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Abstract 
 

In this paper we address the problem of analyzing and 
managing complex dynamic scenes captured in video. We 
present an approach to summarize video datasets by 
analyzing the trajectories of objects within them. Our 
work is based on the identification of nodes in these 
trajectories as critical points that describe the behavior of 
an object over a video segment. The time instances that 
correspond to these nodes are used to select critical 
frames for a video summary that describes adequately 
and concisely an object’s behavior within a video 
segment. The analysis of relative positions of objects of 
interest within the video feed may dictate the selection of 
additional critical frames, to ensure the separability of 
converging trajectories. The paper presents a framework 
for video summarization using this approach, and 
addresses the use of self-organizing maps to identify 
trajectory nodes.  
 
 
1. Introduction 
 

The aspect of time becomes increasingly important in 
modern geospatial applications. In addition to traditional 
discrete multitemporal datasets (e.g. maps of the same 
area at various time instances), dynamic events are also 
captured in video datasets. Video data processing and 
analysis, and video database management present well-
known challenges, mostly associated with the size and 
complexity of the information space that has to be 
explored.  

In this paper, we address the problem of analyzing and 
managing complex dynamic scenes depicted in video 
datasets. Efficient modeling of dynamic environments is 
an important step towards the analysis and management 
of large video datasets. In modern geospatial applications, 

dynamic environments tend to be multidimensional, 
including spatial and temporal dimensions complemented 
by content and knowledge. The objective of the process 
described in this paper is the generation of information-
rich summaries of video scenes that will describe the 
spatio-temporal behavior of objects within a depicted 
scene. These summaries are envisioned as new concise 
multimedia videos comprising vectors and images that 
portray the significant parts of the original video dataset.  

The development of concise representation schemes is 
essential for the search, retrieval, interchange, query, and 
visualization of the information included in video 
datasets. Efforts towards this direction include attempts to 
summarize video by selecting discrete frames at standard 
temporal intervals (e.g. every n seconds). However, such 
an approach would typically fail to capture and represent 
the actual content of the original video dataset. 
Summarization alternatives include the use of image 
templates, statistical features and histogram based 
retrieval and processing [1]. Video summaries have also 
been proposed, taking into consideration both visual and 
speech properties to construct a “skim” video that 
represents a synopsis of the original video. This “skim” 
Video is constructed by merging segments of the original 
video [2]. Video posters are proposed alternatives to 
describe story content [3], while [4] has presented 
approaches to identify different scenes within a video 
stream by analyzing a variety of properties (e.g. dominant 
motion, and various histogram properties). In the 
trajectory domain, for fixed environments, systems extract 
and recognize moving objects, and classify their motion. 
[5], [6]. In addition, generation of spatiotemporal 
synthetic datasets to simulate movement trajectories is 
seen in [7].  

Here we present an approach to summarize video 
datasets by analyzing the trajectories of objects within 



them. Our work is based on the identification of nodes in 
these trajectories as critical points in the video stream. 
These nodes form a generalization of the trajectory of a 
moving object within a video stream. The time instances 
that correspond to these nodes provide the critical frames 
for a video summary that describes adequately and 
concisely an object’s behavior within a video segment. In 
doing so, we benefit from substantial advancements in 
object extraction from digital imagery, and video image 
processing.  

The paper presents a framework for video 
summarization using this approach. Section 2 offers an 
overview of our overall approach. In section 3 we present 
the role of nodes in generalization, together with an 
algorithm for their selection. Section 4 shows the 
extension of this concept for multiple objects, and section 
5 presents the use of this summarization in hierarchical 
data models. Experimental results are used throughout the 
paper to demonstrate the performance of the designed 
algorithms.  
 
2. Overview of Proposed Approach 
 

In monitoring applications, the background usually 
remains fixed while objects move throughout the scene 
(e.g. cars moving in a parking lot monitored by a camera 
atop a nearby building). In such an environment, the 
crucial elements for video generalization are those 
describing the behaviors of the moving objects in time. 
We consider the spatiotemporal space of a scene as 

comprising two (x,y) spatial dimensions and one (t) 
temporal dimension. Object movements are identified by 
tracing objects in this 3-dimensional (x, y, t) space. These 
trajectories are the basic elements upon which our 
summarization scheme is based. An outline of our 
approach is shown in Fig. 1. The spatial coordinates are 
those defined by the image space(x,y). If we want to 
translate them into survey coordinates we can use any of 
the well-known orientation models and relevant 
pose/rotation parameters of the specific video camera.  

We base our selection of representative frames on the 
segmentation of trajectory lines into break points termed 
“nodes”. The nodes are distributed dynamically to capture 
the information content of regions within the above 
mentioned 3-D S-T space. More nodes are assigned where 
trajectory presents S-T breakpoints (e.g. moving at fixed 
velocity in a straight line from point A to point B), and 
fewer nodes are assigned to segments where the 
spatiotemporal behavior of an object is smooth. Node 
placement is based on concepts of self organizing maps 
(SOM) from neural network theory. The number of nodes 
may be selected to control the degree of generalization, 
similar to the number of nodes in a k-means approach. 
Using more nodes (resp. fewer) will result in lower (resp. 
higher) generalization of the original video signal. The 
spatiotemporal trajectories and generalization nodes lay 
down the framework to express the content of video 
datasets via tree-like hierarchical data structures. These 
hierarchical data models describe object movement in a 
scene, and are based on the expansion of standard octrees.

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Outline of the proposed approach 
 

Nodes octree 

Trajectories in x, y, t 

Multimedia 
Visualization of summary 

Trajectory octree  

Topology  



The summary of a video is a new shorter video, which 
includes a base map-image representing the background 
of the monitored area. Actual video frames are used at 
node instances, while the behavior of objects between 
nodes is represented by rapidly evolving vectors (e.g. 
moving spots or trace lines). The time it takes to bridge 
nodes in a video summary depends on the desired 
duration of the video summary. It is analogous to 
selecting a tape speed to fast forward between events. 
High speed results into shorter, more concise video 
summaries. The choice of generalization resolution is a 
function of the application at hand and specific user 
needs. This visualization aspect is beyond the focus of 
this paper; we focus on node selection in this scenario.  

Combined, the above provide a novel approach to 
manage dynamic scene analysis at higher levels of 
abstraction, and to visualize concisely the behavior of 
moving relations in a scene. In doing so we benefit from 
advancements in computer vision and digital image 
analysis, and transfer methodologies from these areas into 
spatiotemporal analysis. The above outlined processes 
offer a robust and consistent way to describe the content 
of video datasets, and provide a powerful environment for 
further analysis. This new abstract environment of data 
summaries is a first step toward complex scene 
understanding, behavior comparisons, and information 
dissemination. While we assume a fixed sensor, we could 
easily handle the case of a moving sensor by relating the 
variable video coordinates to the fixed axes of a suitable 
mosaic model [8]. 
 
3. Summarization of Video Data 
 
3.1. Generalization in S-T Cubes 
 

Temporal generalization in a video sequence is 
equivalent to dividing the time coordinate in varying 
intervals. In our approach we do not address the 
generalization of the spatial coordinates (x, y) as methods 
like scale space analysis offer readily solution to that 
problem. These intervals can be defined dynamically by 
incorporating spatial or other knowledge. According to 
the desired degree of generalization, the intervals may 
increase (higher generalization) or decrease (lower 
generalization). Our main consideration with a video 
sequence is to capture the behavior of moving objects and 
their relations within a fixed-background scene. 
Therefore, our generalization procedure is primarily 
driven by these moving objects.  

In the previously defined S-T cube, each frame is 
registered at the time (t) of its acquisition. Assuming a 
fixed camera, the spatial dimensions (x,y) of the cube 
coincide with the image coordinate systems of each 
individual frame. In that sense, individual frames pile up 
on top of each other to form the 3-D S-T cube. The 

movement of an object within this cube manifests as a set 
of point clouds (e.g. resulting from an image 
classification) moving over time. Treating the S-T cube as 
a quasi-continuous representation of reality, the trajectory 
of an object defines a linear feature within this 3-D space, 
by connecting all positions of the same object over time. 
The trajectory begins at point (xi

0, yi
0, ti

0) and ends at 
point (xi

n, yi
n, ti

n), where (xi
0, yi

0) are the image 
coordinates of object i at the time ti

0 that it first appears in 
the video field of view, and (xi

n, y
i
n) are the corresponding 

coordinates at the time ti
n that it moves outside the video 

field of view. Generalization of the video stream will be 
based on the generalization of this trajectory. Trajectory 
generalization will be performed by distributing nodes 
over this linear feature. The spacing of nodes is performed 
automatically, using SOM technique to capture the 
information content of the given trajectory.  
 
3.2 Single Object Trajectory Analysis using SOM 
 

The self-organizing map (SOM) algorithm [9,10] is a 
nonlinear and nonparametric regression solution to a class 
of vector quantization problems, which is used herein as 
the method for information abstraction. The SOM belongs 
to a distinct class of artificial neural networks (ANN) 
characterized by unsupervised and competitive learning. 
Essentially an iterative clustering technique, the SOM 
differs from traditional clustering methods, such as K-
means or ISODATA, in three fundamental ways: 1) 
cluster centers are spatially ordered in the input space 
according to a predefined topology, 2) a shrinking 
neighborhood function is used to act as a smoothing 
kernel over the cluster center adjustments, and 3) cluster 
centers are updated sequentially versus batch. The 
network space ℜ N exists independent of the input space 
ℜ I, and the objective of the SOM is to define a mapping 
from ℜ I

m onto ℜ N
d where m ≥ d. To demonstrate, let p(X) 

describe a probability density function in ℜ I
2 for the input 

vector, 
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Each connection or synapse, between a component of X 
and any single node k located in network space has an 
associated weight. The components of each weight vector 
are defined in ℜ I

2, which has the same dimensionality of 
X, or,  
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By initializing the contents of W in ℜ I

2 for each node, the 
goal of competitive learning is to reward the node k that 
optimally satisfies a similarity measure between a given X 



compared against all Wk . Using the L2 (Euclidean) norm 
as the similarity metric, a winning node q is determined 
as, 
 

....,,2,1for   ,minargnode Kkq k
k

=−= WX  (3) 

 
where K is the total number of nodes in ℜ N

1. The 
appropriate weight vectors are updated sequentially for 
each input sample according to Kohonen’s learning rule, 
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Here, X(n) represents the n-th sample drawn from N total 
input space samples, Wk(n) are the node weights at the n-
th iteration, and Wk(n+1) are the updated weights for the 
n-th iteration. A time variable t is measured in epochs, 
each of which represents a complete presentation of N 
input samples to the network. A learning rate function, 
defined as 0 < η(t) < 1, dynamically controls the relative 
rate of weight updates. The neighborhood function hq(t) 
centered on the winning node, is defined as 0 < hq(t) ≤ 1. 
The network nodes adapt to the local density fluctuations 
in p(X) through ordering and refinement phases, during 
which hq(t) → 0 as t → ∞. Multiple epochs (iterations) are 
typically required for asymptotic convergence of the 
algorithm. The basic SOM algorithm is summarized as 
follows [11]: 
1. Initialize the synaptic weight vectors W(n=1) for K 
nodes. 
2. Randomly draw an unseen sample X(n) from the input 
space. 
3. Determine the winning node q using a similarity metric 
as in eq. (3). 
4. Update W for winners using eq. (4). 
5. Return to step 2, and iterate until stopping criteria 
(checked after each epoch) are satisfied. 
SOM is used in [12], as a technique in which robust road 
delineation within a noisy image environment is 
performed. Extending the SOM to the ST domain is 
illustrated in fig.2, in which an 8-node neural chain is 
used to abstract local velocity fluctuations from a moving 
object. 
 
 
 
 
 
 
 
 
 
 
 

 
4. Multiple object trajectory analysis 
 

The consideration of multiple objects brings forward 
the need to address two issues. First, we have to select 
specific time instances for our video summaries using 
independent nodes from multiple trajectories. Second, we 
have to consider the introduction of additional nodes 
when taking into account the proximity of two or more 
trajectories. One can easily understand that the set of 
temporal coordinates of the nodes describing the path of 
object i and those describing the path of another object j 
may be totally disjoint. According to the density and the 
dissimilarity of the S-T trajectories and the corresponding 
nodes, we can follow different strategies for merging a 
complex scene summary: 

An obvious solution is to use the nodes from all S-T 
trajectories and reference all moving objects to every 
estimated node. This results in a relatively large summary, 
depending on the number and behavior of the objects.  

Another solution is to define nodes according to the 
most demanding moving object and project all other node 
sets to this dominant set. If the behaviors of scene objects 
are incompatible then the other objects are not efficiently 
represented. One way to overcome the overcrowded node 
collection is to group sets of nodes over a minimal 
increment t and identify an average temporal position tav 
to substitute individual nodes. This allows us to minimize 
the number of nodes and the complexity of the produced 
summary.  

Furthermore, by using the SOM we can obtain a 
“medium” estimation of node selection upon the whole 
set of moving objects. This gives a summary of the whole 
scene, which does not explicitly depict behavior 
information for single objects. On the other hand, it 
provides a technique to unravel mass behavioral attitudes 
in the scene. For instance if a police car enters the scene, 
the majority of the moving cars tend to slow down.  

The relations between two or more moving objects 
define significant information. Therefore, we introduce 
mandatory nodes termed as “relational” when the 
proximity defined in the S-T cube between two or more 
objects drops below a threshold. Furthermore, we can 
introduce spatial regions of interest within which we wish 
to monitor more closely the behavior of objects (e.g. the 
entrance of a bank within the broader field of view of a 
monitoring video). In the S-T cube we construct new 3-
dimensional regions and when a trajectory passes through 
these regions, we add mandatory nodes in order to include 
this information in the summary. These types of nodes are 
termed as “reasoning” nodes. In fig.3 we show the S-T 
trajectories of two objects. The area of interest is 
projected as a cylinder in the S-T space and it defines two 
reasoning nodes while a relational node is introduced 

Figure 2. Information abstraction in the ST domain. 
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Figure 3. Mandatory nodes for multiple S-T 
trajectories. 

 
5. Hierarchical data models 

 
In the previous sections, we presented a methodology 

to transfer video content from the original video to the S-
T trajectory space. We now present the modeling of 
trajectories by representing them with hierarchical tree 
structures. Use of hierarchical data structures provides 
higher level of information and leads to computationally 
less expensive management of large datasets. Sorting data 
according to their spatial occupancy through tree 
structures is a promising data manipulation scheme [13, 
14]. Topological spatial relations support spatial analysis 
with focus on relations in a higher information level 
where further processing is accommodated.  

According to the octree structure, decomposition of 
data volume is performed iteratively in a step by step 
fashion by dividing the space into eight disjoint cubes 
with the aim of eventually meeting a resolution criterion. 
If any of the cells is homogenous, i.e. the cell lies entirely 
inside or outside an object, or satisfies the resolution 
criterion, the sub-division stops. If the cell is 
heterogeneous then it is sub-divided further into eight 
sub-cells until the prespecified criteria are met. The 
information on the original video stream is compactly 
represented and the leaf nodes represent minimum 
resolution segments. In the S-T trajectory space, the 
process produces a summary of the information while in 
the node domain we model the S-T occupancy of the 
nodes. 
 
5.1. S-T trajectory space 
 

The octree deals with the representation of a 
continuous curve or a group of discrete yet numerous 

points. The characteristics of the octree design are the 
following: 
• Input data is a 3D set of points (x, y, t)i. 
• The decomposition process is based on standard octree 
decomposition as described above.  
• The termination criterion is of dual nature. First, it 
depends on the complexity of the curve included in the 
cube. If the curve is not complex there is no need for 
further decomposition. If a complexity threshold is met 
then we continue decomposition of S-T space. Second, if 
the cube reaches a predefined volume value then the 
process terminates even when the complexity of the curve 
is still large. Complexity is defined by measuring the 
angle of the intersection of the cube with the curve. 
Another more precise measure of the complexity is by 
taking the summation of the measured angle between 
every three points of the curve and project it to the 
distance between them. The decomposition process, 
criterion checking and the form of the octree is shown in 
figure 4.  
 
5.2. S-T node space 
 
In the node space the design is similar and it includes:  
• The input data is again a set of points of (x, y, t) space 
but they are sparse.  
• Decomposition of S-T space remains the same.  
• The subdivision is terminated when each cube has at 
most one node.  
Accordingly, the decomposition procedure and the 
termination criterion is shown in the fig.5 while the tree is 
of the same structure. In the octree domain codes and 
algorithms are available for further processing and for 
recognizing efficiently some particular pattern in the 
image, aiding behavior matching and querying in a 
coarser information level. 
 
6. Concluding Remarks 
 

The figures presented in the previous sections are early 
implementation results from our work in the research 
direction of video summarization. They demonstrate the 
capability of the presented approach to generate 
information-rich summaries of video datasets to convey 
the spatiotemporal behavior of moving objects within 
them. The use of digital image analysis techniques for this 
summarization offers great advantages, the potential for 
full automation, and the ability for objective yet 
meaningful analysis of video datasets with being but two 
among many such advantages.  

One could argue that the greatest advantage of the 
presented approach lies in the potential offered for 
subsequent analysis. The S-T trajectories of moving 
objects  and  their  summarization  enable  the  subsequent  
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Figure 4. Decomposition of space and winning cubes, criterion check and Tree structure. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Decomposition of space, winning cubes and criterion check of S-T node octree 

 
 
 
analysis of complex behavioral patterns. By treating 
object movements as linear features we can take 
advantage of numerous digital image analysis techniques 
(especially image matching) to establish similarities 
among such movements. These comparisons can lead to 
the establishment of behavioral trends, and the 
identification of complex behavioral patterns. Our future 
work will concentrate on the establishment of metrics for 
such analysis. 
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