
Mining the Content of Relational Databases to Learn Ontologies with Deeper
Taxonomies

Farid Cerbah
Dassault Aviation

Department of Scientific Studies
78, quai Marcel Dassault 92552 Saint-Cloud – France

farid.cerbah@dassault-aviation.fr

Abstract

Relational databases are valuable sources for ontology
learning. Previous work showed how precise ontologies
can be learned from such structured input. However, a
major persisting limitation of the existing approaches is
the derivation of ontologies with flat structure that simply
mirror the schema of the source databases. In this pa-
per, we present the RTAXON learning method that shows
how the content of the databases can be exploited to iden-
tify categorization patterns from which class hierarchies
can be generated. This fully formalized method combines
a classical schema analysis with hierarchy mining in the
data. RTAXON is one of the methods implemented in the
RDBToOnto tool.

1 Introduction

In companies that need to produce and manage technical
knowledge on complex engineering assets, as in aerospace
and automotive industries, a large proportion of technical
corporate repositories are built upon relational databases.
These repositories count undoubtedly among the most valu-
able sources for automatically building highly accurate and
effective domain ontologies. However, a major persisting
limitation of the existing methods is the derivation of on-
tologies with flat structure that simply mirror the schema
of the source databases. Such results do not fully meet
the expectations of users that are primarily attracted by the
rich expressive power of semantic web formalisms and that
could hardly be satisfied with target knowledge repositories
that look like their source relational databases. Ontologies
with flat structure is the typical result of learning techniques
that exclusively exploit metadata from the database schema
without (or just marginally) considering the data. A careful
analysis of existing databases shows that additional defini-

tion patterns can be learned from the data to significantly
enrich the ontology structure. More particularly, class hi-
erarchies can be induced from the data to refine classes de-
rived the relational schema.
In this paper, we define RTAXON, an approach to ontology
learning from relational databases that combines two com-
plementary information sources: the schema definition and
the stored data. We show how the content of the databases
can be exploited to find deeper class hierarchies. RTAXON
is implemented in RDBToOnto1, a comprehensive tool that
supports the transitioning process from access to the data to
the generation of fine-tuned populated ontologies [5].

2 A Motivating Example

We start by depicting the typical transitioning process on
a representative example (figure 1).

The derivations applied to get the target ontology can be
divided in two inter-related parts. The first part, named (a)
in the figure, includes derivations that are motivated by the
identification of patterns from the database schema. Each
relation (or table) definition from the database schema is
the source of a class in the ontology. Such simple mappings
from relations to classes are often relevant though several
exceptions need to be handled (for instance, some relations
are more likely to be translated as class-to-class associa-
tions). To complete the class definitions, datatype properties
are derived from some of the relation attributes. The for-
eign key relationships are the most reliable source for link-
ing classes and, in this example, each of the four relation-
ships is translated into an object property. The derivations
applied to obtain this upper part of the ontology are well
covered by current methods and, if applied on this database
sample, most of the methods would provide the result of the
(a) derivations as final output. However, by looking closer

1http://www.tao-project.eu/researchanddevelopment/demosanddownloads/RDBToOnto.html



Figure 1. An example of ontology building by exploiting
both the schema and the data

at the data, we can notice that additional structuring pat-
terns can be exploited to refine the ontology structure. More
particularly, the (b) part of the derivations shows how the
Product class can be refined with subclasses derived from
the values of Category column in the Products source ta-
ble. In the same vein, the Supplier class can be extended
with a two-level hierarchy by interpreting the values in both
Country and City columns of the corresponding table2.

These are typical examples of subsumption relations that
can be found by mining the database content.

3 Related Work

Ontology learning from relational databases is a rela-
tively recent issue. However, it can benefit from early work
in the domain of database reverse engineering where sev-
eral methods have been proposed to extract object-oriented
models from relational models (e.g. [3, 8]). The core of
the transformation rules for database reverse engineering
are still relevant in the context of ontology learning. The
most reliable rules have been reused as a starting point and
extended in several approaches that have ontologies as tar-
get models [9, 1, 7].

Most approaches are based on an analysis of the rela-
tional schemas. However, to some extent, the use of the
database content has been investigated yet, both in reverse
engineering and ontology learning, to find correlations be-
tween key values [10, 1]. More particularly, key inclusion
may reveal inheritance. In practice, the rules based on the
identification of key-based constructs are not the most pro-
ductive as these modelling schemes are only found in care-
fully designed databases. In [6], the identification of sub-
sumption relations is based on a precise interpretation of

2Resulting in subclasses Sweden Supplier−→ Stockholm Supplier, Göteborg
Supplier, etc.

null value semantics. Partitioning a table on the basis of
null values may reveal an underlying concept hierarchy.
As a related issue, mapping languages [4, 2] are declara-
tive means that provide convenient ways to map relational
models to pre-defined ontologies.

4 Combining Schema and Data Analysis

The primary motivation in the design of the RTAXON
method was to combine the most robust rules for exploiting
relational schemas with data mining focused on the specific
problem of concept hierarchy identification. One of the key
issues addressed in this work is the identification of relation
attributes that may serve as good categorization sources and
we show how these specific learning mechanisms can be co-
herently integrated into a comprehensive learning approach
to ontology construction.

4.1 Preliminary Definitions

We fix some basic notations and definitions that will be
used to describe our approach.

A relational database schema D is defined as a finite set
of relation schemas D = {R1, . . . , Rn} where each rela-
tion schema Ri is characterized by its finite set of attributes
{Ai1, . . . , Aim}. A function pkey associates to each rela-
tion its primary key which is a set of attributes K ⊆ R.

A relation r on a relation schema R (i.e. an instance
of R) is a set of tuples which are sequences of |R| values.
Similarly, a database d on D is defined as a set of relations
d = {r1, . . . , rn}. By convention, if a relation schema is
represented by a capital letter, the corresponding lower-case
letter denotes an instance of the relation schema.

Inclusion dependencies are used to account for correla-
tions between relations. An inclusion dependency is an ex-
pression R[X] ⊆ S[Y ] where X and Y are respectively
attribute sequences of R and S relation schemas, with the
restriction |X| = |Y |. The dependency holds between two
instances r and s of the relation schemas if for each tuple
u in r there is a tuple v in s such that u[X] = v[Y ]. Infor-
mally, an inclusion dependency is a convenient way to state
that data items are just copied from another relation.

Foreign key relationships can be defined as inclusion
dependencies satisfying the additional property: Y =
pkey(S). The notation R[X] ⊆ S[pkey(S)] is used for
these specific dependencies.

Formal descriptions of ontology fragments are expressed
in OWL abstract syntax.

4.2 The Overall Process

The main steps of the process are: database normaliza-
tion, class and property learning, and ontology population.



- Database Normalization
In early approaches, this stage is not integrated in the

learning process. It is quite common to consider as input re-
lational databases that are in some normal form, often 2NF
or 3NF. It is assumed that the transformation process can
be easily extended to cope with ill-designed databases by
incorporating at the early stages of the process a normaliza-
tion step based on existing algorithms. Though theoretically
acceptable, this assumption has some drawbacks in prac-
tice as many interesting databases suffer from redundancy
problems. More particularly, data duplication between re-
lations is a frequent problem that may have a bad impact
on the resulting ontologies. Such data duplications can be
formalized as inclusion dependencies. To eliminate the du-
plications, the database need to be transformed by turning
all inclusion dependencies into foreign key relationships.
More formally, each attested dependency R[X] ⊆ S[Y ]
with Y 6= pkey(S) is replaced by the foreign key rela-
tionship R[A] ⊆ S[pkey(S)], where A is a newly intro-
duced foreign key attribute, and all non-key attributes in X
together with related data in r are deleted from the relation.
This preliminary step is semi-automated as the inclusion de-
pendencies to be processed are defined manually and the
database transformation is performed automatically.

- Class and Property Identification
This is the core step of the ontology learning process

where relations of the database are explored to derive parts
of the target ontology model. The database schema is the
first information source exploited through the application
of prioritized rules that define typical mappings between
schema patterns and ontology elements, namely classes,
datatype and object properties. We give in table 1 three of
the most reliable rules which are also employed in several
existing approaches. The first trivial rule states that every
relation can potentially be translated as a class (though re-
lations can be consumed by more specific rules with higher
priority, such as the third rule). The second rule is also a
simple mapping, from a foreign key relationship to a func-
tional object property. The third rule is intended to match a
relation with a composite primary key and two key-based at-
tributes. Such bridging relations are introduced in databases
to link two other relations through key associations. They
are turned into many-to-many object properties.

Content of the relations is a second information source
allowing to refine with subclasses some of the classes ob-
tained by applying schema-based mapping rules. This im-
portant part is described in section 4.3.

- Ontology Population
Final step aims at generating instances of classes and

properties from the database content. For a given class, an
instance is derived from each tuple of the source relation.
Moreover, if refinement into subclasses has been success-

Relation to Class
Source Preconditions Target
R ∈ D ¬ ∃ C | R = sourceOf(C) class(CR)

Foreign key Relationship to Functional Object Property
Source Preconditions Target

ObjectProperty(PA

R0[A] ⊆ R1[pkey(R1)] R0 = sourceOf(C0) domain(C0)
R1 = sourceOf(C1) range(C1)

Functional)

Composite Key Relation to Object Property
Source Preconditions Target
R0 ∈ D ObjectProperty(PR

|R0| = 2 R1 = sourceOf(C1) domain(C1)
pkey(R0) = {K1, K2} R2 = sourceOf(C2) range(C2))
R0[K1] ⊆ R1[pkey(R1)]

R0[K2] ⊆ R2[pkey(R2)]

Table 1. Three reliable rules that match patterns in the
database schema. In the Target part, the variable in bold
holds the Uri of the generated ontology fragment. sourceOf
assertions provide traceability to control the process

fully applied on the class at hand, the instances need to be
further dispatched into the subclasses.

4.3 Extracting Hierarchies from the Data

Our motivating example in section 2 provided illustra-
tion of some modelling patterns attested in many databases
where specific attributes are used to assign categories to tu-
ples. These frequently-used patterns are highly useful for
hierarchy mining as values of these categorizing attributes
can be exploited to derive subclasses.

Our method for hierarchy mining is focused on exploit-
ing the patterns based on such categorizing attributes. We
describe below the pattern identification procedure. Then,
we discuss the generation of the subclasses from the identi-
fied patterns.

4.3.1 Identification of the categorizing attributes
Two sources are involved in the identification of catego-

rizing attributes: names of attributes and data diversity in at-
tribute extensions (i.e. in column data). These two sources
are indicators that allow to find attribute candidates and se-
lect the most plausible one.

- Identification of lexical clues in attribute names
When used for categorization, the attributes may bear

names that reveal their specific role in the relation (i.e. clas-
sifying the tuples). In example of figure 1, the categorizing
attribute in the Products relation is clearly identified by its
name (Category). The lexical clue that indicates the role
of the attribute can just be a part of the name, as in the at-
tribute names CategoryId or Object Type. A list of clues can



be set up and used to perform a first filtering of potential
candidates.

- Filtering through entropy-based estimation of data di-
versity

With an extensive list of lexical clues, the first filtering
step appears to be effective. However, experiments on com-
plex databases showed that this step often identifies several
candidates. The selection among the remaining candidates
is based on an estimation of the data diversity in the attribute
extensions. A good candidate might exhibit some typical
degree of redundancy that can be formally characterized us-
ing the concept of entropy from information theory.

Entropy is a measure of the uncertainty of a data source.
In our context, attributes with highly repetitive content will
be characterized by a low entropy. Conversely, among at-
tributes of a given relation, the primary key will have the
highest entropy since all values in its extension are distinct.

Informally, the rationale behind this selection step is to
favor the candidate that would provide the most balanced
distribution of instances within the subclasses.

We give in what follows a formal definition of this step.
If A is an attribute of a relation schema R instantiated

with relation r, the diversity in A is estimated by:

H(A) = −
∑

v∈πA(r)

PA(v) . log PA(v) (1)

PA(v) =
|σA=v(r)|

|r| (2)

• πA(r) is the projection of r on A defined as πA(r) =
{t[A] | t ∈ r}. This set is the active domain of A. In
other words, πA(r) is the set of values attested in the
extension of A. Each value v of πA(r) is a potential
category (to be mapped to a subclass in the ontology).

• σA=v(r) is a selection on r defined as σA=v(r) = {t ∈
r | t[A] = v}. This selection extracts from the relation
r the subset of tuples with A attribute equal to v. In this
specific context, the selection extracts from the relation
all entries with (potential) category v.

• PA(v) is the probability of having a tuple with A at-
tribute equal to v. This parameter accounts for the
weight of v in A. It can be estimated by the relative
frequency of v (i.e. maximum likehood estimation).

Let now C ∈ R denote the subset of attributes prese-
lected using lexical clues. A first pruning operation is ap-
plied to rule out candidates with entropy at marginal values:

C ′ = { A ∈ C | H(A) ∈ [ α, Hmax(R) . (1−β) ] } (3)

• Hmax(R) is the highest entropy found among at-
tributes of the relations (Hmax(R) = maxA∈R H(A))

• α and β are parameters such that α, β ∈ [0, 1].

As said earlier, Hmax(R) is often the entropy of the primary
key attribute.

If several candidates still remain3, we ultimately select
the attribute that would provide the most balanced organiza-
tion of the instances. This amounts to look for the attribute
whose entropy is the closest to the maximum entropy for
the number of potential categories involved:

H̃max(A) = − log
1

|πA(r)| (4)

This reference value, which is derived from the entropy
expression (1), is representative of a perfectly balanced
structure of |πA(r)| categories with the same number of tu-
ples in each category. Note that this value is independent of
the total number of tuples (|r|).

The final decision aims at selecting the attribute A∗

whose entropy is the closest to this reference value:

A∗ = arg min
A∈C′

δ(A) (5)

Where

δ(A) =
|H(A)− H̃max(A)|

H̃max(A)
(6)

4.3.2 Generation and population of the subclasses
As shown in first rule of table 2, the generation of

subclasses from an identified categorizing attribute can be
straightforward. A subclass is derived from each value type
of the attribute extension (i.e. for each element of the at-
tribute active domain). However, proper handling of the
categorization source may require more complex mappings.
The second rule in table 2 matches a more specific pat-
tern where values to be used for subclass generation are
extracted from another relation. The structuring scheme
handled by this rule is encountered in many databases. We
give in figure 2 an example where this scheme is applied.
In this example, the categorizing attribute CatId in Albums
relation is linked through a foreign key relationship to Cat-
egories relation in which all allowed categories are com-
piled. More suitable class names can be assigned by using
the values from the second attribute named Description in
the Categories relation instead of the numerical key values.
In addition, a more exhaustive hierarchy can be derived by
considering also the categories that have no associated tu-
ples in the Albums relation, such as Tango category.
Classes of the resulting hierarchy are populated by exploit-
ing the tuples from the same source relation. An instance
is generated from each tuple. The extra task of dispatching
the instances into subclasses is based on a partitioning of

3Note that all candidates can be eliminated. In this case, the first candidate
is arbitrarily chosen.



Categorizing Attribute Values to Subclasses

Source Preconditions Target

r ∈ d R = sourceOf(C) ∀v ∈ πA(r)

A = catAtt(r) class(Cv partial C)

Categorizing Attribute (Indirect) Values to Subclasses

Source Preconditions Target

r ∈ d

A = catAtt(r)

R[A] ⊆ S[pkey(S)] R = sourceOf(C) ∀v ∈ πB1 (r)

pkey(S) = {B0} class(Cv partial C)

S = {B0, B1}
|πB0 (r)| = |πB1 (r)|

Table 2. Complex rules for hierarchy generation based on
identification of categorizing attributes (A = catAtt(r)).
Within the target part of the rule, the variable in bold holds
the Uri of the generated fragment in the ontology.

the tuples according to values of the categorizing attribute.
Formally, for each value v of A∗, the corresponding class is
populated with the instances derived from the tuples of the
set σA∗=v(r) = {t ∈ r | t[A] = v}.

5 Evaluation

RTAXON has been evaluated on a set of 35 databases
from different domains. These databases included 60 cat-
egorizing attributes. The method provided exploitable re-
sults with a precision of 65% and recall of 60%. In 30%
of these cases, several candidates resulted from the first fil-
tering step based on the lexical clues. The conflicts were
resolved by invoking the complementary step based on data
diversity estimation. 62% accuracy was achieved by this
conflict resolution step. To better assess the relevance of
the entropy-based selection method used at this stage, we
experimented simpler selection methods, such as selecting
the attribute with the least number of distinct values. Our
method achieved the best overall performance.

Our experiments also include a large-scale case study in
the domain of aircraft maintenance (see TAO project web-
site4).

6 Conclusion and Further Work

We presented a novel approach to ontology learning
from relational databases that shows how well-structured
ontologies can be learned by combining a classical analysis
of the database schema with a task specifically dedicated to
the identification of categorization patterns in the data. The

4http://www.tao-project.eu/

Figure 2. An example of a categorization pattern where
the categories to be employed for hierarchy generation are
further defined in an external relation

formalized method is fully implemented and included in the
RDBToOnto platform as the main learning component. The
method was validated on a representative set of databases.

A major direction for improvement is the extension of
the method to deal with the identification of more com-
plex categorization patterns. Our implementation already
provides some support for the generation of two-level hi-
erarchies based on two categorizing attributes. However,
the pattern identification step is not covered as the two con-
cerned attributes should be given as input to the process.
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sible and semantically based database-to-ontology mapping
language. In Proc. of SWDB 2004, Toronto, 2004.

[3] A. Behm, A. Geppert, and K. R. Dittrich. On the migration
of relational schemas and data to object-oriented database
systems. In Proc. of RETIS 97, Austria, 1997.

[4] C. Bizer. D2R MAP - a database to RDF mapping language.
In Proc. of WWW 2003, Budapest, 2003.

[5] F. Cerbah. Learning highly structured semantic repositories
from relational databases: The RDBToOnto tool. In Proc.
of ESWC 2008, Tenerife, 2008.

[6] N. Lammari, I. Comyn-Wattiau, and J. Akoka. Extracting
generalization hierarchies from relational databases. a re-
verse engineering approach. Data and Knowledge Engineer-
ing, 63, 2007.

[7] M. Li, X. Du, and S. Wang. Learning ontologies from re-
lational databases. In Proc. of Int. Conference on Machine
Learning and Cybernetics, volume 6. IEEE, 2005.

[8] S. Ramanathan and J. Hodges. Extraction of object-oriented
structures from existing relational databases. ACM SIG-
MOD, 26(1), 1997.

[9] L. Stojanovic, N. Stojanovic, and R. Volz. Migrating data-
intensive web sites into the semantic web. In ACM Symp. on
Applied Computing (SAC 02), Madrid, 2002.

[10] Z. Tari, O. A. Bukhres, J. Stokes, and S. Hammoudi. The
reengineering of relational databases based on key and data
correlations. In DS-7, 1997.


