Lexicographical Generation of a
Generalized Dyck Language

Jens Liebehenschel
Johann Wolfgang Goethe-Universitit, Frankfurt am Main
Fachbereich Informatik
D-60054 Frankfurt am Main, Germany
e-mail: jens@sads.informatik.uni-frankfurt.de

Abstract

Given two disjoint alphabets 7} and 7} and a relation R C T} x T3, the gen-
eralized Dyck language D™ over T} U T consists of all words w € (T; UT})*
which are equivalent to the empty word e under the congruence § defined by
zy = e mod § for all (x,y) € R. In this paper we present an algorithm that
generates all words of length 2n of the generalized Dyck language lexicograph-
ically. Thereby, each Dyck word is computed from its predecessor according to
the lexicographical order without any knowledge about the Dyck words gen-
erated before. Additionally, we introduce a condition on the relation R for
the language to be simply generated, which means that an algorithm needs
to read only the suffix to be changed in order to compute the successor of
a word according to the lexicographical order. Furthermore, we analyze the
algorithm that generates the Dyck words. For arbitrary R, we compute the
s-th moments of the random variable describing the length of the suffix to be
changed in the computation of the successor of a Dyck word according to the
lexicographical order.

Keywords: Dyck language, lexicographical generation, average-case analysis.

1 Overview and Definitions

In this section we introduce the generalization of the Dyck language, the lexico-
graphical order needed for the lexicographical generation and present all definitions
— illustrated by several examples — for the whole paper. Further, we point out the
contents of the following sections.

In this paper we present an algorithm that generates all words of length 2n of the
generalized Dyck language given in Definition 1 lexicographically. The algorithm
reads a word from right to left and changes a suffix of that word in order to generate
the next word according to the lexicographical order given in Definition 2.
Definition 1:

Let t1, t2 € N and T} := {[1,[2,...,[,51} (resp. T = {]1,]2,...,]t2}) be the set of
opening (resp. closing) brackets. Let |S| be the cardinality of the set S, so ‘T[| =1

and |T]‘ =ty. With T:=T; U Ty, where U denotes the disjoint union of sets, and a
relation R C 1| x T} we obtain the generalized Dyck language associated with R by

DR :={weT*|w=emod §},

where € denotes the empty word and § is the congruence over T' which is defined
by (V([a;]6) € R)([a]s = € mod d). Let length(w) be the number of symbols of the
word w. Obviously, length(e) = 0. The set of all Dyck words of length 2n is given
by DX, := {w € DR | length(w) = 2n}. o
Remark 1:

Obviously, there is a unique corresponding closing (resp. opening) bracket to each
opening (resp. closing) bracket in every Dyck word w € D,

The corresponding closing bracket to an opening bracket in a Dyck word w € D®
can be found by searching the first closing bracket behind the shortest word ws €

DR (wy might be ¢) on the right side of the opening bracket. If the opening (resp.
its corresponding closing) bracket is [, (resp.]), we have w = w; [w2]p wy with
wo,w; w3 € D®. The corresponding opening bracket to a closing bracket can be
found in an analogous way.

Definition 2:

Let <1exC T x T be an irreflexive linear ordering on T'. The lexicographical order
<lex over TT is defined as the extension of <jex t0 <1exC T x TT by & <oy y 1 &
(FzeTH)(zz=y)V (3 (w,2",y',a,b) € T** x T?)(z = waz' Ay = wby' A a <jex b)
[Ke98]. Note that in this paper we consider the lexicographical order on words of
length 2n only. o

We use the following ordering on T

[\T[\ <lex --- <lex [1 <lex]1 <lex -+ <lex]\T]\ .

Now, let us have a closer look at the relation R. From the existence of the lex-
icographical order <y on D™ results the existence of a unique lexicographically
minimal (resp. mazimal) tuple in R which is denoted by Ruin (resp. Rmax)-
Definition 3:

Let p, . (resp. pX..) be the lezicographically minimal (vesp. mazimal) pair of brack-
ets in R . Further, let [z [z €T and],z ,]p= € T). Then we get:

pﬁin = [PE;H]Pfﬁ;n < Rumin = ([PE;H’]PE;H) and
Prax = 7. oz & Rmax = (., oz,.) -

Obviously, [,=. (resp. lp=.) is the opening (resp. closing) bracket of the lexicograph-

ically minimal pair of brackets and [p= (resp.]Pﬁax) is the opening (resp. closing)

bracket of the lexicographically maximal pair of brackets. Now, we are able to com-

pute the minimal (resp. maximal) word of DY, according to the lexicographical order
DF DF

w2 (resp. wmik):

R R
i = (bz,)" Opz,)" and wmii = (PF0)" -
Definition 4: C
Given ([4,]s) € R,]y is called minimal (resp. mazimal), if (Ve € [1:b—1])(([a,]c) ¢
R) (resp. (Ve € b+ 1: |T1[1)(([as]c) € R)). Here, [a : b] := {a,...,b} denotes the
set of all integers i with a < i < b. o
Note that the property of being minimal (resp. maximal) depends not only on the
closing bracket, but also on the corresponding opening bracket. For example,] of
([a1,]p) can be minimal, even if] of ([4,,]s) is not minimal.

In this paper we assume that (Vz € T)(3([a,]s) € R)(z = [0 V 2 =]p), i. e. there
are no useless symbols in T, so we find [, = [and [,z = [1.

Let us demonstrate the above definitions by two simple examples.

n

Example 1:

Let T :={[1,[2,]1,]2}, R:={([1,]1), ([2,]2)} and n := 2. We get the lexicographical
order [» <jex [1 <lex J1 <lex J2- The lexicographically minimal (resp. maximal)
word is given by wﬁi‘i =[2[2]2]2 (resp. wﬁgx =[i]i[1]1). In Figure 1 we find all
Dyck words of this example.

Example 2:

Let T := {[1, [2,]1,]2}, R = {([1,]1), ([1,]2), ([2,]2)} and n := 2. Again, we obtain
the lexicographical order [» <jex [1 <lex |1 <lex J2. The lexicographically minimal

R

R
(resp. maximal) word is given by wﬁfm =[2[2]2]2 (resp. Wik = [1]2[1]2). Given

[2 [2]2]2 <lex [2 [1]1]2 <lex [2]2[2]2 <lex [2]2 [1]1 <lex
[1 [2]2]1 <lex [1 [1]1]1 <lex [1]1[2]2 <lex [1]1[1]1

Figure 1: All Dyck words of Example 1 arranged according to the lexicographical order <joy-

([1,]1), we see that]; is minimal, but not maximal. Analogously,]» of ([1,]2) is
maximal, but not minimal. Regarding ([2,]2) we find] to be both minimal and
maximal. In Figure 2 all Dyck words of this example are arranged lexicographically.

2l2]2]2 <tex [2[1]1]2 <iex [2l1]2]2 <iex [2]2[2]2 <iex [2]2[1]1 <tex [2]2[1]2 <lex
[il2]2]t <tex [1l2)2]2 <tex [1li]i]t <tex [ili]ile <tex [1li]2]1 <tex [1[1]2]2 <iex
ilele <tex i)t <tex [1]ili)e <tex [l2l2]2 <tex [1]2[1]1 <tex [1]2[1]2

Figure 2: All Dyck words of Example 2 arranged according to the lexicographical order <jqx.

Now, let us recall two definitions of [Ke98].
Definition 5:
For arbitrary language L and w € L, next_L<1ex (w) is defined by
w' if w#wk, A w<exw A
nextﬂlex (w) := (Vw" € L\ {w,w'})(w" <iex w V w' <jex w")

undefined if w=wk,

and it is called successor function for the language L. o
Definition 6:
Let ¥ be a finite alphabet, L C ¥* be a formal language with the lexicographical

order <jex. The functions pre’, , old% new’ : L — %* are defined as follows:
lex lex lex

e if w=wk,
preﬂlex(w) = u if (J(v,0) ETF X TF) (w=uv A
nextf:<1ex (w) =uv' A length(u) is maximal)

L
O|d<lex (w) = V= w= preilex (w) v
. L L — L
neWi (w) = Y Tf w# ernaX A (w) = pre<lex(w) v
lex undefined if w= Whax

The language L is called simply generated with respect to <jex iff it satisfies the
property

(V(w,w') € L?)
L

(oldﬁlex(w) = aoldﬁlex(w'),a €Y~ (a, newﬁlex(w)) = (e.,newl (w')). o

Obviously, pre, (w) is the longest common prefix of w and next’, _(w); oldﬂlex (w)
(resp. newf:<1ex (w)) is the suffix of w (resp. nextﬂlex (w)) to the right of that longest

common prefix of w and nextile (w).
We saw that a language L is called simply generated, if it is possible to determine

the suffix oId_L<1ex (w) and replace it by the suffix newﬂlex (w) in a unique way for

all w € L\ {wf,} without any knowledge about prel (w). So, a language L is
called simply generated, if it is sufficient to read the suffix to be changed only for
all w € L\ {wk, .} in order to compute nextilex (w).

Example 3:
R
Considering Example 1, with w = [3[2]2]2 we find nextf{‘ex(w) =[l]1]2- We get

DF D} D} _ .
preZ) (w) = [z, old! (w) = [2]2]> and newZ} (w) = [1]1]2. It is easy to check
that the Dyck language DT with R := {([1,]1), ([2,]2)} is simply generated.

In Section 2 we formalize the successor function; for that purpose we have to define
some functions that give information on the relation R. Note that the algorithm
uses w = wqg . ..Wap—1 € Dﬁ

The first three functions depend on the relation R and a given Dyck word w.

The function succl:
The function succz)%air computes to a given pair of brackets [,] the next pair of

brackets according to the lexicographical order <jex and the relation R.

lc]a if ([e.]Ja) €ER A [a]p <tex [e]a A
(V(r1,r2) € R\ A{(a: 1), ([e5]12)})

(7'1 9 <lex [a]b V [c]d <lex T'1 T2)
undefined otherwise

succ, ([Js) =

R
Note that for all (r1,7r9) € R\ {wﬁ?{,} }, the function succﬁir(rl r9) is always defined.

. R .
The function succiy, e

The function succz,facket computes to a given closing bracket] in a Dyck word the
next closing bracket according to the lexicographical order <jex and the relation R.
Here, [, denotes the unique corresponding opening bracket to] in the Dyck word
w. It can be determined as described in Remark 1.

]d if wEDg‘;z/\wi:]b/\
[o corresponds to Jp in w A
SUCCR (w Z) — ([aa]d) ER A [a]b =<lex [a]d A
pracket i (V(r1.7m2) € R\ {(a;]1): ([a:]0)})

(rl T2 <lex [a]b \ [a]d <lex T'1 TQ)
undefined otherwise

Note that for all closing brackets not being maximal, succl%, ., is always defined.

The function mi n_predﬁacket :

The function min_pred(, ... computes to a given closing bracket], in a Dyck word
the minimal closing bracket that corresponds to [, according to the lexicographical
order <jex and the relation R. Again, [, denotes the unique corresponding opening
bracket to] in the Dyck word w.

Ja if weDR Aw=] A
E[E c]or)resp;gnds to Jp inw A
1 R L ay)d) € A
min_predye,ciet (W, 7) 1= (V([a>7) € R\ {([a,]a)})

([a]d <lex [a T)
undefined otherwise

Note that for all closing brackets, min_predl, . is always defined. Further, the
function min_predl, .., can be applied to w; ...w; € T}*; we define

. R LN
min_pred,,, et (W, &, 7) 1=

. R . . R . . R .
mm—predbracket (U), Z) mm—predbracket (U), v+ 1) te mm—predbracket(waj) .

_ . . R LN
If w; ... w; = e, we obtain min_predy,, et (w,1,7) = €.

Remark 2:

The functions succk, ., and min_pred{, e, need some more information, i. e. the cor-
responding opening bracket to the function’s argument, which is a closing bracket.
For some relations R it is necessary to read that opening bracket; for others it is
not necessary, because the information needed can be determined by the relation
R. A condition will be given in the next section.

The following boolean functions depend on the relation R only.
The function no_succl, ..:

The function no_succl, .. is true, if a given closing bracket], is maximal with
respect to all pairs of brackets it appears in.

true if (V[a € T[) (([a,]b) ER

10.50CR, a0 (1) 1= ~ suce®, ([a10) ¢ {la]a | 1a € T3})
false otherwise

The function succ_uniquep,,cyet:

The function succ_uniquely, e is true, if the result of succ, ., for a given closing
bracket], is the same — independent of the corresponding opening bracket to |p.

(true if (v[ala [az € T[) (([al’]b)’ ([GQ’]b) €R
~ ((succli ([1s) = [ar Ja A

o succﬁi,([az]b) =laz]a A
succ_uniquegy, et (o) := Jla€Ty) v

(succ’; ([,]») = undefined A
succ%i ([az |») = undefined)))

| false otherwise

The function min_pred_uniquels, e;:

The function min_pred_uniquels, e, is true, if the result of min_pred(, .. for a given
closing bracket |, is the same — independent of the corresponding opening bracket
to]b-

min_pred_uniqueS, et ()
true if (v[ala[az GT[)(H]d ET])(([““]”)’([“Q’]I’) €R
o (HansJer) € RA Ao Ja)}) ([Ja <tex [ar Jer) A
(Vs Jex) € RAA(an: 100}) ([oo Jat <tex Lo)e))

false otherwise

Example 4:
Let us revisit Example 2 with R := {([1,]1), ([1,]2); ([2,]2)}. As the lexicographical
order on the pairs of brackets is given by [2]2 <iex [1 |1 <lex [1]2, we obtain:
succhuie([212) = [i 1, suecy ([1]1) = [1]2, succf; ([1]2) = undefined.
Now, we regard

w=wowywywz wgws = [1]2[1 [2]2]1 € DF .
Obviously,
succl, et (w, 1) = undefined, succl, .. (w, 4) = undefined, succl, .. (w, 5) =],
min-predgacket(wv)=, min-pred’tﬁacket(wv 4,5) =]]i.
The boolean functions immediately yield
nosucc ..(J1) = false, nosuccl, .. (I2) = true,
succ_uniquel, et (11) = true, succ_uniquel, o (J2) = true,
min_pred_uniquel, e: (J1) = true, min_pred_uniquel, .;(J2) = false.

In Section 3 we formalize the condition on the relation R, if a given language D,
is simply generated or not. Further, we present an algorithm that decides, whether
or not a relation R results in a simply generated Dyck language.
Definition 7:

R
Let open”(];) := {[; | (,];) € R} (resp. close™([;) := {]; | (li.];) € R}) be the
set of all corresponding opening (resp. closing) brackets to a given closing (resp.
opening) bracket according to the relation R. Further, let

Ik it ([i,]k) €R A [ilj <tex ik A
SUCCGSSOTR(]ja [i) = (v]l < cIoseR([i) \ {]]]k})
([z]l <tex [i 5 V [i]k <lex [z]l)

undefined otherwise

be the function that computes the same for a relation R as succ, ., does for a
closing bracket of a Dyck word. The only difference is that we have to tell that
function the corresponding closing bracket to the opening bracket, because it is not
able to determine it as succl, ., is (, because succ, ., gets the whole word as
parameter, not only a closing bracket). o

Note that open®, close™ and successor® depend on the relation R only and not on
a Dyck word.

Definition 8:
The matriz representation of a relation R is given by

Lot (5]

R H L=)
M a<j<|zy| With mi; '_{ 0 if ([,])¢R

= (mi,j)1gig\T[

Example 5:
Considlgring the relation R := {([1,]1), ([1,]2), ([Q,Jg)} of Example 2, we immediately
find open™(J1) = {[1}, open™(]2) = {[1. [2}, close™ ([1) = {]1.]2}, close™ ([2) = {]}.

The matrix representation of R is given by M™ = (;

In Section 4 we analyze the length of the suffix to be changed in order to generate
the next word according to the lexicographical order on the average. This average-
case analysis is based on a general approach to the average length of the shortest
suffix to be changed when generating words of a language lexicographically [Ke98].

2 Algorithm for the Generation of Dyck Words

In this section we will present an algorithm that generates all words w € DX,

lexicographically. The following function generate starts with the generation of
R
the lexicographically minimal word wﬁfg and successively generates the next word

R
nextffe"X (w) of w € DY, according to the lexicographical order until the lexicograph-
R
ically maximal word wr?l;‘;’;(has been generated.

function generate ()

begln
DQR
w = wr,ir ;

while w # undefined do
R
w = nexti)fe"X (w);
end;

Algorithm 1: Function that generates all words of the language D;Zn lexicographically.

Note that in the function generate the lexicographical generation is a transformation

from one word to the next one according to the lexicographical order; it is called
DZ,
min

successor. So, each word w € DX, \ {w } depends on its predecessor only, there

is no need of more information about the words previously generated.

In the following Lemma 1 we prove that DY, can be splitted in four disjoint sets. In
Lemma 2 we show and that each Dyck word w = wyq ... wap—1 € D;%l has a unique
factorization.

Given a string s, we write a € s to express that a is a symbol occuring in s.

Lemma 1:
Let
1 D}
9 .
S = {rwawarn .. wp (PR’ |
reT, w, € T}, w, is not maximal,
Wa+t1 ---wg € T, (Vu € waqi ... wg)(u is maximal),
0<i<n-1} n DX,
S = (@ wa ot asa .. ws (PR |
z €T*, (W, Wat1) € R\ {Rmax} Wat1 18 maximal,
Wa+ts - wg € T, (Vu € way2 ... wg)(u is maximal),
0<i<n-1} n DF,
4 .
Sén) = {mpzax Wq - - 'wﬁ (pzax)l |

€T, wy... w5 € T]+, (Vu € wq ... wg)(u is maximal),

0<i<n-2} n Df .
Then the following equation holds:

D o2 old)) old
DR, = 84 0.5 0 580 0 840

Proof: '
Obviously, (Vw ¢ DR,)(Vj € [1:4]) (w ¢ SY)). Now, we have to prove that (Vw €
DRY(3je1:4])(we Séil)) We assume that (3w € DX, (Vj € [1:4]) (w ¢ Séil))
Let w = a (pR,)% a € T* a # bpZ,., b€ T*. So, (pX,.)* is the suffix of w with
maximal length consisting only of the lexicographically maximal pair of brackets,
hence we get 0 < k < n.
Case 1: k = n.
'\»a:s'\»wEng.
Case 2: k=n—1.

w € Séi) if a9 is not maximal

~ =iy, (ar,0) €R~ { w e Séi) if ay is maximal

Case 3: 0<k<n-—2.

~» a € D% length(a) = 2n — 2k > 4. Let a = bed, b € T, ¢ € T, c is not a
maximal closing bracket, d € Ty, (Vv € d)(v is maximal). So, d is the suffix of a
with maximal length consisting only of maximal closing brackets. Now, we take a
closer look at c.

Case i: ¢ € Tj.

~» ¢ is not maximal ~ w € Séi) .

Case ii: ¢ € Tj.
~ length(d) > 1~ d = d; da, length(d;) =1
w € Séi) if cdi #pl..
w € Séi) if cdi =pk,,
Altogether, (Vw € DR, (3j € [1: 4]) (w € S5)).
Now, we have to prove that the sets SSL), Séi), SSL) and SSL) are pairwise disjoint.
In each of the following six cases we assume that (3w € DR)(w € S5 n 85,
1<i<yj<4
Note that the closing bracket of p&_ . i. e.]
Case 1: S5 N s$?) + 0.
DX, (2) - c .
~> Wmak € Ss,, . This is a contradiction.
Case 2: S5 NS ¢,
DX, (3) - c .
~> Wmak € S, . This is a contradiction.
Case 3: S5V N s{Y £ ¢,

DJ. 4 . -
~ Wmak € Sén). This is a contradiction.

Case 4: 52 N S ¢,

We assume the existence of w € Séi) N SSL) with

pR._, is maximal.
Rax

W = T Wa Wart W (Diax) = YUy Vyp1 Uz 05 (Dax)”

where
zeTT,
wa € T}, w, is not maximal,
Wyt - wg € T, (Vi € wayr ... wp)(u is maximal)
0<i<n—-1,
yeT,
(Uy,Uy41) € R\ {Rmax}; Vy+1 is maximal,
Uyt ... 05 € T, (Vi € vyqn ... v5)(u is maximal),
0<j<n—-1.
As w, is not maximal and (v, Vy+1) 7# Rmax, we find i = j.
DT Wq - - WG = YUy ...V5.
So, both words have a suffix consisting of maximal closing brackets.
~ Wogl - WE = Vyp1...U§
~ Wy = Usy.
This is a contradiction, because w, € T}, vy € T and T] N T} = 0.

Case 5: 552 N S$Y £ ¢,
We assume that w € Séi) N Séi) exists with

Y

W = TWq Wa+1..-Wg (pzax)l = ypgax Uy ... Vs (pgax)] ’

where
zeTt,
wa € T}, w, is not maximal,
Wat1 ---wg € T, (Vu € wot1 - .. wg)(u is maximal),

0<i<n—1,

yeTt,

vy ... v5 € T, (Vu € v,y ... v5)(u is maximal),
0<i<n-2.

As wy € Tj, w, is not maximal, J,= € T} and length(v, ...vs) > 1, we find i = j.
~ T Wq ---W3 zypgaxvv...va.

Since w, is not maximal, we obtain wa41 ... w3 =]pr vy ... Vs.
~ We = [pr_ .

This is a coﬁ}jcradiction, because wo, € 1), [,z € T} and Ty NT} = 0.

Case 6: S5 N S{Y # 0.
We assume the existence of w € Séi) N Séi), where
W = TWo W1 Wa42---Wg (pgax)i = ypgax Uy .. -Us (pgax)j
with
x e T,
(Wa s Wat1) € R\ {Rmax}; Wat1 is maximal,
Ways ---wg € T, (Vu € wata ... wg)(u is maximal),

0<i<n—1,

yeTt,

vy ... v5 € T, (Vu € v,y ... v5)(u is maximal),
0<i<n-2.

By wa, [r € T}, wat1.]pr, €T}, Wat2...wg € T} and v, ...v5 € T]+ we obtain
i=].

T Wq Wat1 Wa42---Wp = ypﬁaxvv ... U§-

As both words have a suffix consisting of closing brackets, we get Wy wat+1 = DK,

This is a contradiction, because (wq, Wa+t1) € R\ {Rmax }- =
Remark 3:

Ifn =1, we find S{*) = ¢.

Lemma 2:

Each Dyck word w € DJ, has a unique factorization.

Proof:

As we have shown that SSL), Séi), Séi) and Séi) are pairwise disjoint, we only have

to prove that for each word w there is only one factorization according to the set it
belongs to.
w e 5511)3
Trivial.
w e Séi):
We assume that two different factorizations of
W = W Wart e W05 (D) = Y0y V4105 (PR)?
exist with
x,y € TT,
Wa,Vy € 1], wq, v, are not maximal,
W1« WGy Vg1 + - V5 € T]*, (Vu € wat1 ... wa, Uy41 ... Us)(u is maximal)
0<i,j<n-1.
Assume without loss of generality i < j ~» j —i > 0.
A T Wo Wat 1 « - WG = YUy Vi1 -+ Vg (D)™
~ Watt - wg =V (we €T7 A waqr...wg €TY)
~ w, € Ty is maximal; this is a contradiction.
~j—i=0~1=].
Now, assume without loss of generality length(way1 ... wg) < length(vy41 ... v5).
~ Wy is a maximal closing bracket; this is a contradiction.
~ length(wq+1 - .. wg) = length(vy41 ... vs)
~ Watl -+ -WE = Vyg1 ... V5.
wa # vy is a contradiction, because T wy = Y v, wa, v, € T7.
~ Wo = Uy

3

So, there is one factorization for every word w € Séi) only.
w € Séi):
We assume the existence of two different factorizations of a word w € Séi) with
— R \i R \j
W = TWq Wa+1 Wat2..-Wp (pmax) = YUy Vy41Vy42...U5 (pmax))
where
x,y € T*,
(woza onrl)a (U’ya U’y+1) ER \ {Rmax}7 Wa+1yVy+1 are maXimala
Wat2 . WG, Vyg2...V5 € T]*, (Vu € waya ... wa, Uy12 ... 0s)(u is maximal)
0<i,j<n-1
Now, we assume without loss of generality ¢ < j ~ j —i > 0.
T Wy WG = YUy .05 (PR)T
~ Wat2 ... W3 =€ A (Wa, Wat1) = Rmax-
That is a contradiction to (wa, Wa+1) € R\ {Rmax}-
~j—i=0~1=7].
Now, assume without loss of generality length(wayo ... wg) < length(vy4a ... v5).
~ Wo = Vyt1 € T} Vw, €T.
This is a contradiction to w, € T, because T} N1} = 0.
~ length(was ... wg) = length(vy42 ... vs)
~ Wog2 o WE = Vyp2 ... V5.
Wo Wat1 7 Uy Uy4+1 1S & contradiction, because x wq wo+1 = Yy vy vy41 and further
length(wa wa+1) = length(vy vyy1) = 2.
N Wa Wat1 = Uy Uy41
~ oz =Y.

Y

So, there is one factorization for every word w € Séi) only.
wE Séi):
We assume that two different factorizations of

W= PR Wa W5 (Dax)’ = Y Pmax Uy - - V6 (Phvax)’
exist, where we have
z,y €T,
We o WG, Vy ... Vs € T]+, (Vu € wq ... wg, v,y ...v5)(u is maximal),
0<i,j<n-2.
Assume without loss of generality i < j ~» 7 —i > 0.
~ wpgax Wq - .- WE = ypgax Uy ... Vs (pﬁax)jii
~ We ... WG = E.
That is a contradiction to w, ... wg € T]+.
~j—1=0~1=7.
Now, assume without loss of generality length(w,, ...wg) < length(v, ... vs).
~ [z, €T
This is a contradiction to [,z € T}, because T; N T} = 0.
~» length(wq ... wg) = length(v, ... vs)
M We o WE = Vey o a Vs
Thus, we obtain x = y.
So, there is one factorization for every word w € Séi) only. n

R
Now, we are able to formalize the successor function nexti)fe"X (w) of a word w €
DX, according to the lexicographical order. With Lemma 1 and Lemma 2 we can

compute the successor for each of the sets Séfl), 1 < j <4, defined in Lemma 1.

10

Theorem 1:
R

nextff:x (w)
(undefined if w = (pR,)" € Séi)
z Succﬁacket (w,) ([pgin)i (]pgin)i min—predzsracket (w,a +1,3)
if w=2w,war1.. . ws (PR E Séi),
z€eTT,
wq € T}, wy is not maximal,

Watt - wg € T, (Vu € waqr ... wg)(u is maximal),

0<i<n-1
x@ ([pgin)i (]pzin)i w/oz:1 min—pred’tﬁacket(w= a+ 275)

if w=2WaWar1Wara. . Wz (PRay)t € Séi),
x €T,
(Wa, Wat1) € R\ {Rmax}, Wat1 is maximal,
Wota .- w3 € T, (Vu € wata ... wg)(u is maximal),
0<i<n-—1and
Wa Wat1 = sUCCly (wo Wat1), Wa € T, wat1 € T

T min—predgacket(wa a) ([pzin)hL1 (]pgin)hL1 m'n—predbracket(wa a+1, ﬁ)
(4)

if w=apR Wawair.. . wp (PR €55,

zeTt,

we € T}, wy is maximal,

Wa+1 ... wg € T, (Vu € waqy ... wg)(u is maximal),
{ 0<i<n—2

Before we prove the theorem, let us have a closer look at the computation of the

successor of a Dyck word w € DR, \ {wﬁ?&}

2
w € Sén) :
DI
w = T W Watl .. W3 Wmak
DZ, _ R X R
neXt-<1ex (w) = T SUCChacket (w= a) Wpin mm-predbracket(wa a+1, ﬂ)
3
w e Sén) :
DE
w = T Wy Wayl Way2...W3 Wmax
DE, . DR . R
nextZ’" (w) = T Wa Wy Wat1 mMin_predyg e (w, o + 2, B)
R _ —~ — —~ —
Here, SUCCpa.r(o Watl) = Wa Wat1, Wa € T}, wayr € Tj.
4
w e Sén) :
R D'R
w = T wmax W Wa+1 - Wmak
D;zn _ d 2(z+1) d 1
neXt<1ex(w) = T mm-pre bracket(wﬂa) Winin mm—pre bracket(w:a+ 7/6)

11

Proof:

We can prove this theorem by proving the correctness of the successor function for
each case w € Séil), 1 < j < 4, because every word w € DJ, belongs to one of the
sets S, 1 < j < 4, exactly.

2n
(1),
weS,,:
. DR
Obviously, wp3% has no successor.

w € Séi):
R
Assume that (Jv € DF) (w0 <iex v <iex nextgfe"x(w)) ~v=gx0,z€TT, with

R ; ~
Wq Wa+1 - - W3 (pmax)l <lex U <lex

Succ?racket(“’: a) ([pgin)i (]pzin)i min—predZ}racket(wa a+1, ﬂ))

where
wa € T}, w, is not maximal,
Way1 - wg € T, (Vi € wayr ... wp)(u is maximal)
0<i<n-—1.
Obviously, Wy <iex SUCC, e (W, @). Note that w, and succl, .. (w, @) are the only
possibilities for the first symbol in 9. Further, we know that every v € DX, has
exactly n opening and n closing brackets.

Y

Case 1: 7 = w, 0.
~ Wait - W3 (PRae) <lex . This is a contradiction, because § must contain i
opening brackets and (length(wq+1 ... wg) + 1) closing brackets, but all closing
brackets in wq41 ... wg are maximal, so none of them can be substituted by a
lexicograpical larger one and (pX,.)" = wr?,;%.
Additionally, (Vi e [1:|T(|]) (Vi € [1:|T1]) (i <iex 1;)-
Thus, such © does not exist.

~

Case 2: § = succl, e (W,) .
~ 0 <tex ([pr) (]p=) min_pred S, et (w, @ 4+ 1, 8). This is a contradiction,
because ¢ must contain i opening brackets and (length(wg+41 ... wg) + i) closing

. . R
brackets, but ([,=)" (],=)" = wﬁfm and all closing brackets in w41 ...wg are
minimal.
Furthermore, (Vi € [1:|T7[]) (Vi € [1:|T1]]) (i <tex ;)
Hence, such ¢ does not exist.
w e Séi):
R
Assume that (3v € DR) (0 <iex v <iex nextff;‘x(w)) ~v=x?, x € T*, with

R 3 ~
Wa Wa41 Wa42 ... W3 (pmax)Z <lex U <lex

@ ([pgin)i (]pzin)iw/ozil min—pred’t{%acket (w: a+ 2, ﬁ) ;

where

(Wa s, Wat1) € R\ {Rmax}; Wat1 is maximal,

Ways ---wg € T, (Vu € wo4a ... wg)(u is maximal),

0<i<n—-1,

W Wat1 = succly, (wo wat1).
Note that w, <jex Wa, because wq1 is maximal and as there are no unused symbols
in T, (Vy € T; \ {wa, Wa }) (Y <lex Wa V Wa <iex y). Further, the first symbol in &
can be either w, or wg,. For the completion of a correct Dyck word, ¥ must contain
(i + 1) opening and (length(wg+2 ... wg) + i + 1) closing brackets.

12

Case 1: 7 = wq 0.
~> Wo i1 Wata - - wa (PRa)? <iex 0. This is a contradiction, because wa41 and

. . i DJ}
all brackets in wa42 ... ws are maximal and (pX,.)" = wmik.

Furthermore, (Vi € [1:|T7[]) (Vi € [1:|T1]]) (i <tex ;)

Thus, such © does not exist.
Case 2: 0 = wg, 0.

~ 0 <ex ([pr) (]pr) wWat1 min_pred{S, e (w, @+2, B). This is a contradiction,

because g1 is minimal and min_pred[%, .. (w, o + 2, 3) contains only minimal

. . R

opening brackets and further ([,z)*(],=)" = wﬁfﬁ.

Additionally, (Vi e [1:|T(]]) (Vi € [1:|T1]) (i <iex 1;)-

Hence, such ¢ does not exist.
w € Séi):

R D} ~ .

Assume that (Hv € DQn) (w <lex V <lex next<fgx(w)) ~v=1x0,x €T* with

R R i ~
Pmax Wa Wa+1 --- W3 (Pmax)l <lex U <lex

min—pred’t{%acket (w= Oé) ([pgin)i—i—l (] R)H_l min—pred’t{%acket (w: a+ 17/6))

min

where

wq € T}, wy is maximal,

Wat1 ---wg € T, (Vu € wot1 - .. wg)(u is maximal),

0<i<n—2.
For the completion of a correct Dyck word, ¢ must contain (i + 1) opening and
(length(wy ... wg) + i+ 1) closing brackets. Note that [,z or min_pred /%, e (w,)
is the first symbol in o.

Case 1: 0 = [pr_ 0.

max

R i ~
~]Pﬁax Wo Watl -+ - W3 (Prax)” <lex U. This is a contradiction, because] , We

PRax
and all brackets in wy41 ...ws are maximal and (pX,)¢ = wrgé:;.
Furthermore, (Vi € [1 : \T[|]) (Vj € [1 : \T]H) ([2 <lex]J)

Thus, such v does not exist.

Case 2: & = min_predl, e (w, @) 9.

~ 0 =Rgex ([pr) (1=)i+ min_pred[¥, e (w, @ +1,). This is a contradiction,

)it ()i+t = ng(z-H)

because (min | is minimal and all brackets appearing in

[Pﬁin]pzin
min_pred %, et (w, @ 4 1, B) are minimal.

Further, (Vi € [1 : \T[H) (V] € [1 : \T]”) ([Z <lex]])
Hence, such ¢ does not exist.

Remark 4:

R
(i) When regarding the definition of nextgfgx (w) of w € DE,, we notice that we

need some information about the relation R.

e Is a closing bracket maximal ?

e If a closing bracket is not maximal, what is its next closing bracket
according to the relation R (= succls, er) 7

e If a closing bracket is maximal, what is its minimal closing bracket ac-
cording to the relation R (= min-predﬁacket) ?

In the next section we will focus on the condition for:

e This information can be obtained from the relation R.

13

e This information can not be obtained from the relation R, but it can be
obtained by reading a part of the Dyck word, especially the corresponding
opening bracket to that closing bracket.

R
(ii) if n =1, the function next?fex simplifies to:

R
nextlzfex (w)

undefined if

R .
Wo SUCChyacket (w,1) if

= pﬁax € Sél)
=wyw; € 552),

= (wo,w1) € R, wy is not maximal

w
w

succ®

pair(wo wl) if w=wow € 553)’

(wo,w1) € R\ {Rmax}, w1 is maximal

As the lexicographical generation of all Dyck words of length 2 is equal to
the lexicographical generation of all pairs of brackets, we immediately find:

R
nextffeX (w) = succl%, (w).

Note that the function min_pred[%, ., is not needed, if n = 1, because 554) =0.

Now, we are able to formalize the function next. Regarding Theorem 1 we see that
it has to read the Dyck word w from right to left. First, the algorithm reads all
lexicographically maximal pairs of brackets p¥, at the end of w. Then, it has to
read the string consisting of maximal closing brackets. Having read an opening
bracket or a closing bracket not being maximal, the suffix to be changed is found
and the successor can be generated.

Sometimes there are one or more closing brackets in that suffix, for which it is un-
decidable (in consideration of the suffix read only), whether the bracket is maximal
or what the next or minimal closing bracket according to the order on the alphabet
and the relation R is. If such a bracket is read, the function init is called. It reads
to the left until the corresponding opening bracket is found (see Remark 1). The
function init makes the information on this part of the Dyck word accessible to the
functions succly, ., and min_predﬁacket in the algorithm.

Now, we are able to formalize the algorithm that generates all words in D, lexi-
cographically. Note that w = wq ... wap—1 € D;%l in the algorithm.

dyck word function next(w: dyck word)
begin
i:=2n-1
pairs ;=0
brackets := 0
/*** %% find the suffix of w to be changed * % % % */
R

2pairs

/* read w,gax */
while i > 1 and w; ; w; = p~%,, do
begin
pairs := pairs + 1
1:=10—2
end
if i < 1 then
begin
_ . Doy (1) ;
/* successor for w = wm3k € S,,] does not exist x/
next := undefined
return
end

14

. . DR .
/* read all maximal closing brackets on the left of wmax""™ */
while w; € T} and no_succly, .. (w;) and min_pred_uniquel, e (w;) do

begin
brackets := brackets + 1
i:=i—1

end

if w; € 7} and (not succ_uniquely, . (w;)
or (nosuccl, ..(w;) and not min_pred_uniquez,zracket(wi))) then
begin
init(w, 1)
while w; € T} and w; is maximal do
begin
brackets := brackets + 1
i=i—1
end
end
/%% *xx change the suffix of w to generate its the successor x % * x x/
if w; € T} then
begin
/* compute successor for w € 553) */
Wi = Succgzracket(wv Z)
Wan—brackets - - - Wan—1 ‘= min—PredZ};acket (w:
2n — brackets — 2pairs,2n — 1 — 2pairs)

R
L 2pairs
Wit - - - Wit2pairs = Wiy
end
else
begin
. R
if w; wiy1 # Pryax then
begin
3
/* compute successor for w € Sén) */
—mi R
Wan+1—brackets - - - Wan—1 = mm—predbracket (wi
2n + 1 — brackets — 2pairs, 2n — 1 — 2pairs)
— R
Wi Wity 1= succpair(wi Wit1)
Wit142pairs = Wit1
R
L 2pairs
Wit -+ - Wit2pairs = Wiy
end
else
begin
4
/* compute successor for w € Sén) */
i . R .
w; = mm—predbracket (wi L+ 2)
— i R
Wan+1—brackets -+ - W2p—1 1= mm—predbracket (w:
2n 4+ 1 — brackets — 2pairs,2n — 1 — 2pairs)
DR .
L 2(pairs+1)
Witl - - Wita42pairs ‘= Wiy
end
end
next :=w

end;

Algorithm 2: Successor function next for the lexicographical generation of Dyck words.

15

3 On the length of the suffixes read and changed

In the preceding section, we have noticed that for the generation of the successor
of a word w € DJ, according to the lexicographical order it might sometimes be
necessary to read more than just the word’s suffix to be changed (function init). In
this section we will show that this neccessity depends on the relation R.

Now, we formalize the condition for a simply generated Dyck language DY,. We
will see that this condition depends on R only, if we distinguish between n = 1 and
n > 2.

Theorem 2:

Case 1: n = 1.

DF is simply generated <=
(V1; € T;) (V]i,, [i» € open™(];)) (successor™(];,[;,) = successor™(];,[i,)) -
Case 2: n > 2.
DE is simply generated <=
(V1; € T;) (V]i,, [i € open™(];)) (closeR([il) = cIoseR([ig)) }
Before proving the theorem, we take a look at some columns of two rows of the

matrix representation M given in Figure 3 and Figure 4. We distinguish between
two cases, which we will refer to in the proof.

TN 0---0 Mg x4v
Myt O 0 Myppatr
. >0 .

Figure 3: Matrix representation of a relation R (Case a).

In Figure 3, we have 1 <k <k +p < [Tl and 1 <A < A+ v < T4
Case a: (Figure 3)

LULTION Mg \+v _ 11 or LU Mg \+v _ 10
Mp4p,X Mep Atv 10 Mp4p,X Mep Atv 11

Without loss of generality, we will refer to the left equation.

0-.---0 My) My Afv 0-.---0
K4, A K4, A +v

>0 : >0 : >0

Figure 4: Matrix representation of a relation R (Case b).

In Figure 4, we also have 1 <k <k +pu < |Tj| and 1 <A <A +v < |T).
Case b: (Figure 4)

TN Me v _ 11 or TN Meg v _ 01
Myg4+pu\ Metp v 01 Myg4+pA Metp v 11

Without loss of generality, we will refer to the left equation.

16

Proof:
Let us remember Remark 4. Generating the successor nexti)l;:"X (w) of w € DY, we
need to decide, whether a given closing bracket w; = |; € T} is maximal or not. If
this is not the case, then we need to compute succﬁacket(w, i); otherwise, we need
to compute min_pred(, ... (w,i) (but only if n > 2).
Case 1: n = 1.
= : We assume: (3]; € T}) (3[,, [i, € open™(];))
(successor™(];, [;,) # successor(1;,[i,))-
Obviously, this expression implies Case a.
Case i: {([ili]j)v ([i“]a): ([izu]j)v ([iw]b)} CR,a 7£ b 7£ J,a 7£ J A
successor® (], [i,) = la # | = successor™ (1}, [i,) -
Here, we have Case a with kK =iy, kK + 4 =i2, A = j and A + v = a, where
there is at least one 1 on the right side of m;, ,, of which the leftmost is at

Miy b = 1.
Consider o

w=zl;, v €T with next_’ (w)=1z],
and

. DF
w'=ylj, y €Ty with nextZ’ (w') =yl .

R R
~ oldZ? 5\10) = aold?? (w')=];
~a=g, »
new?> (w) =1, #]y = new2: (w)
~+ DR is not simply generated.
In this case we see that D} can not be simply generated, if it is not pos-
sible to determine for arbitrary closing bracket the next one according to
the relation R (E succﬁacket) without knowing the corresponding opening
bracket.
Case ii: {([iw]j): ([ila]ﬂ)a ([iza]j)} CR,a 7£ JA
successor® (], [i1) =]a # undefined = successor™(];,[:,)-
Here, we have Case a with &, A, ¢ and v as in the previous case, but in this
case are only 0’s on the right side of m;, 4.
Again, consider

. DF
w=x];, r €T; with next<lzex(w) =],

and
R
w' =ylj,y € T} with nextflzex(w') #yle,lc €Ty .

R
~oldZ? (w) =1]; A

| D;a !
ength(avold_> (w')) > 1
~» length(a) > 0
~a#e
~» DJ is not simply generated.
In that case we see that DX can not be simply generated, if it is impossible
to decide, whether any closing bracket is maximal or not according to the
relation R without knowing the corresponding opening bracket.
<« : We assume that DX is not simply generated, i. e.
(Jw,w' € DF)(0ld%2 (w) = aold?: (w'),a € T*~

(a, newgix (w)) # (e, newi)];:X (w")).

17

Case it a # €.
In this case a closing bracket, say |;, is maximal in w and not maximal in
w', so the suffix to be changed of w is longer than the one of w’. Note that
this case corresponds to Case 1, 7=", Case ii.
~ (El]ja]a € Tj) (H[iu [iz € openR(]j)
(successor™ (]}, [i,) =]o # undefined = successor™(];,[;,)).

Caseii: a=¢ A newgix(w) # newfix(w’).
Analogously to Case 1, ”=", Case i, we find the next closing bracket to
]; according to the relation R to be different for (different) corresponding
opening brackets in w and w'.
~ (El]j,]a,]b € T]) (H[iu [iz € OpenR(]j))
(successor™(];,[i,) = la # |» = successor™(1;, ;).
Case 2: n > 2.
= : We assume: (3]; € 7)) (3[i,, [, € open™(];)) (close™([;,) # close™([;,)).
Evidently, this expression implies either Case a or Case b.
Case i: Analogously to Case 1, 7=", Case i.
Case ii: Like in Case 1, ”=", Case ii.

Case iii: {([ila]a): ([ilv]j): ([iza]b): ([iza]j)} CR,a#bANa#jA
(V]e € cIoseR([i) \ {]a}) (Ja <tex lc) A
(V1. € close™([1) \ {1;}) (1 <tex ;) A
(V]e € close™([1,) \ {1s}) (] <iex c) A
(V]e € close™ ([1,) \ {1;}) (]c <iex 1;)-

Here, we have Case b with k =iy, k+ u = i3, A = a and A + v = j, where

there are only 0’s on the left side of m;, .
Consider

R
w=xr17r2];, z € TT with nextlzi:X (w) = xsuccﬁi,(rl 72) o
and
. D}
w =yrira];, y € TT with next_>" (w') = ysuccl (rira)]y,

where (7"1,7"2) ERN\ {Rmax}, ro is maximal, |; is maximal.

D2n (D2n (

~ oldZ>" (w) = aoldZ
=c A

e gzn R R DX,

new<1 () = SlJccpair(r1 TQ)]a 7é SIJCcpair(r1 TQ)]b = neW<leX (w)

~» DR is not simply generated.

w') =riryl;

In this case we see that D, can not be simply generated, if it is not possible
to determine for arbitrary closing bracket the minimal one according to the
relation R (= min_predz,zracket) without knowing the corresponding opening

bracket.
< : We assume that DX is not simply generated, i. e.

(3w, w' € D) (oIdDQ" (w) = aoldP" (w'),a € T* ~

R R

(o, new: (w)) # (e, new’ ().

Case i: a # &.
This case corresponds to Case 2, ”=", Case ii.
It is like in Case 1, 7<«=", Case i.
~ close™([;,) # close™([;,) .
D} bR .,
Caseii: a =¢ A new_’" (w) 7 new " (w').
This yields one of the following cases:

18

e This case corresponds to Case 2, "=", Case i.
It is the same as in Case 1, ”<"”, Case ii.
~ close®([;,) # close™ ([,).

e This case corresponds to Case 2, "=, Case iii.
We obtain], for w and], for w' (or vice versa) with a # b and a # j
as minimal closing bracket to |; according to the relation R.
~ close™([;,) # close™ ([;,).
So, in each case we have found a contradiction. n

Remark 5:

(i) From Theorem 2 follows immediately, that a Dyck language DX, is simply
generated for n > 1, if |openR(]j)| =1,1<j <[

R

(ii) In order to compute next_[;fe"x(w) of w € DJ, we have to read a suffix of w.
If DY, is simply generated, we have to change exactly the brackets we need
to read in order to generate the successor of w € DJ. In that case, the
information required by the functions succ®, ., and min_predf, ., and for
the decision, whether a closing bracket is maximal, can be directly deduced
from the relation R. This is in contrast to a not simply generated language,
whereas - for at least one word - a part of the common prefix of the Dyck
word and its successor has to be read.

(iii) The familiar Dyck languages with the relations

e R ={([1,]1)}, i. e. with one pair of brackets,

e R={([1,]1)s---,([t;]+)}, i. e. with ¢ pairs of brackets, ¢ > 1, where every
opening (resp. closing) bracket corresponds to one closing (resp. opening)
bracket only and

e R = {([17]1)7 ey ([17]7“)7 ([27]1)7 vey ([27]7’)7 vey ([17]1)7 ey ([17]7“)}7 i e
with I r pairs of brackets, I, > 1, where each opening (resp. closing)
bracket corresponds to each closing (resp. opening) bracket

are simply generated.

(iv) Let

be the normal form of a matrix M. Here, A", 1 <1< k, are submatrices.

e If n =1, the form of A" is given as follows. The first row consists of 1’s
only. The following rows have the form 0---01---1, where the number
e
>0 >l
of 1’s is monotonic decreasing from the first to the last row. For example,
the matrices

11 1 111 111
001,011 |and|[111
00 1 00 1 11 1

have that property.

19

e In the case n > 2, each entry in A® is equal to 1.

The matrix representation M ™ of the Dyck language DJ, with relation R can
be transformed to its normal-form M™® by permutating rows and columns, iff
DX, is simply generated.

Example 6:

DX with relation R = {([1,]1), ([2,]2)} of Example 1 is simply generated for n > 1,
as |open™(];)| = 1 and |open®(];)| = 1.

For the language DE with relation R = {([1,]1), ([1,]2), ([2,]2)} of Example 2 we
find open™(];) = {[1} and open®(]5) = {[1,[2}. As successor”*(]s,[1) = undefined
= successor™ (]s, [2), DR is simply generated for n = 1. Since close”([;) = {]1,]2} #

{12} = close™([5), DR is not simply generated for n > 2.

Now, one can think about on how to decide algorithmicly, whether DI is simply
generated or not. As we have seen, the property of being simply generated depends
on the relation R only; we have to distinguish between n = 1 and n > 2. Let us
have a look at an algorithm that decides, whether DJ is simply generated or not.
We discuss the algorithm for n = 1, an algorithm for n > 2 is similar.

The following algorithms checks, if the language DJ is simply generated.

boolean function simply_generated ()

begin
simply_generated := true
/* check for all closing brackets |;, ... x/
for j:=1to ‘T]| do
begin
/* ... if successor®(];, ;) is the same for all corresponding [; */
k:=0
for i:=1to ‘T[| do
ifm; ;=1and k =0 then
k := search_next(i, j)
else if m; ; = 1 and k # search_next(i, j) then
begin
simply_generated := false
return
end
end
end;

Algorithm 3: Function that checks, if the language D;a is simply generated.

The function simply_generated uses another function that computes successor™(];, [;)
for any ([;,];) € R by looking up the column of the next 1 on the right side of the
entry for ([;,];) in M*® in the same row. If such 1 does not exist, |7}| + 1 will be
returned, which means successor™®(];,[;) = undefined. The function search_next is
defined as follows.

integer function search_next (4,7 : integer)
begin
search_next := j + 1
while search_next < m ‘ and m; search_next = 0 do
search_next := search_next + 1
end;

Algorithm 4: Function that looks up the column of the next 1 on the right of an entry in M™.

20

Note that each entry in the matrix M7 is regarded twice at most. So, it can be
checked in O(|T7| |Tj|), if the language DT is simply generated. The same fact
holds for the case n > 2. Hence, the amount to decide, whether the language is
simply generated, is constant with respect to m, i. e. to the number of pairs of
brackets in the words of the language.

4 Analysis of the Algorithm

In this section we analyze the length of the suffix to be changed in order to compute
R
the successor nextgfe"x(w) of a Dyck word w € DJ,. Remember that for every

word the suffix to be changed is equal to the suffix to be read, if DY, is simply
generated. If DY, is not simply generated, then there is at least one Dyck word
R
w € DR \ {wﬁ%&} for which an algorithm has to inspect the common prefix
’R 7?.

pre<1 (w) of w and next<1 (w). So, the length of the suffix to be read is greater
than the length of the suffix to be changed.

Let X 4(DZF,) be the random variable that describes the length of the suffix to be
changed. Obviously, the function generate generates the Dyck words in DY with
respect to the lexicographical order <lex- Thus, every word is generated exactly
once. Further, the function nextﬂze" reads the words from right to left. Under

these conditions, the s-th moments, s > 1, about the origin of the random variable
X,q(DE,) are given by [Ke98]:

2n—1
=1 s s
(X3 (D3)] i= 1+ [DE,|7 Y [(k+1)* = k] [INITonx(D3)] - (1)
k=1
Here, INIT,(DE) := INIT(DR)) N T* denotes the set of all prefives of length k ap-

pearing in words belonging to DY : thereby, the set of all prefives appearing in words
belonging to DY, is defined by INIT(DER,) := {u € T* | (3v € T*) (wv € D) }.

Now, our interest is |INITk(D§1) , 1 <k < 2n. For that purpose we consider the
well-known one-to-one-correspondence between the Dyck language and paths on the
lattice given in Figure 5.

(k+1,i+1)

o 1 2 3 4 5 6 7 8 9 10 2n-2 2n-12n k
Figure 5: One-to-one correspondence between Dyck words of length 2n
and the paths from (0, 0) to (2n,0).

Each Dyck word of length 2n corresponds to a path from (0,0) to (2n,0). A segment
A (resp.) is labelled by [, (resp.]3), where [, € T (resp.], € T}). The Dyck
word results from the concatenation of all labels on a path from (0,0) to (2n,0).

21

With the number of paths from (0,0) to (k,) in the lattice given in Figure 5 given

by
) k k
o= () = (1))
[Ke96] we have
INTDR) = Y REST | (ki) (3)
0<i<min{k,2n—k}

i<
k+i =0 mod 2

This formula can be found in [Ke96], too.

Distinguishing between the terms for even k and those for odd % in (3), we imme-
diately obtain by inserting (2):

[INIT,(DE)|

) min{L%ngkz_lJ}mL%Ji Vit td [([ﬂk_ Z) - (L%J _kz - 1” W

By (1), |DE,| = |INIT2,(D%,)| and (4), we get:

E[X:,0 (D33)]
2n—1 min{| 224 | n—| 20554 [}

= DR Y[k)t -k > Ry
k=0

=0

e () - (5]

Splitting the first sum into two parts and letting the index of the second sum go
to infinity, we obtain with |D§n‘ = %H(QS) |R|" after rearranging the sums and
applying some simplifications:

R n+1
E[Xsqu(D;%z)] = [“

2 3 (4)
1) F ey () + Fiy i (1) = FYi iy () = Fi i ()]
where

F)) = E:a”bmjékﬂwkns—@kﬂa*k
k=0

i>0 =
-2k (22
n—k—i n—k—i—1/|"
F2 o n) = S a1 S [(2k+2)° — 2k +1)*]a
i>0 k=0
o 2n—-2k—-1\ (2n-2k-1
n—k—i-1) \n—k-i-2)]’
Fs(sa)b(n) = Z a1 pPit? Z [(k+1)* —k*]a= " bk
i>0 k=0

o [y B (O |
(2n+1)° = (2n)°

22

In order to gain an asymptotic for n — oo for E[XZ,(DX,)], we need to study
the asymptotic behaviour of r)7b(), Fs(Qa)b(n), F(S)b() and Fs(4a) (n). For that

s,a s,a,
purpose, we consider the generating functions for these functions.

Lemma 3:
Let s,a,b € N and u := /1 —4z. The generating functions of Fs(’la)’b(n), Fs(i)b(n),
Fs(73a)7b(n) and Fs(4a) (n) are given by:
2
Gglg p(2) == Z Fs(la p(n) 2" = .
v >0 (1+u) (1 b (i(;u))
s—1
1 S X 2 1
X Z+Z<.>2JAj z —
(1 a =V (a> (1-2)
n b(1—u
G2 i= R e = —— 0
n>0 a(l +u) (1 - 20)
)t e () a2y]
x — I (%) 2 (2 =1
1_E Zj:l J (a) (1 %)]
n 4b
GS[)L,b(Z) = FS(S[L)b(n 2" = - =
>0 (1+u? (1- L59)
A (b(l — u)) 1
s 2a (1 b(17u))

s—1
:;stfa : <>ZJA()(1%§)H1.

Here, A;(z) denotes the I-th Eulerian Polynomial [Ke84, p. 214] with

M) = (1—) 3 mlam :sz'{}x—l

m>0

where {7} stands for the Stirling number of the second kind [GKP94, p. 258].
Proof:

In order to find the generating function for Fs(’la)’b
tion of two functions.

(gewr-mnee) (£[62)- .2))°)

Y Z (20 +1)° = (20)°] 0™ [(j’i; 2_”Z> - (K _2’2__3”_ 1)} . (5)

k>0 v=0

With 4 =1 -4z ~ 4z = (1+u)(1 — u) and the identity

om+a\ ,, 1 1-vI—42\" 1 /1-u\"
Z 2" = = — ,a €Ny, (6)
= m V1—4z 2z U 2z

[GKP94, p. 203] a straightforward computation leads to
5 2\ 2\ 2 ((1-u?\’
A—1i A—i—1 1+u 4z
A>0

23

(n), we first consider the convolu-

In consideration of (5) and (7) we obtain

yeor (6%

i>0 A>0

Gl (2)

< | ST@u+ 1" - @u)la 2t

n>0

2
b2 (1—u)?
(I4+wu)(1-

4az

u>0

) Yo [@u+ 1) —(2u)fTa™ 2 | (8)

by the expansion of the geometric series. Now, let us have a closer look at the sum
n (8). Splitting off the first term and applying the binomial theorem to (2u + 1)*
and using again the expansion of the geometric series yields

S (@u+ 1) = @2u)lat it = Z(Z)“ S()Q’ZM ()

pu>0 pu>0 Jj= u>0

- S ())i O

e g=1 (1

Inserting the expression (9) in (8) results in the generating function Gilib(z) for

the numbers Fs(la)b(n) stated in the lemma. GiQib(z) can be computed analogously.

For the generating function Gigib(z) we consider the function
2n — k
H,.. E: E:k 1)* d*,ceNy,d>0.
al 2 + E°] < 0t e > c €Ny, d>

A rearrangement of the terms of H; . 4(2) and the application of the identity (Z) =
(,"4); n,k € No, results in

2 k+2
scd Z[k+1 k,s]dkzk+czzn<n+ + C)
k>0 n>0 "
and further with (6) we get

Hoeatr) = 2 (A22) Sty w1 (172)

k>0

Moreover, a simple computation shows that

s _ 1.8 k: 1
g%[(ml) Ryt = Ay S

holds; applying this identity, we obtain:

1 /1—u\° d(l —u) 1
Hs,c,d(z) - Z <1+U> As(2) d(1—w) (1_ d(lfu))s . (10)

2

24

Now, by (10), we get after simplifications

oy (9)

xlé[(lw 1)° — k°] (g)k KnQZZ_fl) - <n2-7:z_+k2ﬂ

~ 4 b(1 — u) 1
B (1 + u)? (1_b2(1—u))As< 2a >(1_M)s'

a(l+u) 2a

G{*)(z) can be calculated similar to Gilgb(z) -

)

With this lemma, we are able to formalize

Theorem 3:

Let all w € DF, be equally likely. The s-th moments, s > 1, about the origin of the
random varlable X,,q(DR) are constant. They are given by

E[XSq (D3] ~ Cg -y 1| n — 00, where

Cs, IR,y
— () < 1) R+ |T7|” + 4| R||T;|(—1)* 7+
; 4R j+1
(\RI \T[\ = R| (kﬁ)
2°|R|*~ T 2 i
- L _12|R|(4|R]® + (s — 2)|R||T}| — s|T;|? As<—>
QR =TT IR|(4]R] IR||Ty| = s|Ty)?) AR

AR[(IR] + |7 — |T7(-1)°)
4R} -1

|71
+ T (2IR] = T (R - 1) A& (5)

Proof:
Using the results of the preceding lemma, we get the following formula after a simple
computation.

E[X 5 (D3]
n+1 4)

RO [n]{ siry (2 HGS\)R\,\T[\(Z)_GS\)R\,\T[\(Z)‘Gi,m\(z)}

= ndlin ! 7y (1)
- W[Z] (1+u)(1—m) <2_(1+U)<1_ 7[3|(1+u)>>

IR[(1+w)

s—1
1 s\ z 1 ||
“Ni=% (J) (m) G Rl
=i (1—‘71‘)

IR|

x (1__1)331 +§|]§C> 27 (~1)° I+ A (é) T L

25

am (Tn(l—u)) 1
1 # 2R IT[(1—u)\®
1+ u) R) (- i)

Now, we are looking for the singularity of smallest modulus that is not equal to

. . " _ 1L _ _IRIT?
0. We find possible singularities at z = 0, z = 3, z = [R|, z = TRAIT® and
z = W We do not have to take 2 = 0 and z = |[R| > % into account. As
. 1 2 3 4
an expansion of Gi,‘)m"T[‘(z) + Gg")R‘,‘T[‘(z) - Gg")R‘,‘T[‘(z) - GE,\)R\(Z) around z =
R||T;|? RI(|T1|—|R . Lo . R||T|?
7(‘7‘2‘4‘_“7%“2)2 orz =" ‘(“T[[“g‘ D results in a taylor series, i. e. neither z = 7(‘7‘2‘_"_“%[“2)2
nor z = W is a singularity, the singularity nearest to the origin is given by
_ 1 : m 2) (3) (4)
z = 7. Expanding Gs,\'RMT[\(Z) + Gs7\R\,\T[\(Z) - Gs7\R\,\T[\(Z) - Gs’m‘(z) around
y = 1—4z yields:

Gyl m () + Gy iy (2) = Gy 17 () = Gl (2)

Cymim| — 2Cs Rl T VY + OY)

where C; ||, 1, is given in the theorem and C] RILT = O(1) is another constant.

An application of Darboux’s method [GK82] immediately gives the asymptotic be-
haviour of the s-th moments of the random variable X 4(DZX,) stated in the theorem

with (%) ~ \/;n_ , n — oo, obtained by Stirling’s formula [GKP94, p. 454]. g

Corollary 1:
Considering X 4(DX), the mean value pgus(D2,) = E[X}, (DX,)] and the variance
024(DR) = E[X2 4 (DX)] — B[XL, (DR)]? for n — oo are given by:

sufl sufl

16/R|?
(4R - 1) 2[R| - |T})"
16|R[? (16| R||T}| + 12R|? — 12|R||T}[2 — 20/R||T{| + 7|T} |2)
(4RI -1)* 2RI - |T})"

Hsufl (D;%z) ~

2 (DR) ~

Osufi{/2n

| |
Remark 6:

Now, we focus on pgn(DY,). According to Theorem 3, we have pgn(DX) ~
C1,R|,|Ty: M — 00 A moment’s reflection shows that

16
Cigg = 3
1 3 1
Cirjn = 61| =1+0(%m=] IR = o,
IR, 2 IR
(4/R[= 1) (2IR| - 1)
16|R| < 1)
C M —svo(—) IRI=
LIR[,IR| (4|R‘ — 1) |'R,‘) | ‘ oC
hold. We further find with 1 < |Tj| < |R]:
Cirim > Crrian (11)
Crir Rl > CLRI4LRI4L 5 (12)
Cririr < Crmpm+t - (13)

Altogether, we obtain the following values for C1,/r|, 1| given in Table 1. Here, 1, N
and — stand for strictly increasing sequences. Obviously, 1, \ and — correspond
to (11), (12) and (13), respectively.

26

T 1 (2] .00, IR
IR|
B
i
— 0 1 4

Table 1: Values for Cy g1, 1 < IT;] < |R[,|R| = oc.

Now, we take a look at two plots of OL\R\,\T[\ for 1 < |Ti| < [R| < 10 from two
different points of view, analytically continued to R.

Figure 6: Two views of Cy |, 1 for 1 < |T;] < |R| < 10.

By these plots, we get a better idea of the behaviour of ugg(DZX,) for different
combinations of the two parameters |[R| and |Tj|. In the left plot of Figure 6, we
see clearly the inequations (11) and (12), in the right plot we recognize (13).
Remark 7:

In [Li96] the lexicographical generation of the Dyck language with t types of brackets
D! [Ha78, p. 313] was analyzed. The results are presented in [Ke98]. The formal
definition of D! is as follows:

Let t € N and T := {[1,]1,.-.,[t,]¢} be the alphabet with the linear ordering
[t <tex - <lex [1 <lex |1 <lex --- <lex Jt- The Dyck language D! is the smallest
subset of T* satisfying (i) and (ii):

(i) e€e D',
(i) u,v € D'~ [juliv € D'A...Aftu]iv € Dt .

The Dyck language with n pairs of balanced brackets and t types of brackets
is given by Di, := D' N T?". Note that D}, = DI with the relation R =
{([1,]1)s- -, ([t,]+)} Obviously, D%, is simply generated (see Remark 5).

The mean value and the variance of the random variable X, ¢(D%,,) describing the
number of symbols to be changed while generating the successor of a word was

27

found to be

16t) 16t

psufi(D3y,) ~ w_p T and 0g,(D3,,) ~ TR

For R = {(l1i,]1),---,([t:]+)}, we obtain |R| = |T[‘ = t and so by Corollary 1

R 16t 2 R 16t :
psut(Day,) ~ 727, n — oc and 0,4(Dyy,) ~ 327, n — 00, evidently.

Tt—1
In the following two tables (Table 2 and Table 3) we give some exact and asymp-

totical values for peun(D%,) and o2 (DZ,) for various relations R.

Rl | n Ti| 1 2 3 4 5
10 4.91176
100 | psun (D) || 5.28127
| |2 5.33333
10 3.73227
100 | o24(DR) || 5.08069
— 00 5.33333
10 2.04358 | 4.08490
100 | psun(DER) || 2.03273 | 4.51384
5 | =00 2.03175 | 4.57143
10 1.79522 | 2.65130
100 | o24(DER) || 1.77458 | 4.29137
— 00 1.77375 | 4.57143
10 1.58401 | 2.39785 | 3.86900
100 | psun (D) || 1.57212 | 2.44870 | 4.30531
3 |2 1.57091 | 2.45455 | 4.36364
10 0.97310 | 1.94598 | 2.40665
100 | 02,4(DER) || 0.93482 | 2.20012 | 4.07994
— 00 0.93112 | 2.23140 | 4.36364
10 1.40361 | 1.88379 | 2.61626 | 3.76953
100 | psun(DR) || 1.39417 | 1.89503 | 2.71870 | 4.20811
4 | oo 1.39320 | 1.89630 | 2.73067 | 4.26667
10 0.65391 | 1.26514 | 2.02532 | 2.29851
100 | o24(DE,) || 0.62294 | 1.32720 | 2.49557 | 3.98183
— 00 0.61983 | 1.33443 | 2.55590 | 4.26667
10 1.30795 | 1.64243 | 2.10626 | 2.76323 | 3.71230
100 | pun(DR) || 1.30034 | 1.64449 | 2.14401 | 2.90690 | 4.15187
s | 2o 1.29955 | 1.64474 | 2.14823 | 2.92398 | 4.21053
10 0.48029 | 0.91187 | 1.47111 | 2.06551 | 2.23756
100 | o24(DE) || 0.46442 | 0.92860 | 1.64749 | 2.70233 | 3.92519
— 00 0.46189 | 0.93057 | 1.66828 | 2.78718 | 4.21053

Table 2: Exact and asymptotical values for ﬂsuﬂ(D;?;L) and afuﬂ(D%?l)
for relations with 1 < |Tj| < |R| < 5.

28

®| o o s e
10 1.14058 | 1.41839 | 1.79957 | 2.68132 | 3.60298
100 l,Lsuﬂ(D%?h) 1.13684 | 1.41946 | 1.82102 | 2.83122 | 4.04378
10 — o0 1.13644 | 1.41957 | 1.82336 | 2.84900 | 4.10256
10 0.21381 | 0.54447 | 1.01347 | 1.88943 | 2.12362
100 | o24(DE) || 0.20198 | 0.55127 | 1.10638 | 2.53566 | 3.81660
— 00 0.20075 | 0.55203 | 1.11687 | 2.62173 | 4.10256
10 1.06728 | 1.32106 | 1.77318 | 2.46325 | 3.55073
100 | psun(DER) || 1.06545 | 1.32250 | 1.79762 | 2.57895 | 3.99182
2 — 00 1.06526 | 1.32266 | 1.80028 | 2.59241 | 4.05063
10 0.09993 | 0.38904 | 0.93847 | 1.66690 | 2.07031
100 | o2,(DR) || 0.09427 | 0.39533 | 1.03942 | 2.16155 | 3.76452
— 00 0.09368 | 0.39601 | 1.05080 | 2.22487 | 4.05063
10 1.02623 | 1.32422 | 1.75772 | 2.47605 | 3.52012
100 | pen(DXR) || 1.02551 | 1.32747 | 1.78386 | 2.60006 | 3.96128
50 — o0 1.02543 | 1.32782 | 1.78671 | 2.61453 | 4.02010
10 0.03839 | 0.37172 | 0.89539 | 1.64838 | 2.03940
100 | o24(DE) || 0.03620 | 0.38376 | 1.00071 | 2.17339 | 3.73395
— 00 0.03597 | 0.38505 | 1.01257 | 2.24113 | 4.02010
10 1.01300 | 1.30572 | 1.75262 | 2.43480 | 3.51003
100 l,Lsuﬂ(D%?h) 1.01264 | 1.30904 | 1.77932 | 2.55271 | 3.95120
100 L= 1.01261 | 1.30940 | 1.78223 | 2.56642 | 4.01003
10 0.01894 | 0.34303 | 0.88134 | 1.60367 | 2.02927
100 | 024(DE) || 0.01785 | 0.35496 | 0.98804 | 2.10131 | 3.72387
— 00 0.01774 | 0.35623 | 1.00006 | 2.16505 | 4.01003

Table 3: Exact and asymptotical values for ﬂsuﬂ(D;?;L) and afuﬂ(D%?l) for relations with

R| € {10,20,50,100} and Ty| € {1, [Z1], B 2R R)).

5 Concluding Remarks

In this paper we have presented an algorithm that generates all words of a gener-
alized Dyck language lexicographically. The Dyck language is defined by a relation
R which describes the pairs of brackets that can be used. We introduced a function
that computes from one Dyck word the next one according to the lexicographical
order.

Further, we found a condition for the generalized Dyck language to be simply gen-
erated, which means that for every word it is possible to compute its successor by
reading the suffix to be changed only. We saw that this condition depends on the
relation R only and not on the length of the words. We introduced an algorithm
that computes, whether the Dyck language — implied by the relation R — is simply
generated or not. The running-time of that algorithm depends on the relation only,
so it has a constant amount of time with respect to the length of the words.
Following a general approach to the lexicographical generation of all words of a
formal language [Ke98], we computed the s-th moments, s > 1, of the random
variable describing the length of the suffix of a word to be changed. In particular,
we pointed out the mean value and the variance of the number of symbols to be
changed in order to generate the successor of a Dyck word.

29

Acknowledgement

The author would like to thank Prof. Dr. Rainer Kemp, as it was his idea of how
to compute the s-th moments of the random variable describing the length of the
suffix to be changed.

References

[GKP94] R. L. GRAHAM, D. E. KNUTH AND O. PATASHNIK, Concrete Mathe-

[GKS82]

[Ha78)

[Ke84]

[Ke96]

[Ke98]

[Li96]

matics, 2nd ed., Addison-Wesley, 1994.

D. H. GrREENE AND D. E. KNUTH, Mathematics For The Analysis Of
Algorithms, 2nd ed., Birkhduser, 1982.

M. A. HARRISON, Introduction To Formal Language Theory, Addison-
Wesley, 1978.

R. KemP, Fundamentals Of The Average Case Analysis Of Particular
Algorithms, Wiley-Teubner, 1984.

R. KEmP, On The Average Minimal Prefix-Length Of The Generalized
Semi-Dycklanguage, RAIRO Theoretical Informatics and Applications
30, 1996, 6, 545-561.

R. KEmP, Generating Words Lexicographically: An Average-Case Anal-
ysis, Acta Informatica 35, 1998, 17-89.

J. LIEBEHENSCHEL, Lexikographische Erzeugung der Dycksprachen mit
mehreren Klammertypen, Diplomarbeit, Johann Wolfgang Goethe-Uni-
versitit, Frankfurt am Main, Fachbereich Informatik, 1996.

30

