models.

”Weaving executability into UML class models at PIM level” by E. Riccobene
and P. Scandurra describes an approach to extending UML with ASM (Abstract
State Machine) behaviour and execution semantics. The weaving is achieved us-
ing the identification of join-points between the UML and ASM metamodels,
rather in the manner of aspect weaving, resulting in a combined language the
authors call UML+. The authors show how the semantics of the UML+ meta-
model may be defined in terms of the semantics of the component metamodels
and illustrate the approach by adding ASM behaviour semantics to the UML
Class Diagram. This is an attractive idea, as it allows existing behavioural for-
malisms (and their related tools, in particular for execution/simulation and code

6

generation) to be used within the context of UML modelling. However, achiev-
ing a weaving with the Class Model is the easy part, as there is no ”semantic
overlap”, and the real test of the approach will be to achieve sensible results
with undue complexity when considering more general Class behaviour, includ-
ing inter-object communication. Another challenge is to see how the reasoning
possibilities afforded by such behavioural models as ASM can be used in the
context of UML models.

”Behaviour Modelling Notation for Information System Design” by A. Kalnins,
E. Celms, E. Kalnina, and A. Sostaks describes work on extending two UML
behavioural modelling notations, Sequence Diagrams and Activity Diagrams, to
improve expressive power. The suggested changes for Sequence Diagrams are mi-
nor and relate primarily to loop constructs. The suggested changes for Sequence
Diagrams are more radical, and aim to give Sequence Diagrams the power to
represent behaviour involving multiple classes, as Sequence Diagrams do, using
a ”swimlane” concept. The result is a notation similar in concept to Sequence
Diagram, but using a different approach to designate the sequencing of execu-
tion. The work on the approach is in the progress as it does not show how the
interactions between all classes can be presented, how many Sequence Diagrams
should be used to specify a system, and what is the semantics of the composition
of multiple Diagrams (particularly where the same Class appears in more than
one diagram).

”Composition Semantics for Executable and Evolvable Behavioral Model-
ing in MDA” by A. McNeile and E. Roubtsova analyses the UML’s two forms
of state machine (Behaviour State Machines and Protocol State Machines) and
concludes that neither of them is particularly suitable for behaviour composition
and evolution of models. Instead, a new protocol modelling semantics using CSP
parallel and CCS composition operators is suggested. This is a radical departure
from the current UML semantics, as it promotes process algebraic behavioural
composition to first class status in the modelling language. This semantics gives
advantages for local reasoning, based on the established reasoning techniques of
process algebra, and allows a compositional style of behaviour model construc-
tion and re-use.

”Towards a Model Execution Framework for Eclipse” by M. Soden and H.
Eichler describes work to extend the family of Eclipse modelling tools with a
Model Execution Framework (MXF). The aim of this work is to provide a toolset
that supports the building of execution capabilities in the Eclipse modelling envi-
ronment, and provides a language (MAction Language) that is claimed to provide
a set of basic actions form which execution DSLs can be built. The use of MXF
is illustrated by showing how it can be used to build a StateMachine execution
capability. The XMF facility aims to be a general kit for building behavioural
languages and not restrictive on the semantics of the behavioural language being
equipped for execution. This is potentially a powerful tool. The authors do not
discuss whether their language has theoretical limits to its capabilities, and this
may be an interesting area for further investigation.

7

Two papers concern approaches to model transformation and refinement for
integration, re-integration and execution of models.

”Towards Model Structuring Based on Flow Diagram Decomposition” by A.
Rensink and M. Zimakova presents an experimental implementation of decompo-
sition algorithms for transforming, by means of graph transformation, unstruc-
tured flow graphs into structured ones. Such algorithms have been studied in
theory (e.g., in order to prove that both classes have the same formal expres-
siveness), but are not yet well-studied in practice in terms of their complexity
and implementation. The motivation is model understanding as well as imple-
mentation of general behaviour models in structured target languages. A number
of methods have been implemented with graph transformations, employing the
graph-transformation tool Groove for rule execution. The complexity measure of
a flow graph was developed to reflect an intuitive notion of flow graph reliability
and readability and evaluate different decomposition algorithms and results of
non-deterministic algorithms for the purpose of the complexity minimization.

”Recursive Modeling for Completed Code Generation” by S. Sulistyo and
A.Prinz gives an example of recursive refinement of structural and behavioural
models in order to achieve executability. The authors present an interesting
general discussion of modelling, including structural and behavioural models,
high-level models and executable elements. They propose recursive refinement
of activity elements in activity diagrams until the mapping into existing compo-
nents can be obtained. Refinement of activities is well known in UML. However,
in this approach activities are transformed into classes. This concurrent refine-
ment of activities embedded into structural models is not standard. Ideas of this
approach appear in some work but have not been fully developed yet. Some el-
ements of this approach need further investigation. For example, the notion of
consistency of behavioural and structural diagrams needs to be defined. Manual
refinement is error prone and needs procedures for correctness checks. Moreover,
presentation of interactions between concurrent activities has to be addressed.
This can be seen as future work in development of this promising approach.

”Embedding Process Models in Object-oriented Program Code” by M. Balz
and M Goedicke presents an interesting idea on how process models can be em-
bedded into object-oriented program code by means of a design pattern. Though
this approach is still more focussed on programming, it builds a bridge between
the classical way of software development by programming and the upcoming
model-based approaches, by defining a clear interface between process models
and programs. This way, it takes a first steps to solving one of the main problems
with behaviour modelling today: the integration of behaviour models with other
models and with pre-existing program code. It is yet to be seen how far this
specific solution will carry; but the ideas behind that pattern could probably
also be used for integrating other behaviour models. For now, the pattern eases
combining process models from the Java Workflow Tooling project (JWT) into
program code.

Analysis of the papers shows that the problem of executable modelling at the
Platform Independent Level still awaits a standard and elegant solution. Current

8

UML behavioural modelling semantics does not properly meet the challenge that
MDA presents and various extensions or replacements have been proposed. A
simple compositional semantics that supports reasoning about models and allows
transformation into the code is a critical factor for the success of MDA, and
we believe that the ideas contributed to this workshop will help show the way
towards achieving the goals of MDA.

The organizers of BM-MDA thank all the authors for their contribution and
the members of the Program Committee for their excellent reviews of the sub-
mitted papers.

9

Weaving executability into UML class models at

PIM level

Elvinia Riccobene2 Patrizia Scandurra1

1 DTI - Università degli Studi di Milano, Italy
elvinia.riccobene@unimi.it

2 DIIMM - Università degli Studi di Bergamo, Italy
patrizia.scandurra@unibg.it

Abstract. Modeling languages that aim to capture PIM level behav-
ior are still a challenge. We propose a high level behavioral formalism
based on the Abstract State Machines (ASMs) for the specification and
validation of software systems at PIM level. An ASM-based extension of
the UML and its Action Semantics is here presented for the construction
of executable class models at PIM level and also a model weaving pro-
cess which makes the execution of such models possible. Our approach
is illustrated using an Invoice Order System taken from the literature.

1 Introduction

Model-driven Engineering (MDE)[3] promotes models as first class artifacts of
the software development process and automatic model transformations to drive
the overall design flow from requirements elicitation till final implementations
toward specific platforms. Model Driven Architecture (MDA) [25], which sup-
ports various standards including the UML (Unified Modeling Language) [37],
from the OMG (Object Management Group) is the best known MDE initiative.

In the MDA context, notations usually based on the UML are used as sys-
tem modeling languages for producing platform-independent models (PIMs) and
platform-specific models (PSMs). Automatic model transformations allow trans-
forming PIMs into PSMs.

Although MDE frameworks (OMG/MOF, Eclipse/Ecore, GME/MetaGME,
AMMA/ KM3, XMF-Mosaic/Xcore, etc.) are currently able to cope with most
syntactic and transformation definition issues, model executability is still re-
marked as a challenge [27], especially at PIM level. One of the main obstacles is
the lack of adequate models for the behavior of the software and of mechanisms
to integrate behavioral models with structural models and with other behavioral
models. Although there are many different approaches for modeling behavior (see
related work in Sect. 2), none of them enjoys the same universality as the UML
class diagrams do for the structural parts of the software. Further evidence of
confusion about PIM level behavioral modeling is the lack of agreement on what
basic behavioral abstractions are required, and how these behavioral abstrac-
tions should be used. However, PIM executability is considered a remarkable

10

feature for the system development process, since it allows verifying high-level
models against the requirements goals (possibly using automated analysis tools),
and it can be exploited to provide conformance for implementations at PSM and
code level by generating test-cases.

A current crucial issue in the MDA context is, therefore, that of providing
effective specification and validation frameworks able to express the meaning or
semantics of each modeling element and interaction occurring among objects,
rather than dealing with behavioral issues depending on the target implementa-
tion platform. We believe this goal can be achieved by integrating MDE/MDA
structural modeling notations with a behavioral formalism having the follow-
ing features: (i) it should be abstract and formal to rigorously define model
behavior at different levels of abstraction, but without formal overkill; (ii) it
should be able to capture heterogenius models of computation (MoC) in order
to smoothly integrate different behavioral models; (iii) it should be executable
to support model validation; (iv) it should be endowed with a model refinement
mechanism leading to correct-by-construction system artifacts; (v) it should be
supported by a set of tools for model simulation, testing, and verification; (vi) it
should be endowed with a metamodel-based definition in order to exploit MDE
techniques of automatic model transformations.

In this paper, we address the issue of providing executability to PIMs by
using the ASM (Abstract State Machine) [6] formal notation that owns all the
characteristics of preciseness, abstraction, refinement, executability, metamodel-
based definition, that we identified above as the desirable properties for this goal.
We propose an ASM-based extension of the UML and its Action Semantics
to define a high level behavioral formalism for the construction of executable
PIMs. This is achieved by weaving behavioral aspects expressed in terms of
ASM elements into the UML metamodel. The ASM formal notation becomes,
therefore, an abstract action language for UML at PIM level, and, by automatic
models mapping, we are able to associate an ASM executable model to a UML
model. In particular, we apply our technique to the UML class diagrams since
they are considered to be the standard for modeling the structural parts of
software. The approach is anyway applicable to any other part of the UML
metamodel and to any modeling language whose abstract syntax is given in
terms of a metamodel.

This paper is organized as follows. Sect. 2 provides a description of related
work along the lines of our motivation. Some background concerning the ASMs
is given in Sect. 3. Sect. 4 presents the proposed weaving approach between the
UML and the ASM metamodels in order to provide a high level formalism to
specify behavior at PIM level. In Sect. 5 we define how to automatically map
UML class models into executable ASM models and the action semantics pro-
vided to the UML class diagrams by the ASM elements. Implementation details
about the automatic model transformation are given in Sect. 6. Sect. 7 presents
the application of our UML/ASM-based modeling notation to the Invoice Order
System case study. Finally, Sect. 8 concludes the paper and outlines some future
directions of our work.

11

2 Related Work and Motivation

There are different approaches for modeling and executing behavior in the UML
at PIM level. They may mainly fall into the following categories.

(I) Not include behavior in the PIM at all, but instead add it as code to
structural code skeletons later in the MDA process. This, however, prevent us
from making significant early validation of the system.

(II) Provide preliminary executability at meta-language level. Some recent
works (like Kermeta [29], xOCL (eXecutable OCL) [38], or also the approach
in [35], to name a few), have addressed the problem of providing executability
into current metamodelling frameworks like Eclipse/Ecore [13], GME/MetaGME
[19], XMF-Mosaic/Xcore [38], etc. This approach is merely aimed at specifying
the semantics of a modeling language (another key current issue for model-based
engineering) and thereby at providing techniques for semantics specification na-
tively with metamodels.

(III) Use the OCL [31] (and its various extensions, see [9] for example) to
add behavioral information (such as pre- and post-conditions) to other, more
structural, UML modeling elements; however, being side-effect free, the OCL
does not allow the change of a model state, though it allows describing it.

(IV) Joint use of an action language, based on the UML action semantics
(AS) [37, 14], and of UML behavioral diagrams such as state machines, activ-
ity diagrams, sequence diagrams, etc., possibly strengthening their semantics.
Behavioral diagrams can be used to capture complete behavioral information
as part of the PIM. The UML AS use a minimal set of executable primitives
(create/delete object, slot update, conditional operators, loops, local variables
declarations, call expressions, etc.) to define the behavior of metamodels by at-
taching behavior to classes operations (the specification of the body counterpart
is usually described in text using a surface action language). Probably the most
well-known example is the approach known as “Executable UML (xUML)” [32]).
Recently, a beta version [14] has been released of an executable subset of the
standard UML (the Foundational UML Subset) to be used to define the se-
mantics of modeling languages such as the standard UML or its subsets and
extensions, and therefore providing a foundation for the definition of a UML
virtual machine capable of executing UML models.

(V) Transform UML diagrams into formal models; e.g. transform class and
sequence diagrams into graphs [11] by using graph-transformation rules in order
to create a set of graphs that represent the state-space of the behavior, and then
apply model checking techniques on this state-space to verify certain properties
of the UML models. Similar approaches based on this translational technique
are UML-B [36] using the Event-B formal method, those adopting Object-Z like
[26, 28], etc.

The approach proposed in this paper is slightly different from the above ones.
The objective is to provide a behavioral formalism at PIM level that does not de-
pend on a particular UML behavioral diagram, since it should be general enough
for other metamodel-based languages not necessary related to the UML. More-
over, in terms of expressiveness, non-determinism and executability (as ASMs

12

support) are two important features to be taken into account for the specifica-
tion and validation of the behavior of distributed applications and application
components.

The ASMs formalism itself can be also intended as an action language but
with a concise, abstract and powerful set of action schemes. That allows to
overcome some limits of conventional action languages based on the UML AS.
These last, – though they aim to be pragmatic, extensible and modifiable – may
suffer from the same shortcomings and complexity of traditional programming
languages being too much platform-specific.

Moreover, not all action semantics proposals are powerful enough to reflect a
particular model of computation (MoC) underlying the nature of the application
being modeled. This, instead, is not true for the ASMs.

Through several case studies, ASMs have shown to be a formal method suit-
able for system modeling and, in particular, for describing the semantics of mod-
eling/programming languages. Among successful applications of the ASMs in the
field of language semantics, we can cite the UML and SDL-2000, programming
languages such as Java, C/C++, and hardware description languages (HDLs)
such as SystemC, SpecC, and VHDL – complete references can be found in [6].
Concerning the ASM application to provide an executable and rigorous UML
semantics, we can mention the works in [30, 5, 7, 23, 10]. More or less, all these
approaches define an ASM model able to capture the semantics of a particular
kind of UML graphical sub-language (statecharts, activity diagrams, etc.). Other
attempts in this direction but generalized to any metamodel-based language –
and therefore belonging to category (II) – are the works in [8, 12], to name a
few. However, the use of the ASMs we suggest here is different. Here we focus
on the use of the ASMs as “modeling language” (at the same level of the UML)
rather than as “meta-language” (or semantics specification language). The goal
is to provide a general virtual machine at PIM level by “weaving” executable
behavior directly into structural models.

3 Abstract State Machines

Abstract State Machines (ASMs) are an extension of FSMs [4], where unstruc-
tured control states are replaced by states comprising arbitrary complex data.

Although the ASM method comes with a rigorous mathematical foundation
[6], ASMs provides accurate yet practical industrially viable behavioral semantics
for pseudocode on arbitrary data structures. This specification method is tunable
to any desired level of abstraction, and provides rigor without formal overkill.

The states of an ASM are multi-sorted first-order structures, i.e. domains of
objects with functions and predicates (boolean functions) defined on them, while
the transition relation is specified by “rules” describing how functions change
from one state to the next.

13

Basically, a transition rule has the form of guarded update “if Condition then
Updates” where Updates are a set of function updates of the form f(t1, . . . , tn) :=
t which are simultaneously executed3 when Condition is true.

These is a limited but powerful set of rule constructors that allow to ex-
press simultaneous parallel actions (par) of a single agent, either in an atomic
way, Basic ASMs, or in a structured and recursive way, Structured or Turbo
ASMs, by sequential actions (seq), iterations (iterate, while, recwhile), and
submachine invocations returning values. Appropriate rule constructors also al-
low non-determinism (existential quantification choose) and unrestricted syn-
chronous parallelism (universal quantification forall). Furthermore, it supports
a generalization where multiple agents interact in parallel in a synchronous/asyn-
chronous way, Synchronous/Asynchronous Multi-agent ASMs.

Based on [6], an ASM can be defined as the tuple:
(header, body, main rule, initialization)

The header contains the name of the ASM and its signature4, namely all
domain, function and predicate declarations. Function are classified as derived
functions, i.e. those coming with a specification or computation mechanism given
in terms of other functions, and basic functions which can be static (never change
during any run of the machine) or dynamic (may change as a consequence of
agent actions or updates). Dynamic functions are further classified into: moni-
tored (only read, as events provided by the environment), controlled (read and
write), shared and output (only write) functions.

The body of an ASM consists of (static) domain and (static/derived) function
definitions according to domain and function declarations in the signature of the
ASM. It also contains declarations (definitions) of transition rules. The body of
ASM may also contains definitions of axioms for invariants one wants to assume
for domains and functions of the ASM.

The (unique) main rule is a transition rule and represents the starting point
of the machine program (i.e. it calls all the other ASM transition rules defined in
the body). The main rule is closed (i.e. it does not have parameters) and since
there are no free global variables in the rule declarations of an ASM, the notion
of a move does not depend on a variable assignment, but only on the state of
the machine.

The initialization of an ASM is a characterization of the initial states. An
initial state defines an initial value for domains and functions declared in the
signature of the ASM. Executing an ASM means executing its main rule starting
from a specified initial state. A computation of M is a finite or infinite sequence
S0, S1, . . . , Sn, . . . of states of M , where S0 is an initial state and each Sn+1 is
obtained from Sn by firing simultaneously all of the transition rules which are
enabled in Sn.

3 f is an arbitrary n-ary function and t1, . . . , tn, t are first-order terms. To fire this
rule to a state Si, i ≥ 0, evaluate all terms t1, . . . , tn, t at Si and update the function
f to t on parameters t1, . . . , tn. This produces another state Si+1 which differs from
Si only in the new interpretation of the function f .

4 Import and export clauses can be also specified for modularization.

14

3.1 The ASM Metamodel and ASMETA

In addition to its mathematical-based foundation, a metamodel-based definition
for ASMs is also available. The ASM metamodel, called AsmM (Abstract State
Machines Metamodel) [33, 15, 17, 2], provides an abstract syntax for an ASM
language in terms of MOF concepts, and has been defined with the goals of
developing a unified abstract notation for the ASMs, independent from any
specific implementation syntax and allowing a more direct encoding of the ASM
mathematical concepts and constructs.

Fig. 1. Backbone

Fig. 1 shows a very small fragment of the AsmM metamodel representing the
structure of an ASM model.

15

AsmM is publicly available (see [2]) in the meta-language EMF/Ecore [13].
The AsmM semantics was given by choosing a semantic domain SAsmM and

defining a semantic mapping MS : AsmM → SAsmM to relate syntactic concepts
to those of the semantic domain. SAsmM is the first-order logic extended with the
logic for function updates and for transition rule constructors formally defined
in [6].

A general framework, called ASMETA tool set [16, 2], has been developed
based on the AsmM and exploiting the advantages of the metamodelling tech-
niques. It essentially includes: a textual notation, AsmetaL, to write ASM mod-
els (conforming to the AsmM) in a textual and human-comprehensible form; a
text-to-model compiler, AsmetaLc, to parse ASM models written in AsmetaL
and check for their consistency with respect to the OCL constraints of the meta-
model; a simulator, AsmetaS, to execute ASM models (stored in a model reposi-
tory as instances of AsmM); the Avalla language for scenario-based validation of
ASM models, with its supporting tool, the AsmetaV validator; the ATGT tool
that is an ASM-based test case generator based upon the SPIN model checker;
a graphical front-end, called ASMEE (ASM Eclipse Environment), which acts
as IDE and it is an Eclipse plug-in.

4 Weaving executable behavior into UML Class Model

The aim of this technique is to weave behavioral aspects into the whole UML
metamodel or parts of it, depending on those elements one is interested to express
behavior about.

Applying this technique demands the definition of a weaving function speci-
fying how the UML metamodel and the AsmM are weaved together into a new
metamodel which adds to the UML the capability of specifying behavior by
ASM transition rules. More precisely, it requires identifying precise join points5

between data and behavior [29], to express how behavior can be attached to
structural constructs.

Once a weaving function has been established between the UML and the
AsmM, the resulting metamodel, in the sequel referred as UML+, enriches the
UML with behavior specification capability in terms of ASM transition rules.
Therefore, UML+ can be considered an abstract structural and executable lan-
guage at PIM level.

As example of weaving executable behaviors into structural models by using
ASMs, we here consider the portion of the UML metamodel concerning with class
diagrams. However, the weaving process described here is directly applicable
to any object-oriented metamodel and meta-metamodel like the OMG MOF,
EMF/ECore, AMMA/KM3, etc.

5 Inspired from the Aspect-oriented Programming (AOP) paradigm, join points are
intended here and in [29] as places of the meta-metamodel where further (executabil-
ity) aspects can be injected.

16

4.1 Join Points Identification

In case of the UML metamodel, as for any other MOF metamodel, it might
be convenient to use transition rules within meta-classes as class operations to
hold their behavioral specification. Therefore, a join point must be specified
between the class Operation6 of the UML (see Fig. 7.11 in [37]) and the class
RuleDeclaration of the AsmM.

Fig. 2 shows how simply the composition may be carried out. The MOF
Operation class resembles the AsmM RuleDeclaration class. The name Opera-
tion has been kept instead of RuleDeclaration to ensure UML conformance;
similarly, the name Parameter has been kept instead of VariableTerm. Finally,
the new property isMain has been added in order to designate, when set to true,
a closed (i.e. without formal parameters) operation as (unique) main rule of an
active class (the main class) to start model execution.

Fig. 2. Using operation bodies as join points between data and behaviour

A further join point is necessary to adorn UML class’s properties (either
attributes or association member ends – see Fig. 7.12 in [37]) to reflect the ASM
function classification. Fig. 3 shows how this may be carried out. The UML
Property class resembles the AsmM Function class. Box UML+ presents the
result of the composition process. The UML class Property has been merged
with the class Function. A further adornment kind:PropertyKind have been
added to capture the complete ASM function classification. PropertyKind is an
enumeration of the following literal values: static, monitored, controlled, out,
and shared. Two OCL constraints have been also added stating, respectively,
that a read-only (attribute isReadOnly is set to true) property can be of kind
6 An operation is a behavioral feature of a classifier that specifies the name, type,

parameters, and constraints for invoking an associated behavior.

17

static or monitored, and that if a property is derived (attribute isDerived is
set to true) then the attribute kind is empty.

Fig. 3. Using properties as join point for ASM adornments

Moreover, in order to merge the two statically-typed systems of the UML
and the AsmM, a UML Type (a Class or a DataType) is merged with an ASM
Domain. Finally, values specification in UML class models (e.g. for specifying de-
fault values of attributes) are provided in terms of opaque expressions (instances
of the OpaqueExpression class in the UML metamodel)7 that are merged with
ASM terms (the Term class of the AsmM metamodel).

5 Semantic Model

At this point of the weaving process, we are able to design by the UML+ termi-
nal models [24] whose syntactic elements conform to UML and whose operation
semantics is expressed in terms of ASM rules. (Sect. 7 reports an example of
application). So doing, the ASM formal notation can be considered as an ab-
stract action language for UML at PIM level. However, following our approach,
we are able to provide more, namely to define in a precise and clear way the
executable semantics of a terminal model conforming to UML+, by associating
it with its ASM semantic (executable) model. This is clarified by the following
argumentation that refers to a generic metamodel (more details can be found in
[18]), but which is then tailored for the UML+ in Sect. 5.1.

A language metamodel A has a well-defined semantics if a semantic domain
S is identified and a semantic mapping MS : A → S is provided [21] to give
7 In UML, an opaque expression is an uninterpreted textual statement that denotes a

(possibly empty) set of values when evaluated in a context

18

meaning to syntactic concepts of A in terms of the semantic domain elements.
By exploiting the ASM formal method endowed with a metamodel representation
of their concepts and with a precise mathematical semantics, we can express the
semantics of a terminal model [24] conforming to A in terms of an ASM model.
Let us assume the semantic domain SAsmM of the ASM metamodel (see Sect.
3.1) as the semantic domain S. The semantic mapping MS : A → SAsmM, which
associates a well-formed terminal model m conforming to A with its semantic
model MS(m), can be defined as

MS = MSAsmM
◦M

where MSAsmM
: AsmM → SAsmM is the semantic mapping of the ASM meta-

model and associates a theory conforming to the SAsmM logic with a model
conforming to AsmM, and the function M : A → AsmM associates an ASM
to a terminal model m conforming to A. Therefore, the problem of giving the
metamodel semantics is reduced to define the function M between metamod-
els. The complexity of this approach depends on the complexity of building the
function M . In the following section, we show how to build the function M for
the UML+ metamodel.

5.1 Semantic Model of UML+

The building function M : UML+
−→ AsmM is defined as

M(m) = ι(W (m), m)

for all terminal model m conforming to UML+, where:
– W : UML+

→ AsmM maps a weaved terminal m conforming to UML+

into a model conforming to the AsmM and provides the abstract data structure
(signature, domain and function definitions, axioms) and the transition system
of the final machine M(m);
– ι : AsmM ×UML+

→ AsmM) computes the initial state of the final machine
M(m) by extracting initial values for data structures of the machine from the
source modeling elements in m.

The function W is defined as a mapping in Table 1 and provides semantics
both to the basic modeling elements characterizing UML class models (although
we apply some restrictions as remarked below) and to the enriched UML+ mod-
eling elements as result of the weaving process. The semantics is given by as-
sociating each modeling concept into a corresponding AsmM modeling element.
Below, we comment those parts of W concerning UML elements involved into the
join points definition, while we leave to the reader intuition the understanding
of the remaining parts.

The Operation element of the weaved language UML+ is associated to the
corresponding RuleDeclaration element of the AsmMas involved in the join
point definition. We assume, similarly to the use of this in the Java program-
ming language, that in the definition of the rule body of an operation op, a
special variable named $this is used to refer to the object that contains the

19

operation. The W function application automatically adds the variable $this as
formal parameter of the corresponding rule declaration8. Moreover, for simplicity
(although these concepts can be handled in ASMs) we assume that an operation
cannot raise exceptions (i.e. the set of types provided by the association end
raisedException is empty) and does not specify constraints.

The W function provides semantics to the Property element (an attribute or
an association end) of the UML+ language by associating it to the corresponding
Function element of the AsmM involved in the join point definition.

Due to UML and AsmM types identification, as explained in Table 1, the
domain of the ASM function denoting a property has to be intended as the
ASM domain (usually an AbstractTD type-domain) induced from the exposing
class of the property, and the codomain as induced from the property’s type.

Opaque expressions are straightforwardly matched (see Table 1) into ASM
terms.

Remark. Currently, we apply some restrictions to the UML metamodel9. We
assume exceptions cannot arise from operations, no default values can be speci-
fied for the operations parameters, no pre/post conditions and body conditions
for operations, no qualifiers (like derived unions and subsetting) as optional part
of association ends can be specified, no visibility kinds, only simple classes are
treated (i.e. no composite classes with parts and ports), association classes are
not yet supported, and only binary associations with none aggregation type are
currently permitted. Moreover, as we concerned to PIM level, we assume that
class features (both properties and operations) are not static, since for static
features two alternative semantics are recognized in UML10 leading therefore to
alternative implementations that should instead be taken at PSM level.

5.2 UML+ Action Semantics

According to the ASM semantic domain, operations can be invoked on an object
(an element of an ASM domain) of a terminal model, given a particular set of
substitutions for the parameters of the operation. An operation invocation may
cause changes to the values of the properties of that object, or of other objects
that can be navigated to, directly or indirectly, from the object’s context on
which the operation is invoked, to its output parameters, to objects navigable
from its parameters, or to other objects in the scope of the operation’s execution.
An operation invocation may return a value as a result, and in this case the
semantics is that of a Turbo ASM rule with return value. Operation invocations
may also cause the creation and deletion of objects by executing extend ASM
8 Since operations are intended as ASM transition rules, within the body of an oper-

ation op, if f is a property (an attribute or an association end) in the same object,
then f($this) must be used as a full name for that property. If anotherOp is another
operation in the same object, then anotherOp($this,. . .) must be used to invoke that
operation.

9 They do not limit our approach and can be considered in the future.
10 A static feature may have different values for different featuring classifiers, or the

same value for all featuring classifiers.

20

rules and update rules of set-functions. Expression evaluations are supported as
well.

In addition to these basic actions (property getting/setting, expression eval-
uations, operation invocation, object creation/deletion), the weaving between
the UML and the AsmM metamodels allows us to use more sophisticated ASM
rule constructors to express behavior: if-then-else, parallel execution (par rules),
sequential execution (seq rules), finite iteration submachines (iterate and while
rules), non-determinism (choose rule), etc., as formally defined in [6].

It is possible to make use of the parallel ASM execution model that (a) easens
specification of macro steps (refinement and modularization), (b) avoids unnec-
essary sequentialization of independent actions, (c) easens parallel/distributed
implementations [6]. Furthermore, one can exploit the ASMs feature of incorpo-
rating non-atomic structuring concepts (by the constructor seq for sequential-
ization) and finite iteration submachines with return values, exception handling,
local values, etc., as standard refinements into synchronous parallel ASMs.

The idea here is to extend the UML class model to allow the definition of ASM
transition rules working as “pseudo-code over classes” as scheme of a generic
control machine, and allow therefore different granularities of computation step
for validating objects behavior, even for parallel/distributed behavioral facets,
at PIM level.

6 Implementation

We have been implementing an Eclipse-based integrated environment made of: a
UML modeler; the ASMETA/AsmetaS tool, as execution environment; and the
AMW (ATLAS Model Weaver) [1] and ATL (ATLAS Transformation Language)
[22] to handle the merging process between the UML and the AsmM. The tool
implemented at the moment is still a prototype; e.g., we have been carrying our
experiments with the EMF-based implementation of the UML 2.x metamodel
for Eclipse rather then using directly an external UML visual modeling tool.

Once the ASM semantic model is obtained from a UML+ terminal model
(see the building function M in Sect. 5.1), several reasoning activities can be
carried out, early at PIM level, by exploiting the ASMETA toolset. Model val-
idation is possible by random, interactive, and scenario-based simulation, or by
automatic test case generation. Model verification can be done through model
checking techniques. Furthermore, this high level ASM model can be exploited
for conformance analysis of refined PSMs and code models.

7 Case study: Invoice Order System

The Invoice Order System (IOS), taken from [20], is used as an example to
illustrate our approach. The subject is to invoice orders (R0.1). To invoice is to
change the state of an order from pending to invoiced (R0.2). On an order, we
have one and only one reference to an ordered product of a certain quantity; the
quantity can be different from other orders (R0.3). The same reference can be

21

UML+ AsmM

An active class C An ASM containing in its signature a
domain C as subset of the predefined do-
main Agent

A non-abstract class C A dynamic AbstractTD domain C

An abstract class C A static AbstractTD domain C

An Enumeration An EnumTD domain

A primitive type A basic type domain
Boolean BooleanDomain

String StringDomain

Integer IntegerDomain

UnlimitedNatural NaturalDomain

A generalization between a child class C1
and a parent class C2

A ConcreteDomain C1 subset of the cor-
responding domain C2

An attribute a of a class C, type T, kind
k, and multiplicity 1

A function a : C → T of kind k

An attribute a of a class C, type T, mul-
tiplicity > 1, and ordered

A function a : C → T ∗ of kind k, where
T ∗ is the domain of all finite sequences
over T (SequenceDomain)

An attribute a of a class C, type T, kind
k, and multiplicity > 1, unordered and
unique

A function a : C → P(T) of kind k,
where P(T) is the mathematical power-
set of T (PowersetDomain)

An attribute a of a class C, type T, kind
k, and multiplicity > 1, unordered and not
unique

A function a : C → B(T) of kind k,
where B(T) is the domain of all finite
bags over T (BagDomain)

A navigable association end See attribute

An operation op of a class C, rule body
R, arity n, and owned parameters xi : Di

A rule declaration op($this in C, x1 in
D1, . . . , xn in Dn) = R of rule body R,
arity n+1, and formal parameters $this

in C and xi in Di

A closed operation op of a class C, rule
body R, and with isMain set to true

The (unique) main rule declaration of
form main rule op = for all $this in
C do R

An opaque expression A term

OCL constraints Axioms (optional)

OCL operations/queries Static functions (optional)

Table 1. W mapping: from UML+ to AsmM

22

ordered on several different orders (R0.4). The state of the order will be changed
to invoiced if the ordered quantity is either less than or equal to the quantity
which is in stock according to the reference of the ordered product (R0.5). From
the set of requirements presented in [20], we focus here on the Case 1, which is
specified as follows:

R1.1 All the ordered references are in stock.
R1.2 The stock or the set of the orders may vary due to the entry of new

orders or canceled orders, or due to having a new entry of quantities of products
in stock at the warehouse. But we do not have to take these entries into account.

R1.3 This means that you will not receive two entry ows (orders, entries in
stock). The stock and the set of orders are always given to you in an up-to-date
state11.

Fig. 4. IOS class model

The UML class diagram in Fig. 4 shows the implementation classes for the
Invoice Order System at the PIM level. It shows the internal structure of the
system for order management with the essential details at this stage. From a
structural point of view, there is: a set of orders (the Order class), a set of
products (the Product class), and a container class InvoiceOrderSystem used
as active12 class to start the application and thus to invoice orders depending
on various strategies. Every order has a state, which can be invoiced or pending.
All the orders are initially pending. Every order refers to a product for a certain
quantity (greater than zero) and these data cannot be changed (quantity is a
monitored property). The same product can be referenced by several different
orders. Every product is in the stock in different quantity. The quantity of a
product in the stock is only updated by the system (hence it is a controlled

property) when it invoices some orders.
11 You do not have to take into account the entry of new orders, cancellation of orders,

and entries of quantities in the stock. These are subjects for Case 2.
12 Each instance of an active class has its own thread of control and possibly may

coordinate other behaviors.

23

The behavior of each class is specified by means of ASM transition rules,
as shown in the operation compartment of the UML classes. Their definition
is reported in Listing 1.1 using the ASMETA/AsmetaL textual notation. The
system is intended as a single-agent machine. To invoice orders, the system
may follow different strategies. We choose here that of invoicing an order at
a time. By invoking the r invoiceSingleOrder operation, the system selects
(non-deterministically) on order13 within a set of orders that are pending and re-
fer to a product in the stock in enough quantity, and simultaneously changes the
state of the selected order from pending to invoiced and updates the stock by sub-
tracting the total product quantity in the order to invoice (by the r deleteStock

operation). The system keeps to invoice orders as long as there are orders which
can be invoiced. The system guarantees that the state of an order is always de-
fined and the stock quantity is always greater than or equal to zero. Note that,
non-determinism (choose rule) is a convenient way to abstract from details of
scheduling. Indeed, in the modeled strategy, per step at most one order is in-
voiced, with an unspecified schedule (not taking into account any arrival time of
orders) and with a deletion function under the assumption that stockQuantity
is updated only by invoicing.

Listing 1.1. IOS behaviour: single-order strategy
rule r invoiceSingleOrder =

choose $order in self.orders with orderState($order) = PENDING
and quantity($order) <=

stockQuantity(referencedProduct($order))
do par

state($order) := INVOICED
r deleteStock[referencedProduct($order),orderQuantity($order)]

endpar

rule r deleteStock($p in Product, $q in Natural) =
stockQuantity($p):= stockQuantity($p) − $q

main rule r Main = r invoiceSingleOrder[]

Many other strategies and particular scheduling algorithms can be defined
and refined as well, in order to get a sufficiently precise, complete and minimal,
executable PIM model which can serve as a basis for the implementation of var-
ious PSMs. Appendix A reports the complete AsmetaL specification associated
to the IOS class model in Fig. 4.

8 Conclusion and Future Work

In this paper, we proposed a PIM level behavioral language for structural mod-
els based on the ASMs formalism. We focused on an intra-object perspective
by addressing the behavior occurring within structural entities (like UML class

13 Note that a variable v is expressed in AsmetaL as $v.

24

models). In the future, we propose to extend the behavioral formalism for the
inter-object behavior, which deals with how structural entities communicate with
each other. The objective of this further effort is to show the applicability of the
proposed approach in the area of communication protocols and of inter-process
interaction models. This will require identifying suitable join points between
structural diagrams describing the collaborative structure of the interactive en-
tities and the AsmM subpart concerning transition rules.

We will also continue working on the implementation of the model execu-
tion environment (a virtual machine) and a user interface providing support for
a user-friendly model simulation. We could also experiment with a much more
lightweight extension of the UML metamodel based on the UML profile mech-
anism, but we preferred a more general matching approach in order to make it
reusable for different metamodels rather than only for UML-based metamodels.

Moreover, we want to connect PIM executable models with PSM executable
models written with the SystemC UML profile in the context of a model-based
development process for embedded systems and System-on-Chip (SoC) [34].

References

1. The AMW (ATLAS Model Weaver website). http://www.eclipse.org/gmt/amw/,
2007.

2. The Abstract State Machine Metamodel website. http://asmeta.sf.net/, 2006.

3. J. Bézivin. On the Unification Power of Models. Software and System Modeling
(SoSym), 4(2):171–188, 2005.

4. E. Börger. The ASM method for system design and analysis. A tutorial introduc-
tion. In B. Gramlich, editor, Frontiers of Combining Systems, 5th International
Workshop, FroCoS 2005, Vienna, Austria, September 19-21, 2005, Proceedings,
volume 3717 of Lecture Notes in Computer Science, pages 264–283. Springer, 2005.

5. E. Börger, A. Cavarra, and E. Riccobene. Modeling the dynamics of UML state
machines. In Y. G. et al., editor, Abstract State Machines. Theory and Applications,
volume 1912 of LNCS 1912, pages 223–241. Springer, 2000.

6. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer Verlag, 2003.

7. A. Cavarra, E. Riccobene, and P. Scandurra. Mapping uml into abstract state
machines: a framework to simulate uml models. J. Studia Informatica Universalis,
3(3):367–398, 2004.

8. K. Chen, J. Sztipanovits, and S. Neema. Compositional specification of behavioral
semantics. In DATE, pages 906–911, 2007.

9. B. Combemale, P. G. X. Crégut, and X. Thirioux. Towards a formal verification of
process models’s properties - simplepdl and tocl case study. In 9th International
Conference on Enterprise Information Systems (ICEIS), 2007.

10. K. Compton, J. Huggins, and W. Shen. A semantic model for the state machine in
the Unified Modeling Language. In Proc. of Dynamic Behavior in UML Models:
Semantic Questions, UML 2000, 2000.

11. G. Csertán, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, and D. Varró. VIATRA -
Visual Automated Transformations for Formal Verification and Validation of UML
Models. In ASE, pages 267–270. IEEE Computer Society, 2002.

25

12. D. Di Ruscio, F. Jouault, I. Kurtev, J. Bézivin, and A. Pierantonio. Extending
AMMA for Supporting Dynamic Semantics Specifications of DSLs. Technical Re-
port 06.02, LINA, 2006.

13. Eclipse Modeling Framework. http://www.eclipse.org/emf/, 2008.
14. OMG. Semantics of a Foundational Subset for Executable UML Models, version

1.0 - Beta 1, ptc/2008-11-03, 2008.
15. A. Gargantini, E. Riccobene, and P. Scandurra. Metamodelling a Formal Method:

Applying MDE to Abstract State Machines. Technical Report 97, DTI Dept.,
University of Milan, 2006.

16. A. Gargantini, E. Riccobene, and P. Scandurra. A metamodel-based simulator for
ASMs. In A. Prinz, editor, Proceedings of the 14th International ASM Workshop,
2007.

17. A. Gargantini, E. Riccobene, and P. Scandurra. Ten reasons to metamodel ASMs.
In Dagstuhl Workshop on Rigorous Methods for Software Construction and Anal-
ysis, LNCS Festschrift. Springer, 2007.

18. A. Gargantini, E. Riccobene, and P. Scandurra. A semantic framework for
metamodel-based languages. Journal of Automated Software Engineering, 2009,
in print.

19. The Generic Modeling Environment (GME). http://www.isis.vanderbilt.edu/
Projects/gme, 2006.

20. H. Habrias and M. Frappier. Software Specification Methods: An Overview Using
a Case Study. Wiley, 2006.

21. D. Harel and B. Rumpe. Meaningful modeling: What’s the semantics of ”seman-
tics”? IEEE Computer, 37(10):64–72, 2004.

22. F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez. Atl: a qvt-like
transformation language. In OOPSLA ’06: Companion to the 21st ACM SIGPLAN
conference on Object-oriented programming systems, languages, and applications,
pages 719–720. ACM, 2006.

23. J. Jürjens. A UML statecharts semantics with message-passing. In Proc. of the
2002 ACM symposium on Applied computing, pages 1009–1013. ACM Press, 2002.

24. I. Kurtev, J. Bézivin, F. Jouault, and P. Valduriez. Model-based dsl frameworks.
In OOPSLA Companion, pages 602–616, 2006.

25. OMG. The Model Driven Architecture (MDA Guide V1.0.1). http://www.omg.

org/mda/, 2003.
26. H. Miao, L. Liu, and L. Li. Formalizing uml models with object-z. In ICFEM ’02:

Proc. of the 4th Int. Conference on Formal Engineering Methods, pages 523–534,
London, UK, 2002. Springer-Verlag.

27. P. Mohagheghi and V. Dehlen. Where is the proof? - a review of experiences from
applying mde in industry. In I. Schieferdecker and A. Hartman, editors, ECMDA-
FA, volume 5095 of LNCS, pages 432–443. Springer, 2008.

28. A. M. Mostafa, M. A. Ismail, H. E. Bolok, and E. M. Saad. Toward a Formalization
of UML2.0 Metamodel using Z Specifications. In Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing, 2007. SNPD 2007.
Eighth ACIS International Conference on, volume 1, pages 694–701, 2007.

29. P.-A. Muller, F. Fleurey, and J.-M. Jezequel. Weaving Executability into Object-
Oriented Meta-Languages. In Proc. of ACM/IEEE 8th International Conference
on Model Driven Engineering Languages and Systems, 2005.

30. I. Ober. More meaningful UML Models. In TOOLS - 37 Pacific 2000. IEEE, 2000.
31. OMG. Object Constraint Language (OCL), v2.0 formal/2006-05-01, 2006.
32. C. Raistrick, P. Francis, and J. Wright. Model Driven Architecture with Executable

UML. Cambridge University Press, 2004.

26

33. E. Riccobene and P. Scandurra. Towards an Interchange Language for ASMs. In
W. Zimmermann and B. Thalheim, editors, Abstract State Machines. Advances in
Theory and Practice, LNCS 3052, pages 111 – 126. Springer, 2004.

34. E. Riccobene and P. Scandurra. Model transformations in the UPES/UPSoC
development process for embedded systems. Innovations in Systems and Software
Engineering, 5(1):35–47, 2009.

35. M. Scheidgen and J. Fischer. Human comprehensible and machine processable
specifications of operational semantics. In ECMDA-FA. Springer, 2007. LNCS.

36. C. Snook and M. Butler. Uml-b: Formal modeling and design aided by uml. ACM
Trans. Softw. Eng. Methodol., 15(1):92–122, 2006.

37. OMG. UML v2.2 Superstructure, formal/09-02-02, 2009.
38. The Xactium XMF Mosaic. www.modelbased.net/www.xactium.com/, 2007.

27

A ASM model for the IOS system

Listing 1.2. ASM model for the IOS (single-order strategy)
asm InvoiceOrderSystem //Case 1
import STDL/StandardLibrary
signature:

//Domain declarations
domain InvoiceOrderSystem subsetof Agent
abstract domain Order
abstract domain Product
enum domain OrderState = { INVOICED | PENDING }

//Function declarations
dynamic controlled state: Order −> OrderState

//the product referenced in an order
dynamic monitored quantity: Order −> Natural

//the quantity in the order
dynamic controlled stockQuantity: Product −> Natural

//the quantity in the stock
dynamic monitored referencedProduct: Order −> Product

//the product referenced in an order
dynamic monitored orders: InvoiceOrderSystem −> Powerset(Order)

//the referenced orders
dynamic monitored products: InvoiceOrderSystem −> Powerset(Product)

//the referenced products
definitions: /∗−−−−− Rules for case 1 (single−order strategy) −−−−−−∗/

macro rule r deleteStock($p in Product ,$q in Natural)=
stockQuantity($p):= stockQuantity($p) − $q

rule r invoiceSingleOrder =
choose $order in self.orders with orderState($order) = PENDING

and quantity($order) <= stockQuantity(referencedProduct($order))
do par

state($order) := INVOICED
r deleteStock[referencedProduct($order),orderQuantity($order)]

endpar

/∗−−−−−−− main rule −−−−−−−−∗/
main rule r main =

r invoiceSingleOrder[]

//A possible initial state
default init s 1:

function state($o in Order) = PENDING
//default value from the class diagram

function stockQuantity($p in Product) = 100n

28

Behaviour Modelling Notation for Information System
Design

Audris Kalnins, Edgars Celms, Elina Kalnina, Agris Sostaks

University of Latvia, IMCS, Raina bulvaris 29, LV-1459 Riga, Latvia
audris.kalnins@lumii.lv, edgars.celms@lumii.lv, Elina.Kalnina@lumii.lv,

agris.sostaks@lumii.lv

Abstract. Problems related to behaviour modelling within the platform
independent model (PIM) during the model driven design are discussed in the
paper. The emphasis is on design problems for information systems, especially
on building a behaviour draft. At first issues in the traditional approach using
sequence diagrams are discussed. Then a new approach based on activity
diagrams is proposed. An extension of activity diagram notation specifically
oriented towards comprehensive and readable behaviour design description is
presented.

 1 . Introduction

The Usage of UML for model driven software development (MDSD) has become an
everyday practice for many software developers. Frequently the approach proposed
by early MDA guidelines [1] by OMG is observed to a degree, and platform
independent (PIM) and platform specific (PSM) models are built. Both pure UML [2]
and various its profiles are used as the modelling notation.

Alternatively, many MDSD approaches are based on domain specific languages
(DSL). However, here true success stories are typically related to specific domains [3]
where an adequate DSL serves both as the modelling and development language
being compiled directly to executable code. In this paper we do not cover the DSL
approach. Instead, we are interested in general software development where UML is
still dominant. More specifically, our main domain of interest is the development of
“general purpose” information systems.

The static structure of software is adequately described by UML class diagram
notation. The UML profile mechanism serves well for some missing elements. At the
PIM level most frequently the basic class notation is sufficient. This notation is
adequately supported by most of UML tools, including some built in model
transformations from PIM to PSM and PSM to code.

The situation with behaviour modelling is not so bright. UML has several diagram
types for behaviour description: sequence, activity, state and some combinations of
them. None of them is universal, each type is best for some specific purpose.

Sequence diagrams are the most used notation for general class interaction
description. In this paper the authors are particularly interested in just this application.
To be more precise, we mean the step of PIM building frequently named “use case

29

realization” [4, 5]. On the basis of requirements (which typically are organized into
use cases) in this step the first draft of system behaviour is built. This behaviour draft
includes finding of basic class operations and definition of class interactions,
including the exchanged data and the execution sequence. This kind of behaviour
design within a model driven development is based on sequence diagrams, as a rule
[4,5]. Typically, the goal is to realize all scenarios related to the given use case,
therefore several sequence diagrams may be built. This step may also include
automatic generation of draft behaviour from more formalized requirements.

However, the usage of sequence diagrams for the given goal has a lot of unsolved
issues. They are sufficient if we want to present the bare invocation chain between
class operations. But as soon as we want to represent the control structure in a more
detailed way some inconveniences appear. Things are even worse if we want to
represent also the basic data flow between operations in the chain. The introduction of
UML 2 has made some problems more acute, though some improvements are present
also.

In this paper we analyze the problems appearing when sequence diagrams are used
for general software behaviour design. This is done on the basis of a simple but
typical example, related to building a PIM for an information system. Some proposals
for improving UML sequence notation are also given.

Other behaviour diagrams are typically used for more specific purposes. UML state
diagrams (statecharts) are typically used in software development for embedded
systems which frequently are state based by the very nature. Frequently profiles or
DSLs based on UML statechart elements serve as direct development languages for
such systems [3]. We will go no deeper in this direction.

Activity diagrams in UML have a more general role. They incorporate also the
basic actions package. This package in fact is a sort of simple programming language
without a concrete syntax. Currently OMG has an ongoing effort for defining precise
executable subset of UML based on activity diagrams and actions [6]. In addition,
there is an intention to provide a usable textual syntax for the action sublanguage [7].
The goal of all these activities evidently is to provide a usable DSL directly within
UML for the development of some kind of systems. Most probably, the emphasis
again will be on embedded systems with all the issues of concurrency and so on.
Another typical application of activity diagrams is for workflow design [8], where
they have to compete with the popular BPMN notation [9]. Typically, here profiles
are required too [10].

In this paper we briefly present a new extension of activity diagrams specifically
oriented towards behaviour design description. Our goal is to have a readable
behaviour notation which would nevertheless cover constructs typically used in
behaviour design at the PIM level (in the same “use case realization” step). The
positive aspects of sequence notation are preserved as far as possible, but in the new
notation all relevant aspects beyond a pure invocation chain can also be represented
adequately. Certainly, some textual notation for a small subset of actions has to be
provided too. In order to preserve the notation simplicity we aim at general purpose
systems (information systems and similar ones) where thorny issues such as
concurrency are not so important. Another objective for the proposed notation is that
it should be “model transformation friendly” – both for generation and for

30

transformation to PSM notation. It should be noted, that this notation can be treated as
a kind of class diagram extension too.

The section 2 of this paper is devoted to problems appearing when sequence
diagrams are used for behaviour design and some proposals for improvement. The
proposed new activity notation for behaviour design is presented in section 3.

 2 . Sequence Diagrams for Behaviour Design

Most of MDSD methodologies [4,5] propose to use sequence diagrams for
representing class behaviour design decisions. Classes required for accomplishing a
task are shown as lifelines. The design process is started from the main “external”
operation triggering the whole given task (typically, the given use case). Looking at
the current operation invocation the designer tries to split the current task into smaller
subtasks. They are forwarded to some other classes as operation invocations within
the body of the current operation under design. If the other class already has the
required operation it is invoked (an operation invocation message added to the
sequence diagram). Otherwise at first the required operation is defined and added to
the relevant class, then the invocation is added. Thus in fact a co-design of class and
sequence diagrams occurs. Frequently a set of design patterns is used in this process
(see e.g. [4]). A similar approach sometimes can be used for automated design when
the PIM model can be partially built by model transformations from a set of
formalized requirements [11].

The sequence diagram notation is perfect as long as we want to store nothing more
than the relevant invocation/return chain for one case (“scenario”). And for messages
corresponding to operations only the signature is recorded. This design level is
equally well supported by UML from 1.4 [12] to 2.2 [2].

However, in many cases the designer wants to store more information than just
“naked” invocation chain. On the one hand, there is a desire to define some control
structure within the operation body under design. Branching is required to show
several alternative scenarios (of a use case) within one diagram. Certainly, an
alternative is to build a separate diagram for each scenario. But it is even more
important to define some loops for performing iterative actions for a whole collection
of related data. On the other hand, typically there is a great desire to represent some
data flow within the operation body under the design – what class attributes and local
variables are used as operation arguments, where the returned data are stored and so
on. At least typical textbooks [4,5] use this approach as a rule.

That is where the problems with sequence diagrams start. UML 2 offers a fragment
notation for defining a branching in diagram. This notation is formally complete (in
the sense that any structured branching can be defined). Though, sometimes this
notation looks quite lengthy in practice. The possibility to use sequence subdiagrams
(via interaction use fragment) in UML 2 may help a little. However, the provided
facilities for loops are fairly incomplete – only a simple WHILE-loop can be defined
more or less adequately. The situation with data flow representation in sequence
diagrams is even more complicated.

31

Fig. 1. Sequence diagram example.

In order to explain the situation in more details let us have a small example. Let us
imagine that we are building an information system for a Fitness Club. This club has a
number of Facilities which are used by customers for exercises. Customers can book
for certain regular Time slots for these Facilities (e.g., Monday to Friday from 7:30 to
8:00). We design a small fragment of the use case Reserve Facility, more precisely,
the initial part of the scenario where the customer gets the list of Facilities available
for the given time period. Then the customer can select a Facility and see the list of
Time slots available for this facility. Fig. 1 shows the sequence diagram which has

32

been built during this design process and Fig. 2 the corresponding fragment of the
class diagram, where all required operations have been incorporated. These diagrams
have been built using the RSA tool [13] from IBM, version 7.5.1. The notation
corresponds to UML version 2.1 supported by this tool.

Fig. 2. Class diagram fragment.

We assume here that the Façade Controller pattern [4] was used in the design
process. The user interaction was built according to the general MVC pattern. We
repeat once more that the PIM level is assumed so no specific GUI framework is
chosen and so on. Due to all this we represent the whole GUI layer by one “abstract”
GUI controller class SystemGUI. The class FacilityManager plays the role of Façade
Controller for this use case. The sole domain-specific class visible in the sequence
fragment is Facility. According to general principles frequently used in MVC, all
invocations from/to GUI level are asynchronous (more precisely, without return), but
all other ones are synchronous (with return).

Now some sequence notation issues can be explained in detail. We have decided
that the execution of getAvailableFacilityList starts with a call to getFacilityList
operation within the same class. The returned complete Facility list should be stored
by means of the navigable association facilityList (which has * multiplicity). In UML
1.4 this could be specified as a single message
 facilityList = getFacilityList()
with a solid arrowhead (the return message is implicit). In UML 2, the return message
is required if you want to specify some return value (this value is permitted only on
return messages). The second getFacilityList message in Fig. 1 is this return message,
returning the value list. The standard (UML 2.1, 2.2) asserts that an assignment of the

33

kind facilityList = … is also permitted on the return message. However, it asserts
further that such a notation means the return message combined with a separate
assignment action execution. Thus, these two separate elements should be created in
the abstract syntax (UML domain) model. Certainly, no tool builder (including IBM
Rational) is eager to provide such a complicated facility. Therefore an explicit
assignment action has to be added to the invocation and return (unfortunately, action
execution is not fully implemented in RSA 7.5 sequence diagrams, so a little forgery
is done here). To sum up, the only legal way is to use the clumsy notation you see in
the upper part of Fig. 1 (two messages and an assignment action). A similar comment
applies to all other places where return values have to be processed further. A possible
remedy could be quite simple – extend the metamodel and constraints so that the
“old” notation becomes legal.

Another issue is related to loops. The returned complete facility list has to be
filtered – only those facilities should be left which have unfilled time slots within the
specified period. So we decide to have a loop iterating over the list and invoking the
isAvailable operation (in the Facility class) for each list element. The elements
returning true are stored in a new list (held by the availableFacilityList association).
In any up-to-date programming language (Java, C#,…) this could described by a
simple iterator-style (for) loop. Therefore it is natural to expect the same level of
abstraction in UML too. Unfortunately, UML 2.2 loop offers only the
minimum/maximum bounds (nothing better than the default 0 and * normally fit here)
plus a Boolean guard expression (obviously, denoting the while-condition). We
propose to use some explicit iterator over a collection (e.g., FOREACH facility IN
facilityList). The iterator variable (facility) has a type (here, Facility) to be simply
implied from the collection itself. The name of this variable is used as the relevant
lifeline name, thus denoting that the current Facility instance is always used. The
issue of returned Boolean value (available) is similar to the case discussed above.
Adding to the result list is clearly an explicit action (we have chosen a Java-like Add
notation). To sum up, our proposal is to add an explicit iterator to loop syntax and
permit to drop bounds where senseless (in fact, the metamodel already permits to drop
the bounds). It should be noted that a similar proposal has already appeared (see the
for-loop in [14]).

To conclude, sequence diagrams could become a usable design notation if the
mentioned and possibly some other extensions would be included. It should be noted
that extensions of this kind are vital for processing the model by transformations (e.g.,
to create the initial PSM from PIM). Transformations can do some sensible job only if
more than bare invocation chain is specified in an unambiguous way.

An important aspect is the practical necessity to represent a set of related
behaviours (e.g., those covering a use case or a group of use cases). If a separate
diagram is used per scenario branch, there typically will be many “streamlined”
(without alt-fragments) diagrams. Alternatively, a lot of diagrams may be merged
using alt-fragments, but these merged diagrams will become quite large. Thus the
total size of graphical description of the required system behaviour will be quite large
in any case. While this is not particularly important for automated processing
(generating from requirements or transforming to PSM) it is critical for manual
evaluation and updates. Since such manual activities are a must for real MDSD style
development this is one more problematic aspect of sequence notation.

34

Certainly, principal quality issues arise for a set of sequence diagrams describing
the given fragment of system behaviour, more precisely, issues of consistency and
completeness. A substantial answer to these issues is far beyond the scope of this
paper. But a couple of short comments can be given. In practical terms the description
completeness (e.g., whether there are missing else-branches) is not so critical, it
simply means the design process has to be continued. The consistency (e.g., the same
operation body is described in two sequence diagrams in two conflicting ways) is
critical and must be validated. However, it is more about the correctness of
requirements from which the behaviour has been obtained. If there are automated
transformations building a PSM model from the given PIM including behaviour, it
could be their task to check the consistency of operation definition throughout the
whole fragment. However, for manual quality evaluation the same readability of the
description as a whole is critical.

The final comment on sequence diagrams in UML 2 is more related to tool
building. The metamodel package for Interactions is excessively complicated (see
similar remarks also in [15]). For example, a simple synchronous operation invocation
message (with one parameter and a return value) from class to class requires 18 UML
domain instances to be created. Or, to reach the corresponding operation from a
message three links must be navigated (but 7 metamodel classes are involved to find
this fact). All this significantly hinders the use of UML 2 sequence diagrams in
automated MDSD – both to build a sequence diagram by transformations, or to
analyze it. May be, all this explains the fact that there was Java code generation from
PSM sequence diagrams in UML 1.4 (in Borland Together tool), but no known tool
does this for UML 2. The popular “reversing” of sequence diagrams from code does
not count – here only the invocation chain is built. We consider the generation of
method “body skeletons” from behaviour descriptions in PSM an essential part of
MDSD.

 3 . Notation for Behaviour Design Based on Activity Diagrams

The arguments in the previous section show sequence diagrams in their current form
have significant drawbacks as a behaviour design notation for “use case realization”.
Therefore authors have considered also alternative notations for this purpose. One
source of inspiration could be the fact that flowcharts have been used for behaviour
formalization for more than 40 years and are still used in a semiformal way. This
suggests the use of activity diagrams as a kind of flowchart formalization. The current
OMG activities related to action languages [6,7] also lead in the same direction.
Therefore authors have tried to find a usable behaviour notation based on activities.

The activity notation as it is in UML 2 is not directly well fit for this purpose. The
comparison to Java-like action language in [7] shows how clumsy is this notation if
followed literally. The main cause again is the extremely low level of some actions
and the need to code all data exchange by data flows involving explicit pins.
Therefore the authors have tried to find some simple activity extensions which would
be sufficient for behaviour design. It should be noted that our goal was not to provide
a complete executable language as in [6,7] since the behaviour specification is meant

35

to be extended manually at the PSM level and at the code level (as the general MDSD
approach suggests). Only the essential aspects of behaviour should be definable in a
readable way.

In the result a draft proposal for such a notation is given in this section. The main
idea is to borrow something from sequence diagrams and incorporate this into activity
diagrams. The main desire is to preserve as much as possible the clear visibility of
invocation chains which is excellent in sequence notation. Also the visibility of order
in which actions occur should be preserved where possible (but this is not possible
always).

The basic ideas are the following. Each class participating in a design fragment is
given a swimlane. This swimlane contains the operation definitions of this class
which are relevant to this fragment. Each operation definition is a simplified nested
activity, with title equal to the operation signature. This activity contains actions
required for the operation body behaviour description at the desired level of details. A
typical action is an operation invocation (of the same or another class). From this
action a special kind of arrow is drawn to the corresponding operation definition (with
or without return). Other actions are assignment actions and some basic data
processing actions we want to show at this level. Contents of all actions are defined in
a textual form (a very simple “action language”). The control structure within an
operation definition is shown by means typical to activity diagrams. Only control
flows are used, but not object flows. Decisions with guards attached to outgoing flows
are used for branching. A graphical loop notation is used (this notation in fact is
borrowed from an early draft of UML 2, currently there is no specialized symbol for
loop, the general structured node must be reused).

Fig. 3 shows the same behaviour fragment from Fig. 1 in our proposed notation.
The same class definitions in Fig. 2 are used for reference. Further details of our
proposal will be explained on the basis of this example.

The operation definitions within a swimlane (corresponding to a class) are
naturally ordered from top to bottom. Though this ordering has no formal meaning it
can be used to show a typical execution sequence. It can be seen in Fig. 3 that due to
the MVC based design the complete behaviour in fact splits into independent
fragments, with each fragment defined in a “sequence style” – an operation
invocation, invoked body, nested invocations and their bodies and so on, including
also returns. Each fragment starts and ends within the SystemGUI swimlane (this is
typical for MVC based designs). Since at this abstraction level no more details on
GUI can be shown some constraints on execution order remain hidden – for example,
a selection in a form can be done only after this form has been shown. In sequence
diagram these constraints were implicitly imposed by the vertical ordering of events.
In this notation an explicit “temporary dependency” arrow (a dashed arrow) must be
used since the vertical ordering has only informal meaning. This special kind of
arrows is needed only in GUI-related swimlanes (only one such arrow in Fig. 3).

The execution order within an operation body is specified by control flows.
Execution starts from an action without incoming control flow. If required for
readability, the activity start symbol (the black dot) can be used, but typically the
vertical ordering within the body is sufficient for easy finding the start.

Thus the same vertical ordering of events as in sequence diagrams can be
preserved for readability, but a greater flexibility is provided if needed.

36

An operation invocation is specified in a textual style, with arguments as in
sequence diagrams. The invocation without return (a thick filled arrow head at one
end) has no more options, but for invocation with return (an open arrow head at the
other end too) an assignment can be combined with the invocation (in a syntax similar
to the one used in UML 1.4 sequence diagrams). If required, the returned value can be
specified on the invoke-return arrow. Explicit assignments are not frequently needed
in this notation but can be used if required. Other data related actions (Add action in
Fig. 3) are defined in the same Java-like style we propose in sequence diagrams. The
syntax for loop head is also the same as we propose for sequence diagrams. If
required, subdiagram invocation can be used for structuring of the description as in
standard activity diagrams.

Fig. 3. Example behaviour description in the proposed notation

One more specific facility is the definition of local variables within operation
bodies. In contrast to attributes, such variables can not be defined in the class
diagram. Certainly, the use of Boolean variables (available in Fig. 3) is not very
typical at this level of abstraction, but nevertheless it illustrates the intended use of

37

this construct – to make the data flow completely explicit if required. There is no
similar facility in sequence diagrams.

This completes the description of the proposed notation. The example shows that
nearly all positive aspects of sequence notation (easy traceability of invocation chains,
explicit ordering of events) have been retained, but much of flexibility and precise
data flow description is gained. We might call the notation “activity sequence
diagrams” (ASD). We remind that the intended application area for the notation is
information (and similar) system design. Therefore concurrent execution and similar
complicated features currently are not included in the notation in order to keep it
simple. The notation has been checked on some larger examples and has revealed no
flaws.

It should be noted that we can look at the proposed notation as an extension of
class diagram too. Simply, in each class the relevant operations are expanded into
subdiagrams (activities) of their own, with invocation arrows between classes visible.
This would permit to keep also associations in the same diagram. However, the value
of such notation is still to be checked (it may be too overcrowded with various lines).

The same way as for activity diagrams, a set of ASD would be required to define a
certain behaviour fragment (a group of related use cases). Since alternative scenarios
are combined in one diagram in a more compact way than for sequence notation, the
gain in total diagram size would be more significant. This should be crucial for
manual behaviour evaluation and development. The semantics of behaviour
description in several diagrams is quite obvious. If a class appears in several diagrams
the operation definitions are merged. Certainly, definitions of the same operation in
several diagrams must be consistent (the same situation as for the sequence notation).
In general, a more formal semantics of ASD notation could be provided, but this is
not the topic of this paper. The intuitive semantics for all “normal” cases should be
clear from the example.

We conclude with some tool related aspects of the notation. Though it is quite
similar to UML activity notation, it is formally not a UML profile. A prototype tool
for this notation was built by a small extension of an activity diagram editor within a
generic metamodel based tool platform [16], Fig. 3 was obtained by this tool. The
metamodel extensions were also minor, in addition the mapping between the diagram
notation and the domain metamodel is much simpler than for sequence diagrams. This
fact makes also the corresponding model transformation development much easier
than in the case of sequence notation (both for generation and transformation to
PSM). All this shows that a complete MDSD tool support based on this notation
would not be very expensive.

 4 . Conclusions

In this paper the possible solutions for behaviour description during the MDSD
process have been analyzed. It is obvious that some solution for this description is
required for true success of standard MDSD approach. The main deficiencies of the
currently most used sequence diagram notation are discussed on an example. Several
proposals are given how to improve the usability of UML 2 sequence diagrams.

38

As an alternative a new activity based notation is proposed for the behaviour
description. This notation preserves most of the positive aspects of sequence diagram
notation and gives a greater flexibility at the same time. Especially, the data flow
description facilities are significantly extended. The most significant gain is expected
in the readability and manageability of a complete behaviour description for a certain
system fragment.

As far as authors know this is the first attempt in this direction (except for some
trivial trials to generate code from activity diagrams). Some other proposals either try
to formalize more deeply the sequence diagram notation (live sequence charts [17]) or
extend activity diagrams with object diagram fragments (early versions of story
driven modelling [18]). But none of them has the easy readable behaviour description
as the main goal.

The proposed notation still has to be checked on large real life examples. This
could be done with a reasonable effort since the first prototype tool for the notation
has already been built.

References

1. Object Management Group. MDA Guide. Version 1.0.1., omg/2003-06-01,
http://www.omg.org/docs/omg/03-06-01.pdf.

2. Object Management Group. OMG Unified Modeling Language (OMG UML),
Superstructure. Version 2.2, formal/09-02-02, http://www.omg.org/spec/UML/2.2.

3. Kelly, S., Tolvanen, J-P.: Domain-Specific Modeling: Enabling Full Code Generation. John
Wiley & Sons, Ltd., 2008.

4. Larman, C. Applying UML and Patterns (3rd edition). Prentice-Hall, 2004.
5. Arlow, J., Neustadt, I. UML 2 and the Unified Process : Practical Object-Oriented Analysis

and Design (2nd Edition). Addison-Wesley, 2005.
6. Object Management Group. Semantics of a Foundational Subset for Executable UML

Models, ptc/2008-11-03, http://www.omg.org/spec/FUML/1.0/Beta1.
7. Object Management Group. Concrete Syntax for a UML Action Language Request For

Proposal, ad/2008-09-09, http://www.omg.org/docs/ad/08-09-09.pdf.
8. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Wohed, P. On the Suitability of

UML 2.0 Activity Diagrams for Business Process Modelling. APCCM ’06: Proceedings of
the 3rd Asia-Pacific conference, pp. 95-104, 2006.

9. Object Management Group. Business Process Modeling Notation (BPMN). Version 1.2,
formal/2009-01-03, http://www.omg.org/spec/BPMN/1.2.

10. Kalnins, A. Vitolins, V. Use of UML and Model Transformations for Workflow Process
Definitions. Baltic DB&IS’2006, Vilnius, Lithuania, July 3-6, pp. 3-14, 2006.

11. Leal, L., Pires, P., Campos, M. Natural MDA: Controlled Natural Language for Action
Specifications on Model Driven Development, OTM 2006, LNCS 4275, pp. 551–568, 2006.

12. Object Management Group. OMG Unified Modeling Language Specification. Version 1.4.
September 2001, formal/2001-09-67, http://www.omg.org/spec/UML/1.4.

13. IBM Rational Software Architect (RSA) tool. http://www-
01.ibm.com/software/awdtools/architect/swarchitect.

14. France, R.B. Realizing the MDE Vision, LMO (Langages et Modeles a Objets), Invited talk,
Toulouse, France, 2007. http://www.cs.colostate.edu/~france/Presentations/LMO2007.pdf.

15. France, R.B., Ghosh, S., Dinh-Trong, T., Solberg, A. Model-Driven Development Using
UML 2.0: Promises and Pitfalls. IEEE Computer, vol 39, pp. 59-66, Feb-2006.

39

16. Celms, E., Kalnins, A., Lace, L. Diagram definition facilities based on metamodel
mappings. - Proceedings of the 3rd OOPSLA (Workshop on Domain-Specific Modeling) ,
University of Jyvaskyla, pp.23-32, 2003.

17.Harel, D., Marelly, R.: Come, Let's Play: Scenario-Based Programming Using LSCs and the
Play-Engine. Springer Verlag, 2003.

18.I. Diethelm, L. Geiger, A. Zündorf: Systematic Story Driven Modeling, a case study;
Workshop on Scenarios and state machines: models, algorithms, and tools; ICSE 2004,
Edinburgh, Scottland, 2004

40

Composition Semantics for Executable and
Evolvable Behavioral Modeling in MDA

Ashley McNeile1 and Ella Roubtsova2

1 Metamaxim Ltd, 48 Brunswick Gardens, London W8 4AN, UK
ashley.mcneile@metamaxim.com

2 Open University of the Netherlands, Postbus 2960, 6401DL Heerlen,
The Netherlands

ella.roubtsova@ieee.org

Abstract. The vision of MDA is to decouple the way that application
systems are defined from the specification of their deployment platform.
Achieving this vision requires that Platform Independent models are
rich enough to capture the behavior of the application, and to support
reasoning and execution of functional behavior.
We focus on state transition modeling as being the best able to support
MDA and appraise the two types of state machine (Behavior State Ma-
chines and Protocol State Machines) defined in UML. We conclude that,
for different reasons, neither has semantics that are well placed to serve
as a basis for PIM level behavior modeling.
We propose that state transition modeling can be both simplified and
strengthened by providing semantics that support process algebraic com-
position. We claim a number of important advantages for this. Firstly, it
provides a common language for defining a range of behavioral abstrac-
tions, including software components, behavioral contracts and cross-
cutting aspects. Secondly that it better supports analysis of models, by
exploiting the formal analysis techniques of process algebra. Thirdly, the
semantics enable model execution and testing at the platform indepen-
dent level across a wider domain than is possible with current UML
formalisms.

1 Introduction

The Model Driven Architecture (MDA), an initiative launched in 2001 by the
OMG, aims to promote modeling to a central role in the development and man-
agement of application systems. In particular, it suggests that “fully-specified
platform-independent models (including behavior) can enable intellectual prop-
erty to move away from technology-specific code, helping to insulate business
applications from technology evolution and further enable interoperability” [14]
and source code for a specific platform would be largely or completely gener-
ated from the model, thus removing the current expensive coupling between
applications and the technologies required to run them.

Moreover, key architects of the MDA vision talk of the need to be able
to execute and test an MDA model. Richard Soley, CEO of OMG, says that

41

Classes

CommonBehaviours

Activities Interactions StateMachines

<< import >> <<import >>

<< import >>

Actions

<<import >>

<< import >><<import >>

UseCases

Fig. 1. UML Behavior Diagrams

one of the aims of MDA is that “Models are testable and simulatable” [17].
Oliver Sims, a member of various OMG Task Forces who served for several
years on the OMG Architecture Board, says that “The aim [of MDA] is to
build computationally complete PIMs” [13]. As Oliver Sims points out, the term
computationally complete means capable of execution. Executability of a model,
whether by interpretation or code generation, is only possible if behavior is fully
represented, and the capabilities and properties of the techniques available for
modeling behavior are therefore key to achieving the MDA vision.

While there is a general agreement in the MDA community that behavior
modeling is essential to the MDA mission and the models should be executable,
the behavior modeling notations of UML (Figure 1) [15] do not lend themselves
well to executable modeling or model level reasoning.

– Use Cases are used to describe scenarios, or episodes, of use of a system by
specifying the set of interactions between the system and domain in which
it is embedded. Use Cases are described using a combination of natural
language and informal diagrams. While “animation” (like playing a movie) of
a Use Case may be possible, “execution” in the sense of interactive behavior
is not. Their informal and partial nature makes formal reasoning with Use
Cases hard.

– Interaction Diagrams (Sequence Diagrams and Communication Diagrams)
can be used to express interaction of lifelines communication classifiers. Nor-
mally an Interaction Diagram presents one scenario of interaction or, with
the use of decision and loop constructs, a limited set of related scenarios.
As they are scenario based, Interaction Diagrams can be animated to play

42

out a scenario but, because they are not exhaustive of all behavior, they
cannot form a basis for model execution. Some researchers have suggested
approaches to composition in order combine scenarios to enable reasoning
about the total behavior represented, for example [7, 11], but no composition
of Interaction Diagrams is defined in UML.

– State Machines exist in two variants: Behavioral State Machines (BSM) and
Protocol State Machines (PSM) [15]. While there is some lack of clarity in
their definitions (see, for example, Fecher et al. [9]) state machines do provide
complete behavior descriptions and can be used for model based execution.
We discuss the UML state machine constructs in some detail in this paper.

– Activity Diagrams provide a flow based modeling medium, similar to tradi-
tional Petri Nets. They are used to show “the sequence and conditions for
coordinating lower-level behaviors, rather than which classifiers own those
behaviors” [15]. This means that Activity Diagrams are not suitable for rep-
resenting the behavior of an object model, which we believe is essential to
MDA. While Activity Diagrams can be executed (see, for example, Engels
et al. [8]), execution is at the level of a single overall flow and does not
encompass the behavior of objects.

This summary suggests that, if we are to be able to capture and represent full
and formal descriptions of systems at the model level, State Machines offer the
most promising basis. In this paper we look at the forms of State Machine (BSM
and PSM) defined in UML and argue that their semantics are not well geared to
the aims of MDA. In this paper we suggest that state-transition based behavior
modeling can be both simplified and strengthened by introducing support for the
parallel composition constructs of process algebras. We explain how this might
be done, and argue that this has advantages in terms of improved ability to:

– specify composable behavioral abstractions that support both behavior spec-
ification and expression of behavioral contracts,

– abstract on states and actions in a way that supports re-use and the descrip-
tion of cross-cutting behaviors,

– execute models of behavior at the Platform Independent Level.

The reminder of the paper is the organized as follows: Section 2 analyzes
the semantics of the UML state machine formalisms for MDA purposes, with a
focus on their composition semantics. Section 3 contains our proposal for using
process algebraic composition semantics in MDA behavior modeling. Section 4
illustrates the ideas with a small example. Section 5 discuses benefits of the
proposed ideas and presents some conclusions.

2 State Machine Semantics in UML

The State Machine Package in the UML Superstructure document v.2.1 and
v2.2 [15] describes a set of concepts that can be used for modeling discrete
behavior through finite state transition systems. The State Machine package

43

defines two behavioral semantics for finite state transition systems: Behavioral
State Machines (BSM) and Protocol State Machines (PSM). Our view is that
both of these variants are flawed as a basis for MDA development, and in this
section we explain this view.

2.1 Behavioral State Machines (BSM)

BSM Semantics A Behavior State Machine usually presents behavior of one
classifier. “Behavior is modeled as a traversal of a graph of state nodes intercon-
nected by one or more joined transition arcs that are triggered by the dispatching
of series of (event) occurrences. During this traversal, the state machine executes
a series of activities associated with various elements of the state machine” [15].

A transition label is of the form:

event [guard] / action

where event specifies the event that triggers the transition, guard defines a guard
condition that can restrict firing of the transition, and action is the action that
happens when the transition fires.

The composition semantics for BSMs defines state machines as executing
asynchronously and communicating using events, created as a result of actions
within the system or in the environment. An event instance is queued until dis-
patched, at which point it is conveyed to one or more BMSs. An event dispatcher
mechanism selects and de-queues event instances and an event processor han-
dles the firing of state machine transitions and execution of consequent activity
defined by the machines [15].

The consumption of events depends on the active state of a state machine.
If an event triggers a transition in the current state of the machine for which it
is queued it is dispatched and consumed, and this involves the firing of one or
more transitions. If an event can cause two (or more) transitions to fire, which
transition is chosen is not defined. If no transition is triggered then either the
event is discarded, or it may be held (deferred) for later processing. “A state may
specify a set of event types that may be deferred in the state. An event instance
that does not trigger any transition in the current state will not be dispatched if
its type matches with the type of one of the deferred events. Instead it remains in
the event queue while another not deferred message is dispatched instead” [15].
In other words:

– if an event enables a transition in the current state of the machine then it
can be dispatched and consumed;

– if an event does not enable a transition in the current state of the machine,
but is listed as a deferrable event for this state, it is kept in a queue for later
processing;

– otherwise the event is discarded.

The resulting behavior of a population of state machines is, in general, asyn-
chronous and non-deterministic.

44

BSM Commentary The semantic model used for Behavior State Machine
Execution in UML2 (which was first included in UML at version 1.5) is based on
the “Recursive Design” method of Shlaer and Mellor [19] whose work has been
mainly in the real-time/embedded systems domain. Following the adoption of
Shlaer/Mellor semantics into UML the MDA approach based on their ideas has
been rebranded as “Executable UML” [18].

The approach is based on using BSMs to model so-called “active objects”:
objects whose instances execute autonomously and asynchronously (i.e., as if
executing on independent threads) resulting in system behavior that is inher-
ently non-deterministic [20]. It is very hard to reconcile this semantic basis with
the characteristics of the business information systems domain, where behavioral
issues are related to transactional integrity and business rules, and strictly deter-
ministic behavior of business logic is important to ensure repeatability, auditabil-
ity and testability. We note that the commercial tools that support Executable
UML (such as those from Telelogic, Kennedy Carter and Mentor Graphics) are
not well adapted for use in the business information systems domain and are
positioned by their vendors to target the real time/embedded market.

The complex composition semantics makes reasoning about behavior diffi-
cult. Complete analysis of the behavior of the model must allow, in general, for
arbitrary queuing of events between objects and for the accumulation of deferred
events. If a model comprises a number of communicating objects this results in
a large number of possible execution states for the system as a whole, and rea-
soning on models is impossible without model checking algorithms. This does
not make sense when models are being developed, as they are in most projects,
in an iterative manner and subject to frequent change.

While there is some native support in Shlaer/Mellor for behavior abstraction
through the use of “polymorphic events”, this has not been included in the
UML BSM standard; nor is there is any method to compose multiple machines
to form the behavior of a single classifier. This places severe limits on the ability
of BSMs to describe generalization/specialization of behaviors or to support
behavior re-use. As described in [18], a single object class is modeled with a
single state machine, and only concrete classes are modeled. This also means that
crosscutting behaviors (aspects) have to be addressed by other means, potentially
further complicating model analysis.

2.2 Protocol State Machines

PSM Semantics Protocol State Machine (PSM) are not related to Shlaer/-
Mellor, and have semantics that are more general and closer to the UML state
machine semantics that pertained before the import of Shlaer/Mellor semantics
in version 1.53.
3 It is probable that fracturing of the state machine formalism in UML into two forms

was a result of the impossibility of reconciling the semantics of Shlaer/Mellor (re-
flecting the needs of real-time systems) with the need for a more general capability
to specify legal orderings.

45

PSMs are used to express the legal transitions that a classifier can trigger.
A PSM is a way to define a lifecycle for objects, or an order of the invocation
of its operations. PSMs can express usage scenarios of classifiers, interfaces, and
ports. The effect actions of transitions are not specified in a PSM transition
as the trigger itself is the operation. However, pre- and post- conditions are
specified, so that the label of a transition is of the form

[pre-condition] event/ [post-condition].

The occurrence of an event that a PSM cannot handle is viewed as a precon-
dition violation, but the consequent behavior is left open. “The interpretation of
the reception of an event in an unexpected situation (current state, state invari-
ant, and pre-condition) is a semantic variation point : the event can be ignored,
rejected, or deferred; an exception can be raised; or the application can stop on
an error. It corresponds semantically to a pre-condition violation, for which no
predefined behavior is defined in UML” [15].

Unlike BSMs, PSMs can (to a limited extent) be composed. “A classifier
may have several protocol state machines. This happens frequently, for example,
when a class inherits several parent classes having protocol state machine, when
the protocols are orthogonal” [15]. In this context, “orthogonal” means that they
have a disjoint set of events.

PSM Commentary PSM semantics are simpler and more abstract than the
BSM semantics, and this makes them more widely usable and easier to analyze.
However, as evidenced by the language used to describe them, PSMs are clearly
positioned in UML as contracts of legal usage; and this gives it a different mean-
ing and role from that of BSMs. While a contract must specify what is legal, it
is not concerned with the mechanism by which non-legal behavior is avoided,
nor is it required to specify the effect of violation. In other words: A contract
cannot be used as the instrument that guarantees its own satisfaction. It would
therefore be a logical error to execute PSMs directly or to generate code from
them; and other devices must be used in order to ensure that the software that
is built complies with the contract PSMs that have been defined for it. To use
PSMs as executable models or the basis for code generation in the context of
MDA would be inconsistent with this semantic positioning.

3 Our Proposal

Our view is that the state machine formalisms can be both simplified and
strengthened by:

– Using a common notational form for both the specification of both contracts
and behavior (so eliminating divergence of notation that has emerged in
UML between BSMs and PSMs)

– Defining semantics that support process algebraic composition.

46

The first of these is based on the observation that a machine with behavioral
semantics can serve either as a specification or as a contract, depending on the
intentions of the author. We contend that there is no penalty, and a good deal
to gain, in harmonizing the notations and concepts used across the two.

There is a synergy between these two proposals. In the context of contract
definitions it is important to be able to make descriptions that abstract from the
full behavior of a classifier, as a contract is normally a partial requirement on
its behavior. This requirement is met by the second part of the proposal which
allows the creation and composition of partial behavioral descriptions.

The composition techniques developed in Process Algebras such as Hoare’s
CSP [5] and Milner’s CCS [16] have so far not made their way into UML, perhaps
because the domain of algebraic processes (CSP and CCS) and software models
(UML) have been viewed as too different for the techniques of the former to be
used in the latter. However, this is a mistake. Research work into behavior speci-
fication techniques, such as those by McNeile et al. [3] and Grieskamp et al. [21],
have shown that CSP ‖ composition transplants successfully into software mod-
eling. Other recent work in the context of collaborative service behavior and
service choreography specification is making use of CCS and π-calculus, such as
the work of Carbone et al. [12]. The proposals we make here exploits and extends
the foundations built in this work.

The cornerstone of our proposal is to use a single form of abstract state
transition machine, which we call a protocol machine, as basis for behavioral
modeling. The key property of protocol machines is that their semantics enable
composition.

3.1 Definition of a Protocol Machine

A protocol machine is, like the state machine constructs of UML, a conceptual
behavioral machine. However, unlike the state machine constructs if UML, pro-
tocol machines can be composed so that large, complex behaviors can be built
by combining smaller, simpler ones.

Protocol machines have the ability to allow, refuse or ignore any action in
its alphabet. More specifically, the behavior of a protocol machine is defined as
follows:

– It has a defined alphabet : a set of actions that it understands.
– In a given state it will:

• Ignore any action that is not in its alphabet;
• Depending on its state, either allow or refuse an action that is in its

alphabet.
– If it engages in an action it moves to a new state.

The nature of the “actions” in the alphabet of a machine depends on the context
and purpose for which the machine has been defined. When defining a single soft-
ware component, an action represents the receipt of a particular message type
from the component’s environment. In the context of message based collabora-
tion in a distributed system, an action represents either the sending or receipt of

47

a message of a given type. Informally, by ignoring an action a machine is saying
“I do not know about this action, and have no opinion on whether it can happen
or not”, whereas by refusing an action a machine is saying “This is an action
that I know about (it is in my alphabet) and I know that it cannot happen now”.
The distinction between these two, which is not made at all in the semantics of
UML state machines, is the basis for parallel composition.

Two further properties are key to the definition of protocol machine behavior:

– If it is starved actions a protocol machine is bound to reach quiescence, and
only at quiescence is its state well defined. A machine with this property
is sometimes called reactive. This means that a protocol machine cannot
engage in an action that results in a computation that does not terminate.

– A protocol machine is deterministic, so the new state it moves to when it
allows an action is dependent only on the old state and the action in which
it engages.

A protocol machine may, like an object, own attributes; and only the machine
that owns an attribute may update it. Updates only take place when a machine
allows an action, and constitute part of the change of state of the machine.

3.2 Composition of Protocol Machines

For the purposes of this paper we define two forms of composition, corresponding
to CSP ‖ composition and CCS | composition. Other forms of composition are
possible but not within the scope of this discussion.

Generally speaking, CSP ‖ is used to compose machines in the formation
of a single software component, so the composed parts are within a computing
environment that allows them to share state and data; whereas CCS | is used for
machines that are distributed in such a way that they cannot share state and
data and therefore communicate by exchanging messages.

CSP Composition Suppose two machines P and Q are composed to form
P ‖ Q. The ability of the composite to engage in an action, a, is defined as
follows (see Figure 2):

– If both P and Q ignore a then the composite ignores a.
– If either P or Q refuses a then the composite refuses a.
– Otherwise the composite allows a.

The CSP ‖ composition of two protocol machines is another protocol ma-
chine. In particular, it is also deterministic (see [3] for further discussion of this).

Note that this form of composition does not have the restriction present in
UML for composition of PSMs that the composed machines are “orthogonal”. It
is the ability to compose non-orthogonal machines (ones whose alphabets have
elements in common) that gives the technique its expressive power.

48

��������	

�������	

���������	

�

�

���

����

�
��������	

�������	

���������	

�
�

��������	

�������	

���������	

��� ����

��� � �����

������������� ����

Fig. 2. CSP Composition

��������	
��

	����											�	����																										��

�

�����	����

�
���
	����

�����
	����

��� ����

������	����

�
���
	����

�����
	����

����
	��	��!
	�	"��	#
	
�"����
�

����
	��	��!
	�	"�����	#
	
�"����
�

$
����

��	��!
	�

��

����

�

Fig. 3. CCS Composition

49

CCS Composition Suppose that P is a machine whose alphabet includes
a “send action on x”, represented as !x; and Q is a machine whose alphabet
includes the corresponding receive action, represented as ?x. If these machines
are composed to form P |Q the behavior of the composite is defined by (see
Figure 3):

– If P allows !x and Q allows ?x then a reaction on x between them can take
place. If the reaction occurs both machines execute their respective actions
on x and move to new states.

– Otherwise nothing happens.

The result of CCS composition of two protocol machines is not another
protocol machine. This is because CCS composition does not, in general, give
deterministic behavior of the composite. Suppose P and Q are able to engage
in a reaction on y as well as the one on x, then whether the x reaction or the y
reaction (or neither) takes place is not determined. We use the term collaboration
for a set of machines under CCS composition.

3.3 Derived States

Because there is no restriction on how the state of a protocol machine may be
determined, we allow machines to have derived states as well as the more usual
stored states driven by the transitions of the state machine. Figure 4 shows an
example of a Bank Account described as two machines composed using CSP
‖. The right hand machine, A2, uses derived states (in credit and overdrawn)
calculated on the basis of the balance attribute owned and maintained by A1.

������
����

�������

�����

balance := 0

balance :=
balance +

Deposit.amount

���� �

!�������

�"

balance :=
balance -

Withdraw.amount

���������	
���	

if (A1.balance � 0) return “in credit”;
else return “overdrawn”;

�#

�����
��

������
� ��$
�����

�������	�
���������������	�����	������������
�� �	�����	����	�������������������	�	������	����	����	������	������������������������������

����	
� ��������	�
�� ��	����	�����	
� ��������	������������	���������	�������������������	�������������	�����	�����

�������	
�������

%�&'�����(&)

Fig. 4. Bank Account with a Derived State

A derived state is analogous to the familiar concept of a derived (or calcu-
lated) attribute, in that its value is calculated “on the fly” by a function when
required. The use of derived states is another departure from standard UML
state machine formalism, but increases the expressive power to describe action
sequencing protocols that depend on the values of stored data. A machine may

50

use its own attributes and/or those of other, composed, machines to derive its
state.

When defining machines, we follow the discipline that a given machine uses
either stored states, where updates to the state are defined implicitly by the
state-transition topology (as in A1); or only uses derived states, where the state
values are derived (as in A2). This is analogous to the familiar discipline with
attributes, where an attribute is either stored or derived. The state icons for
derived state machine are given a double outline.

Finally, note that a derived state machine does not have to be “topologically
connected”. For instance, the Close transition in A2 does not lead to another
state. This is because the state update is not driven by transitions.

3.4 Behavior Re-Use and Aspectual Modeling

The use of composition allows complex behavior to be defined as a composition
of smaller, simpler, components. These components can be re-used across the
definition of different behavioral entities. Thus, in a banking application that
has to support multiple different types of account (Current Account, Savings
Account, Student Account, etc.) the basic account behavior described by A1
could be common to them all and could be composed with machines that rep-
resent the particular behavioral rules for each account type. Further discussion
of this is given in [3].

Moreover, by exploiting the possibility of defining generalized states and ac-
tions, this form of re-use can be applied to the definition of crosscutting behav-
ioral aspects. Such generalizations are achieved as follows:

– With the ability to define machines with derived states, we can make one
machine generalize over the states of another, rather in the way that the
state in credit in A2 generalizes over all non-negative values of balance in
A1 (see Figure 4). Such a state, which provides a more abstract view of the
states of another machine, is called a generalized state.

– If two or more actions are treated identically in the context of a given ma-
chine (causing the same transitions and same attribute updates), they can
be replaced by a single generalized action. This can be thought of as a macro
that expands one transition in the machine into a number of transitions with
the same start and end states.

A fuller discussion of the use of these techniques in aspectual modeling has been
given in [1].

4 Example

We illustrate the idea with a small model of a mobile ’phone equipped with a
gaming capability. We use this example to show how a model can be described by
using a combination of a Dynamic View that shows the behavior of the machines
of the model, and a Static View that shows how the machines are composed.

51

4.1 Dynamic View

�%�+,��-�&,�$ �.&����/�,!

��	����������
���	�

0����������1��23�����45����6

,�� ���� 1 23-��� (� 5-��� (�6

75��������8�

75������
��

��++�*��-�&,

75������
���

0���������

���9���

,�������

����
���:���

;�<��, ���

���

75��

;�*,�*��-�&,

75��������8�

0���������

0����
����

75
��<�

75,��
;�<�

750�����;�<�

75,���;�<�

����
���:���

0����
����

�������

����������

���

75������
��

75������
���

�
��������	
���	

if (this.numberIsValid) return “number is valid”;
else return “number not valid”;

3���� �<:��
��� ����

this.numberIsValid = DB.lookUp(callEvent.get(number));

&(*%,
�/�+���)��&�*��-�&,

,�������� �23-����(�4�5-����(�6

;�<��, ����1�2750�����;�<�4�
75
��<��;�<�4�750����;�<�6

Fig. 5. Mobile Phone - Dynamic View

Figure 5 shows the Dynamic View. This shows the state transition repre-
sentation of the machines of the model. Our model consists of three protocol
machines:

Call Machine. This machine handles calls. Once the ’phone is switched on,
a call is initiated by Start Call. This is a generalized action, representing
either !Call (this ’phone makes a call) or ?Call (this ’phone receives a call).
Similarly, a call can be ended by either this ’phone hanging up or the remote
’phone hanging up. The generalized action Game Event represents events
connected with the game facility, and these may only take place when a call
is not in progress.

Game Machine. This machine handles game playing. If a call is initiated (by
making or receiving a call) and a game is underway, the game is interrupted
(the machine moves to the interrupted state). It may be resumed later, with
the action *?Resume.

Number Validation Machine. This machine handles validation of called num-
bers against a list of valid numbers. A call initiation action !Call must end
in the derived state number is valid, and this means that the call event is
only allowed if the number is on the list.

52

Each action in each machine is prefixed by "!" meaning a message sent by the
machine or "?" meaning a message or input received by the machine. The "*"
prefix is used to signify local events from environment; these do not participate
in CCS message reactions.

4.2 Static View

��0���<��������

������������

����������� ����������������������� ����������

�0� ��<��������

*�%�+,��-�&,�$ 0)�)���/�,!

Fig. 6. Mobile Phone - Static View

Figure 6 shows the Static View and this shows how the machines of the model
are composed. This shows the following:

– Phone Machine represents the complete behavior of a ’phone.
– The three machines Call Machine, Game Machine and Number Validation

machine are composed using CSP ‖ to form the behavior of a ’phone.
– Multiple ’phones are composed using CCS | to form a collaboration whereby

different ’phones engage in calling each other.

The Static View also shows the data attributes:

– In general, every machine owns a set of attributes. For instance the Call Ma-
chine would own the attribute my number being the number of this ’phone.

– Also every message type sent or received will in general carry a set of at-
tributes depending on the message type. Thus a Call message will contain
the calling number of the ’phone initiating the call, and the called number
of the ’phone being called.

For brevity, we have not shown the attributes of the model in the diagrams.

4.3 Behavior of the Phone Model

As an example of the behavior of the model as described, suppose the ’phone
1234 attempts to call ’phone 4321. This means that ’phone 1234 must allow a
!Call action. Consider each of its machines:

– The Call Machine allows !Call provided that it is in the state call enabled.
If the machine is switched off or already on a call, the action is not possible.

53

– The Game Machine allows !Call provided that it is switched on, as all states
have a transition for Start Call (which includes !Call). If the machine is in
the state playing, the !Call will cause the game to be interrupted.

– The Number Validation Machine allows !Call provided that the action takes
it to the state number is valid, and this requires that number is on the list
of valid numbers. If this is not the case, the !Call action is not possible.

5 Benefits and Conclusions

In this section, we describe some of the motivating factors for the suggested
approach, and give brief conclusions.

5.1 Local Reasoning and Analysis

The CSP ‖ composition technique has the property that it gives Observational
Consistency (as defined by Ebert and Engels [10]) when applied to protocol
machines. This property, as discussed in [1], gives the ability to perform local
reasoning on models, whereby conclusions about system behavior as a whole can
be based on examining single machines in isolation. This is essentially because
CSP ‖ composition preserves the trace behavior of the composed machines. As
has been often noted, for instance by Dantas [6], the ability to perform local
reasoning is crucial if intellectual control is to be maintained over a complex
model as it grows. As well as this, state-transition models composed using process
algebraic techniques can be analyzed using standard model checking algorithms
and tools, and this is important in complex cases where “brute force” is needed
to check all possibilities (normally where true concurrency is involved).

Together, these provide a basis for ensuring correctness of behavior at the
PIM stage of modeling. This, correctly, demotes the role of testing as the means
of ensuring that the delivered software works correctly.

5.2 Contracts

Our claim is that protocol machines may be used to describe both behavior
and contracts using a single notational platform. This is a subject of on-going
research, but the basis of the idea is simple. Suppose that a protocol machine C
is a contract and another machine B is a behavior specification. We say that B
satisfies C iff B ‖ C = B. This requires that:

– The alphabet of B is a superset of that of C. This is natural, as you would
not expect a design to satisfy a contract if it does not recognize all the actions
required by the contract.

– By the rules of ‖ composition, an action is only allowed in B if also allowed in
C. This means that the states of C can be viewed as defining pre-conditions
for the actions of B.

54

While a full discussion is not possible here, this illustrates the attractive
possibility of using a common formalism for both behavior and contractual defi-
nitions with a simple formal definition of compliance. This is both more elegant
and more powerful than the dual notation approach, with BSMs and PSMs,
currently in UML.

5.3 Executability

Protocol models are executable. For example, the ModelScope tool [4] inter-
prets the meta-description of PIM level protocol models. Further discussion of
execution of protocol machine models is given in [2].

It is our belief that the formalisms suggested here are more domain neutral
than those in the current UML. Whereas the UML BSM semantics has a definite
“real time systems” flavor, protocol machines have been used to model database
and business process centric systems and have proved to be applicable to these
domains.

5.4 Conclusion

Behavior modeling in MDA should be simple, executable and extensible. Our
examination of the state transition formalisms of UML suggests that they do
not possess these properties. The main contribution of this paper is a proposal
to make process algebraic composition techniques central to state transition
behavior modeling in MDA. We argue that the capability to compose behavioral
models enables behavior re-use and potentially, because they can be used to
describe behavioral contracts as well as behavioral specifications, eliminate the
need for two forms of state-transition model (BSM and PSM) used by UML.

The composition semantics presented in this paper are based on the protocol
machine abstraction. Although relatively simple in concept, protocol machines
support the modeling of processes and objects that possess and maintain data
attributes and, by allowing states to be derived as well as stored, enable the
modeling of cross-cutting concerns using state and action abstractions. In addi-
tion their simple compositional semantics make them amenable to analysis, both
human reason and machine based.

References

1. A. McNeile and E. Roubtsova. CSP parallel composition of aspect models. In AOM
’08: Proceedings of the 2008 AOSD Workshop on Aspect-Oriented Modeling, pages
13–18, New York, NY, USA, 2008. ACM.

2. A. McNeile and E. Roubtsova. Executable Protocol Models as a Requirements Engi-
neering Tool. In ANSS-41 ’08: Proceedings of the 41st Annual Simulation Symposium
(anss-41 2008), pages 95–102, Washington, DC, USA, 2008. IEEE Computer Society.

3. A. McNeile and N. Simons. Protocol Modelling. A Modelling Approach that Sup-
ports Reusable Behavioural Abstractions. Software and System Modeling , 5(1):91–
107, 2006.

55

4. A. McNeile, N. Simons. http://www.metamaxim.com/.
5. C. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.
6. D. Dantas, D. Walker. Harmless Advice. Proc. of the ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages.To appear, 2006.
7. E. Roubtsova and R. Kuiper. Process Semantics for UML Component Specifications

to Assess Inheritance. ENTCS 73(3),Eds.P.Bottoni and M.Minas, 2003.
8. G. Engels, A. Kleppe, A. Rensink, M. Semenyak, C. Soltenborn and H. Wehrheim.

From UML Activities to TAAL - Towards Behaviour-Preserving Model Transforma-
tions. In ECMDA-FA, pages 94–109, 2008.

9. H. Fecher, J. Schönborn, M. Kyas, W. de Roever. 29 New Unclarities in the Seman-
tics of UML 2.0 State Machines. In ICFEM, pages 52–65, 2005.

10. J. Ebert, G. Engels. Observable or invocable behaviour-You have to choose. Tech-
nical report. Universitat Koblenz, Koblenz, Germany, 1994.

11. J. Greenyer, J. Rieke, O. Travkin and E. Kindler. TGGs for Transforming UML
to CSP: Contribution to the ACTIVE 2007 Graph Transformation Tools Contest.
University of Paderborn,Technical Report tr-ri-08-287, 2008.

12. M. Carbone, K. Honda, N. Yoshida, R. Milner, G. Brown and S. Ross-
Talbot. A Theoretical Basis of Communication-Centred Concurrent Programming.
www.w3.org/2002/ws/chor/edcopies/theory/note.pdf, 2006.

13. O. Sims. Presentation: MDA: The Real Value,Object Management Group website:
www.omg.org/mda/presentations.htm . 2002.

14. OMG. Model Driven Architecture: How Systems Will Be Built. Object Manage-
ment Group website: www.omg.org/mda/.

15. OMG. Unified Modeling Language, Superstructure, v2.2. OMG Document
formal/09-02-02 Minor revision to UML, v2.1.2. Supersedes formal 2007-11-02, 2009.

16. R. Milner. A Calculus of Communicating Systems, volume 92. 1980.
17. R. Soley. Presentation: MDA: An Introduction. Object Management Group web-

site: www.omg.org/mda/presentations.htm . 2002.
18. S. Mellor and M. Balcer. Executable UML: A Foundation for Model Driven Archi-

tecture. 2002.
19. S. Shlaer and S. Mellor. Object Life Cycles - Modeling the World in States. Yourdon

Press/Prentice Hall, 1992.
20. T. Santen and D. Seifert. Executing UML State Machines. Technical Report 2006-

04,Fakultt fr Elektrotechnik und Informatik, Technische Universitt Berlin, 2006.
21. W. Grieskamp, F. Kicillof, N. Tillmann. Action Machines: A Framework for En-

coding and Composing Partial Behaviours. Microsoft Technical Report MSR-TR-
2006-11, 2006.

56

Towards a Model Execution Framework for
Eclipse

Michael Soden and Hajo Eichler

Department of Computer Science, Humboldt University
Unter den Linden 6, 10099 Berlin, Germany

soden@ikv.de eichler@ikv.de

Abstract. The Eclipse Modeling Project (EMP) is one of the most
striking foundation for model driven development. With its core frame-
works for metamodeling, textual and graphical editors, validation & con-
straints, transformations, etc. it provides broad support for creation of
model driven tooling such as for Domain Specific Languages (DSLs).
However, there is currently a lack of support for making models ex-
ecutable by means of operational semantics. This paper outlines the
M3Actions, a framework to develop execution semantics for MOF meta-
models, which is on the verge of being adopted as basis of a new Eclipse
project named Model Execution Framework (MXF). We discuss require-
ments upon model execution and sketch requirements of a common exe-
cution infrastructure.

1 Introduction

The areas of model driven engineering, language oriented programing and do-
main specific modeling have grown rapidly over the last years. For Java-based
development, the Eclipse Modeling Project (EMP) [1] together with its sub-
projects centered around the Eclipse Modeling Framework (EMF) [2] constitutes
the state-of-the-art of model driven technology. While EMF models — as quasi
standard implementation of the Meta Object Facility (MOF, [3][4]) — build the
core of all modeling activities, supplementary components support the creation
of tooling for models such as Xtext for textual editors, GMF for graphical edi-
tors, M2M for model transformations, OCL for constraints, and so on [5][6][1][7].
However, a missing piece under the umbrella of EMP is a framework to define
execution semantics for models by means of specifying operational semantics [8]
for new languages or building e.g. domain specific simulators [9].

In this paper we present the M3Actions framework that was designed to fill
this gap [10]. M3Actions is a framework that supports operational semantics for
EMF1 models and that consists of:

– A graphical editor to define structure and behavior of (meta-)models en-
hanced by explicit instantiation

1 The concepts are actually defined for MOF metamodels [4], but the implementation
is based on EMF

57

– A generic interpreter and debugger to execute those definitions
– A trace recorder to record execution runs as traces

Lessons learned from research at the Humboldt University Berlin on language
semantics (e.g. [11][12]) have influenced the concepts of the framework which
addresses the need to have human readable, high-level, but precisely executable
language definitions [13][14]. Beside the pure language definition and execution,
one design rational was the creation of an open model execution environment
to plug-in further components for dynamic and static model analysis by means
of trace analysis, runtime verification and testing of models. Out of this work
on executable models and discussions with people of the Eclipse community, the
idea was born to establish a Model Execution Framework (MXF) for Eclipse [15].
MXF will realize a common model execution infrastructure as well as provide a
framework for development, execution and debugging of models with operational
semantics on the basis of M3Actions. At time of writing, the project has passed
the creation review and is now in the approval process to adopt the M3Actions
sources as initial contribution2.

The remainder of this paper is organized as follows. Section 2 summarizes
briefly the state of the art of model driven tooling at Eclipse, before section 3
introduces the extensions provided by M3Actions for model execution. After-
wards, we exemplify the concepts along a state-machine DSL in section 3.2. In
section 4 and 5 we discuss related work and draw some conclusions on the foun-
dation of MXF along a motivation of the project. Finally, section 6 provides an
outlook on the future.

2 Modeling at Eclipse

In times of The Unbearable Stupidity of Modeling3, (meta-) models are used all-
around software development with Eclipse. The trend of using models everywhere
does not even pass by the core of Eclipse itself. There is a fundamental discussion
to model all data structures used in all plug-ins of Eclipse with EMF for its next
generation called e4 4.

While the classic approach to mostly textual language development is rooted
in the history of automata theory and parser technology, EMP is driven by
higher-level concepts of object-oriented metamodeling [1]. Central point in build-
ing tools for domain specific languages is the definition of a metamodel with EMF
(ecore model [2]), defining the data structure/abstract syntax. As notation of
the metamodel, EMF offers a lot of representation forms like annotated source
code, XML import as well as a tree-based and graphical editor5. Thereafter, a
generator produces ad hoc deployable model repositories that store any instance

2 for latest updates, please see the EMFT newsgroup (eclipse.technology.emft)
3 Ed Merks’s Eclipse Summit 2008 presentation’s title. He is the project lead of the

EMF project
4 More information on e4 and modeling can be found at http://wiki.eclipse.org/E4
5 see EcoreTools component of EMFT at http://www.eclipse.org/modeling/emft

58

of the underlying metamodel as XMI (or custom XML). Together with supple-
mentary components such as the EMF Edit Framework, OCL [16], etc. EMF
enables fast and effortless out-of-the-box development of software components
that store and manage domain specific data structures.

Additional frameworks established around EMF support the creation of tool-
ing for a DSL. Since Eclipse offers a vast number of frameworks, we’ll concentrate
on two projects often used for the development of editors: Xtext [5] and GMF [6].
For the creation of a textual DSL, Xtext supports the generation of a full-featured
text editor out of an annotated EBNF grammar. While previous versions rely
on a derived metamodel for the AST, the latest version allows the generation
of a parser that feeds a given EMF model repository. At time of writing, Xtext
is on the transition of becoming the Textual Modeling Framework (TMF) of
Eclipse. On the contrary GMF provides a generator and runtime infrastructure
for the development of graphical editors for a given metamodel (also called do-
main model or semantic model). Graphical elements of the concrete syntax are
defined by a diagram definition model and a mapping model that describes how
elements of the concrete syntax are mapped to the semantic model. With these
foundations the process to build tooling for a DSL is itself model-driven and
round-trips are well supported by consistent re-generation of code.

Having built a DSL editor and potentially subsequent tooling, the next step
would be to implement execution semantics into the editor to simulate the do-
main models. This is where the upcoming MXF project comes into action, tar-
geting on provision of a common execution infrastructure and to model execution
semantics instead of coding it [15].

3 The M3Actions Framework

Built on top of the Eclipse modeling projects, the M3Action framework provides
extensions that allow the definition, execution and debugging of models with
execution semantics (i.e. operational semantics). The core of the framework is
the MAction language that consists of a number of elementary actions to de-
fine model manipulations. Borrowing its graphical syntax from UML2 Activi-
ties/Actions, flows are hooked into the metamodel as MOperations. Supported
basic actions are:

MQueryAction executes an OCL query over the model and returns the result
at an output pin.

MCreateAction Instantiates a specified meta-class and returns a new instance
at an output pin.

MAssignAction modifies object properties, i.e. assigns, adds or removes values
of single and multi-valued properties.

MInvocationAction invokes another operations with a given context object
’self’ or a MActivity (context-less flow of actions).

MIterateAction iterates a collection specified by an OCL query.
MAtomicGroup groups a set of actions to build more complex behavior which

is semantically atomic

59

Behavior is always executed in the context of a MThread, and multi-threading is
supported by the MInvocationAction.

A second aspect in the framework’s architecture is the differentiation between
the (fixed) abstract syntax of a language and its evolving runtime configurations.
Runtime models are again defined by a metamodel (the runtime metamodel) and
manipulated through actions. Note that although there is technically no differ-
ence between abstract syntax models and runtime models, changes shall only
be applied to the runtime model for ease of having a clear separation between
language concepts and execution concepts. Hence, all information required for
model execution goes into the latter, for example value domains, program coun-
ters, data structures such as stacks-frames, and so on. The (meta-)models and
their relationships are shown in figure 1.

Fig. 1. Architecture: models and their meta-layer relationships

In addition to the common concepts of EMF, the M3Actions framework
provides an explicit instanceOf relation for modeling multiple, logical meta-
layers. Thereby, two classes can have an instanceOf relation, which links their
physical instances logically together as ’object’ and ’meta-object’. The concept
is exemplified together with an example in section 3.2. For more details about
the instantiation concept please refer to [14].

3.1 Controlling states

Designing the behavior of a language requires a precise specification of observable
states if it comes to the analysis of execution runs. Execution of models can be
recorded as a trace for each running thread. These execution traces are defined by
a generic trace metamodel6 that is independent of a specific language metamodel.
Each trace consists of a list of change objects that describe the delta of a model
modification.
6 cf. to [10] for more details

60

Since actions change the runtime model, a new micro-state is reached when-
ever an action modifying the model is done. In most cases, states of the designed
language do not match these micro-states of the action defining its behavior. For
this purpose, the MActions provides two concepts to control states explicitly:

1. Atomic Groups - Atomic groups protect contained actions from being in-
terrupted. Apart from threading, this language-construct combines all changes
caused by contained actions and produces a single change-object in the trace.

2. State Generating Transitions (SGTs) - SGTs provide a means of spec-
ifying when a new state is entered. While normal transitions define the
control- and data-flow, SGTs produce a new state whenever they are vis-
ited during execution.

As a direct consequence, the recorded traces reflect not only the states of
the executed model (runtime model) but the language’s observable states. These
states are required for dynamic and static model analysis. We will explain more
details along with the example DSL in section 3.2.

3.2 Example: DSL for StateMachines

This section illustrates the application of M3Actions along an example DSL:
a finite state-machine language. The language was inspired by Martin Fowler’s
upcoming book on DSLs (currently published on his website [17]). The DSL
defines a typical state/transition language with state-machines communicating
via exchanged events. The approach how to define the execution semantics will
be explained along a simple Ping-Pong example model shown in Figure 2.

����

�����	��
����

����

	�

�����	�
����

��������

����
����������
�������

����������

�����

Fig. 2. The Ping-Pong state machine model: (right) sender, (left) responder

The overall system consists of two state-machines: sender and responder. For
the DSL notation, we have build a GMF editor [6] that uses a UML-like notation
for states and transitions with the following syntax for transition labels:

[<guard>] / <action> (1)

61

where [<guard>] defines the event that triggers the transition and <action>
specifies an event which is produced. By convention, initial states are defined
using the name Init. Hence, the sender is the initiator of the whole commu-
nication since it has an outgoing transition with an empty guard ’[]’. Firing
this transition will send a ping event and set the machine into a wait for con-
firmation state (’Wait ping ack’). The responder will consume the ping event
and acknowledge the receipt with an ack event to the sender. Thereafter, the
sender will send a pong event and wait again for acknowledgment. Finally, if
no events are lost, the responder also confirms this second event and brings the
whole system back to its initial states.

The structure of the state machines is defined by the metamodel shown in
figure 3 (blank classes). The definition of all concepts should be intuitive and
straightforward, except that labels as defined in (1) are mapped as string values
to corresponding attributes <guard> and <action> of metaclass Transition.

�����
����	

����
��	��

	����
���

������������

��������������������

�������
����
���	�����

����������

��������
�����

����������
�����
������

�����������

����

������������������

���

�������������������

���

������

��� �����������

����

�����������

���������������
����

�����!����

���

"��������#�$

%�����

�����	�����

���

&'
���	���

&'
������

&'
������
&'
������

()
()

()
()

&'
������

Fig. 3. Simple StateMachine Metamodel

Having defined the structural part of the DSL, we are able to specify the oper-
ational semantics of the state-machines precisely using MActions. First, we define
the runtime model using three classes: Event, EventBroker and StateMachineInstance
(marked gray in figure 3). Thereby, an instance of metaclass State MachineInstance
(abbreviated as SMI in the following) represents an instance of a StateMachine.
In the M3Actions framework, this is expressed explicitly using the instanceOf
relation. During runtime, this instanceOf relation is available and can be navi-
gated via an implicit property metaObject (cp. section 3). As runtime data, the
class carries only a reference to the current activeState. SMIs are connected
to a ’platform infrastructure’ represented by class EventBroker. Its task is to
distribute Events to connected clients.

62

��������	�	�
���	���

���
����	

��	��
	�� ��������������	�

��������	������������	���

��������	�����������	��

����	

��������	��������������	���

�	
	�
�!���"��	
����
"��	
��������������
�	����	
	�����
��

���
	�����	������	

����	

��������	������#$�����	

	���

�
��

�
��

�
��

	���
�
��

Fig. 4. EventBroker#dispatchEvents

The action semantics are hooked in via MOperations, depicted as operation
signatures in figure 3. The main execution loop is contained in dispatchEvents,
shown in figure 4. Assuming all SMIs are connected as clients to a broker in-
stance, the main idea is to continuously broadcast each event to all client ma-
chines which in turn may emit events back that are scheduled by adding them
at the end of the queue (FIFO). As seen in figure 4, first a decision node checks
the eventQueue for emptiness. If the queue is empty, the termination condition
checks whether all state-machines have reached a final state7. In case not all ma-
chines have reached a final state, a default event is created by a create action and
afterwards it is enqueued in eventQueue with the multi-valued assign operator
’+=’. The next action queries for the first element of this list and the flow con-
tinues with an iterate action over all clients8. The iteration over all connected
clients constitutes the main part of the behavior and consists of a single invoca-
tion action named fire next transition. This action invokes execute(event
: Event), where the iteration variable sm is used as new self and the current
event is passed in as parameter (execute will be discussed below). Once the
iteration has finished, the processed event is removed from the queue using the
multi-value removeAt operator9. Note that this global event dispatch behavior
models the simplest form of a loss-free broadcast event channel.

7 If we assume that there is only a single event-broker, the check
self.clients->forAll(activeState.final) would have been sufficient

8 Note that main indicates the control flow in case of multiple object flows
9 As in OCL, actions over collections use also indexes starting with 1

63

�����

�����	�
�������������
�����

�����
������
�����������	�
��������
������
��

��
���
���������

��������

����������
������������	�
�������
���

�������������������������
��������

����������
�����	�
������

�����	�
������

�����	�
������

�����	�
�������
���������

����

��

��

�
���

����

�
���

Fig. 5. StateMachineInstance#execute

64

The invoked behavior for each event is execute of class SMI as shown in
figure 5. Briefly described, the behavior consists of three phases:

1. Evaluate the guards of the active state to find any transition that can
fire for the current event. This is done by invoking evalGuard on ’self’
(’self:self’ action has evalGuard as invocation target which is not shown
in the diagram). The invoked behavior is shown in figure 6. Otherwise, if no
transition is enabled, the behavior quits.

2. Once a transition is found (i.e. firedTransition holds a reference to that
transition), activeState is updated to the target state of the transition.

3. In case an action clause is present at the transition, a new event is created
with property value set to the action string of the fired transition. Finally,
this new event is enqueued at the event broker.

The behavior of step (1) has been reduced to the minimum that is necessary
to react on events. As can be seen in figure 6, only one decision node checks
for enabled transitions by searching for a matching guard that is equal to the
event’s value. If such a transition is found, it is returned as firedTransition.

Note that one consequence of step (3) is that not every execution leads to
the creation of events, but each registered state-machine may contribute a new
event. In other words, the event queue may grow maximal by the number of
registered clients in each iteration. Thus, dispatching only one event per cycle
has the effect that the delivery of events might take longer the more traffic is
caused by communication.

��������	
���������	������	�	�������������������
����
�����

��������	
���������	������	�	������	�������������
����
������

�
���

�	��������	�	�

����

�����

Fig. 6. StateMachineInstance#evalGuards

The three operations dispatchEvents, execute and evalGuards are all that
is required as operational semantics and to execute e.g. the ping-pong example
above. However, an initial system setup for instantiation and connection of the
state-machines to the broker is necessary10. This startup behavior is shown in
figure 7. After the event broker is instantiated, the iteration instantiates all given
StateMachines by creating StateMachineInstances and connects them to the
broker as clients. Thereby, the machine initialization takes place in the invocation
action instantiate machine which simply sets the activeState reference to
the state with name Init (cf. figure 8).
10 This might be solved differently by loading predefined runtime models directly, how-

ever, we define the complete setup for better comprehension and exercise here

65

����������	��
�����

�����

�	��	����������������	�

��	�����	��	��

�

�	��������������	�

���

����������	�������	�����	��	��

��������� ���	����������	�������������	������	��	����

�� ��������	�

���

�����

�����

���	

���	

���	

Fig. 7. Global startup behavior

��������	
������!�������	
��������	������������������
������������

Fig. 8. StateMachineInstance#init

66

4 Related work

Today’s notion of operational semantics goes back to the early work of Plotkin
on Structural Operational Semantics [8]. While this formalization is bound to
the concrete syntax, a further widespread approach to language semantics is
the use of Abstract State Machines (ASMs [18][19]) which has been successfully
applied to a number of languages including SDL[20], UML[21] or Java[22]. Be-
side these mathematical formalisms, newer generation languages and frameworks
— evolving in different communities for language oriented programming or do-
main specific modeling — are based on the paradigm of metamodeling. On the
one hand, these approaches are typically not based on a rigorous mathematical
model, but provide on the other hand object oriented abstractions11. M3Actions
is a representative of such a framework, since it provides not only the MAction
language to specify execution semantics12 , but also the embedding in an exten-
sible framework with supplementary components (such as trace recording) for
model analysis.

If we use the language dimensions concrete syntax (representation), abstract
syntax (structure), static constraints and execution semantics (behavior, op-
erational semantics) as done in [12], we can compare the various related ap-
proaches13 like XMF[25] or KerMeta[26] based on these categories. Although
the listed approaches have a textual syntax language in contrast to the graphi-
cal syntax of MActions, all have in common their core action language to define
the operational semantics inline within the metamodel. Beside basic operations
to create, navigate, update or delete objects and properties which are mainly
extensions to OCL, the approaches have different strength. XMF features addi-
tional library functions for I/O (via channels), UI dialogs and an elaborated sup-
port for syntax definitions through annotated grammars. In contrast, M3Actions
has no such libraries per default, but provides the integration of extension ac-
tions that can be registered programmatically (this might be achieved using the
Java interface of XMF). With respect to language features, MActions do not
inherit the exception handling from UML which is e.g. present in KerMeta as
do..rescue blocks. However, to the best of the authors knowledge, these lan-
guages do not support an explicit instantiation concept nor multi-threading14.
Multiple threads of MActions are comparable to parallel ASMs [27]. Moreover,
the explicit control over created observable states of the modeled DSL using
MAtomicGroup and SGTs are a distinguished concept (cp. section 3.1).

Other frameworks and tools for language design are for example the AT-
LAS Model Management Architecture (AMMA, [28]), MetaEdit+ [29] or EPro-
vide [30]. These frameworks and tools support different aspects of a DSL de-
11 The development of the Abstract State Machine Language (AsmL [23]) is an example

that provides both
12 The authors are currently working on a formalization of MActions with ASMs
13 We’ve chosen these as typical representatives for related work even though there

exist others, e.g. GME [24]
14 XMF claims to support multiple threads, but this is not exposed as concept in the

language

67

sign, but fall back on ’external’ approaches to define execution semantics. While
AMMA uses the transformation language ATL [31] to define model changes,
MetaEdit+ provides model animation through a scripting language plus API.
More generally, the EProvide framework follows an open approach: it operates
on a big step semantic for model changes and various languages for operational
semantic can be plugged in.

5 Towards an Execution Framework

The various approaches for model execution were the main driver to initiate
a common Model Execution Framework (MXF) for Eclipse [15]. Currently, the
project is in an early stage bringing together experts from the field and their
experience in order to build a core framework that supports execution of EMF
models. The goal is to provide an integrated environment that supports inter-
preting and debugging of models with operational semantics and that serves as
basis for further model analysis, assessment of models, testing, etc. Additionally,
the project team aims for provision of an integration with GMF editors for build-
ing DSL simulators that are seamlessly integrated into a generated editor. For
the individual parts of the framework, we have identified the following categories
and requirements:

5.1 Runtime Models

It turns out that a primary artefact and precondition for model execution is
the runtime model (or runtime information in general). Even though M3Actions
have a specific view by regarding the runtime model as instance-of the abstract
syntax model, related papers report also on the requirement of having these
definitions beside the language metamodel itself (e.g. the dynamic metamodel of
[32]).

5.2 Behavior Definitions

The MAction language and implementation is the proposed candidate to be used
and/or extended for this purpose. Experiences with ’real languages’ such as C#
(cf. [33]) have shown, that such a graphical language scales well with respect
to having clear and manageable diagrams. However, since we put the abstract
syntax first, a textual syntax might be defined as an alternative representation
of the same concepts. The project team considers to adapt the KerMeta textual
syntax which is, at its core, close to MActions (cp. section 4).

5.3 Common Execution Infrastructure

The main aim is not to have a single all-purpose language that defines model
execution semantics, however, but have a framework to integrate other languages
by means of black-box operations, library implementations, and so on. It is the

68

authors’ conviction that a closed language will fail, since many Eclipse users will
continue to customize the execution through Java implementations in the same
way as it is the case e.g. for model transformations or GMF editors. For example,
a DSL simulator that involves mathematical calculations will definitively rely on
a third party library (not even written in Java) on the implementation level.
The common execution infrastructure will define common concepts on top of
the Eclipse debugging framework and will enable applications to share runtime
models, adapters for specific editors and debuggers, tracing capabilities, and
more.

5.4 Concurrency

The MXF should provide a concept for parallelism similar to the threading
concepts of M3Actions (not sketched in this paper, cf. to [10] for details). In
summary, parallelism can be supported by either (1) modelling parallelism ex-
plicitly or (2) choose from an existing parallelism model of the meta-language. In
the former case, one has to define thread queues, monitors, scheduling policies,
and so on by oneself, whereas the latter provides reuse of common parallelism
patterns. In the current implementation, we have investigated on three different
concurrency models:

– true parallelism: an unlimited number of threads run at least conceptually
at the same time.

– n-processor model: at most n parallel actions are executed at the same time.
– sequential execution: as special case of the n-processor model, all actions are

enforced to be executed in a sequential order.

These concurrency models must be enforced by the execution environment, for
example access to a global simulation timer will vary depending on the pat-
tern choosen. In practice, this can lead to different outcomes with respect to
a recorded execution trace where e.g. object changes of multiple threads have
exactly the same time-stamp (simulation time instant).

5.5 Interpreter vs. Generator

While the existing interpreter and debugger works in a purely reflective man-
ner (using EMF reflection capabilities), one goal is to develop language-specific
simulator-/debugger-generators, optimizing runtime performance of the generic
model interpreter. In the same conceptual line as EMF, the aim is to support
re-generation of the execution logic whenever the language definition changes.
As precondition, the generated code must fit exactly into the reflective execution
infrastructure in the same way as e.g. the EMF reflection API behaves like the
type-specific API.

69

6 Conclusion

This paper sketched existing Eclipse Modeling Projects that support the creation
of DSL tools and motivated how valuable an extension for execution semantics of
models is. To fill this gap, the M3Actions framework has been designed and pro-
vides operational semantics for EMF models. The framework is currently on the
transition of becoming the base of the MXF project at Eclipse [15]. The strong
interest on having a framework for executable model definitions is emphasized
by feedback from the Eclipse community. As project leaders of the MXF project,
the authors endeavor to bring together researchers and practitioners from the
area of model execution and simulation in order to build a concise, but flexible
execution framework for EMF.

References

1. Eclipse Project: (Eclipse Modeling Project (EMP),
http://www.eclipse.org/modeling/) Last checked: January 15, 2009.

2. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework (The Eclipse Series). First edn. Addison-Wesley Professional (2003)

3. OMG: Meta Object Facility, Version 1.4. Object Management Group (2003)
formal/2002-04-03.

4. OMG: Meta Object Facility (MOF) 2.0 Core Specification. Object Management
Group (2003) ptc/03-10-04.

5. Efftinge, S., Völter, M.: oAW xText: A framework for textual DSLs. (2006)
6. Eclipse: (Graphical Modeling Framework, http://www.eclipse.org/gmf/) Last

checked: January 15, 2009.
7. Eclipse: (Model-to-Model Transformation, http://www.eclipse.org/m2m/) Last

checked: January 15, 2009.
8. Plotkin, G.: A structural approach to operational semantics. Technical report,

University of Aarhus, Denmark (1981)
9. Valentin, E.C., Verbraeck, A.: Requirements for domain specific discrete event

simulation environments. In: WSC ’05: Proceedings of the 37th conference on
Winter simulation, Winter Simulation Conference (2005) 654–663

10. Humbold University Berlin: M3Actions - Operational Semantics for MOF Meta-
models, http://www.metamodels.de (2008)

11. Prinz, A.: Formal Semantics for RSDL: Definition and Implementation. PhD
thesis, Humboldt-Universität zu Berlin (2000)

12. Fischer, J., Holz, E., Prinz, A., Scheidgen, M.: Tool-based language development.
In: Workshop on Integrated-reliability with Telecommunications and UML Lan-
guages. (2004)

13. Scheidgen, M., Fischer, J.: Human comprehensible and machine processable speci-
fications of operational semantics. In: ECMDA-FA. Volume 4530 of Lecture Notes
in Computer Science., Haifa, Israel, Springer (2007) 157–171

14. Soden, M.: Operational semantics for MOF metamodels: Tutorial on M3Actions.
http://www.metamodels.de/docs.html (2008)

15. Soden, M., Eichler, H.: Eclipse Proposal: Model Execution Framework,
http://www.eclipse.org/proposals/mxf/ (2009)

16. OMG: OCL 2.0 Specification. Object Management Group (2006) formal/2006-05-
01.

70

17. Fowler, M.: DSL: An Introductory Example,
(http://martinfowler.com/dslwip/Intro.html) Last checked: January 15, 2009.

18. Gurevich, Y.: Evolving algebras 1993: Lipari guide. (1995) 9–36
19. Gurevich, Y.: Abstract state machines: An overview of the project. Technical

report, Microsoft Research (2003)
20. ITU-T: SDL formal definition: Dynamic semantics. In: Specification and Descrip-

tion Language (SDL). International Telecommunication Union (2000) Z.100 Annex
F3.

21. Börger, E., Cavarra, A., Riccobene, E.: An ASM semantics for UML activity
diagrams. In: AMAST ’00: Proceedings of the 8th International Conference on
Algebraic Methodology and Software Technology, London, UK, Springer-Verlag
(2000) 293–308

22. Börger, E., Schulte, W.: A programmer friendly modular definition of the semantics
of java. Technical report (1999)

23. Gurevich, Y., Rossman, B., Schulte, W.: Semantic essence of AsmL. Technical
report, Microsoft Research (2004)

24. Agrawal, A., Karsai, G., Ledeczi, A.: An end-to-end domain-driven software de-
velopment framework. In: OOPSLA ’03: Companion of the 18th annual ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, New York, NY, USA, ACM Press (2003) 8–15

25. CETEVA: XMF. (http://itcentre.tvu.ac.uk/ clark/xmf.html)
26. Team, T.: (Triskell Meta-Modelling Kernel. IRISA, INRIA. www.kermeta.org.)
27. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms: Cor-

rection and extension. ACM Trans. Comput. Logic 9(3) (2008) 1–32
28. Davide Di Ruscio, Frederic Jouault, I.K.J.B.A.P.: Extending amma for support-

ing dynamic semantics specifications of dsls. Technical report, Universite Studi
dell’Aquila (2006)

29. MetaCase: (MetaEdit+. http://www.metacase.com.)
30. Sadilek, D.A., Wachsmuth, G.: Prototyping visual interpreters and debuggers for

domain-specific modelling languages. In: ECMDA-FA. Lecture Notes in Computer
Science, Springer (2008)

31. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., Valduriez, P.: Atl: a qvt-like
transformation language. In: OOPSLA ’06: Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications,
New York, NY, USA, ACM (2006) 719–720

32. Combemale, B., Crégut, X., Giacometti, J.P., Michel, P., Pantel, M.: Introducing
simulation and model animation in the MDE Topcased toolkit. In: European
Congress on Embedded Real-Time Software (ERTS 2008), Toulouse, 29/01/2008-
01/02/2008, Société des Ingénieurs de l’Automobile (2008)

33. Soden, M., Eichler, H.: An approach to use executable models for testing. In:
Enterprise Modelling and Information Systems Architectures - Concepts and Ap-
plications , Proceedings of the 2nd International Workshop on Enterprise Modelling
and Information Systems Architectures. Volume P-119 of LNI., GI (2007)

71

Towards Model Structuring Based
on Flow Diagram Decomposition

Arend Rensink, Maria Zimakova

Department of Computer Science, University of Twente,
P.O. Box 217, 7500 AE, The Netherlands
{a.rensink, m.v.zimakova}@utwente.nl

Abstract. The key challenge of model transformations in model-driven
development is in transforming higher-level abstract models into more concrete
ones that can be used to generate implementation level models, including
executable business process representations and program code. Many of the
modelling languages (like UML Activity Diagrams or BPMN) use unstructured
flow graphs to describe the operation sequence of a business process. If a
structured language is chosen as the executable representation, it is difficult to
compile the unstructured flows into structured statements. Even if a target
language structure contains goto-like statements it is often simpler and more
efficient to deal with programs that have structured control flow to make the
executable representation more understandable.

In this paper, we take a first step towards an implementation of existing
decomposition methods using graph transformations, and we evaluate their
effectiveness with a view to readability and essential complexity measures.

Keywords. Model transformations, graph transformations, model structuring,
flow diagram decomposition, data flow graph, complexity measure.

1 Introduction

Over the last few years, a new option has evolved to define solutions in software
industry: Model-Driven Development (MDD). The key challenge of model
transformations in MDD is in transforming higher-level abstract models into more
concrete ones that can be used to generate implementation level models, including
executable business process representations and program code. With this trend, the
decomposition of the models into structured elements is of increasing importance.

In the large, a number of motivations can be given to justify the implementation of
this work:

� Imagine a dynamic behaviour of business process is described as an
unstructured flow graph (which can represent, by-turn, a UML activity or
BPMN diagrams). If a structured language is chosen as the target executable
representation, it is difficult to transform the unstructured flows into structured
statements. This problem is analyzed, for instance, in [6] and attempts to

72

compile UMLA to BPEL programs; the last issue is discussed, for instance, in
[16]. The main task of our graph transformations is to translate the unstructured
goto-like statements into well-structured statements in the target language.

� The second very important reason for the presented work is to improve software
reliability and readability – making programs less error prone and easier to
understand. Because understanding of behavior is an essential prerequisite to
effective program development and modification, programmers are forced to
devote substantial time to this task [3].

There exists today a number of variants on the idea of well-structured models. A
lot of restructuring methods were done in the context of flow diagram decomposition.
It is commonly agreed that a natural interpretation of flow diagrams is in terms of
graphs – essentially, just nodes with connecting edges. Consequently, a most natural
implementation of flow diagram decomposition methods is by graph transformations.

The aim of this work is to bridge the gap between formalism of the existing flow
diagram decomposition methods and practical implementation in terms of graph
transformations to use it for modern programming environments including executable
business process languages.

The remainder of this paper is structured as follows: after providing the basic
definitions to set the stage in Section 2, we discuss the flow graph decompositions and
complexity measure problem in Section 3. We consider these to be the heart of our
contribution. In Section 4 we implement those methods with graph transformations,
employing the graph-transformation tool Groove [14] for rule execution. Finally, in
the conclusion (Section 5) we come back to the above considerations, evaluate our
results and discuss plans for future work.

2 Basic Notions

Graphs and flow graphs. One of the core concepts of this paper is that of graphs.
We start by repeating the usual definition of a graph.
Definition 1. A labeled directed graph is a tuple G = (N, E, �) where

� N is a finite nonempty set called a set of nodes;
� E � N � � � N is a set of edges where � is a finite set of node and edge labels;
� � is a labeling function �: N � E � �.
Given e = (v, a, w) 	 E, we denote src(e) = v, tgt(e) = w and a = �(e) for its source,

target and label, respectively. A path in a graph G is an alternating sequence of nodes
and edges beginning and ending with nodes such that for each i
 1 we have vi 	 N, ei
	 E, src(ei) = vi and tgt(ei) = vi+1.

Let G be a labeled directed graph as above with a labeling function �: N � E � �,
then a path p = {v1, e1, v2, e2, …, vk�1, ek�1, vk} in G can be represented by the word
from the alphabet � as following:

�(p) = �(v1)�(e1)�(v2) ... �(vk�1)�(ek�1)�(vk).

We call this the word representation of p.

73

Definition 2. A flow graph � is a triple (G, s, t), where
� G = (N, E, �) is a connected labeled directed graph;
� Node s 	 N is the unique start node such that there are no incoming edges to s in

G.
� Node t 	 N is the unique terminal node such that there are no outgoing edges to

t in G.
Figure 1 shows the simple example of a flow graph graphical representation, which

will be used throughout this paper, because it contains most of the features needed to
explain the transformation algorithms.

There are two most common types of nodes in a flow graph:

Fig. 1. Flow graph example

� The functional type (function) which represent some operations (semantically
described by label �(n)) to be carried out on an object v 	 N.

� The predicative type (predicate) which do not operate on an object but decide
on the next operation to be carried out, according to whether or not a certain
property of v 	 N.

In this paper we distinguish functional and predicative node types by count of their
leaving edges as follows: the functional box can has just only one leaving edge (with
next label for our example in Figure 1) and the predicative box can has just only two
leaving edges (with true and false labels for our example in Figure 1).

The different node types that are supported by flow graphs, together with their
relationships, are shown in Figure 3 (a), where we appeal to the reader’s intuition
about the meanings of this graph.

Let � = (G, s, t) be a flow graph and p be some path in G from the start node s to
the terminal node t. Then we will say that p is a full path in the flow graph �.
Definition 3. Let p be a full path in a flow graph � = (G, s, t). Then an execution
sequence Seq(p) is the word representation of p.

For instance, sequence (s next a true a1 next b next d false d2 next t) is an execution
sequence for our example in Figure 1.

Now, let Path be a set (maybe infinite) of all possible full paths in the flow graph
� = (G, s, t) in the light of the discussion above. The word representation of Path
thus regarded as a language Lang(�) = �(Path) defined over the alphabet �.

Definition 4. Two flow graphs �1 and �2 are equivalent (denote it as �1 � �2) if they
define the same languages: Lang(�1) = Lang(�2).

74

Algebra of flow diagrams. A flow diagram is a graphical representation of the flow
graph which is suitable for representing programs, Turing machines, etc. Diagrams
are usually composed of boxes connected by directed lines.

Following [2], we can distinguish three elementary types of flow diagrams , �
and � which denote, respectively, the diagrams of Figure 2 (a)-(c) and the
constructions ‘sequence’, ‘if-then-else’ and ‘while’ in programming languages. Let us
call these four elementary types � = {, �, �} base subdiagrams.

For our subsequent definitions we also use the notions of a signature and algebra,
as defined in [5]. The ingredients of these definitions that are important here are:

� A collection of data sorts Sort.
� A collection of carrier sets Data, partitioned into subsets for each of the sorts in

Sort.
� A mapping par: Oper � Sort+ that associates to every operation op 	 Oper a

non-empty string of sorts.
Note that an operation op with no parameters represents a constant value.

Let us assume a universe � of arbitrary flow graphs, a set �func � � of all
functional node labels and a set �pred � � of all predicative node labels.
Definition 5. Let � = (G, s, t) be an arbitrary flow graph where G = (N, E, �) and N' =
N \ {s, t}. A flow graph substitution is a mapping Sub: N' � � that maps each node v
	 N' to a flow graph �v = (Gv, sv, tv) where Gv = (Nv, Ev, �v), and obeys the following
rules:

� �[�v / v] = (GSub, sSub, tSub) is a flow graph, GSub = (NSub, ESub, �Sub), sSub = s
and tSub = t;

� NSub = (N \ v) � (Nv \ {sv, tv}) ;
� ESub = (E \ EDel) � (Ev \ (Ev

Del) � (Es
Ins � Et

Ins) where
� EDel = {e 	 E: src(e) = v or tgt(e) = v},
� Ev

Del = {ev 	 Ev: src(ev) = sv or tgt(ev) = tv},
� Es

Ins = {eSub 	 ESub | � ev 	 Ev: src(ev) = sv, tgt(ev) = tgt(eSub), �(ev) =
�(eSub);

� e 	 E: src(e) = src(eSub), tgt(e) = v},
� Et

Ins = {eSub 	 ESub | � ev 	 Ev: src(ev) = src(eSub), tgt(ev) = tv, �(ev)=�(eSub);
� e 	 E: src(e) = v, tgt(e) = tgt(eSub)}.

A substitution Sub can be extended to the whole flow graph as

�[Sub] = � [�v1 / v1] [�v2 / v2] … [�vn / vn].

Let us define the signature Sig = (Sort, Oper, par) for the flow graphs. We have
sorts fg, pred and func, representing the arbitrary flow graphs, predicative nodes and
functional nodes, respectively. We also define a constant empty for the empty flow
graph and operation symbols for the elementary flow graphs (for each functional
node) and the base subdiagrams � = {, �, �}:

Sig =
Sort: fg, pred, func;
Oper: empty, elem, , �, �;

75

par: empty:� fg,
 elem: func � fg,
: fg fg � fg,
�: pred fg fg � fg,
�: pred fg � fg.

Then the implementation of the signature Sig for flow graphs is the following
algebra FlowGraph:

Dfg = �,
Dfunc = �func,
Dpred = �pred,
fempty = � 	 �,
felem : Dfunc � Dfg,

 a � {(N, E, �) | N = {s, v, t}, E = {(s, l, v), (v, l, t)},
 �(v) = a}

f : Dfg � Dfg � Dfg,
 (�a, �b) � [�a / va][�b / vb]

f� : Dpred � Dfg � Dfg � Dfg,
 (�, �a, �b) � �[�a / va][�b / vb]

f� : Dpred � Dfg � Dfg,
 (�, �a) � �[�a / va].

Definition 6. A flow diagram � = (G, s, t) where G = (N, E, �) is strongly
decomposable (or well-formed in terms of [6] and [13]) if there exists an expression
exp in the Sig-algebra FlowGraph such that FlowGraph[[exp]] � �.

Together with a strong decomposition, [2] considered another decomposition
which is obtained by operating on an equivalent strongly decomposable flow graph.
Formally, a flow graph � is weakly decomposable if � � �� for some strongly
decomposable flow graph ��.

Algebra of syntax trees. The other data structure for representing programming
language constructs by compilers, converters and transformation tools is a tree
structure known as an abstract syntax tree [11].

In terms of graph theory, an abstract syntax tree is a tree, that is to say, an acyclic
graph with a single root node, connecting nodes and leaf nodes. Then, similarly to the
graph definition above, we can define a syntax tree as follows.
Definition 7. An abstract syntax tree, or just syntax tree, is a tuple T = (GT, root)
where

� GT = (NT, ET, �T) is an acyclic connected labeled directed graph;
� root 	 NT is a single root node;
� NT = Nn � Nl such as Nn � Nl = � where Nn is a set of internal nodes and Nl is a

set of leaf nodes.
Each node of the syntax tree in our case should denote a construction occurring in

the flow diagram. For instance, the base subdiagrams in Figure 2 (a)-(c) may be
denoted by constructions Seq, IfThenElse and While in Figure 2 (d)-(f),

76

respectively. The different node types that are supported by syntax trees, together
with their relationships, are shown in Figure 3 (b).

Similarly to the algebra FlowGraph above, we can implement a signature Sig
with a different algebra SyntaxTree on a set � of syntax tree constructions {Seq,
IfThenElse, While}.

Let us consider now a representation of a flow graph � as a syntax tree T, called a
syntax tree decomposition.
Definition 8. A syntax tree decomposition of a weakly decomposable flow graph � =
(G, s, t) is a following morphism:

STD: � � {SyntaxTree[[exp]] | FlowGraph[[exp]] � �� � �}

where �� = (G�, s, t) is an strongly decomposable flow graph equivalent to �.

3 Flow Diagram Decomposition

In this section we consider the structuring problems imposed by our common
example. The first problem is a very complicated graph structure of the flow diagram.

(a) (a, b) (b) �(�, a, b) (c) �(�, a)

(e) IfThenElse

construction (d) Seq construction (f) While construction

Fig. 2. Diagrams of (a, b), �(�, a, b), �(�, a) and respective syntax tree construction

(a) The types in the flow diagrams (b) The types in the syntax trees

Fig. 3. The types in the flow diagrams and syntax trees

77

One of the decomposition approaches to solve that kind of problem was provided in
[2]. We discuss details of this approach in Section 3.1. The main flow diagram also
has one meaningful (more than one node) strongly connected component (SCC);
therefore we can improve the decomposition quality applying the method of [13]. The
application of this algorithm as a part of the general approach is discussed in Section
3.2. The complexity measure to evaluate the advantage of different methods is
considered in Section 3.3 and some concrete implementation results are presented in
Section 4.

A concise review of many of other results developed in this field has been prepared
in [7]. We also come back to that discussion in the closing remarks about future work
in Section 5.

3.1 Base subdiagram decomposition

The set of definitions introduced in the previous section is within the scope of the
existing graph theory. In this section, we introduce a way to enrich the usual
definitions, and so formalize the concepts of flow graph decomposition.

The preliminaries of Böhm-Jacopini method [2] were presented in Section 2. In
addition to three base subdiagrams , � and �, they introduced three new functions
denoted by T, F, K, and a new predicate � which define a behavior of auxiliary
boolean variables set.

The effect of the first two functions T and F is to create a new boolean variable
with value true or false, respectively, and the function K deletes the last boolean
variable. The predicate � is verified or not according to whether the last boolean
variable value is true or false; the value of the predicate � is true iff the last boolean
variable value is true.

Recall that if Path is a set of all possible full paths in the flow graph �, then the
word representation of Path can be regarded as a language Lang(�) defined (in the
extended case) over the alphabet � � {T, F, K, �}. Let the node types and their
relationships be as it shown in Figure 3 (a).

Then we can define a ‘satisfiability’ function Sat: Lang(�) � Lang*(�), where
Lang*(�) = Lang(�) � {�}, as following: for all words w = (x1 x2 … xi … xj … xn)
	 Lang(�) where xk 	 � � {T, F, K, �}, k 	 [1, n]

�
�

�

�
�

!

�"�#	$
	

�%	
&�	�

% #

otherwise
};,,,{:]1,1[

and}~{\},{
;};,{

:],2,2[, if�

)(1

w
KFTxjik

xfalsetruex
xFTx

jinji

w
k

ij

ji

Sat where .
��

�

!

%
%

%
otherwise

;if
;if

~
x

Fxfalse
Txtrue

x

Therefore the language Sat(Lang(�)) denotes a set of all full path word
representations in the flow graph � that satisfy our definitions of new functions T, F,
K and predicate �.

Let us denote a function Restrict: Lang*(�) � Lang*(�) \ {T, F, K, �} as
following: for all words w = (x1 x2 … xi–1 xi xi+1 xi+2 … xn) 	 Lang*(�) where xj 	 �,

78

j = 1, 2, … i–1 , i+1, …, n and xi 	 {T, F, K, �}

Restrict(w) = (x1 x2 … xi–1 xi+2 … xn).

Then a language L�a�n��g�����(�) = Restrict(Sat(Lang(�))) is a restricted language
of the flow graph � over the alphabet �. Then we can extend the definition of flow
graph equivalence.
Definition 9. Two flow graphs �1 and �2 extended by functions T, F, K and predicate
� are equivalent if they define the same restricted languages, that is L�a�n��g�����(�1) =
L�a�n��g�����(�2).

In the light of this discussion above the definition of weak decomposition can be
extended as a decomposition which is obtained by operating on an equivalent strongly
decomposable extended flow graph.
Theorem 1. For any flow graph �1 there exists (at least) one equivalent strongly
decomposable flow graph �2 extended by the functions K, T, F and predicate �; in
other words, any flow graph is weakly decomposable.

The proof of the theorem and the decomposition algorithm is based on the flow
diagram classification represented in Figure 4 (a)-(c). The equivalent strongly
decomposed flow diagram of type I is shown in Figure 5 (for more details see [14]).

3.2 SCC decomposition

Peterson et al. present the algorithm enabled to improve characteristics of Böhm-
Jacopini method in case if flow graph consists of strongly connected components with
multiple entry points [13].
Theorem 2. Every flow diagram can be transformed into an equivalent strongly
decomposable (well-formed) flow diagram by node duplication (proof see [13]).

(a) Structure of a type I diagram

(c) Structure of a type III diagram (b) Structure of a type II diagram

Fig. 4. Three types of flow diagrams

79

Fig. 5. Transformation of a type I diagrams

In the proof of this theorem the authors presented the algorithm that examines
strongly connected components for multiple entry points and removes extra entry
points by node duplication.

Let us come back to our main example in Figure 1 where nodes b, c, d and d1 form
a strongly connected component, and b and c are multiple entry nodes. If b is chosen
as the entry node and c is duplicated, the well-structured flow diagram with the
extended flow graph shown in Figure 6 (c) results. This turns out to be the better
choice because this flow graph is intuitively ‘better’ than the flow graph in Figure 6
(a).

But if c is chosen as the entry node and b is duplicated, some more duplicating
steps are necessary, and after four steps we can obtain the same flow graph as in
Böhm-Jacopini method shown in Figure 6 (a), as well as three different flow graphs
not shown here.

The fact that there are many variants of equivalent flow graphs, and some of them
are ‘better’ than another, brings us to the issue of complexity measuring presented in
the next section.

3.3 Complexity measuring

Maintenance typically requires more resources than new software development. For
years researchers have tried to understand how programmers comprehend programs.
The literature provides two approaches to comprehension: cognitive models that
emphasize cognition by what the program does (a functional approach) and a control-
flow approach which emphasizes how the program works. A modern state of the art
of this direction is reflected in the review [3].

A well-known and often used complexity measure was proposed by McCabe in
[10].
Definition 10. The cyclomatic number v(�) of flow graph � with n nodes, e edges,
and p connected components is

v(�) = e – n + 2p.

In addition, McCabe proposed a method of measuring the "structuredness" of a
program as follows.
Let a decomposition degree m(�) of a flow graph � be a number of substitutions �vi

,
i = 1, …, n, such that �vi

 	 � \ {}. Then
Definition 11. The following definition of essential complexity ve(�) is used to reflect
the lack of structure:

80

ve(�) = v(�) – m(�).

In the large, we propose to measure a full complexity of the flow diagram as
follows:
Definition 12. Let v(�) be the cyclomatic number, ve(�) - the essential complexity
number and vd(�) - the number of duplicated nodes in a flow graph �. Then the
following defines the full complexity V(�):

V(�) = [v(�) + vd(�)] � ve(�).

This formula stresses that the full complexity of a flow diagram is equal to the
summation of its cyclomatic number and number of duplicates. The multiplication
dictates that the full complexity and essential complexity of a flow diagram must be
in the same order of magnitude.

Let us illustrate all of that complexity measuring by our main example shown in
Figure 1. The initial flow diagram contains two predicates, therefore v = 3, ve = 3, vd =
0 and V = (3 + 0) � 3 = 9. If we apply the straight Böhm-Jacopini method the final
flow diagram shown in Figure 6 (a) has v = 6, ve = 1, vd = 4 and V = (6 + 5) � 1 = 11.
The ‘best choice’ of SCC method represented in Figure 6 (c) has v = 4, ve = 1, vd = 1
and V = (4 + 1) � 1 = 5. Other four flow graphs obtained by SCC method have V = 6,
V = 11, V = 12 and V = 12, respectively.

Hereby, the introduced full complexity measure V reflects an intuitive notion of
readability and enables us to compare the final syntax trees and minimize their
complexity.

4 Groove Implementation

We implemented techniques described in Section 3 within the Groove (see [5], [9],
[14]) framework, a standard tool for graph transformations. This allowed a more
thorough exploration of more examples and for a qualified judgment on practical
scalability.

The flow diagram decomposition rules construct a syntax tree by contracting and
transforming a flow diagram. In this transformation process, syntax tree elements are
introduced to the flow diagram and flow diagram elements are contracted (iteratively)
to one node. Our flow diagram decomposition approach consists of following issues:

� Flow diagram and syntax trees. On the first step of our transformations we copy
the initial flow diagram � to create the same structure for the syntax tree T.

� Contraction rules. For each type of elementary flow diagrams , � and �, we
design one flow diagram contraction rule that introduce the necessary syntax
tree elements and contracts elementary flow diagram to one node.

� Decomposition rules. The flow diagram decomposition process operates top-
down, starting from the root-node of the flow diagram under construction and
choosing an appropriate type of flow diagram as was discussed in Section 3.1.

� SCC rules. To improve readability of the flow diagrams, we also use strongly
connected component (SCC) decomposition rules as it was discussed in Section

81

3.2.
� Bottom-up and top-down decomposition. In general, the flow diagram

contraction and decomposition process operates in both directions: while an

(b) The syntax tree decomposition of
graph (a) with V = 11 (a) Böhm-Jacopini decomposition

(d) The syntax tree decomposition of
graph (b) with V = 5 (c) Decomposition using SCC method

Fig. 6. Two strongly decomposable (well-formed) extended flow graphs equivalent to the flow
graph in Fig. 1 and respective final syntax trees.

82

extraction of elementary flow diagram is possible, we are applying one of
contraction rules and have a bottom-up process; otherwise we are applying one
of decomposition rules and have a top-down decomposition.

� Syntax trees. On the last step of our transformation we delete the contracted
flow diagram elements and get a final syntax tree.

Unfortunately, we cannot explain the precise workings of the Groove
implementation in the available space; however, the rules and some example cases are
available at [15] for the reader to try out.

The example of the final syntax tree for the straight Böhm-Jacopini method applied
to the initial flow diagram in Figure 1 is shown in Figure 6 (b) and has v = 6, ve = 1, vd
= 4 and V = (6 + 5) � 1 = 11. The best of five final syntax trees corresponding to that
initial diagram obtained by the nondeterministic SCC method (see Section 3.2) is
shown in Figure 6 (d) and has v = 4, ve = 1, vd = 1 and V = (4 + 1) � 1 = 5. The text
code representation corresponding to the final syntax trees in Figure 6 (b) and Figure
6 (d) are presented in Figure 7 (a) and Figure 7 (b), respectively.

Some example results for the complexity measuring implementation are given in
Table 1. From the table, we can observe that (as expected) the SCC method always
yields results at least as good as, and in all larger cases better than, the Böhm-Jacopini
method. The detailed description of examples is available at [15].

Two flow graphs with 50 and 100 random nodes and edges are interesting as
performance and scaling test cases. The results comprise about 1500 and 2500

begin
 if a then begin
 a1;

 var_bool := true; begin
 repeat if a then
 b; a1;
 if d then begin else begin
 d1; c; a2;

 c; var_bool := false;
end; end else
var_bool := true; var_bool := true;
repeat until var_bool;
 b; end else begin
 if d then begin a2; var_bool := true;
 d1; repeat
 c; c; b;
 var_bool:= false; if d then begin
 end else d1;
 var_bool:= true;

 var_bool := false; until var_bool;
 end else d2;
 var_bool := true; end.
 until var_bool;
 end;
 d ; 2

end.

(a) The text code representation of the syntax
tree in Fig. 6 (b)

(b) The text code representation of the syntax
tree in Fig. 6 (d)

Fig. 7. The text code representation corresponding to the final syntax trees in Fig. 6 (b) and (d)

83

Table 1. Example cases for the complexity measuring implementation (n is the number of
nodes in the flow graph and V is the complexity measure proposed in the Section 3.3). The bold
line (case #3) represents the example from Figure 1.

Initial Böhm-Jacopini
method (determ.) SCC method (non-deterministic)

transitions, respectively (as compared with 8 transitions for the first simple case). This
shows that the potential advantages of the approach, in terms of graph
transformations, could be applied in practice.

5 Conclusions

In this paper we take a first step towards an implementation of existing flow graph
decomposition methods using graph transformations.

As stated in the introduction, well-structuredness was one of our main guidelines.
We investigated several alternative and mutually complementary classical methods of
flow diagram decomposition. We implemented the Böhm-Jacopini approach in terms
of graph transformations employing the graph-transformation tool Groove. For the
implementation we used an extended concept of equivalent flow graphs defined
through the notion of context-free languages.

The Böhm-Jacopini decomposition method was enhanced and improved by using
the Peterson et al. method that examines strongly connected components for multiple
entry points and removes extra entry points by node duplicating.

In the introduction we stated that the well-structuredness of models is very
important. Our full complexity measuring of a flow diagram reflects an intuitive
notion of readability and enables us to compare the final syntax trees to evaluate
different decomposition methods and different results of non-deterministic methods
and minimize their complexity.

An important issue is to expand the set of implemented methods and apply them to
improve software reliability and readability, for instance in model transformations
from UMLA to Java programs. A concise review of many of other results developed
in this field has been prepared in [7].

The described approach is still work in progress. The applying well-formed
structures is just the first step in the general decomposition approach: the next step is
to review the different cases of flow graphs with parallelism and loops and develop
universal method similar simple flow graphs without parallelism.

flow graph
Min V Max V

Case
n V n V Result

count n V n V
1 8 3 8 3 1 8 3 8 3
2 9 9 12 4 1 12 4 12 4
3 10 9 26 11 5 17 5 32 12
4 14 36 38 18 12 25 11 63 29
5 50 156 82 64 52 71 32 82 64
6 100 276 237 154 72 112 84 289 312

84

In general, we intend to investigate the applicability of our framework to enhance a
model transformation from UMLA to structured models and formally prove the
correctness of this transformation. After enriching that model transformation, our
long-term goal is to implement the same methods to transformations from UMLA to
business process execution languages.

Acknowledgements. The research in this paper was carried out in the GRASLAND
project, funded by the Dutch NWO (project number 612.063.408).

References

1. Allen, F.E.: Control Flow Analysis. In ACM Sigplan Notices (1970)
2. Böhm, C., Jacopini, G.: Flow diagrams, Turing machines and languages with only two

formation rules. In Communications of ACM, vol. 9, no. 5, pp. 366-371 (1966)
3. Collar, E., Valerdi R.: Role of Software Readability on Software Development Cost. In 21st

Forum on COCOMO and Software Cost Modeling, Herndon, VA (2006)
4. Dumas, M., ter Hofstede A.H.M.: UML Activity Diagrams as Workflow Specification

Language. In Proceedings of the UML’2001 Conference, Toronto, Canada (2001)
5. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph

Transformation. Springer-Verlag, Berlin, Germany (2006)
6. Engels, G., Kleppe, A.G., Rensink, A., et. al.: From UML Activities to TAAL - Towards

Behavior-Preserving Model Transformations. In Proceeding of the European Conference on
Model Driven Architecture (ECMDA-FA). Lecture Notes in Computer Science 5095,
Springer-Verlag, Berlin, Germany, pp. 94-109 (2008)

7. Erosa, A.M., Hendren L.J.: Taming control flow: A structured approach to eliminating goto
statements. In Proceedings of ICCL, Toulouse, France, pp. 229–240 (1994)

8. Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.: On Structured Workflow Modelling.
In Proceedings CAiSE'2000, Stockholm, Sweden, vol. 1789, pp. 431-445 (2000)

9. Kleppe, A.G., Rensink, A.: A Graph-Based Semantics for UML Class and Object Diagram.
Technical Report TR-CTIT-08-06 Centre for Telematics and Information Technology,
University of Twente, Enschede (2008)

10. McCabe T.: A Complexity Measure. In IEEE Transactions on Software Engineering, vol. 2,
no. 4, pp. 308-320 (1976)

11. Object Management Group: Abstract Syntax Tree Metamodel, Request For Proposals (RFP)
(2005), http://www.omg.org/cgi-bin/doc?admtf/05-02-02.pdf

12. Object Management Group: Business Process Modeling Notation, V1.1. 2008,
http://www.omg.org/docs/formal/ 08-01-17.pdf

13. Peterson, W.W., Kasami, T., Tokura, N.: On the capabilities of while, repeat and exit
statements. In Communications of ACM, vol. 16, no. 8, pp. 503-512 (1973)

14. Rensink, A.: The GROOVE Simulator: A Tool for State Space Generation. In AGTIVE
2003, Springer, Heidelberg, Germany, Vol. 3062, pp. 479–485 (2004)

15. Rensink, A., Zimakova, M. Examples of Implementation in Groove (2009),
http://ewi.utwente.nl/~mzimakova/bm-mda_2009

16. Zhao, W., Hauser, R., Bhattachaya, K., Bryant B.: Compiling Business Processes: Untangle
Unstructured Loops in Irreducible Flow Graphs. Technical report UABCIS-TR-2005-0505-
1, Birmingham, USA (2005)

85

Recursive Modeling for Completed Code Generation*

Selo Sulistyo, Andreas Prinz

Faculty of Engineering and Science, University of Agder
Groosveien 36, N-4876 Grimstad, Norway

{selo.sulistyo, andreas.prinz}@uia.no

Abstract. Model-Driven Development is promising to software development
because it can reduce the complexity and cost of developing large software
systems. The basic idea is the use of different kinds of models during the
software development process, transformations between them, and automatic
code generation at the end of the development. But unlike the structural parts,
fully-automated code generation from the behavior parts is still hard, if it works
at all, restricted to specific application areas using a domain specific language,
DSL. This paper proposes an approach to model the behavior parts of a system
and to embed them into the structural models. The underlying idea is recursive
refinements of activity elements in an activity diagram. With this, the detail
generated code depends on the depth at which the refinements are done, i.e. if
the lowest level of activities is mapped into activities executors, the completed
code can be obtained.

Keywords: MDD, business modeling, languages, and automation.

1 Introduction

Model-driven development is a kind of innovative software development that meets
general industry requirements for software development, such as reduction the
operating costs, reductions in time to market, and the need for open solutions. One
such model-based software development approach is OMG’s Model Driven
Architecture, MDA [1].

Software development using OMG’s MDA framework implies creation of models
of the following kinds (see Figure 1): the computation independent model (CIM) at
the business system model level, the platform independent model (PIM) at the
information system model level, the platform-specific model (PSM) at the software
model level, and finally, the code which will automatically be generated from the
PSM at the software model level.

However, to date, the fully automatic generation of the code from models is still a
dream and, if at all work, restricted to specific application areas by using a domain-
specific language (DSL). There are two approaches to achieve an automatic code

*This work has been supported by The Research Council of Norway in the ISIS project

86

generation of the behavior parts of a model; bottom-up approaches that can be done
by extending programming environments, and top-down approaches that can be done
by extending the modeling language, i.e. UML. This article proposes a combined
approach; the top-down approach by applying recursive refinements of activity
elements in an activity diagram and the bottom-up approach by defining executors of
the lowest level of activities.

Fig.1. Software development with MDA

The reminder of the article is organized as follows: Section 2 gives a brief
definition of models. Next, in Section 3 we present an overview of what modeling and
programming languages are. In Section 4 we present our approach to how the code
can be generated from both structure and behavior models, including an example of
modeling a simple calculator application. We use UML2.1 notations and Java in the
example. Section 5 is devoted to related work including the ISIS project. Finally, we
draw our conclusions in Section 6.

2 Models

A model is an abstract representation of a system which describes the structure and
the behavior of the system. The system itself can be anything. Models can come in
many shapes, sizes, and styles, by so doing helping humans to better understand the
system.

The abstraction of a system means removing the irrelevant aspects/information of a
system which means that the higher abstraction level the less information a models
contains. For an example, a model of a car engine gives us a better understanding of
how a car engine works than the real engine installed in a car. The engine model can
be very detailed with all parts of the engine (lower abstractions), or only a simple
engine model describing only the functionalities (higher abstractions). In this case the
simple engine model has less information than the detail.

In MDA, models can be represented in different views such as UML [6] class
diagrams, activity diagrams, state machine diagrams, and collaboration diagrams. In
UML, we use mainly class diagrams to model the structure part and use mainly
activity diagrams, state machine diagrams and collaboration diagrams to model the
behaviors’ part.

Transformation
model

CIMA

PSMA Transformation
model

Transformation
model

 PIMA

Code

87

2.1 Structural Models

The structure specifies what the instances of the model are; it identifies the
meaningful components of the model construct and relates them to each other. The
structure consists of the classes that can appear in the system as well as their mutual
dependencies given as associations between the classes. The structure given by a
model is used at runtime to allow the creation of several runtime objects as instances
of the structure model.

As mentioned above, that in MDA, the structure is mainly modeled using UML
class diagrams. The structure model in UML emphasizes the static structure of the
system using objects, attributes, operations, and relationships.

2.2 Behavioral Models

The behavioral model emphasizes the dynamic behavior of a system, which can
essentially be expressed in three different types of behavioral models; interaction,
activity diagrams, and state machine diagrams. We use interaction diagrams to specify
how the instances of model elements are to interact with each other (roles) and to
identify the interfaces of the classifiers.
The UML activity diagrams are used mostly to model data/object flow systems. It is
good to model the behavior of systems which;

• do not greatly depend much on external events.
• mostly having steps that run to completion, rather than being interrupted by

events.
• requiring object/data flow between steps.

But since activity diagrams in UML 2.0 specified notations to communicate with
external systems using receive and send signals, the activity diagram can also be used
to model the systems as mentioned above (instead of a state machine diagram).

3 Modeling vs. Programming Languages

Expressing a software system by a model requires a modeling language as a tool. A
common approach is by using programming languages. So, with respect to the fact
that both programming languages and modeling language’s ultimate aim is to produce
code then we consider that they are the same. In [2], the similarities and differences
between them are discussed. They have identified that modeling languages use higher
abstraction, mostly using graphical representation and they are often not executable.
In contrast, programming languages are executable, mostly using text representation,
and of low abstraction level.

Different languages can be used to model a system at different levels of
abstractions and representations, as it depends on the purpose the language. With
regard to the different abstraction levels, and MOF [1], there are four different
categories of language and we call it as a language model in the M2 layer (of 3+1
model layer [3]) as follows (see also Figure 2);

88

- business process-oriented modeling languages,
- information system- (or technology-) oriented modeling languages,
- implementation-oriented modeling languages, and
- transformation-oriented modeling languages.

Fig.2. Models and modeling languages

All the languages mentioned above are used to generate models in the M1 layer at
different levels of abstraction. Typically, implementation-oriented languages focus on
the implementation of a system. The system is described in term of the
implementation. These kinds of languages are what we know well as programming
languages.

In software development, the main goal is always a running system. Therefore, the
most important assets for the running system are the developed or generated code that
is compiled and executed [4]. Whatever language we use to model a system, the main
goal is, in the end (directly on indirectly), executable code. For this, a transformation-
oriented language is useful. Models can be automatically transformed into a different
level of abstraction (vertical transformation) and into different representation of
different tools (horizontal transformation), and to code at the end.

In the context of 3+1 model layer, the code is also a model, because similar to
other models in the M1 layer, the code is abstract from the real machine (hardware
and operating systems). As shown in Figure 1 and 2, CIM is a model at the highest of
abstraction level while the code is the model at the lowest of abstraction level.
Consequently, modeling languages are also a programming language. In this way, we
can consider that modeling using modeling languages is another way of (indirectly)
writing code (programming), on high abstraction level as it simply concerns the focus
shifting from implementation oriented languages to model oriented languages.

 M3

Operating System

Embedded Hardware

Business
Process
Oriented

Information
System Oriented

Transforma
tion

Oriented

Implementa
tion

Oriented

Services
Composite

service
Software System

Transformation
model

CIMA

PSMA Transformation
model

Transformation
model

 PIMA

Code

Business System
Models

Information
System models

Software System
models

Software models

Meta-Language Model

Language
Model

CIMB

PIMB
Transformation

Mapping

Mapping

instanceOf

instanceOf

Other
MDA
models

 M1

 M0

 M2

instanceOf

89

A completed code means that the code includes the behavioral and the structural
parts. With programming languages, we write them directly, but this is not the case in
modeling with modeling languages since we can use different views to represent a
single system. This introduces consistency and integration problems.

In fact it is difficult to integrate different views of UML models. Several solutions
for integration problems have been proposed, i.e. [15] [16]. All of them assume that
automatic tools would be able to generate completed code from the integrated model.
Wirh our approach, a developer can have completed code in a way as he write code
with programming languages.

4 Writing Code using Graphical notations

To capture the behavior parts, we focus on the modeling process, as we consider this
to be, in the sense of code generation, modeling using graphical-based modeling
languages, i.e, UML, as simply another way of writing code. In our approach, the
code is not only be generated from the mapping of final PSM models, but also from
all models including the PIM models, and even the CIM, models during the process of
modeling.

Figure 3 shows the modeling process that is done in an interlaced (weaving) way
between the structural and behavior parts. The behavior models are used to strengthen
the structural models. For example, an activity entity in an activity diagram could be
transformed into an operation in a class diagram.

Fig.3. Weaving between structural and behavioral.

Final models
ready for code generation

activity
diagrams

activity
diagrams

class diagrams

manual
refinement

manual
refinement

class diagrams

.

.

.

.

.

.

class diagrams

class diagrams

automated
refinement

automated
refinement

manual
refinement

iteration 1

iteration 2

iteration n

Final Code

manual
refinement

 Code Structural Behavioral

90

It is not fixed whether structural or behavioral part that should be modeled first. It
depends on the developer’s preferences. In Figure 3, we start the modeling from the
structure. The structure, however, has a relation to the behavior part. When we model
the behavior, implicitly, we define also partly the structure and directly also define
code. As illustrated in the left most column of the figure, the code is implicitly
generated when the structural and behavioral model have been defined and the lines
of code is growing as the iteration increase.

The weaving from structural to behavioral and vice versa can be done many times
(iteration). It depends on how complex the system is and how detail the model we
want. The activities in an activity diagram should be refined into more detail with
other activity diagrams, recursively. So, the more iteration (model refinements) is
done, the more detail the model will be and the more code is obtained.

In this way, the activity refinements should go to more concrete and implementable
(the lowest activity level). At the end, when the model will be transformed into PSM,
this lowest level of activities should be mapped into available PSM components
models. We call these components as activity executors. In this context, a model is
PIM if it does not contain executors. The PIM can be transformed into different
executors implemented in different programming languages.

In our approach the structure models are basically (partly) generated automatically
from the behavior models, through a transformation mechanism. On the other hand,
the behavior modeling must also always refer to the structural parts. In this way, the
approach promotes a good traceability between the structural and behavior parts.

At the end of the refinements the final code and models that includes both of the
structural and behavior parts is obtained. The models can be considered as a well
formed model as it has well defined code for a specific language. At certain level of
abstraction, where the model does not contain any executors, the code can be
generated for other languages.

4.1 Transformation Rules

To support the automated refinements, we need to capture every notation in an
activity diagram (behavioral) to be transformed into structural models. For this we
need a set of rules.

An activity diagram consists mainly of activities, forks, decisions, and flows
entities. An activity diagram can also be represented in several partitions to describe
that a model of a system has several parts. All these entities (elements) can be
categorized into static and dynamic entities. For example, the partition is a static
entity while an activity (task) is a dynamic entity.
On the other hand, the structural part, for example a class in a class diagram, has also
dynamic and static entities (elements). For example, in a class, a class name is a static
entity while operations are a dynamic entity. Based on these facts, we can develop a
transformation rules that transforms each entity in an activity diagram (behavioral
part) into an entity in a class diagram (the structural parts). The following table shows
basic rules of the transformation.

91

Table 1. Basic transformation rules
Activities entity (behavioral) Structural
Partition Class
Object (flow) Class
Activity Operation
Variable Class

Of course, there are many other activity entities (elements). With this
transformation rules, a developer has defined implicitly structural models when he
models the behavior part.

4.2 Model to Code Transformation

The important aspect of code generation from the behavior is interpretation of every
notation in an activity diagram and automatic transformation the notations into code.
For this we need to define a set of transformation rules. The interpretation should be
focused on the activities, control flows, and object flows.

The notion of the transformation rules follow patterns as shown in Table 2. We
consider that an activity diagram can be seen as a collection of patterns. Here the
patterns are used to simplify the code generation from activity diagrams.

Table 2. Patterns
Pattern Symbol Example in Java code

Basic

activity();

activity(X1);

X2 _x2=activity(X1);

X2 _x2=activity();

X2=activity();

Fork

Join

if (X1)&&(X2)&&(X3) {
 activity(X1,X2,X3);
}

Merge

if (X1 || X2) {
 activity();
}

Decision

if ((X0==X1) {
 activityA(X0);
}
else if ((X0==X2) {
 activityB(X0);
}

Loop

while (X1'X2){
 activity();
}

activityB

activityA [X1]

[X2]

[X0]

activity

[X1]

[X2]

activity

activity

X1
X2
X3

X1 X2

 activity

activity

activity

activity

X2

X2

X1

X1

activity
X1 [X1=X2]

[X1'X2]

The table above shows examples of possible translation code of different patterns

of activity in Java. Note that the X0, X1, and X2 are objects that can be type of any.

92

4.3 An example

In this example we developed a simple calculator application. We explain in principle
in detail how the modeling process is done and how the code can be generated
automatically. We use Java code, which should be comparable for other object-
oriented languages.

4.3.1 First Iteration
There is no reference whether behavior or structural should be modeled first. The only
point upon it we agree is that the first model should be at a very high level of
abstraction. In our approach, we first model the structural part.

Structural modeling
The calculator application consists of processor and user interface, i.e, keyboard and
LCD, as shown in Figure 4, below.

Fig.4. The Calculator class diagram

At this point, it is easy to generate code from this structural part. A possible Java
code for the Calculator class is shown. In this case we assumed that the Calculator
class is a main class, therefore, it includes main method.

Behavior modeling
To add more code, we need to model the behavior part. In this first iteration, we

can model the calculator behavior in a high abstraction level, as for example shown in
the following figure.

Fig.5. Activity diagram of the Calculator

Processor User_IO

Calculator

1

1
1

11
1

1 1

public class Calculator {
Processor _processor= new Processor();
User_IO _user_IO=new User_IO();
public static void main(String agrs[]){
 }
}

93

To interpret the activity diagram above, we need explicit labels to indicate whether
the flow is control flow or object flow. In the example we use X1, X2, X3, X4, and
X5 to indicate the object flows. The following figure shows the structure part of the
model as a result of automatic refinement of the activity diagram. Here, the activity
diagram (behavior) is used to strengthen the structure.

Fig.6. Refined Calculator class diagram

The basic rule is very simple (see Table 1, Section 4.1). All activities are
transformed into operations of classes. The complete transformation, i.e. including the
operation arguments, is presented in Table 2, Section 4.2. Based on the activity and
class diagrams above, one possible generated code for the Calculator class (Figure 4)
is demonstrated as follows.

public class Calculator {
Processor _processor= new Processor();
User_IO _user_IO=new User_IO();
public X1 _x1=new X1();
public X2 _x2=new X2();
public X3 _x3=new X3();
public X4 _x4=new X4();
public X5 _x4=new X5();

public static void main(String agrs[]){
 _processor.init();
 _x1 = _processor.getNumber1();

 _x1=_x1;
 _userIO.display(_x1);

 _x2 = _processor.getOperator();
 _x2=_x2;

 _x3 = _processor.getNumber2();
 _x3=_x3;
 _userIO.display(_x3);

 _x5 = _processor.getEqualSymbol();
 _x5=_x5;

 if ((X1)&&(X2)&&(X3)&&(X5)){
 _x4 = _processor.compute(_x1, _x2, _x3, _x5);
 }
 _x4=_x4;

 _userIO.display(_x4);
 }
}

We now have more lines of code in the Calculator class. We do not, at the moment,

think about race condition, for example interpretation of flows outgoing from a fork.

public class Processor {
public X1 getNumber1(){ }
public X2 getNumber2(){ }
public X3 getOperator(){ }
public X5 getEqualSymbol(){ }
public X4 compute(X1 _x1,
X2 _x2, X3 _x3){ }
}

X1

X2

X3

X4

User_IO

display()

X5Calculator

1

1

1

1

Processor

getNumber1()
getNumber2()
compute()
getEqualSymbol()
init()

1

1

1

1

94

4.3.2 Second iteration
At this iteration, we refine both the structure and behavior models manually. The aim
is to make the model more detailed.

Structural Modeling
What we then can do is then refining the class diagram manually. One possible

refinement is for instance, defining data type of X1, X2, X3, X4 classes. For example,
in the class diagram we defined datatype of X2 class as follows.

Fig.7. Data type definition

To be able to generate code automatically for a specific platform, as a final
refinement, the data type definition should be defined for a specific platform as well.
For example, X2 can be defined by of type java.lang.String. By using this model, the
X2 class will logically have the same properties as String. However, practically
speaking, it is not always true since the String class, in this case, is defined as final
and therefore un-extendable. However, for this we propose the notation above as a
general way of modeling the type definition in UML. It is the code generator that will
determine the code resulting from the model.

In the example we define X1, X3 and X4 of type integer and X5 of type String.
Other structural (class diagram) refinements that we can do are defining attributes,
introducing new classes, and multiplicity, etc.

Behavioral Modeling
At the same iteration step, we refine manually the behavior part of the model. The

refinement is done by defining sub activities of all activities we have defined, for
example defining a sub activity of compute, shown in Figure 8. Note that not all
activities notations are shown as in add activity.

+ - * /

Fig.8. Sub activity diagram of Compute operation

String

X2

public class X2 extends String{
}

95

From this sub activity diagram we can refine the structural model by introduce new

classes, as we did in the previous iteration. In this case, the Compute activity is
automatically be transformed into Compute class which has operations of add(),
sub(), mul(), div(), and error();

X1

X2

X3

X4

X5

User_IO

display()

Calculator

1

1

1

1

Compute

add()
sub()
mul()
div()
error()

Processor

getNumber1()
getNumber2()
compute()
getEqualSymbol()
init()

1

1

1

1

int

String

Fig.9. Refined class diagram

The following shows an example of possible generated code (expanded) for

compute operation on the Processor class, based on the sub-activity we have defined
above. Note that some lines (other operations) are not shown in this code.

public class Processor {
.
.
.

public int compute(X1 _x1, X2 _x2, X3 _x3, X5 _x5){

Compute _compute=new Compute();
if (_x2.equals(“+“)){_x4=_compute.add(_x3 + _x1);}
 else if (_x2.equals(“-“)){_x4=_compute.sub(_x3-_x1);}
 else if (_x2.equals(“*“)){_x4=_compute.mul(_x3*_x1);}
 else if (_x2.equals(“/“)){_x4=_compute.div(_x3/_x1);}
 else {_compute.error();}
 return _x4;
 }
}

4.3.3 Third to nth Iteration
The more iteration and the deeper refinement of the activity are done the more code
that can be obtained. However, the code is not complete enough regarding the
arithmetical operations. The reason is there are no mathematical expressions in the
model. To amend this situation, we propose notations for basic logical operations,
basic arithmetical operations, and basic string manipulation as shown in Table 3.

The modeling process (activity modeling) goes from high abstraction level to
detail. In the case of component-based development the lowest level of activities must
be mapped directly into existing components and classes (models) in order to get a
PSM model and code. Thus the components and classes which act as executors of the

96

activities at implementation levels should be abstracted into models. In this context,
as long the activities are not mapped into executors then the model is still PIM.

Table 3. Basic operations

See Figure 10 for a more complete behavior model, which includes the arithmetic

notations. SysML (UML profile) [14] has defined a parametric to model mathematical
expressions. But the expression itself uses text which might be difficult to interpret.

It is possible to refine an activity using a state machine diagram. It depends,
however, on the kind of system, as explained in Section 2.2.

5 Related Works

Top-down approaches of the behavior capturing can be done either by extending the
modeling languages or changing the modeling process and styles. The need for
extending UML modeling languages, for example, is described in [9] [10]. Both
identified that syntax and semantics are the most serious problems with the UML 2.0.
There is also a problem with consistency between model views as presented in [11].

In [12], a modeling process is proposed. To obtain the final code from the behavior
and the structural parts, they proposed a weaving modeling that can be done in two
ways; code level weaving and model level weaving. However this weaving is
completed after the models have been considered completed. In [13], a mixed
graphical and text modeling where modelers can insert code manually into a graphical
model, is proposed.

In our opinion, we need a modeling tool that provides assistance for an interlaced
modeling process from the structural and the behavior parts vice-versa. It aims to
have fully automatic code generation. The tool must also supports for mapping the
activity elements into the activity executors (existing components).

In the Infrastructure for integrated services (ISIS) project [5] we deal with service
development. Within the ISIS project, a tool called Arctis [7], which is built on UML
2.0 and is a part of the SPACE [8] approach to services (software) design, has also
been developed. In Arctis, a model is described in terms of building blocks (structure)
that contains activities diagrams (behavior). A building block can contain other

 Notation Category

X1+X2 X1*X2 X1-X2 X1/X2

Basic arithmetic
operations

 OR AND NOT INC DEC

Logical operations

X2=X1.substring(a,b)

String operation

 INC

DEC
 NOT

 AND

 OR

+

*

-

/

X1 X1 X1 X1

X2 X2 X2 X2

String

X1

a
b

X2

 ||

 &

97

building blocks as parts of the internal activity diagram. We considered that a
building block is an activity executor. Figure 11 illustrates this.

Modeling in Arctis, in principle, assumes that the activities executors have already
defined. Therefore, we are now exploring automatic wrap to extract building blocks
from existing software components in term of Arctis, in order to include these in the
design of new software systems or services.

6 Conclusions

This paper presents a combined approach to generate a completed code from the
structural and the behavior models. We use the top-down approach by applying
recursive refinements of activity elements in an activity diagram, and use the bottom-
up approach by developing a tool for the creation of activity executors and for the
mapping mechanism of the lowest level of activities into executors. In our context, a
model that does not include executors is a PIM model.

With respect to code generation, we consider that the modeling is just the focus
shifting from implementation-oriented languages to graphical (model)-oriented
languages. Thus, to be able to generate code, modeling languages need to abstract
basic arithmetical operations, basic logical operations, and string manipulations, as
the basic activity executors.

References

1. OMG’s MDA, Architecture, http://www.omg.org/mda
2. Sun, Y., Zekai, D., Marjan, M., Jeff, G., and Barrett, B. : ”Is My DSL a Modeling or

Programming Language?”, Whitepaper. labri.fr/perso/reveille/DSPD/2008/papers/4.pdf
(2008)

3. Jean Bézivin.: On the unication power of models. In: Software and System Modeling,
Volume 4, Number 2, May 2005. DOI: 10.1007/s10270-005-0079-0 (2005)

4. Oldevik, J. Neple, T. Aagedal, J. O. 2004. Model Abstraction versus Model to Text
Transformation, White paper. University of Kent, Great Britain

5. BIP, “ISIS: Infrastructure for Integrated Services project”, a research collaboration
between NTNU, HIA, TellU, and Telenor Norway, 2007-2011 (2007)

6. OMG “UML 2.1 Specification”, Object Management Group, 2007,
http://www.omg.org/spec/UML/2.1.2/

7. Kraemer, F.A.: Arctis and Ramses: Tool Suites for Rapid Service. In: Proceedings of
NIK-2007 (Norsk informatikkonferanse). (2007)

8. Kraemer, F.A.: Engineering Reactive Systems. Doctoral thesis at NTNU, 2008, ISBN 978-
82-471-1146-8 (2008)

9. France, R. and Rumpe, B.: Model Driven Development of complex software: A research
roadmap. In: Future of Software Engineering, IEEE (2007)

10. Schattkowsky, T. and Fårster, A.: On the pitfalls of UML 2 acivity modeling. In
:Proceedings of Workshop on Modeling in software engineering, IEEE (2007)

11. Wang, H., Feng, T., Zhang. J., and Zhang, K.: Consistency check between behavior
models. In: Proceeding of ISCIT2005. (2005)

98

12. Mraidha, C., Gerard, S., Terrier, F., and Benzakki, J.: Two aspect approach for a clearer
behavior model. In: Proceedings of the 6th International Symposium on Object-oriented
real-time Distributed Computing. (2003)

13. Scheidgen, M. 2008. Textual Modelling Embedded into Graphical Modelling. In
proceeding of 4th ECMDA-FA 2008, Berlin, Germany, June 9-13 (2008).

14. SysMIL, OMG SysML v. 1.1 [November 2008] http://www.sysml.org/specs.htm (2008)
15. Bowman, H., Steen, M., Boiten, E.A., Derrick, J.: A Formal Framework for Viewpoint

Consistency. In Formal Methods in System Design, Springer Netherlands, Volume 21,
Number 2 / September, 2002 (2002). DOI 10.1023/A:1016000201864

16. Chiorean, D., Pasca, M., Carcu, A., Botiza, C., Moldovan, S.: Ensuring UML models
consistency using the OCL Environment. In: 6th International Conference on the Unified
Modeling Language - the Language and its applications. San Francisco (2003)

Fig 10. More completed behavior model of the Calculator

Fig 11. An example of Arctis models

 +

X1

X3

X4

*

-

/

div

sub

mul

 [number]

 [operator]

99

Embedding Process Models in Object-Oriented
Program Code

Moritz Balz and Michael Goedicke

University of Duisburg-Essen
{moritz.balz,michael.goedicke}@s3.uni-due.de

Abstract. Process modeling has usually a strong connection with run time plat-
forms that allow dynamic configuration and adjustment. While this is reasonable
for the operation of large applications, it is of no help in cases when program
code is to be engineered, documented or verified with respect to process models.
We propose a design pattern for process models that allows to embed complete
model semantics in object-oriented program code fragments. The program code
can thus be validated and executed with respect to process model semantics and
design tools.

1 Introduction

Process models can be designed, validated and executed by various tools and frame-
works. The focus of these approaches is to allow dynamic configuration of processes
with as little relation to source code as possible, sometimes even without involvement of
IT departments. This entails the existence of frameworks that read process descriptions,
walk through the process and execute business logic attached to several stages of it.
The flexibility to design and alter processes descriptively comes at the cost of overhead
for this frameworks and also for integration layers to the program code constituting the
business logic.

While this makes sense for large distributed applications, it is of no help in cases
when program code is to be engineered, documented or verified with respect to process
models. Such program code is reasonable in cases when integrated or even embedded
applications are developed and it is undesirable or even impossible to incorporate the
overhead associated with process run times. Moreover, little support is given by cur-
rent modeling technologies to design behavioral aspects of program code in all detail.
Modeling languages that aim to represent all behavioral semantics tend to become as
complex as general-purpose programming languages [1]. When program code is gen-
erated from models, it usually has to be refined to meet the requirements in detail. The
code evolves in this case because of enhancements, corrections or tuning activities and
can hardly be related back to a model afterwards [2].

So, there is in many cases a gap between abstract model definitions and program
code that represents (behavioral) execution logic in detail. We earlier proposed to em-
bed behavioral models in object-oriented code structures to maintain different levels
of abstraction in the same program code [3]. This is possible when we define a design
pattern that represents the complete semantics of a behavioral model. We will develop

100

such a pattern for process models in this contribution. The program code can thus be
considered at different levels of abstraction: A process model can always be extracted
from the pattern code and be used to design and validate the model in appropriate tools,
for example visual editors. At the same time, the model structures are embedded in and
connected with arbitrary other program code that may represent arbitrary (behavioral)
semantics.

To explain the approach, this contribution is structured as follows: In section 2 we
will describe the process model we want to represent by a design pattern; the pattern
itself and the related program code fragments are explained in section 3. Based on this
we show how process models can be designed with a modeling tool in the Eclipse IDE
and executed with a lean framework afterwards in section 4. We evaluate the approach
by means of a sample application in section 5, give an overview of related work in
section 6 and afterwards conclude in section 7.

2 Model Definition

The objective of the pattern to develop is to engineer program code for applications
whose behavior can be expressed with process semantics. We must for this purpose
define a specific process model that describes the features of interest. We will stick to
the process meta model defined by the Eclipse IDE’s [4] Java Workflow Tooling [5]
project which aims to bridge differences between existing process model notations to
build a uniform editing and monitoring tool set.

The definition of this pattern as such is not innovative. But, we need a clear defini-
tion to create the design pattern afterwards that is embedded unambiguously in object-
oriented program code. Additionally, the model must – since it will be expressed in
program code fragments – define interfaces to arbitrary other program code that be-
longs to the same applications under development.

The model itself consists of two types of elements, nodes and transitions, whose
properties control the flow of the process.

2.1 Activities

Activity nodes contain an activity, which means execution of arbitrary business logic of
the application that contains the process model. Execution control is here passed from
the scope of the process model to the application. For the definition of the design pattern
this means that an interface to this arbitrary program code must be defined that will be
used here.

Each activity is – as borrowed from JWT – executed by an application which is
defined by a class and method name. The activity can have input and output data.

2.2 Transitions and Guards

Transitions are directed edges that connect nodes and thus guide the process flow. They
are most important when they emanate from decision nodes. In this case they mark the
begin of branches that are based on a decision depending on variables. These variables

101

are named and represent the state space of the application as far as it is of interest to
the process model. At this point we have a second interface to the business logic of the
application that provides the according variable values.

The variables are evaluated by guards that are attached to the transitions emanating
from the decision node. The guards consist of an expression that considers some of the
variables and produces a Boolean value. During execution, the guard of each transition
is evaluated; the first transition whose guard evaluates to true is selected.

The expressions in guards consist of

– a left side which is always a variable identifier,
– an operator out of {==, ! =, <, <=, >, >=},
– a right side which is a literal value or another variable identifier.

These simple expressions can be aggregated to complex expressions with union (||)
and intersection (&&) operators.

2.3 Simple Nodes

Apart from activity and decision nodes, further nodes exist that have no properties ex-
cept a name. However, they control process flow with the transitions attached to them.
Beginning and termination of a process are marked by start nodes and end nodes. For
concurrent execution of processes, fork nodes can define the beginning of a parallel ex-
ecution. Concurrent flows are united in join nodes. Merge nodes bring different possible
paths after decisions together.

3 Pattern Definition

Now that we have outlined the process model features that we want to use to engineer
program code, we can define the design pattern that represents these model semantics.
This approach builds upon the concept of so-called internal DSLs [6], i.e. domain-
specific languages that are embedded into other languages (host languages). Semantics
of DSLs are by this means available inside a general-purpose programming language.
Furthermore, attribute-enabled programming [7] uses the capability of modern pro-
gramming language versions to incorporate type-safe, compiled meta data to annotate
source code fragments. These annotations can be used to make program code semanti-
cally interpretable even at run time. We combine these existing concepts to embed the
model definitions in code fragments. The rules for this are explained below. For each
section an illustration is given that shows the assignment of program code fragments to
process model elements. They are taken from a larger example that will be explained in
section 5.

The mapping has so far been implemented for the Java programming language,
version 5 [8], which includes all necessary language elements, especially annotations
for type-safe meta data [9].

102

3.1 Nodes and Transitions

The foundation of process models is the graph structure of process nodes and tran-
sitions between them. In the object-oriented program code fragments for the pattern,
each process node is represented by a class definition which implements the given in-
terface IProcessNode (“node class” in the following). This interface defines no methods,
but allows to distinguish between node classes and arbitrary other classes type-safely.
The class name corresponds to the process node name. Process nodes (except activity
nodes, see below) are decorated with meta data denoting their type (one of the enumer-
ation constants START, END, FORK, JOIN, DECISION, or MERGE).

Fig. 1. A process node represented in the design pattern. The single program code fragments refer
to the node’s name and type, a transition declaration and an empty guard.

Each transition is represented by a method (“transition method” in the following)
inside the node class it emanates from. A transition method is decorated with meta data
containing a pointer to the class definition representing the transition’s target node. With
these simple definitions, the basic process graph is embedded in static object-oriented
structures. The program code that is required for this is shown in figure 1.

3.2 Activities

The part of the design pattern that represents activities is slightly more complex since
it considers method contents also. As defined in the model above, we will in in this
context need variables that are available in the model semantics and represent input and
output parameters of activities. The variables are represented by an interface definition.
This interface provides methods for retrieving and setting variable values (“getter” and
“setter” methods in the following) which are identified by the names of these methods.

An activity node is also represented in the program code by a class definition.
However, activity nodes implement an interface IActivityNode which itself extends
IProcessNode. This interface defines a method void action(Object actor, Object variables

) whose body is an activity in program code. Passed to this method are two parameters:

103

First, the actor which is a type that encapsulates business logic of the surrounding ap-
plication; second, an implementation of the variables interface.

Fig. 2. Two exemplary activity methods. The first returns a value which is used as an output
parameter of this activity node by calling a setter method in the variables facade. The second has
an input parameter which is represented by a getter method.

The method body content follows these rules, as can be seen in figure 2:

– The actual activity is performed with a call to one of the methods of the actor
instance.

– The actor method can optionally take parameters. These parameters must each be
an expression containing a call to a getter method of the variables implementation.
They represent input parameters to this activity as defined in the process model.

– The actor method can optionally return a value which is passed to a setter method of
the variables implementation. This represents an output parameter of this activity.
Since the return value is used for this purpose, we limit the number of possible
output parameters in our pattern to 1.

3.3 Guards

As defined above, transitions between nodes are represented by methods. When the
methods emanate from decision nodes, they are required to have guards, i.e. evalua-

104

tions of variable values to allow for decisions. For our pattern we define that these
are represented by the method body of transitions methods. The body can therefore
contain expressions as defined in section 2.2, but with calls to getter methods of the
variables type. For example, the guard expression Value1>Value2 would be represented
in the source code as variables.getValue1()>variable.getValue2(). The according rules
apply for interleaving of expressions. An example is shown in figure 3.

Fig. 3. A guard represented by an expression in the body of a transition method.

However, a significant part of transitions methods are defined outside of decision
nodes and must have a well-defined content too. We define for this purpose that the
default content of such a method is return true. This is a valid program code statement
and will mean that no guard is defined for this transition.

4 Usage and Tools

While the use of the pattern itself may already structure the development process by
facilitating the definition of a mental model by the programmer, tool support for the
interpretation of the well-defined pattern fragments is desirable. We have so far devel-
oped two tools: An execution framework that interprets the fragments at run time, and a
connector to a visual modeling tool that allows to design the program code with process
semantics at development time.

4.1 Execution

The execution framework is based on Java reflection mechanisms. To start execution
of a process from arbitrary program code, the start node, an instance of the variables
type and the actor instance are passed to the framework. It instantiates all node types
that are reachable by transition annotations. Afterwards the framework walks through
the process by following transitions. Guards of transitions are evaluated in decision
nodes by invoking the transition method and passing the variables instance to it. In
activity nodes the framework calls the activity method and passes the variable and actor
instance to it. In fork nodes, new threads are started that walk through the additional

105

defined paths. The process is continued until the current state is the end state or the
framework runs into a deadlock in a decision node when no guard evaluates to true.

4.2 Modeling

The full benefit of working at different layers of abstraction can only be realized with
modeling tools that allow for visual representation of process semantics. We chose to
develop a connector to the JWT process modeling framework mentioned above. The
connector is realized inside the Eclipse’s Java Development Tools [10] environment.
When the user selects a package with Java classes inside Eclipse, the connector allows
to transform the source code inside this package into a process model. For this purpose
it searches for classes that are of interest to the pattern, i.e. classes that implement the
IProcessNode or IActivityNode interface. It builds a graph from them afterwards and
considers the following content:

– Node classes and transition methods are directly transformed to nodes and edges in
the model by using their respective names.

– Data types related to Java data types are defined for all variables.
– All methods defined in the actor class are defined as applications in the process

model.
– Activity methods are analysed according to the rules defined in section 3.2.
– If a transition method is inside a decision node and contains statements other than

return true, it is a guard and as such validated for conformity with the rules defined
in section 3.3 and extracted in a tree structure of single statements linked with the
valid set operators.

The model information is serialized into an XMI [11] file which is interpreted by the
JWT editor. The connector interprets the pattern complete enough to extract the whole
model. An example is shown in figure 4. The load generator application that can be seen
there is extracted from the code of an example that will be introduced in section 5.

Currently, our connector does not create or change Java code from models designed
in the editor. However, since all relevant information about the model is available in the
editor, this is as straight-forward as extracting the model out of the source code.

5 Example

As can be seen in the graphical representation, these simple rules for our pattern are
sufficient to embed complete process semantics in program code. We will now illustrate
the code structures in detail by means of an example application written in the Java
programming language. The example is a process model in a load generator application
for performance tests. We assume that the load generation is a complex operation that
may include networking issues, for example remote controlling of worker threads on
different physical machines. The details of load generation are therefore not in the focus
of the process model, but only the aspect of the behavior that controls the measurement,
which can be reduced to a few well-defined variables.

106

Fig. 4. A process model extracted from a pattern in the JWT editor. The example application
shown here is discussed in detail in section 5.

5.1 Description

The user can give a range of acceptable response times defined by two variables Ac-
ceptableMinimum and AcceptableMaximum which denote the limits. Load is generated
by a number of worker threads which is available in the variable NumberOfWorkers.
The number of workers is adjusted depending on the measurement results across dif-
ferent single measurements. The latest measurement result, represented by the average
response time of the system under test, is stored in the variable MeasurementResult.
The related interface LoadVariables in Java is shown in listing 1.1. It contains getter
methods for the range limits and the number of workers and pair of get and set method
for the measurement result.

This process model controls the flow of the application, the activities are delegates
to arbitrary program code. For this purpose, the actor type LoadGenerator is defined
as an interface to the business logic as seen in listing 1.1. The most important method
here is performMeasurement (see listing 1.2) that generates load with the given num-
ber of worker threads (initially 1). It returns a number value with the measured average
response time. Afterwards, the number of workers must be increased (method increase-
Workers) or decreased (method decreaseWorkers) when the load was below or above
the given range. After the measurement has finished, the result, i.e. the acceptable num-

107

public interface LoadVariables
{
double getAcceptableMinimum();
double getAcceptableMaximum();

double getMeasurementResult();
void setMeasurementResult(double result);

int getNumberOfWorkers();
}
public class LoadGenerator
{
public void increaseWorkers()
{ // ... }
public void decreaseWorkers()
{ // ... }
public float performMeasurement()
{ // ... }
public void showResults(int numberOfWorkers)
{ // ... }

}

Listing 1.1. The variables interface for the load generator example with the according
get and set methods

ber of workers, is shown to the user. The method showResults takes for this purpose one
parameter with the according number of workers.

These requirements are sufficient to define the activity nodes. To complete the
model, we must add the start and end node as well as a decision node that evaluates
the results after each measurement. It makes the decision to increase or decrease the
number of worker threads or alternatively finish the measurement based on the variable
values and defines for this purpose guards as shown in listing 1.2.

5.2 Evaluation

The example shows that, based on the pattern definition, a process model can be em-
bedded in the program code completely. The editing tool presented above allows to
model the behavioral model structures visually. The relation between code and model
is unambiguous, so that a transformation between both representations is possible. At
the same time, the source code is the only necessary representation from which other
representations for different degrees of abstraction can be extracted on demand.

In the use case of the load generator, working at different degrees of abstraction can
be important. When we imagine that load generation is distributed over the network,
working with time constraints for proper measurements and also using plug-ins that
can generate different types of load, it would be hard to find a modeling tool that allows
to express all this in behavioral models. In contrary, a framework for business processes
would be a large overhead and not an appropriate solution for the need to model this
simple process.

The embedded model pattern is therefore the adequate compromise: The process is
embedded in arbitrary business logic with arbitrary behavior. The program semantics
related to the process model are represented distinctly, the arbitrary program state is

108

public class MeasurementNode implements IActivityNode<LoadVariables, LoadGenerator
>

{
public void action(LoadVariables variables, LoadGenerator actor)
{
variables.setMeasurementResult(actor.performMeasurement());

}

@Transition(EvaluateMeasurementNode.class)
public boolean toSetResults(LoadVariables variables)
{
return true;

}
}

@ControlNode(ControlNodeType.DECISION)
public class EvaluateMeasurementNode implements IProcessNode
{
@Transition(IncreaseWorkersNode.class)
public boolean increase(LoadVariables variables)
{
return (variables.getMeasurementResult() < variables.getAcceptableMinimum());

}

@Transition(DecreaseWorkersNode.class)
public boolean decrease(LoadVariables variables)
{
return (variables.getMeasurementResult() > variables.getAcceptableMaximum());

}

@Transition(ShowResultsNode.class)
public boolean showResults(LoadVariables variables)
{
return ((variables.getMeasurementResult() >= variables.getAcceptableMinimum())

&& (variables.getMeasurementResult() <= variables.getAcceptableMaximum()))
;

}
}

Listing 1.2. The nodes that initiate and evaluate a measurement. The type is specified
with annotations and implemented interfaces; The action method contains the activity
with an output parameter, the other methods are transitions with guards

reduced to well-defined variables for this purpose. The definition of the pattern code
structures is certainly a little overhead, but allows to visualize the model on demand
and therefore comprehend the concept behind code structures easily. For the definition
in the context of the example application, the embedded model is therefore capable of
providing different levels of abstraction with respect to process semantics.

6 Related Work

Many approaches exist that try to engineer program code at different layers of abstrac-
tion.

Model Round-Trip Engineering concepts [12] allow to abstract from source code by
synchronizing it to abstract models. However, they require manual effort [13] and are
therefore not unambiguous enough to create these abstractions ad-hoc. In this context,

109

the attribute-oriented programming approach has already been explored to map UML
models to code structures [14], similar to Framework Specific Modeling Languages
[15]. In contrast to embedded models, these approaches rely on the existence of different
representations for different abstraction levels, and do not avoid round trip engineering.

Specification languages like the Java Modeling Language (JML) [16, 17] or the in-
trospection capabilities of Smalltalk [18] enable the definition of semantic information
and modeling constraints inside object-oriented source code and provide an extensive
syntax for this purpose. These meta data are though not related to formal models like
processes and are not detailed enough to extract model definitions completely into ab-
stract representations.

Contrary to the model checking approach of Java PathFinder [19] we do not con-
sider the semantics of a complete program as such. The same applies to the concept
of Introspective Model-Driven Development [20] that aims to identify unknown model
structures in the source code. Instead, we relate only selected parts of it that are well-
defined beforehand to existing formal models.

Similar to run time systems that execute process models are Executable Models,
for example “executable UML” [21], that aim to avoid working with source code com-
pletely by direct execution of model specifications. This relies on the assumption that
entire applications can be expressed as models, which is – especially for behavioral
modeling – not realistic from our point of view, as mentioned in the introduction.

7 Conclusion

We presented an alternative approach to behavioral modeling. To allow working at dif-
ferent levels of abstraction when program code is engineered, we defined a pattern that
represents process model semantics in object-oriented source code fragments. Arbi-
trary source code can thus be enriched with semantical information where applicable.
Although the pattern definition is still elementary so far, we have already proven that
the approach is capable to fulfill the requirements: The creation of the connector to the
JWT process modeling tool shows that an unambiguous interpretation of the pattern
fragments is possible. We can also execute the process model at run time while it is still
part of the program code of arbitrary applications.

Future work will focus on the aspect of editing the source code: Instead of only
extracting the model from the code, we will create a connector for the opposite direction
that creates source code from a model or merges changes back to the source code. Our
vision is a modeling tool that allows for continuous working at different abstraction
levels by offering different views on the same program code to engineer.

References

1. Fowler, M.: PlatformIndependentMalapropism (2003) http://martinfowler.com/
bliki/PlatformIndependentMalapropism.html.

2. Brown, A.W., Iyengar, S., Johnston, S.: A Rational approach to model-driven development.
IBM Systems Journal 45(3) (2006) 463–480

110

3. Balz, M., Striewe, M., Goedicke, M.: Embedding Behavioral Models into Object-Oriented
Source Code. In: Software Engineering 2009. Fachtagung des GI-Fachbereichs Soft-
waretechnik, 2.-6.3.2009 in Kaiserslautern. (2009)

4. The Eclipse Foundation: ECLIPSE website http://www.eclipse.org/.
5. The Eclipse Foundation: JWT website http://www.eclipse.org/jwt/.
6. Fowler, M.: InternalDslStyle (2006) http://www.martinfowler.com/bliki/

InternalDslStyle.html.
7. Schwarz, D.: Peeking Inside the Box: Attribute-Oriented Programming with Java 1.5. ON-

Java.com (June 2004) http://www.onjava.com/pub/a/onjava/2004/06/30/
insidebox1.html.

8. Gosling, J., Joy, B., Steele, G., Bracha, G.: JavaTMLanguage Specification, The 3rd Edition.
Addison-Wesley Professional (2005)

9. Sun Microsystems, Inc.: JSR 175: A Metadata Facility for the JavaTMProgramming Lan-
guage (2004) http://jcp.org/en/jsr/detail?id=175.

10. The Eclipse Foundation: Eclipse Java Development Tools (2008) http://www.
eclipse.org/jdt/.

11. OMG: MOF 2.0 / XML Metadata Interchange (XMI), v2.1.1 specification (2007)
12. Sendall, S., Küster, J.: Taming Model Round-Trip Engineering. In: Proceedings of Workshop

on Best Practices for Model-Driven Software Development. (2004)
13. Hailpern, B., Tarr, P.: Model-driven development: The good, the bad, and the ugly. IBM

Systems Journal 45(3) (2006) 451–461
14. Wada, H., Suzuki, J.: Modeling Turnpike Frontend System: A Model-Driven Develop-

ment Framework Leveraging UML Metamodeling and Attribute-Oriented Programming. In
Briand, L.C., Williams, C., eds.: Model Driven Engineering Languages and Systems, 8th
International Conference, MoDELS 2005, Montego Bay, Jamaica, October 2-7, 2005, Pro-
ceedings. Volume 3713 of Lecture Notes in Computer Science., Springer (2005) 584–600

15. Antkiewicz, M., Czarnecki, K.: Framework-Specific Modeling Languages with Round-Trip
Engineering. [22] 692–706

16. Beckert, B., Hähnle, R., Schmitt, P.H.: Verification of Object-Oriented Software. The KeY
Approach. Springer-Verlag New York, Inc. (2007)

17. Leavens, G.T., Baker, A.L., Ruby, C.: JML: A Notation for Detailed Design. In Kilov,
H., Rumpe, B., Simmonds, I., eds.: Behavioral Specifications of Businesses and Systems,
Kluwer (1999) 175–188

18. Ducasse, S., Gîrba, T.: Using Smalltalk as a Reflective Executable Meta-language. [22]
604–618

19. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model Checking Programs. Auto-
mated Software Engineering Journal 10(2) (2003)

20. Büchner, T., Matthes, F.: Introspective Model-Driven Development. In: Software Architec-
ture, Third European Workshop, EWSA 2006, Nantes, France, September 4-5, 2006. Volume
4344 of Lecture Notes in Computer Science., Springer (2006) 33–49

21. Mellor, S.J., Balcer, M.J.: Executable UML. Addison-Wesley (2002)
22. Nierstrasz, O., Whittle, J., Harel, D., Reggio, G., eds.: Model Driven Engineering Lan-

guages and Systems, 9th International Conference, MoDELS 2006, Genova, Italy, October
1-6, 2006, Proceedings. Volume 4199 of Lecture Notes in Computer Science., Springer
(2006)

111

