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Abstract: This study relates negative binomial and generalized Poisson regression models through the mean-
variance relationship, and suggests the application of these models for overdispersed or underdispersed count 
data. In addition, this study relates zero-inflated negative binomial and zero-inflated generalized Poisson 
regression models through the mean-variance relationship, and suggests the application of these zero-inflated 
models for zero-inflated and overdispersed count data. The negative binomial and generalized Poisson regression 
models were fitted to the Malaysian OD claim count data, whereas the zero-inflated negative binomial and zero-
inflated generalized Poisson regression models were fitted to the German healthcare count data. 
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1. INTRODUCTION 
Poisson regression has been widely used for fitting count data. As examples, in insurance area, 

Aitkin et al. (1990) and Renshaw (1994) fitted Poisson regression to two different sets of U.K. 

motor claim data, whereas in healthcare area, Riphahn et al. (2003) fitted the model to German 

Socioeconomic Panel (GSOEP) data. However, count data often display overdispersion and 

inappropriate imposition of Poisson regression may underestimate the standard errors and overstate 

the significance of regression parameters. Quasi Poisson regression has been suggested to 

accommodate overdispersion in count data and the advantage of using this model is that the model 

can be fitted without knowing the exact probability function of the response variable, as long as the 

mean is specified to be equivalent to Poisson mean and the variance can be written as a linear 

proportion of Poisson mean. To account for overdispersion, quasi Poisson regression produces 

regression estimates equivalent to Poisson regression, but standard errors larger than Poisson 

regression (Ismail and Jemain 2007). In insurance applications, McCullagh and Nelder (1989) fitted 

quasi Poisson regression to damage incidents of cargo-carrying vessels and Brockman and Wright 

(1992) fitted the model to U.K. own damage motor claim data. 

 

 Besides quasi Poisson regression, several mixed Poisson regressions have been considered as 

alternatives for handling overdispersed count data. The details of mixed Poisson regressions such as 

Poisson-inverse Gaussian (PIG), Poisson-lognormal (PLN) and Poisson-gamma (or negative 

binomial) can be found in Denuit et al. (2007), who applied these models for accommodating 
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overdispersed claim data. For the case of both overdispersed and underdispersed count data, 

generalized Poisson and COM-Poisson regression models have been suggested and fitted by several 

researchers (Consul 1989, Consul and Famoye 1992, Famoye et al. 2004, Wang and Famoye 1997, 

Conway and Maxwell 1962, Shmueli et al. 2005, Lord et al. 2008, Lord et al. 2010). 

 

 Several parameterizations have been performed for negative binomial (NB) regression, and 

the two well known models, NB-1 and NB-2, have been applied (Cameron and Trivedi 1986, 

Lawless 1987, McCullagh and Nelder 1989, Cameron and Trivedi 1998, Winkelmann 2008, Hilbe 

2007). However, both NB-1 and NB-2 regressions are not nested, and appropriate statistical tests to 

choose a better model cannot be carried out. Recently, the functional form of NB regression has 

been extended and introduced as NB-P regression, where both NB-1 and NB-2 regressions are 

special cases of NB-P when 1P   and 2P   respectively (Greene 2008). The advantage of using 

NB-P regression is that it parametrically nests both NB-1 and NB-2 regressions, and hence, allowing 

statistical tests of the two functional forms against a more general alternative. In particular, 

likelihood ratio test can be implemented for choosing between NB-1 against NB-P regressions, or 

NB-2 against NB-P regressions. Applications of several parameterizations for NB, PIG and PLN 

regressions can be found in Boucher et al. (2007), who fitted NB (NB-1, NB-2 and NB-K+1), PIG 

(PIG-1, PIG-2 and PIG-K+1) and PLN (PLN-1, PLN-2 and PLN-K+1) regressions to Spanish 

motor claim data. 

 

 Several parameterizations have also been performed for generalized Poisson (GP) regression 

where the two well known models, GP-1 and GP-2, have been applied for dealing with 

overdispersed as well as underdispersed count data (Consul and Jain 1973, Consul 1989, Consul and 

Famoye 1992, Famoye et al. 2004, Wang and Famoye 1997, Ismail and Jemain 2007). Similar to NB-

1 and NB-2 regressions, both GP-1 and GP-2 regressions are not nested and appropriate statistical 

tests to choose a better model cannot be performed. Recently, the functional form of GP regression 

has been extended and introduced as GP-P regression, where both GP-1 and GP-2 regressions are 

special cases of GP-P when 1P   and  2P   respectively (Zamani and Ismail 2012). The advantage 

of using GP-P is that it parametrically nests both GP-1 and GP-2, and therefore, allowing statistical 

tests of the two functional forms against a more general alternative. In particular, likelihood ratio test 

can be implemented for choosing between GP-1 against GP-P regressions, or GP-2 against GP-P 

regressions. 

 

 In terms of properties, there is no big difference between NB and GP distributions when the 

means and variances are fixed, but, GP distribution has heavier tail whereas NB distribution has 
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more mass at zero (Joe and Zhu 2005). In addition, the score tests for overdispersion in Poisson vs. 

NB (NB-1 and NB-2) regressions and Poisson vs. GP (GP-1 and GP-2) regressions are equal (Yang 

et al. 2007, Yang et al. 2009a).  

 

 In several cases, count data often have excessive number of zero outcomes than are 

expected in Poisson regression. As an example, the proportion of zero claims in motor insurance 

data may increase due to the conditions of deductible and no claim discount that discourage insured 

drivers to report small claims (Yip and Yau 2005). In healthcare area as another example, services of 

psychiatric outpatient may report a large proportion of zero utilization of such services for many 

patients (Neelon et al. 2010). Zero-inflated datasets can also be found in other areas such as 

environmental sciences (Agarwal et al. 2002), medicine (Bohning et al. 1996) and manufacturing 

(Lambert 1992). Zero-inflation phenomenon is a very specific type of overdispersion, and zero-

inflated Poisson (ZIP) regression has been suggested to handle purely zero-inflated data. ZIP 

regression mixes a distribution degenerate at zero with a Poisson distribution, by allowing the 

incorporation of explanatory variables in both the zero process and the Poisson distribution. 

 

 As an alternative to ZIP regression, one may consider zero-inflated negative binomial 

(ZINB) regression if the count data continue to suggest additional overdispersion. ZINB regression 

is obtained by mixing a distribution degenerate at zero with a NB distribution, by allowing the 

incorporation of explanatory variables in both the zero process and the NB distribution. 

Applications of ZINB-1 and ZINB-2 regressions can be found in Ridout et al. (2001). 

 

 Besides ZINB, zero-inflated generalized Poisson (ZIGP) regression has been proposed as an 

alternative to handle zero-inflation and additional overdispersion in count data. ZIGP regression, 

which mixes a distribution degenerate at zero with a GP distribution and allows the incorporation of 

explanatory variables in both the zero process and the GP distribution, have been applied by 

Famoye and Singh (2006) for domestic violence data and by Yang et al. (2009b) for apple shoot 

propagation data. However, both ZIGP-1 and ZIGP-2 regressions are not nested and appropriate 

statistical tests to choose a better model cannot be carried out. Recently, the functional form of 

ZIGP regression has been extended and introduced as ZIGP-P regression (Zamani and Ismail 

2013a), where ZIGP-1 and ZIGP-2 regressions are special cases of ZIGP-P regression when  1P   

and 2P    respectively. The advantage of using ZIGP-P regression is that it parametrically nests 

both ZIGP-1 and ZIGP-2 regressions, and hence, allowing statistical tests of the two functional 

forms against a more general alternative. In particular, likelihood ratio test can be implemented for 

choosing between ZIGP-1 against ZIGP-P regressions, or ZIGP-2 against ZIGP-P regressions. 
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 Even though ZIGP regression is a good competitor of ZINB regression, in several cases, 

ZINB regression may not provide converged values in the iterative technique of the fitting 

procedure, and thus, ZIGP regression may be considered as an alternative (Famoye and Singh 2006). 

In addition, when both zero-inflation and overdispersion exist in count data, ZIGP regression 

behaves similarly to ZINB regression. As examples, Yang et al. (2009b) proved that the score 

statistics for testing overdispersion in ZIP against ZIGP (ZIGP-1 and ZIGP-2) regressions and ZIP 

against ZINB (ZINB-1 and ZINB-2) regressions are equal, whereas Joe and Zhu (2005) proved that 

ZIGP distribution provides better fit than ZINB distribution when there is a large zero fraction and 

heavy tail, implying that the ZIGP regression can be used as an alternative for modeling zero-

inflated and overdispersed count data. 

 

The objectives of this study are: 

 to relate NB and GP regressions through the mean-variance relationship, 

 to suggest applications of these models for overdispersed or underdispersed claim count 

data, 

 to relate ZINB and ZIGP regression models through the mean-variance relationship, and 

finally, 

 to suggest applications of these zero-inflated models for zero-inflated and overdispersed 

claim count data. 

 

 

2. NB REGRESSION MODELS 
Let 1 2( , ,..., )T

nY Y Y
 
be the vector of count random variables and n  be the sample size. The 

probability mass function (p.m.f.) for Poisson regression is, 

 

 

exp( )
Pr( ) , 0,1,...

!

iy
i i

i i i
i

Y y y
y

 
                                               (1) 

 

with mean and variance ( ) ( )i i iE Y Var Y   . The mean or the fitted value can be assumed to 

follow a log link, ( ) exp( )i iE Y   ix 'β , where ix  denotes the vector of explanatory variables and 

β   the vector of regression parameters. The maximum likelihood estimates can be obtained by 

maximizing the log likelihood. 
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 The latent heterogeneity can be incorporated by rewriting the conditional mean of Poisson 

regression as (Cameron and Trivedi 1986, Cameron and Trivedi 1998, Winkelmann 2003, Greene 

2008), 

 

 ( | ) exp( )i i i i iE Y k    ix 'β , 

 

where exp( )i ik   is assumed to follow gamma distribution with mean 1 and variance 1v a  , 

with probability density function (p.d.f.), 

 

 
1 exp( )

( ) ,      0, 0,
( )

v v
i i

i i

v k vk
f k k v

v

 
  


               

 

so that the conditional Poisson regression is, 
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The marginal distribution is NB regression with p.m.f., 

 

 

1

0

( )
Pr( )  

! ( )

( )
                ,      0,1, 2,...,

! ( )

i i i i

i

k y vkv v
i i i

i i i
i

v y

i i
i

i i i

e k v e k
Y y dk

y v

y v v
y

y v v v

 


 

   

 


    
         


.                         (2) 

 

where the mean is iiYE )( , the variance is 1( ) (1 ) (1 )i i i i iVar Y v a       , and 1v a   

denotes the dispersion parameter. The NB regression in (2) is also referred as NB-2 regression. 

Another parameterization for NB regression is by letting 1
iv a   in (2) to produce NB-1 

regression, with mean iiYE )(
 
and variance ( ) (1 )i iVar Y a  . Another parameterization is the 

NB-P regression, which is produced by letting 1 2 P
iv a    in (2), so that the mean is iiYE )(

 
and the variance is 1( ) (1 )P

i i iVar Y a    , where a  denotes the dispersion parameter and P  the 

functional parameter (Greene 2008). 

 

 NB regressions reduce to Poisson regression in the limit as 0a  , and display 

overdispersion when 0a . In addition, NB-P regression reduces to NB-1 when 1P   and reduces 

to NB-2 when 2P  . Therefore, NB-P regression parametrically nests both NB-1 and NB-2, and 
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allows statistical tests of the two functional forms against a more general alternative. The mean of 

NB regressions can also be assumed to follow the log link, ( ) exp( )i iE Y   ix 'β , and the 

maximum likelihood estimates can be obtained by maximizing the log likelihood. 

 

 NB-P regression can be fitted to count data using R program. For faster convergence, 

estimated parameters from fitting Poisson regression can be used as initial values. Both NB-1 and 

NB-2 regressions can also be fitted using the same fitting procedure, by letting the functional 

parameter, P, to be fixed at P=1 and P=2 respectively for NB-1 and NB-2. 

 

 We can also use MASS package in R to fit Poisson and NB-2 regression models. If we use glm 

function and set family=poisson, we can get Poisson regression. If we use glm.nb function, we can get 

NB-2 regression.  

 

 

3. GP REGRESSION MODELS 
The p.m.f of GP distribution is (Consul and Famoye 1992), 

  
1( ) exp( )

Pr( ) ,      0,1,2,...
!

iy
i i

i i i
i

vy vy
Y y y

y

    
   ,                  (3) 

 

where 0 
 
and 4max( 1, ) 1v    . The mean and variance are 1( ) (1 )iE Y v   

 
and 

3 2( ) (1 ) (1 )iVar Y v v      , where 2(1 )v   denotes the dispersion factor and v  the dispersion 

parameter.  

 

There are two well known parameterizations for GP regression, referred as GP-1 and GP-2. 

By letting  (1 )i iv    in (3), GP-1 regression is produced with mean ( )i iE Y 
 
and variance 

2( ) (1 )i iVar Y v   . GP-1 regression reduces to Poisson regression when 0v  , allows 

overdispersion when 0v  , and allows underdispersion when 0v  . A new form of GP-1 

regression, which has the same properties but different form of p.m.f., was recently proposed in 

Zamani and Ismail (2012) by rewriting 1(1 )v a a    and 1(1 )i ia    in (3). The mean and 

variance of new GP-1 regression are ( )i iE Y 
 
and 2( ) (1 )i iVar Y a   , where a   denotes the 

dispersion parameter. The other parameterization is GP-2 regression, involving the parameterization 

of 1(1 )i iv a a  
 

and 1(1 )i i ia     in (3), with mean ( )i iE Y 
 

and variance 
2( ) (1 )i i iVar Y a   . Another parameterization is GP-P regression, which was recently proposed 

in Zamani and Ismail (2012), obtained using 1 1(1 )P
i i ia      and 1 1 1(1 )P P

i iv a a      in (3). 
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The mean and variance of GP-P regression are ( )i iE Y 
 
and 1 2( ) (1 )P

i i iVar Y a   , where a  

denotes the dispersion parameter and P  the functional parameter. 

 

GP regressions reduce to Poisson regression when 0a  , display overdispersion when 

0a  , and display underdispersion when 0a  . In addition, GP-P reduces to new GP-1 when 

1P  ,  and reduces to GP-2 when 2P  . Therefore, GP-P regression parametrically nests both 

new GP-1 and GP-2 regressions, and allows statistical tests of the two functional forms against a 

more general alternative. The mean of GP regressions can be assumed to follow the log link, 

( ) exp( )i iE Y   ix 'β , and the maximum likelihood estimates can be obtained by maximizing the 

log likelihood. 

 

 GP-P regression can be fitted using R program. For faster convergence, estimated parameters 

from fitting Poisson regression can be used as initial values. The Poisson, new GP-1 and GP-2 

regressions can also be fitted using the same fitting procedure, by letting the dispersion parameter, a, 

to be fixed at a=0 for Poisson and by letting the functional parameter, P, to be fixed at P=1 and P=2 

respectively for new GP-1 and GP-2. An example of SAS code for fitting GP-1 and GP-2 regressions 

can be found in Yang et al. (2007) and Yang et al. (2009a) respectively.  

 

 We can also use ZIGP package in R to fit GP-2 regression models. If we use est.zigp function 

and set fm.Z=NULL (which is the weight for zero-inflation), we can get GP-2 regression. Table 1 

summarizes the p.m.f., mean and variance of Poisson, NB and GP regression models.  
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Table 1: Poisson, NB and GP regression models 

Regression 
model 

P.m.f. Mean and variance 
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Several general comparisons can be made regarding NB and GP regression models: 

 NB regressions reduce to Poisson regression in the limit as 0a  , whereas GP regressions 

reduce to Poisson regression when 0a  . 

 The mean-variance relationships of NB-1 and GP-1 are linear, NB-2 is quadratic, GP-2 is 

cubic, NB-P is to the pth power, and GP-P is to the (2p-1)th power. 

 Likelihood ratio test (LRT) can be performed for testing overdispersion in Poisson vs. NB 

(NB-1 and NB-2) regressions, 0 : 0H a   vs. 1 : 0H a  . Since the null hypothesis is on the 

boundary of parameter space, the asymptotic distribution for LRT statistic is a mixture of 

half of probability mass at zero and half of chi-square with one degree of freedom (Lawless 

1987). 

 Likelihood ratio test (LRT) can also be performed for testing dispersion (over or 

underdispersion) in Poisson vs. GP (GP-1 and GP-2) regressions, 0 : 0H a   vs. 1 : 0H a  , 

where the LRT statistic is asymptotically distributed as a chi-square with one degree of 

freedom (Consul and Famoye 1992, Wang and Famoye 1997).  

 In terms of properties, there is no big difference between NB and GP distributions when the 

means and variances are fixed. However, GP distribution has heavier tail, whereas NB 

distribution has more mass at zero (Joe and Zhu 2005).  

 
 
4. ZIP REGRESSION MODEL 
Zero-inflated Poisson (ZIP) regression has been used by researchers for handling purely zero-

inflated count data. ZIP regression can be obtained by mixing a distribution degenerate at zero with 

the Poisson distribution, by allowing the incorporation of explanatory variables in both the zero 

process and the Poisson distribution. The p.m.f. of ZIP regression is, 
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where 10  i  and 0i , with mean iiiYE  )1()(   and variance 

( ) (1 ) (1 )i i i i iVar Y      . ZIP regression reduces to Poisson regression when 0i , and 

exhibits overdispersion when 0i . The covariates can be incorporated by using a log link for i  
and a logit link for i , 
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where ix  and iz  are the vectors of explanatory variables, and β  and γ  are the vectors of regression 

parameters. Maximum likelihood estimates can be obtained by maximizing the log likelihood. 

 

 

5. ZINB REGRESSION MODELS 
Zero-inflated negative binomial (ZINB) regressions have been used by researchers for handling both 

zero-inflation and overdispersion in count data. ZINB-1 regression can be obtained by mixing a 

distribution degenerate at zero with the NB-1 distribution, by allowing the incorporation of 

explanatory variables in both the zero process and the NB-1 distribution. The mean and variance of 

ZINB-1 regression are iiiYE  )1()(   and ( ) (1 ) (1 )i i i i iVar Y a       . 

 

ZINB-2 regression can be obtained by mixing a distribution degenerate at zero with the NB-

2 distribution, by allowing the incorporation of explanatory variables in both the zero process and 

the NB-2 distribution. The mean and variance of ZINB-2 regression are iiiYE  )1()(   and 

( ) (1 ) (1 )i i i i i iVar Y a        . 

 

The ZINB-P regression can be obtained by mixing a distribution degenerate at zero with the 

NB-P distribution, by allowing the incorporation of explanatory variables in both the zero process 

and the NB-P distribution. The mean and variance of ZINB-P regression are iiiYE  )1()(   and 

)1()1()( 1

ii

P

iiii aYVar    . 

 

ZINB regressions reduce to NB regressions when 0i , and reduce to ZIP regression in 

the limit as 0a  . The variance of ZINB regressions exhibits overdispersion when 0a  and 

0i , allowing the models to be used for handling both zero-inflated and overdispersed count 

data. The link functions for ZINB regressions can also be written as (5). Maximum likelihood 

estimates can be obtained by maximizing the log likelihood.  

 

 ZINB-P regression can be fitted using R program. For faster convergence, estimated 

parameters from fitting ZIP regression can be used as initial values. Both ZINB-1 and the ZINB-2 

regressions can also be fitted using the same fitting procedure, by letting the functional parameter, P, 

to be fixed respectively at P=1 and P=2 for ZINB-1 and ZINB-2. 
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 We can also use PSCL package in R to fit ZIP and ZINB-2 regression models. If we use 

zeroinfl function and set dist=”poisson”, we can get ZIP regression. If we set dist=”negbin”, we can get 

ZINB-2 regression. 

 

 

6. ZIGP REGRESSION MODELS 
As an alternative for handling zero-inflation and overdispersion in count data, zero-inflated 

generalized Poisson (ZIGP) regressions can be fitted. ZIGP-1 regression is obtained by mixing a 

distribution degenerate at zero with the GP-1 distribution, by allowing the incorporation of 

explanatory variables in both the zero process and the GP-1 distribution. The mean and variance of 

ZIGP-1 regression are iiiYE  )1()(   and ))1(()1()( 2
iiiii vYVar    . A new form of 

ZIGP-1 regression has been proposed by Zamani and Ismail (2013a), by mixing a distribution 

degenerate at zero with the new GP-1 distribution, and allowing the incorporation of explanatory 

variables in both the zero process and the new GP-1 distribution. The mean and variance of new 

ZIGP-1 are iiiYE  )1()(   and ))1(()1()( 2
iiiii aYVar   . 

 

ZIGP-2 regression is obtained by mixing a distribution degenerate at zero with the GP-2 

distribution, by allowing the incorporation of explanatory variables in both the zero process and the 

GP-2 distribution. The mean and variance of ZIGP-2 regression are iiiYE  )1()(   and 

))1(()1()( 2
iiiiii aYVar   . 

 

A functional form of ZIGP, which is referred as ZIGP-P, was recently proposed by Zamani 

and Ismail (2013a). ZIGP-P regression is obtained by mixing a distribution degenerate at zero with 

the GP-P distribution, by allowing the incorporation of explanatory variables in both the zero 

process and the GP-P distribution. The mean and variance of ZIGP-P regression are 

iiiYE  )1()(   and ))1(()1()( 21
ii

P
iiii aYVar    . When 0i , ZIGP regressions 

reduce to GP regressions, and when 0a , ZIGP regressions reduce to ZIP regression. In addition, 

when 1P   and 2P  , ZIGP-P regression reduces to ZIGP-1 and ZIGP-2 regressions 

respectively. The variance of ZIGP regressions exhibit overdispersion when 0a   and 0i , 

indicating that they can be used for handling both zero-inflated and overdispersed count data. The 

link functions for ZIGP regressions can also be written as (5), and the maximum likelihood 

estimates can be obtained by maximizing the log likelihood.     

  

 ZIGP-P regression can be fitted using R program. For faster convergence, estimated 

parameters from fitting ZIP regression can be used as initial values. The ZIP, ZIGP-1 and ZIGP-2 
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regressions can also be fitted using the same fitting procedure, by letting the dispersion parameter, a, 

to be fixed at a=0 for ZIP and by letting the functional parameter, P, to be fixed respectively at P=1 

and P=2 for ZIGP-1 and ZIGP-2. An example of SAS code for fitting ZIGP-2 regression can be 

found in Yang et al. (2009b). 

 

 We can also use ZIGP package in R to fit ZIP and ZIGP-2 regression models. If we use 

est.zigp function and set fm.W=NULL (which is the weight for dispersion), we can get ZIP 

regression. We can get ZINB-2 regression if both fm.Z (weight for zero-inflation) and fm.W (weight 

for dispersion) are not set to NULL. Table 2 summarizes the p.m.f., mean and variance of ZIP, 

ZINB and ZIGP regression models.   

 

Several general comparisons can be made regarding ZINB and ZIGP regression models: 

 ZINB regressions reduce to ZIP regression in the limit as 0a  , whereas ZIGP 

regressions reduce to ZIP regression when 0a  . 

 LRT can be performed for testing overdispersion in ZIP vs. ZINB regressions, where 

0 : 0H a   vs. 1 : 0H a  . Since the null hypothesis is on the boundary of parameter space, 

the asymptotic distribution for LRT statistic is a mixture of half of probability mass at zero 

and half of chi-square with one degree of freedom (Stram and Lee 1994, 1995). 

 The signed square root of likelihood ratio test (SSN-LRT) can be performed for testing 

overdispersion in ZIP vs. ZIGP regressions, 0 : 0H a   vs. 1 : 0H a  , where the statistic is 

asymptotically distributed as a standard normal (Yang et al. 2009b, Famoye and Singh 2006). 

 Since GP distribution has heavier tail and NB distribution has more mass at zero, both 

ZINB and ZIGP regressions can be used for fitting zero-inflated and overdispersed count 

data (Joe and Zhu 2005).  
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Table 2: ZIP, ZINB and ZIGP regression models 

Model P.m.f. Mean and variance 
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Model P.m.f. Mean and variance 
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7. TESTS FOR NB AND GP REGRESSION MODELS 
 

7.1  Likelihood Ratio Test (LRT) 

Since NB regressions reduce to Poisson regression in the limit as 0a  , the test of overdispersion 

in Poisson vs. NB-1 regressions and Poisson vs. NB-2 regressions, 0:0 aH  vs. 1 : 0H a  , can be 

performed using LRT, 1 02(ln ln )T L L  , where 1ln L  and 0ln L  are the models’ log likelihood 

under their respective hypothesis. Since the null hypothesis is on the boundary of parameter space, 

the LRT is asymptotically distributed as half of probability mass at zero and half of chi-square with 

one degree of freedom (Lawless 1987). In other words, to test the null hypothesis at significance 

level  , the critical value of chi-square distribution with significance level 2  is used, or reject H0 if 
2
1 2 ,1T   . As an example, for 0.05 significance level, the critical value is 2

0.90,1 2.7055   instead of 
2
0.95,1 3.8415  . 

 

  A two-sided test can be performed for dispersion (over or underdispersion) in Poisson vs. 

new GP-1 regressions and Poisson vs. GP-2 regressions, 0:0 aH  vs. 0:1 aH , using LRT 

which is asymptotically distributed as a chi-square with one degree of freedom. If we are interested 

in  a one-sided test for overdispersion in Poisson vs. new GP-1 regressions and Poisson vs. GP-2 

regressions, 0:0 aH  vs. 1 : 0H a  , we can use signed square root of likelihood ratio statistic 

(SSR-LRT), 1 0sgn( ) sgn( ) 2(ln ln )a T a L L  , where sgn(.)  is a sign function which indicates 

value of 1 when 0a   and value of -1 when 0a  . Under 0H , SSR-LRT is asymptotically 

distributed as a standard Normal distribution. 

 

  A two-sided test for testing NB-1 vs. NB-P, NB-2 vs. NB-P, new GP-1 vs. GP-P and GP-2 

vs. GP-P regressions can be performed using LRT. The hypothesis are 0 : 1H P   vs. 1 : 1H P   or 

0 : 2H P   vs. 1 : 2H P  , and the LRT is asymptotically distributed as a chi-square with one degree 

of freedom. 

   

7.2  Wald Test 
The test of overdispersion in Poisson vs. NB-1 regressions and Poisson vs. NB-2 regressions can 

also be performed using Wald statistic which is, 
2ˆ

ˆ( )

a

Var a
, where â  is the estimate of dispersion 

parameter and ˆ( )Var a  is its variance. Since the null hypothesis is on the boundary of parameter 
space, the Wald statistic is asymptotically distributed as half of probability mass at zero and half of 
chi-square with one degree of freedom. For testing dispersion (over or underdispersion) in Poisson 
vs. GP-1 regressions and Poisson vs. GP-2 regressions, the Wald statistic can also be applied, and 
the statistic is asymptotically distributed as a chi-square with one degree of freedom. 
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 Using similar approach, the adequacy of NB-1 vs. NB-P, NB-2 vs. NB-P, new GP-1 vs. GP-

P and GP-2 vs. GP-P regression can be performed using Wald statistic which is, 
2ˆ

ˆ( )

P

Var P
, where P̂  

is the estimate of functional parameter and ˆ( )Var P  is its variance. The Wald statistic is 
asymptotically distributed as a chi-square with one degree of freedom.  

 

7.3 Vuong Test 
For non-nested models, a comparison between models with p.m.f. 1(.)p  and 2 (.)p  can be 

performed using Vuong test (Vuong 1989), 
( )

m n
V

sd m
 , where m  is the mean of im , ( )sd m  is the 

standard deviation of im , n  the sample size and 1

2

( )
ln

( )
i i

i
i i

p y
m

p y

 
  

 
. The Vuong test statistic follows 

a standard normal. As an example, for 0.05 significance level, the first model is “closer” to the actual 
model if V  is larger than 1.96. In the other hand, the second model is “closer” to the actual model if 
V  is smaller than -1.96. Otherwise, neither model is “closer” to the actual model and there is no 
difference between using the first or the second model. 
  
 For models with unequal number of parameters, the equation for im  in Vuong test is slightly 
modified to account for the difference in the number of parameters, 

1 1 2

2

( )
ln ln( )

( ) 2
i i

i
i i

p y k k
m n

p y

  
  

 
, where 1k  and 2k  are the number of parameters in model 1 and 

model 2 respectively. 

 

7.4 AIC and BIC 

When several models are available, one can compare the models’ performance based on several 

likelihood measures which have been proposed in statistical literatures. Two of the most regularly 

used measures are Akaike Information Criteria (AIC) and Bayesian Schwartz Information Criteria 

(BIC). The AIC penalizes a model with larger number of parameters, and is defined as 

AIC 2 ln 2L p   , where ln L  denotes the fitted log likelihood and p  the number of parameters. 

The BIC penalizes a model with larger number of parameters and larger sample size, and is defined 

as BIC 2 ln ln( )L p n   , where ln L  denotes the fitted log likelihood, p  the number of 

parameters and n the sample size.  



Estimation of Claim Count Data Using Negative Binomial, Generalized Poisson, Zero-Inflated Negative Binomial 
and Zero-Inflated Generalized Poisson Regression Models 

Casualty Actuarial Society E-Forum, Spring 2013 17 

8 TESTS FOR ZINB AND ZIGP REGRESSION MODELS 
 

8.1  Likelihood Ratio Test 

Since ZINB regressions reduce to ZIP regression in the limit as 0a  , the test of overdispersion in 

ZIP vs. ZINB-1 regressions and Poisson vs. ZINB-2 regressions, 0:0 aH  vs. 1 : 0H a  , can be 

performed using LRT. Since the null hypothesis is on the boundary of parameter space, the LRT 

statistic is asymptotically distributed as half of probability mass at zero and half of chi-square with 

one degree of freedom (Stram and Lee 1994, 1995). 

 
  A two-sided test can be performed to test dispersion (over or underdispersion) in ZIP vs. 

new ZIGP-1 regressions and ZIP vs. ZIGP-2 regressions using LRT, 0:0 aH  vs. 0:1 aH . 

Since ZIP regression model is nested within new ZIGP-1 and ZIGP-2 regressions, the boundary 

problem does not exist and the statistic is asymptotically distributed as a chi-square with one degree 

of freedom. If we are interested in a one-sided test for overdispersion in ZIP vs. new ZIGP-1 

regressions and ZIP vs. ZIGP-2 regressions, 0:0 aH  vs. 1 : 0H a  , we can use SSR-LRT which 

is asymptotically distributed as a standard Normal distribution. 

 

  A two-sided test for adequacy of ZINB-1 vs. ZINB-P, ZINB-2 vs. ZINB-P, new ZIGP-1 

vs. ZIGP-P and ZIGP-2 vs. ZIGP-P regressions can be performed using LRT, where the 

hypothesis are 0 : 1H P   vs. 1 : 1H P   or 0 : 2H P   vs. 1 : 2H P  . Since both ZINB-1 and 

ZINB-2 regressions are nested within ZINB-P regression, and both ZIGP-1 and ZIGP-2 

regressions are nested within ZIGP-P regression, the LRT statistic is asymptotically distributed as a 

chi-square with one degree of freedom. 

 

8.2  Wald Test 

The test of overdispersion in ZIP vs. ZINB-1 regressions and ZIP vs. ZINB-2 regressions can also 

be performed using Wald statistic. Since the null hypothesis is on the boundary of parameter space, 

the Wald statistic is asymptotically distributed as half of probability mass at zero and half of chi-

square with one degree of freedom. For dispersion (over or underdispersion) in ZIP vs. ZIGP-1 

regressions and ZIP vs. ZIGP-2 regressions, the Wald statistic can also be applied, where the 

statistic is asymptotically distributed as a chi-square with one degree of freedom. 

 

 Using similar approach, the adequacy of ZINB-1 vs. ZINB-P, ZINB-2 vs. ZINB-P, new 

ZIGP-1 vs. ZIGP-P and ZIGP-2 vs. ZIGP-P regressions can be performed using Wald statistic, 

where the statistic is asymptotically distributed as a chi-square with one degree of freedom.  
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9. EXAMPLES  
 
9.1 Malaysian Own Damage Claim Counts 

The dataset for private car Own Damage (OD) claim counts analyzed in Zamani and Ismail (2012) is 

reconsidered here for fitting NB and GP regression models. The data was based on 1.01 million 

private car policies for a three-year period of 2001-2003, the exposures were expressed in car-year 

units, and the incurred claims consisted of claims already paid as well as outstanding. Table 3 shows 

the rating factors and rating classes for the exposures and incurred claims. The estimates of Poisson 

regression were used as initial values for fitting NB and GP regressions. 

 

Table 3: Rating factors and rating classes (Malaysian OD data) 

 

Rating factors Rating classes 

  

Vehicle age 0-1 year  

 2-3 years 

 4-5 years 

 6-7 years 

 8+ years 

Vehicle c.c. 0-1000 

 1001-1300 

 1301-1500 

 1501-1800 

 1801+ 

Vehicle make Local type 1 

 Local type 2 

 Foreign type 1 

 Foreign type 2 

 Foreign type 3 

Location North 

 East 

 Central 

 South 

 East Malaysia 
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Table 4 shows the parameter estimates and their t-ratios for the fitted models. The best 

Poisson model was chosen using backward stepwise based on both AIC (chose model 2 if 

model 2 model 1AIC AIC ) and p-values (drop a covariate if it is not significant). The same Poisson 

covariates were then utilized for fitting NB and GP regressions to ensure that the LRT can be 

performed. The results in Table 4 indicate that the regression parameters for all models have similar 

estimates. As expected, NB and GP models provide similar inferences for the regression parameters, 

i.e. their t -ratios, in absolute value, are smaller than Poisson model. In particular, the estimates and 

t-ratios of NB-1 are closer to GP-1, and similar results are also observed between NB-2 and GP-2, 

and between NB-P and GP-P. These results are expected since the mean-variance relationships for 

NB-1 and GP-1 are linear, NB-2 is quadratic, GP-2 is cubic, and both NB-P and GP-P are in the pth 

power and the (2p-1)th power respectively. 

 

  For testing overdispersion in Poisson versus NB-1 regressions, 0:0 aH  vs. 1 : 0H a  , 

the likelihood ratio and the Wald t respectively are 2[-2182.75-(-3613.71)]=2861.92 and 14.44, 

indicating that the null hypothesis is rejected and the NB-1 is more adequate. The likelihood ratio 

and Wald t for testing overdispersion in Poisson versus NB-2, Poisson versus GP-1 and Poisson 

versus GP-2 regressions are (2840.50, 2896.96, 2691.08) and (9.93, 19.22, 12.27) respectively, also 

indicating that the data is overdispersed and NB-2, GP-1 and GP-2 regressions are better than 

Poisson regression. 
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Table 4: NB and GP regression models (Malaysian OD data) 
Parameters 
 

Poisson NB-1 NB-2 NB-P GP-1 GP-2 GP-P 
Est. t-ratio Est. t-ratio Est. t-ratio Est. t-ratio Est. t-ratio Est. t-ratio Est. t-ratio 

               
Intercept -3.04 -195.43 -3.05 -70.55 -3.20 -45.78 -3.09 -54.19 -3.06 -67.78 -3.17 -48.22 -3.09 -54.03
    
2-3 year 0.51 41.09 0.53 15.07 0.57 8.75 0.54 11.36 0.53 14.62 0.58 9.11 0.55 11.47
4-5 year 0.52 39.96 0.51 14.03 0.52 8.02 0.52 10.70 0.51 13.29 0.51 8.10 0.52 10.56
6-7 year 0.43 33.63 0.45 12.55 0.40 6.14 0.44 9.19 0.46 12.20 0.37 5.92 0.45 9.34
8+ year 0.24 19.11 0.24 6.84 0.27 4.19 0.25 5.40 0.24 6.55 0.29 4.48 0.26 5.45
    
1001-1300 cc -0.31 -24.64 -0.28 -8.30 -0.12 -2.03 -0.24 -5.20 -0.27 -7.69 -0.08 -1.36 -0.23 -5.05
1301-1500 cc -0.16 -14.83 -0.16 -5.17 0.10 1.69 -0.12 -2.86 -0.15 -4.81 0.19 3.03 -0.12 -3.04
1501-1800 cc 0.14 12.93 0.13 4.36 0.25 4.61 0.15 3.90 0.13 4.08 0.27 5.18 0.14 3.69
1801+ cc 0.11 10.83 0.11 3.77 0.33 5.92 0.16 4.05 0.11 3.64 0.34 6.05 0.15 3.95
    
Local type 2 -0.46 -32.41 -0.45 -11.55 -0.27 -4.04 -0.40 -7.94 -0.45 -11.07 -0.35 -5.47 -0.41 -8.23
Foreign type 1 -0.20 -19.17 -0.18 -6.12 -0.27 -5.38 -0.20 -5.32 -0.17 -5.54 -0.34 -6.79 -0.20 -5.16
Foreign type 2 0.18 11.50 0.21 4.80 0.34 6.34 0.26 5.19 0.22 4.96 0.31 5.93 0.25 5.10
Foreign type 3 - - - - - - - - - - - - - -
    
East 0.35 19.91 0.39 8.29 0.31 4.71 0.36 6.28 0.41 8.37 0.28 4.83 0.37 6.56
Central 0.32 29.43 0.31 10.21 0.31 5.28 0.31 7.50 0.31 9.63 0.28 4.76 0.31 7.39
South 0.26 20.40 0.26 7.20 0.36 5.87 0.30 6.36 0.26 6.92 0.39 6.77 0.30 6.42
East Malaysia 0.13 8.87 0.12 3.04 0.11 1.80 0.12 2.26 0.12 2.80 0.10 1.77 0.11 2.15
    
a  - - 7.07 14.44 0.14 9.93 1.57 6.60 2.01 19.22 0.02 12.27 0.64 7.95

P  - - 1.00 - 2.00 - 1.39 39.00 1.00 - 2.00 - 1.27 46.23
Log likelihood -3613.71 -2182.75 -2193.46 -2114.38 -2165.23 -2268.17 -2111.91
AIC 7259.42 4399.50 4420.92 4264.77 4364.45 4570.33 4259.83
BIC 7328.30 4472.67 4494.10 4342.25 4437.63 4643.51 4337.31
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  For testing the adequacy of NB-1 against NB-P and GP-1 against GP-P regressions, 

1:0 PH  vs. 1:1 PH , the likelihood ratio and Wald t respectively are (136.74, 106.64) and 

(39.00, 46.23), implying that the null hypothesis is rejected and both NB-P and GP-P are more 

adequate. The likelihood ratios for testing adequacy of NB-2 versus NB-P and GP-2 versus GP-P 

regressions, 0 : 2H P   vs. 1 : 2H P  , are (158.16, 312.52), also indicating that both NB-P and GP-

P are better models.  

 

Based on AIC and BIC, GP-P model has the lowest value for both criteria, indicating that 

the GP-P is the best model. However, based on Vuong test between GP-P as the first model and 

NB-P as the second model, the statistic is 1.0647 (less than 1.96), indicating that neither model is 

preferred over the other. 

 

9.2 German Healthcare Data 

The German Socioeconomic Panel (GSOEP) data (Riphahn et al. 2003) which was analyzed in 

Zamani and Ismail (2013a) is reconsidered here for fitting ZINB and ZIGP regression models. For 

an illustration purpose, only the first 438 individual data were fitted, where the response variable is 

the number of doctor visit in the last three month and the covariates were gender, age, health 

satisfaction, marital status, working status and education years. Table 5 shows the mean and standard 

deviation of the selected variables.  

 

Table 5: Descriptive summary (German healthcare data) 

 

Variable Measurement Mean Standard 

deviation

    

DOCVIS       Number of doctor visit in last three months        2.93 33.09 

GENDER     Female=1; Male=0                                              0.51 0.25 

AGE              Age in years                                                        43.30 116.23 

HSAT            Health satisfaction 6.84 4.89 

MARRIED    Married=1; else=0                                               0.54 0.25 

WORKING  Employed=1; else=0                                           0.79 0.17 

EDUC           Years of schooling                                               12.45 9.77 
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As mentioned previously, the covariates of i  and i  for ZIP, ZINB and ZIGP regressions 

can be included via the log and logit link functions, as shown in (5), where the vectors ix  and iz
 may or may not share the same components. For the case where the covariates are not utilized in 

i , the log and logit functions can be rewritten as (Yip and Yau, 2005; Ozmen and Famoye, 2007), 

 

                        βxT
ii )log(  and 












1
log .                        (6) 

The data were fitted to ZIP, ZINB and ZIGP regressions using link functions (6), and the 

estimates of ZIP regression were used as initial values for fitting ZINB and ZIGP regressions. 

 

Table 6 shows the parameter estimates and their t -ratios for the fitted models. The best ZIP 

model was chosen based on p-values (drop a covariate if it is not significant). The same ZIP 

covariates were then utilized for fitting ZINB and ZIGP models to ensure that the LRT can be 

performed. Since ZINB-P model did not provide converged solutions, the results are not displayed 

in the table. The results in Table 6 indicate that the regression parameters for all models have similar 

estimates. As expected, both ZINB and ZIGP regressions provide similar inferences for the 

regression parameters, i.e. their t -ratios, in absolute value, are smaller than ZIP. 

 

  For testing overdispersion in ZIP versus ZINB-1 and ZIP versus ZINB-2 regressions, 

0:0 aH  vs. 1 : 0H a  , the likelihood ratio and Wald t respectively are (393.40, 525.30) and (6.16, 

3.99), indicating that the null hypothesis is rejected and both ZINB-1 and ZINB-2 regressions are 

more adequate. The Vuong test for choosing between non-nested models of ZINB-2 as the first 

model and ZINB-1 as the second model is 5.5287 (more than 1.96), indicating that the ZINB-2 is a 

better model.  

 

  The likelihood ratio and Wald t for testing overdispersion in ZIP versus ZIGP-1 and ZIP 

versus ZIGP-2 regressions are (524.00, 521.44) and (7.68, 6.31) respectively, also indicating that the 

data is overdispersed, and both ZIGP-1 and ZIGP-2 are better models than ZIP. For testing the 

adequacy of ZIGP-1 against ZIGP-P regressions, 1:0 PH  vs. 1:1 PH , and ZIGP-2 versus 

ZIGP-P regressions, 0 : 2H P   vs. 1 : 2H P  , the likelihood ratio and Wald t respectively are (7.34, 

9.90) and 9.22, implying that the null hypothesis is rejected and ZIGP-P is more adequate. 
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Table 6: ZIP, ZINB and ZIGP regression models (German healthcare data) 

 

Parameter ZIP ZINB-1 ZINB-2 ZIGP-1 ZIGP-2 ZIGP-P 

 est. t-ratio est. t-ratio est. t-ratio est. t-ratio est. t-ratio est. t-ratio

             

Intercept 2.49 26.26 2.33 13.46 2.29 8.00 2.33 10.10 2.34 8.36 2.42 9.13

GENDER 0.30 4.85 0.21 1.90 0.58 3.83 0.52 3.73 0.52 3.52 0.60 3.90 

HSAT -0.22 -18.67 -0.16 -7.23 -0.25 -7.95 -0.22 -8.19 -0.24 -7.44 -0.25 -8.10

MARRIED 0.26 4.25 0.14 1.42 0.20 1.37 0.13 1.06 0.18 1.23 0.17 1.17 

WORKING 0.15 2.35 0.13 1.13 0.05 0.27 -0.06 -0.44 0.14 0.81 0.00 -0.02

  -0.33 -3.16 -0.22 -2.28 -1.69 -2.65 -1.38 -4.92 -0.99 -4.25 -1.29 -4.49 

a                           - - 2.53 6.16 1.39 3.99 1.52 7.68 0.33 6.31 0.77 3.80 

P  - - 1.00 - 2.00 - 1.00 - 2.00 - 1.46 9.22 

     

Log likelihood        -1136.48 -939.78 -873.83 -874.48 -875.76 -870.81 

AIC                        2284.96 1893.56 1761.66 1762.97 1765.52 1757.62 

BIC 2309.45 1922.13 1790.24 1791.54 1794.09 1790.28 
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  Based on AIC and BIC, ZIGP-P model has the lowest AIC but ZINB-2 model has the 

lowest BIC. For chosing between ZINB-2 as the first model and ZIGP-P as the second model 

which involves non-nested models with different number of parameters, the Vuong test statistic is 

1.7303 (less than 1.96), indicating that neither model is preferred over the other.  

 

  Table 7 shows the parameters, log likelihood, AIC and BIC for the best ZIGP-P and ZINB-

2 models, chosen based on p-values (drop a covariate if it is not significant). Based on AIC and BIC, 

ZIGP-P model has the lowest value for both criteria. However, the Vuong test statistic for 

comparing between ZINB-2 as the first model and ZIGP-P as the second model, which are non-

nested models, is 1.6803 (less than 1.96), indicating that neither model is preferred over the other.  

 

Table 7: ZINB-2 and ZIGP-P models with significant covariates (German healthcare data) 

 

Parameter ZINB-2 ZIGP-P 

 est. t-ratio p-value est. t-ratio p-value

       

Intercept 2.46 9.87 0.00 2.53 11.01 0.00 

GENDER 0.55 3.68 0.00 0.59 3.91 0.00 

HSAT -0.26 -8.16 0.00 -0.26 -8.27 0.00 

  -1.75 -2.67 0.00 -1.28 -4.72 0.00 

a                                       1.43 4.11 0.00 0.78 3.94 0.00 

P  2.00 - - 1.46 9.31 0.00 

       

Log likelihood                    -874.77 -871.50 

AIC                                    1759.54 1755.01 

BIC 1779.95 1779.50 

   

 

 

10. CONCLUSIONS 
This study has related NB and GP regressions through the mean-variance relationship and has 

shown applications of these models for overdispersed count data. In addition, this study has related 

ZINB and ZIGP regressions through the mean-variance relationship and has shown applications of 

these zero-inflated models for zero-inflated and overdispersed count data. 
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The Malaysian data for private car Own Damage (OD) claim counts analyzed in Zamani and 

Ismail (2012) has been reconsidered for fitting Poisson, NB and GP regression models. The results 

indicate that the regression parameters of all models have similar estimates and the t -ratios, in 

absolute value, for NB and GP models are smaller than Poisson model. The likelihood ratio and 

Wald t for testing overdispersion indicate that the data is overdispersed, and NB-1, NB-2, GP-1 and 

GP-2 models are better than Poisson model. The likelihood ratio and Wald t also imply that both 

NB-P and GP-P are the best two models. Based on AIC and BIC, GP-P model has the lowest value 

for both criteria. However, based on Vuong test between GP-P and NB-P models, neither model is 

preferred over the other.  

 

The German Socioeconomic Panel (GSOEP) data (Riphahn et al. 2003) which was analyzed 

in Zamani and Ismail (2013a) has been reconsidered for fitting ZIP, ZINB and ZIGP regression 

models. Unfortunately, ZINB-P model did not provide converge solutions and the results were not 

displayed. For other models, the results indicate that the regression parameters of all models have 

similar estimates and the t -ratios, in absolute value, for ZINB and ZIGP models are smaller than 

ZIP model. The likelihood ratio and Wald t for testing overdispersion indicate that the data is 

overdispersed, and ZINB-1, ZINB-2, ZIGP-1 and ZIGP-2 models are better than ZIP model. For 

ZINB models, the Vuong test indicates that ZINB-2 regression is better than ZINB-1 regression, 

whereas for ZIGP models, the likelihood ratio and Wald t indicate that ZIGP-P regression is better 

than both ZIGP-1 and ZIGP-2 regressions. Based on AIC and BIC, ZIGP-P model has the lowest 

AIC but ZINB-2 model has the lowest BIC. However, based on Vuong test between ZINB-2 and 

ZIGP-P regressions, neither model is preferred over the other.  

 

Several general comparisons can be made regarding NB and GP regression models. Firstly, 

NB regression reduces to Poisson regression in the limit as 0a  , whereas GP regression reduces 

to Poisson regression when 0a  . Secondly, the mean-variance relationships of NB-1 and GP-1 are 

linear, NB-2 is quadratic, GP-2 is cubic, NB-P is to the pth power, and GP-P is to the (2p-1)th 

power. Thirdly, LRT can be performed for testing overdispersion in Poisson vs. NB regressions, 

where the statistic is asymptotically distributed as a mixture of half of probability mass at zero and 

half of chi-square with one degree of freedom (Lawless 1987). LRT can also be performed for 

testing dispersion (over or underdispersion) in Poisson vs. GP regressions, where the statistic is 

asymptotically distributed as a chi-square with one degree of freedom (Consul and Famoye 1992, 

Wang and Famoye 1997). And finally, in terms of properties, there is no big difference between NB 

and GP distributions when the means and variances are fixed. However, GP distribution has heavier 

tail, whereas NB distribution has more mass at zero (Joe and Zhu 2005).  
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Several general comparisons can also be made regarding ZINB and the ZIGP models. 

Firstly, ZINB regression reduces to ZIP regression in the limit as 0a  , whereas ZIGP regression 

reduces to ZIP regression when 0a  . Secondly, LRT can be performed for testing overdispersion 

in ZIP vs. ZINB regressions, where the statistic is asymptotically distributed as a mixture of half of 

probability mass at zero and half of chi-square with one degree of freedom (Stram and Lee 1994, 

1995). SSN-LRT can be performed for testing overdispersion in ZIP vs. ZIGP regressions, where 

the statistic is asymptotically distributed as a standard normal (Yang et al. 2009b, Famoye and Singh 

2006). And finally, in terms of properties, GP distribution has heavier tail whereas NB distribution 

has more mass at zero, indicating that both ZINB and ZIGP regressions can be used for fitting 

zero-inflated and overdispersed count data (Joe and Zhu 2005).  

 

In this study, we have fitted a variety of models to two different datasets, involving several 

forms of NB, GP, ZINB and ZIGP regressions. The selection of the best model depends on many 

considerations. First, we can check for overdispersion, and if the data is slightly overdispersed, we 

can fit the data to quasi-Poisson regression. Secondly, if our data is largely overdispersed and it is 

not caused by excessive zeros but due to variation in the data, we can fit NB and GP regressions. 

Thirdly, if our data is both overdispersed and zero-inflated, we can fit zero-inflated (ZINB, ZIGP) 

and hurdle (HNB, HGP) regressions. Nevertheless, the hurdle regression models were not discussed 

in this study. Finally, the choice between zero-inflated (ZINB, ZIGP) and hurdle (HNB, HGP) 

models should be based upon a priori knowledge of the cause of excessive zeros in the data. Zero-

inflated models are interpreted as a mix of structural and sampling zeros from two processes; the 

process that generates excess zeros from a binary distribution which are the structural zeros, and the 

process that generates both non-negative and zero counts from Poisson or NB distributions which 

are the sampling zeros. In the other hand, hurdle models assume that all zeros are sampling zeros. 

Therefore, as a crude guideline, if occurrences of count event do not depend on any condition and 

may occur at any time, the hurdle models should be fitted. However, if occurrences of count events 

depend on specific conditions and/or time, such as the case of deductible or no claim discount in 

insurance data, the zero-inflated models are more appropriate. 
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