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Performance-Based Classifier Combination
in Atlas-Based Image Segmentation Using
Expectation-Maximization Parameter Estimation

Torsten Rohlfing*, Daniel B. Russakoff, and Calvin R. Maurer, Jr., Member, IEEE

Abstract—1It is well known in the pattern recognition commu-
nity that the accuracy of classifications obtained by combining
decisions made by independent classifiers can be substantially
higher than the accuracy of the individual classifiers. We have
previously shown this to be true for atlas-based segmentation
of biomedical images. The conventional method for combining
individual classifiers weights each classifier equally (vote or sum
rule fusion). In this paper, we propose two methods that estimate
the performances of the individual classifiers and combine the
individual classifiers by weighting them according to their esti-
mated performance. The two methods are multiclass extensions
of an expectation-maximization (EM) algorithm for ground truth
estimation of binary classification based on decisions of multiple
experts (Warfield et al., 2004). The first method performs param-
eter estimation independently for each class with a subsequent
integration step. The second method considers all classes simulta-
neously. We demonstrate the efficacy of these performance-based
fusion methods by applying them to atlas-based segmentations
of three-dimensional confocal microscopy images of bee brains.
In atlas-based image segmentation, multiple classifiers arise
naturally by applying different registration methods to the same
atlas, or the same registration method to different atlases, or both.
We perform a validation study designed to quantify the success
of classifier combination methods in atlas-based segmentation.
By applying random deformations, a given ground truth atlas is
transformed into multiple segmentations that could result from
imperfect registrations of an image to multiple atlas images. In a
second evaluation study, multiple actual atlas-based segmentations
are combined and their accuracies computed by comparing them
to a manual segmentation. We demonstrate in both evaluation
studies that segmentations produced by combining multiple
individual registration-based segmentations are more accurate
for the two classifier fusion methods we propose, which weight the
individual classifiers according to their EM-based performance
estimates, than for simple sum rule fusion, which weights each
classifier equally.
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1. INTRODUCTION

NE WAY to automatically segment an image is to perform
anonrigid registration of theimage to alabeled atlasimage;
the labels associated with the atlas image are mapped to the image
being segmented using the resulting nonrigid transformation
[1]-[8]. This approach has two important components that de-
termine the quality of the segmentations, namely the registration
method and the atlas. Just as human experts typically differ
slightly in their labeling decisions, different registration methods
produce different segmentations when applied to the same raw
image and the same atlas. Likewise, different segmentations
typically result from using different atlases. Therefore, each
combination of a registration algorithm with an atlas effectively
represents a unique classifier for the voxels in the raw image [9].
The atlas can be an image of an individual or an average
image of multiple individuals. Our group recently showed that
the choice of the atlas image has a substantial influence on the
quality of a registration-based segmentation [10], [11]. More-
over, we demonstrated that by using multiple atlases, the seg-
mentation accuracy can be improved over that obtained using
a single atlas (either an image of an individual or an average
image of multiple individuals). Specifically we showed that a
segmentation produced by combining multiple individual seg-
mentations is more accurate than the individual segmentations.!
This finding is consistent with the observation that a combina-
tion of classifiers is generally more accurate than an individual
classifier in many pattern recognition applications [12]-[17].
Typically among the individual segmentations there are more
accurate ones as well as less accurate ones. This is true for
human experts, due to different levels of experience, as well
as for automatic classifiers, due, for example, to differences in
similarities between the image to be segmented and different at-
lases. The conventional method for combining individual clas-
sifiers weights each classifier equally (vote or sum rule fusion
[12]). More sophisticated techniques quantify classifier perfor-
mance on a set of preclassified training samples used during the
supervised classifier learning phase. The classifiers are then ei-
ther weighted in the combination according to their performance

Each individual registration was produced by nonrigid registration of an
image to a different atlas that is a labeled image of a reference individual. The
combination was performed by simple label averaging (sum rule fusion).
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on the training set [18], [19], or the output of the most accurate
classifier for a sample is selected [20]. A hierarchical multiclas-
sifier model was described by Jordan and Jacobs [21]. Here,
the outputs of elementary classifiers are propagated through a
network of additional “gating networks” that assign weights to
the classifier outputs based on their estimated reliabilities. The
reliabilities are adjusted by an expectation-maximization (EM)
algorithm [22], [23] to maximize the posterior probability of a
training set.

In this paper, we propose to estimate the performances of the
individual classifiers without a training set, thus eliminating the
requirement of a supervised training stage. The individual clas-
sifiers are combined by weighting them according to their esti-
mated performance. For binary (i.e., object versus background)
image segmentation, Warfield et al. [24], [25] recently intro-
duced an EM algorithm that derives estimates of segmentation
quality parameters (sensitivity and specificity) from segmenta-
tions of the same image performed by several experts. Their
method also enables the generation of an estimate of the un-
known ground truth segmentation. This ground truth estimate
provides a way of defining a combined segmentation that takes
into account all experts, weighted by their individual accuracies.

We develop two generalizations of Warfield’s algorithm to
segmentations with multiple labels. The first method performs
parameter estimation independently for each class with a
subsequent integration step. The second method considers all
classes simultaneously; by modeling explicitly the interactions
between the classes in this multiclass method, the classification
properties of each classifier are described comprehensively.
Using the two estimation methods as classifier combination
techniques, we estimate the performance parameters of multiple
atlas-based segmentations and compute a maximum likelihood
estimate of the correct segmentation. We apply our methods to
atlas-based segmentations of confocal microscopy images of
bee brains generated by registering each unsegmented image to
multiple atlases, each derived from a different subject.

After introducing the fundamental concepts of atlas-based
classifiers and classifier fusion in Section II, the two gen-
eralizations of the Warfield method to segmentations with
arbitrary numbers of labels are described in Section III. Next,
two atlas-based segmentation evaluation studies are described,
which quantitatively compare different methods of combining
multiple segmentations into one. First, in Section IV-B a
numerical simulation study with known ground truth and
random errors of known magnitudes is specifically designed
to model situations where the segmentations are generated by
nonrigid registration of an image to atlas images. Second, in
Section IV-C we evaluate the combinations of multiple actual
atlas-based segmentations.

II. CONCEPTS AND NOTATION
A. Atlas-Based Classifiers

Consider a segmentation that distinguishes L different
classes, or labels, in a label set A = {1,...,L}. A three-di-
mensional (3-D) atlas image A is a mapping from coordinates
to labels A : R® — A. An atlas-based classifier for a target
image 7 is defined by an atlas image .4 and a coordinate
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transformation T : R® — R3 that maps the target coordinates
to the atlas coordinates. From a machine learning perspective,
the process of registering the atlas to the target image can be
considered as training the classifier [9].

The “trained” classifier takes as its input a pixel coordinate x
and retrieves its classification decision by looking up the label
at the corresponding location in the atlas, i.e.,

e(x) = A(T(x)). )
For the present paper, we take a slightly different approach to the
segmentation problem, reflected in a modified notation. For the
purpose of the algorithms presented below, the spatial arrange-
ment of voxels in a 3-D image is not relevant. In a more general
way we, therefore, consider classifications of samples x that are
essentially scalar, for example indexes of an event vector. When
the kth classifier assigns sample z to class ¢ we, therefore, write

ex(z) = i. )
The set of all samples that truly belong to class ¢ is denoted by

C;, so the a priori ground truth “z is truly in class ¢ is written
as

z € C;. 3)

B. Classifier Performance Models

The performance of a classifier can be described by the prob-
abilistic dependencies between its decisions and actual class
memberships, written as conditional probabilities such as

Pler(x)=j|z € C) 4)

to express, for example, the probability that classifier £ assigns
a sample x to class j, when in fact z is in class 3.

For a given test set of samples with known classifications,
the classification behavior of classifier k£ can be expressed by its
confusion matrix Ny, (see [12]). The number of rows of this ma-
trix is equal to L, the number of classes. The number of columns
of the confusion matrix is equal to L 4- 1. Each row corresponds
to one class that a sample can be in. Each column represents
a classifier decision, with an additional column for “rejected”
classifications. In atlas-based segmentation, rejected classifica-
tions can, for example, be generated for spatial coordinates out-
side the domain of the atlas image, although it usually makes
more sense to classify such locations as “background,” if the
atlas image is known to fully cover the object of interest.

The entries of N, are the co-occurrences of classifier deci-
sions and actual class memberships

ki = #{z |z € C,en(x) =7} 3)
In other words, each of the entries 1y ; ; of Ny, is the number
of samples x from class ¢ which classifier k assigned to class
7. Given these values, one can easily compute the conditional
probabilities that describe the classification behavior of a clas-
sifier. From its confusion matrix, the probability that a sample
x from class 7 is classified by classifier k£ as belonging to class
7 is computed as

#{z|ex(x)=j Az € C}
#{z|z € C;}

= Zhid ©)

Tk i %

Pler(z) =jlz € C;,Ny) =
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where the denominator is the row sum of the sth row of N, i.e.,

Nhyix = Z”ku @)
J

C. Multiclassifier Decision Fusion

The combined classifier output £(z) for a sample « should
be the class that maximizes the probability, given all classifier
decisions ej(x) through eg (z), where K is the number of in-
dividual classifiers, and some arbitrary classifier performance
model P

E(z) = argmax P(x € C;|e1(x),...,ex(x),P). (8)
We will take a closer look at two possible performance models in
the next section. In the simplest case, there is no prior knowledge
of the classifiers’ performances, and all classifiers are, therefore,
considered equally accurate for all classes. Xu et al. [12] derive
several combination rules for this case, the simplest of which is
“Vote Rule” decision fusion with the combination rule
_ 1, ifi=-eg(x)
Evore(x) = arg max zk: { 0, otherwise.

We note that one can apply a more general classifier model that
assigns to each label a confidence value between zero and one,
which expresses the strength of belief of the classifier that a
given sample is from a particular class. In atlas-based segmen-
tation in particular, these confidence values can be computed in
a straight-forward way by partial volume interpolation from the
atlas [9], [26], whereas binary confidences would result from
using nearest neighbor interpolation within the atlas. With non-
binary confidences, we can combine classifier decisions using
the so-called sum rule, which selects the class with the largest
total confidence over all classifiers as their combined output.
This is generally considered to be more accurate than the vote
rule [27]. It is also much less likely to fail due to equal numbers
of classifier votes.

Suppose now that there is some classifier performance model
that quantifies how accurately each classifier recognizes sam-
ples from each of the L classes. In particular, let us consider
a performance model that is specified by means of conditional
classification probabilities like (6). Then Bayes’ rule

p(B|Ai)p(A;)

©)

p(4;i|B) = (10)
> p(B| Ai)p(Ai)
yields the following class probabilities
P(‘T €} | 61(13), te 76K(‘T)7P)
P(z € C;|P)P(e1(x),...,ex(z) |z € C;, P) (11)

TS, P € Ci [P)P(er(x), ... ex(x) |z € Cy, P)
Assuming independence of the individual classifiers, this ex-
pands to
P(z € Cilei(z),...,ex(2),P)
_ P(ZBEOL|P)HkP(6k(ZE)|JZEC“P)

>, Pw € C;[P) T, Plex(x) |z € O, P)
which can be incorporated into a combined classification ac-
cording to (8).

12)
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III. PERFORMANCE PARAMETER ESTIMATION

In order to compute the performance parameters of a clas-
sifier, its outputs need to be compared to a ground truth clas-
sification of the given inputs. The ground truth is only avail-
able in a supervised training stage, which is not possible in
atlas-based segmentation without first solving the entire seg-
mentation problem.

With the ground truth unknown, the performance parame-
ters can only be estimated by means of some approximation.
This section presents two such approximation algorithms. Each
is based on a different model of classifier performance. Sec-
tion I1I-A reviews a binary performance model, whereas Section
II-B introduces a multiclass performance model. From each
model, an EM algorithm is derived that simultaneously esti-
mates both the performance parameters and an approximation
to the unknown ground truth classifications. This ground truth
estimate also serves as the combined classifier output given the
estimated performance parameters.

A. Binary Performance Model

We review below an algorithm that models classifier perfor-
mance in binary segmentation, recently presented by Warfield
et al. [24], [25]. From the performance model, an EM parameter
estimation algorithm is derived, which Warfield called “simul-
taneous truth and performance level evaluation” (STAPLE). We
omit here most of the derivation and refer the interested reader
to either of Warfield’s original papers instead.

Although originally formulated for binary segmentations,
STAPLE is easily applied to multiclass problems by performing
the parameter estimation independently for each class. Note
that although independent, the parameter estimation for all
classes can be executed in parallel. This means that the EM
algorithm does not need to be repeated L times, where L is the
number of classes, thus reducing computation time.

In the binary model, the performance of each classifier k is
described by two coefficients, sensitivity p and specificity ¢. In
binary segmentation, these are, respectively, the true positive
and true negative fractions of the classifier decisions. Accord-
ingly, the coefficients for each class ¢ can be defined as the fol-
lowing conditional probabilities:

Ph,i = P(ek(l) =1 | Tr € OL)
ki = Plen(z) #ilz ¢ Ci).
1) Expectation Step: Using an estimate of the above perfor-
mance parameters, the classifier decisions ey, for one sample x
can be combined, and weights W for all classes ¢ that represent
the posterior probability of z belonging to the respective class

can be computed. These weights are defined as

Wi(z) = P(z € C;|e,p,q)
P(z € C;|p,q)a;

13)
(14)

- 15
PweCilp o+ P gCipad
where
a; = Plei(z) =1i,...,ex(z) =i|z € C;,p,q)
= H Dk,i H (1 —pri) (16)

k:ep (z)=1 k:ep (xz)#i
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and
Bi = Pler(x) #i,....ex(z) Zi|x ¢ C;,p,Qq)
= II o IT =) (17)
k:ep (x)#1 k:ek (x)=1

The above definition of both «; and (; assumes independence
of the individual classifiers.

Equation (15) constitutes the expectation step in the original
STAPLE algorithm. In our implementation, we estimate the a
priori class probabilities P(z € C; | p, q), which are indepen-
dent of the performance parameters, from the classifier deci-
sions as

P(z € Ci|p,q) = P(z € )
L len(s) =i}

> e #{wlen(x) =4}
In future work, this definition may be replaced by a map of spa-
tially varying class probabilities, which could be derived from a
large number of subjects in the form of a probabilistic atlas [28].
For now, we have found this approximation to work very well
and effectively compensate for large differences in the relative
frequencies of classes in a segmentation.

2) Maximization Step: From the previously calculated
weights W;(x), the maximization step of the EM algorithm
computes new estimates of p and ¢ for each classifier £ and
each class ¢ as follows:

(Hl»l) _ Z.r:ek(x):i WZ(‘T>
b 2 Wilz)

(t+1) Zx:ek(x);ﬁi(l - Wi(z))
i =TT (1= Wiw)

B. Multiclass Performance Model

Rather than performing the binary STAPLE algorithm for
each class, it is possible to treat all classes simultaneously and
quantify precisely the misclassification behavior of each classi-
fier. For that, we employ a Bayesian classifier model [12], where
the decisions of classifier k are described by its confusion matrix
Ny. For ease of notation and in order to achieve independence
from the actual number of samples, we define row-normalized
coefficients

Mij = —L = P(ey(w) = j|a € C;,Ny)

(18)

19)

and

(20)

2

to directly represent the conditional probabilities in (6). With
these, the expectation step of our algorithm is straight forward.

1) Expectation Step: As with the binary performance
model, we compute weights W;(z) that represent the posterior
probability of sample z belonging to class <. By inserting the
definition of the performance parameters from (21) into (12),
these weights can be computed as

Wi(z) = P(z € C;|e,N)
_ P(:L’ e C; | N) ]._.[k )‘k,i,ek(a:)
Zj Pz € C;|N) [T, Ak jer () .
Again, the classifiers are assumed to be mutually independent,

and the a priori probabilities of the classes P(z € C; |IN) are
estimated from the classifier decisions [see (18)].

(22)
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2) Maximization Step: We write the maximization step of
our algorithm in terms of the row-normalized coefficients A
rather than the entries ny; ; of the confusion matrices. Recall
that the expectation step (22) is easily written using these co-
efficients, so that their new values are all that is needed for the
continuation of the algorithm. Based on the weights W com-
puted in the previous estimation step, the updated coefficients
A#+1) are determined as

_ Zaz:ek(z)zj Wi(z)

20 Wilz)
The derivation of this update rule is shown in the Appendix.
Note the similarity of this definition with the definition of the
sensitivity in the binary algorithm in (19). In the multiclass al-
gorithm, the conditional probability P(ey(z) |z € C;,N) rep-
resented by Ay, ; ; is in fact the sensitivity of classifier & for label
1, 1.6., Pk,s = Ap,i,;. The specificities gy ; are spread over the
off-diagonal elements of N and can be expressed as

D v Tk
Ei’;ﬁi Ej Nk,i’ 5
Note that the g, ; can not be expressed in terms of the normal-
ized coefficients )\, since normalization within a matrix row in
(21) removes all information across rows. The sum over all 7’
in the denominator of the fraction in (24) can, therefore, not be
computed using only the row-normalized Ay ; ;.

(23)

gk = Plex(z) #i|lc ¢ C;)=1— . (24)

C. Memory and Time-Efficient Implementation

1) One-Step Computation: As mentioned by Moon [23], the
E-step and the M-step can be combined into a single, one-step
update rule in order to eliminate intermediate storage. In our
case, for example using the binary performance model, the up-
date rules (19) for py, ; and (20) for g3, ; depend only on the sums
of the weights W;(z) either over all samples x, or over parti-
tions thereof that are separated from each other by the classifier
decisions. We can, therefore, avoid storing all weights, which
would result in O(LN) memory. Instead, the sums required to
evaluate (19) and (20) can be computed on the fly, with a single
iteration over all z. For each z, we compute the weights W;(z)
for all 7 and add them incrementally, based on the classifier deci-
sions. By collapsing the expectation step and the maximization
step into one simultaneous operation, the algorithm, therefore,
has an implementation that is memory efficient as it estimates
the classifier parameters in O(K) + O(L) memory. There is
virtually no penalty in computational performance. In fact, this
procedure actually saves some processing time since it only re-
quires one iteration over the classifier decisions for all samples
x, rather than two iterations (one to create and one to combine)
over the weights for all samples. The exact same strategy as de-
scribed above for the binary model estimation can be applied
completely analogously to the multiclass parameter estimation.

2) Grouping and Undisputed Samples: The second impor-
tant observation is that for samples with identical classifier de-
cisions the same weights W are computed. That is, if for sam-
ples  and 2’ we have er(z) = ex(z’) for all k, then W;(z) =
Wi;(z"), as can easily be seen from the conditional probability
in (15) when e is considered constant. Therefore, in principle,
we can compute the sums of the weights over all samples by
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summing over all possible classifier decisions, appropriately
weighted with the frequencies of their combinations

> Wilw) Z ZS adK)(@25)
where
5(71/771&’)
=n(j1,....jx)P(z € Ci|ex(z) = jr,k=1,...,K) (26)

are the appropriately weighted conditional probabilities and

#{z|en(z) = ju.k=1,....K)} (@7

are the multiplicities of the respective combinations of classifier
decisions among all samples. The conditional probability in the
former equation is again computed according to (15) in the bi-
nary model, and according to (22) in the multiclass model.

The partial sum in the numerator of (19) can be computed
analogously by restricting summations to all combinations for
which e (z) = 4 for a given k and ¢

> Wix

z:ep (x)=1i

SDIES3) 205 LTS

Jk—1 Jk+1 JK

n(J177JK) =

7jk—17i7jk+17 R 7]K)

(28)

The sums of 1 — W;(x), which are needed for computing the
updated specificity coefficients q,(fjl), can be evaluated in the
same manner.

If the number of addends on the right-hand side of (25) and
(28) is substantially smaller than the number of samples, then
its evaluation is potentially computationally faster than that of
the left-hand side of both equations. Unfortunately, the number
of addends in the right-hand side expressions is exponential in
the number of classifiers, i.e., its asymptotic computation time is
O(L*). Obviously, unless L is small, there is no gain in trading
an expression that can be computed in linear time O(N) for one
that requires exponential time, regardless of how large /N may
be.

Instead of the method outlined above, we pursue a mixed ap-
proach. Assuming that the individual classifiers are reasonably
accurate, one can expect that they provide identical classifica-
tions for a substantial fraction of all samples. We, therefore, sep-
arate the sum over all samples into a part summing over all those
samples that the classifiers disagree on, and a second part that
sums the respective unanimous decisions over all classes

S Wilz) =Y Wia +Zsmg)(m
x reD
where
D ={z|3k, K : er(z) # er(x)} (30)

is the set of disputed samples, i.e., the set of samples for which at
least one classifier disagrees with the others. Again, sums over
subsets of all samples and summations of 1 — W;(z) are anal-
ogous. As a result, only the disputed samples need to be con-
sidered individually, while all undisputed samples are covered

by L addends, one per class unanimously assigned by all clas-
sifiers.

The second term on the right-hand side of (29) can now be
computed efficiently in time O(L). The first term strictly still
requires time O(N), but with a substantially smaller constant
than a sum over all samples. In practice, we have experienced
ratios | D|/N of about ten percent, resulting in a speedup factor
of 10. Since L is usually small, and because the undisputed sam-
ples can be precomputed, this speedup through split-sum com-
putation comes with virtually no penalty.

IV. EVALUATION STUDY

In order to quantify the accuracy of combined as well as
individual classifiers, their outputs need to be compared to
the actual class memberships, the ground truth classification.
Warfield’s STAPLE algorithm [24] was originally intended
to simultaneously estimate both the unknown ground truth
segmentation and performance level parameters of the segmen-
tation methods or human experts. Warfield validated this as-
sessment by comparison to digital phantoms and demonstrated
its application to assessing rater and algorithm performance in
some clinical applications of segmentation. Warfield proposed
the estimated ground truth segmentation was an appropriate
reference standard that could be used for selecting between
segmentation algorithms, or for fine tuning them. In this paper,
we have evaluated generalizations of Warfield’s method for
the task of deriving an improved segmentation estimate from
a collection of atlas-based segmentations. In this section, we
describe validation experiments comparing fusion strategies
for deriving the optimal segmentation, using both synthetic
specified ground truth and manual segmentations.

A. Image Data

We evaluate the methods described in this paper by seg-
menting 3-D confocal microscopy images of the brains of 20
adult foraging honeybees (see [10] for details). Each volume
contained 84-114 slices with thickness 8 pm, and each slice
had 610-749 pixels in x direction and 379-496 pixels in y
direction with pixel size 3.8 pym. In each individual image,
22 anatomical structures were distinguished and manually
labeled by a human expert. The manual segmentation for
each image can serve both as the ground truth to quantify the
accuracy of an automatic segmentation, and as an atlas for
atlas-based segmentation of another image. An example slice
from a microscopy image and the corresponding label image
are shown in Fig. 1. For a detailed description of the imaging
process and a complete list of the anatomical structures, the
interested reader is referred to [10] and [11].

B. Numerical Simulation Study

1) Independent Random Classifiers With Known Ground
Truth: Imperfect segmentations with known error magnitudes
are simulated by applying random deformations to a given atlas.
Each randomly deformed atlas serves as a model of an imper-
fect segmentation of the image that the original, undeformed
atlas was derived from. Several of these deformed atlases are
combined into one segmentation using the methods described
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Fig. 1. Example of bee brain confocal microscopy (fop) and corresponding
label image as defined by manual segmentation (bottom). Every gray level in
the label image represents a different anatomical structure. Due to limitations
of reproduction, different gray levels may look alike. From Rohlfing et al. [10].

in the previous sections. Since the original (undeformed) atlas
is known, it provides the ground truth for evaluating the results
of the classifier combination methods.

An increasingly popular nonrigid registration method origi-
nally introduced by Rueckert et al. [29] applies free-form de-
formations [30] based on B-spline interpolation between uni-
form control points. We implemented this transformation model
and generate random transformations by adding normally dis-
tributed random numbers to the control point coordinates. The
standard deviation of the normal distribution controls the mag-
nitude of the random deformation, and consequently the error
rate of the simulated segmentation.

2) Evaluation Study Design: For each ground truth (i.e.,
atlas), random B-spline-based free-form deformations were
generated by adding independent Gaussian-distributed random
numbers to the coordinates of all control points. The control
point spacing was 120 pm, corresponding to approximately 30
voxels in x and y direction and 15 voxels in z direction. The
standard deviations of the Gaussian distributions were o = 10,
20, and 30 pm, corresponding to approximately 2, 4, and 8
voxels in z and y direction (1, 2, and 4 voxels in z direction).
Fig. 2 shows examples of an atlas after application of several
random deformations of different magnitudes. A total of 20
random deformations were generated for each individual and
each 0. The randomly deformed atlases were combined into a
final atlas once by label averaging (sum rule fusion), and once
using each of our novel algorithms.

3) Results: First, we investigated the combined classifica-
tion accuracy of individual segmentations with identical error

Fig. 2. Examples of a randomly deformed atlas. Each image shows overlays
of the contours from the same atlas deformed by three random transformations
of equal magnitudes (a) 0 = 10 gm, (b) 0 = 20 pm, and (¢) ¢ = 30 pm.

levels. Fig. 3 shows a plot of the mean recognition rates over all
20 individuals versus the number of segmentations. Both EM
algorithms performed consistently better, i.e., produced more
accurate combined segmentations, than simple label averaging.
The improvement achieved using the EM strategies was larger
for greater magnitudes of the random atlas deformations. Be-
tween the two EM methods, repeated application of the binary
algorithm outperformed the multiclass method. For all algo-
rithms, adding additional segmentations increased the accuracy
of the combined segmentation. The incremental improvement
obtained by adding an additional segmentation decreased as the
number of atlases increased. The figure also illustrates the supe-
riority of using multiple atlases over using just one: in all cases,
the individual recognition rates are substantially lower than any
of the combined results. Again, the difference increases as the
magnitude of the random deformations is increased.

Next, we considered the performance of the classifier com-
bination methods when the input segmentations have different
error levels. For each of the three deformation magnitudes (10,
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after random deformations with magnitudes ¢ = 10 pm (left), 0 = 20 pm (center), and o = 30 pm (right). The dashed line in each graph shows the average
individual recognition rates achieved by the respective set of classifiers. Modified from Rohlfing ez al. [31].

20, and 30 pm), we selected the firstn = 3, 5, and 7 random seg-
mentations, resulting in a total number of 9, 15, and 21 segmen-
tations, respectively. The resulting recognition rates are shown
in Fig. 4. Again, the recognition rates of all three combination
methods increased as more segmentations were added. How-
ever, unlike in the presence of identical error levels, the multi-
class EM algorithm outperformed the binary-model algorithm.
Both EM methods again outperformed the sum rule combina-
tion method.

C. Validation Against a Manual Gold Standard

It is clear from the previous section that the properties of the
individual segmentations have a substantial influence on the per-
formance of the classifier combination methods. Most notably,
the relative performance of the two EM methods with respect
to each other varies, for example, depending on the indepen-
dence of the individual segmentations. It is, therefore, clear that
an evaluation with actual segmentations is needed to assess how
the results of the numerical simulation translate to a real applica-
tion scenario. This section describes and analyzes such an eval-
uation of the classifier combination techniques applied to actual
atlas-based segmentations. Here, the ground truth for the seg-
mentation quality assessment is provided by manual segmenta-
tions.

1) Evaluation Study Design: Using the aforementioned mi-
croscopy images from 20 bee brains, a leave-one-out study is
performed. Each of the microscopy images is separately se-
lected as the image to be segmented. The manual segmentation
of this image serves as a ground truth for the automatic tech-
niques. Using the manual segmentations of the remaining 19
images as atlases, 19 atlas-based segmentations are computed.

The registration transformation between image and atlas
is determined using the nonrigid algorithm introduced by
Rueckert et al. [29]. A parallel implementation of this tech-
nique [32] is applied in order to minimize computation times.

2) Parameter Estimation Accuracy: The sensitivity perfor-
mance parameters estimated by the EM methods are plotted

99.5% 1, = 3 deformed atlases n=5, n=T,
per m=3 m=3
99.0% m = 3 magnitudes ¢ $
B 0 1
2 | ‘
- i
& o8.5% =
K]
=
2 98.0% - :
14
97.5%
97.0% +

T T T T T T
SUM EMB EMM SUM EMB EMM

Classifier Combination Method

T T T
SUM EMB EMM

Fig. 4. Recognition rates of combined classifications based on random
segmentations with different deformation magnitudes. The whiskers show the
range of values. The boxes show the 25th and 75th percentiles. The horizontal
bars are the median values, and the connected small squares are the mean
values.

against the actual a posteriori recognition rates in Fig. 5 for both
the binary [Fig. 5(a)] and the multiclass [Fig. 5(b)] performance
models. Each plot shows the sensitivity parameters computed
for all 22 classes (structures). In order to improve the visual
presentation, only five segmented images were included in the
plots. The five images were selected randomly and are identical
for both plots. Thus there are 110 data points in each plot (one
data point for each of 22 classes in each of five images). Both
EM methods computed relatively accurate estimates of the true
sensitivity parameters (linear regression, R = 0.94 and 0.87 for
the binary and the multiclass models, respectively).

The difference in sensitivity parameter estimation accuracy
may be due to the fact that the multiclass algorithm estimates
a substantially larger number of parameters, K L(L + 1), than
the binary algorithm, which estimates 2 K L parameters. It is im-
portant to keep in mind that the sensitivity parameters represent
only a fraction of the classifier parameterization, and in the case
of the binary-model algorithm this parameterization is funda-
mentally incomplete.
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The recognition rates achieved using the three decision fusion
methods are compared to each other in Fig. 6. For reference, this
figure also shows the recognition rates using a single individual
atlas with no decision fusion. The single atlas was chosen based
on the a posteriori recognition rates, that is, it was the one image
out of the 20 subjects in our study, which, when used as the
atlas, gave the best recognition rates for segmentations of the
remaining 19 images [10].

3) Segmentation Accuracy: It is easy to see that each of the
three decision fusion methods produced more accurate segmen-
tations (i.e., higher recognition rates) than atlas-based segmen-
tation using a single individual atlas. We used the best possible
individual atlas, so no other subject, when chosen as the atlas,
produced a higher recognition rate.

Between the decision fusion methods, the EM algorithm
based on the binary performance model outperforms sum rule
fusion. Both methods are outperformed by the EM algorithm
based on the multiclass performance model. The mean recog-
nition rates were: 95% for the multiclass performance model
algorithm, 93% for the binary performance model algorithm,
91% for performance model-free sum rule fusion. The mean
of the individual recognition rates of the classifiers was 90%.
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Fig. 6. Comparison of segmentation accuracy using a single atlas versus
different decision fusion methods. The diamonds show the median recognition
rate for each method over 20 segmented subjects. The ends of the solid lines
represent the minimum and maximum recognition rates, while the lower and
upper edges of the boxes represent the 25th and 75th percentiles, respectively.

100% -

Random Deformation
=20 um

Random Deformation
o=30um

Actual Segmentations

95% $$$’

90% | ?%ﬂéﬂ

85% -

80% -

Recognition Rate Over
19 Segmentations

T T T T T T

T
#o#2 #3 #o#2 #3 #1
Subject

T T
#2 #3

Fig. 7. Comparison of recognition rates between randomly generated and
actual individual segmentations. For the same three subjects, this plot shows
the distribution of recognition rates for one anatomical structure among 19
simulated segmentations with deformation magnitude o = 20 pm (three left
boxes), simulated segmentations with deformation magnitude o = 30 pm
(center boxes), and actual atlas-based segmentations (right boxes). The
meanings of the box plot elements are the same as in Fig. 4.

Segmentations produced by the multiclass EM algorithm
were significantly more accurate than those produced by the
binary EM algorithm (two-sided paired t-test, P < 1077).
Both EM algorithms outperformed simple sum fusion (binary,
P < 107°; multiclass, P < 10~7).

D. Comparison of Simulation and Actual Application

We note that the results of the first numerical simulation are
somewhat different than those of the second simulation and
those of the application to actual segmentations. To illustrate
possible reasons for this discrepancy, Fig. 7 shows a compar-
ison between the properties of the simulated segmentations and
those of actual segmentations. It is easy to see that the indi-
vidual actual segmentations cover a substantially larger range
of accuracies than the simulated segmentations from one mag-
nitude class alone. By combining multiple simulated segmen-
tations from different classes in the second numerical simula-
tion, this aspect of the actual segmentations was better simu-
lated. Consequently, the relative performance of the binary and
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TABLE 1
MEMORY PORTIONS BY DATA TYPE REQUIRED TO COMBINE 5, 10, 15, AND 20
ATLAS-BASED CLASSIFIERS

Number of Classifier Binary Multi-Class
Classifiers Decisions Parameters Parameters
5 150 MB 880 bytes 9,680 bytes
10 300 MB 1,760 bytes 19,360 bytes
15 450 MB 2,640 bytes 29,040 bytes
20 600 MB 3,520 bytes 38,720 bytes

These values are based on an image of 748 X 496 x 84 voxels, with
22 classes and one byte allocated per voxel in the segmentation.

the multiclass model algorithms are similar for the second nu-
merical simulation and the actual application. This indicates that
the binary model may be better able to take advantage of equal
performances among the classifiers. It also illustrates, however,
that this is not a realistic situation.

E. Computation Time and Memory Requirements

Computation time increases approximately linearly with
the number of classifiers. Without split-sum computation by
disputed and undisputed samples, the time per iteration is
approximately 5-10 s per classifier (using a PC with a 3.0-GHz
Intel Pentium 4 processor). When split-sum computation is
used, time also increases with the magnitude of the deforma-
tions, as larger differences in the classifier decisions lead to a
larger fraction of disputed voxels. For simulated segmentations,
the relative speedup factor achieved by split-sum computation
was between 10 (for ¢ = 10 pm) and 5 (for ¢ = 30 pm). For
the actual segmentations, split-sum computation still reduces
computation time by about half. Since one bad segmentation
can substantially increase the number of disputed samples, this
difference compared to the simulated case is not unexpected.

Between the two EM methods, the multiclass performance
model requires slightly less computation time per iteration than
the binary model. The binary model needs to update two pa-
rameter estimates (p and q) per sample, whereas the multiclass
model requires only one matrix entry to be updated per sample.
However, the convergence of the multiclass model is consid-
erably slower than that of the binary model. For actual seg-
mentations, the mean number of iterations was 17 for the bi-
nary model and 66 for the multiclass model. Overall, segmen-
tation, including parameter estimation and combination but not
including the nonrigid registrations, took approximately 0.3 h
using the binary model and 0.9 h using the multiclass model.
Nonrigid registration between an image and an atlas took about
1.5 h per image. Thus these EM algorithms are not the rate-lim-
iting step in multiatlas segmentation. However, we note that we
have a parallel implementation of our nonrigid registration al-
gorithm [32], so the computation time required for the regis-
tration step can be substantially reduced using multiprocessor
computing resources. In addition, as a result of the voxel-wise
independence assumption that underlies both EM algorithms,
we also have parallel implementations of these.

An overview of the working memory required to process and
combine 5, 10, 15, and 20 individual segmentations is shown
in Table I. Note that the memory allocation for both algorithms
and all numbers of classifiers are dominated by the space re-

quired to store the original individual segmentations. If all voxel
label probabilities were computed according to (15) or (22), ad-
ditional memory would be required. With the image dimensions
given in the above example, storing 22 real-valued probabili-
ties per voxel would require approximately 2.6 GBytes of ad-
ditional memory. Unless, for example, dependencies between
neighboring voxels require them, the advantages of eliminating
the explicit computation of all W;(z) by contracting the E- and
M-steps into a single operation are clear.

V. DISCUSSION

We have described in this paper two methods for per-
formance-based combination of multiple classifiers with
self-supervised learning of the classifier parameters. These
methods eliminate the need for a supervised training stage. This
is particularly important in our application of atlas-based image
segmentation, since the classifier performances depend on the
image to be segmented. Training wouldneed to be repeated for
every new image, which is not possible without generating the
correct classifications by first segmenting the image.

Generation of multiple atlas-based classifiers requires re-
peated application of a (computationally expensive) nonrigid
registration algorithm. One may, therefore, ask whether one
could conceivably compile a single, potentially probabilistic,
atlas to incorporate the variation among the different individual
atlases that leads to independent classifiers. In previous work,
we evaluated one possible such approach by segmenting
images using an average shape atlas [33]. We found that sum
fusion of multiple independent classifiers arising from multiple
individual atlases significantly outperformed the average shape
atlas [10]. In general, we believe that independent nonrigid reg-
istrations are vital for generating independent classifications.
As the variation among the registrations to different individual
atlases depends on the image to be segmented, it seems that
this variation can not be achieved using a single atlas that is
independent of the unsegmented image.

Better nonrigid transformations produce better atlas-based
segmentations. Obviously if it is possible to generate a perfect
transformation between an image and an atlas, then combining
multiple perfect segmentations is not necessary. But nonrigid
registration is a difficult problem, and we are not convinced
that it will ever be solved. If a transformation model cannot per-
fectly describe all details of the true mapping between images
from two subjects, which is likely the case for our B-spline
model, it is possible that individual atlas-based segmentations
and combined segmentations using any fusion strategy may not
be able to adequately segment some target structures. But even
a perfect transformation model that can describe normal and
pathological variability in the application to which atlas-based
segmentation may be applied will be a very high-dimensional
mapping. Computing the correct transformation parameters
that describe the particular transformation in each case will be
quite difficult and errors in the parameters will lead to errors in
segmentation. As long as there are errors in the segmentations,
and as long as the errors in multiple segmentations are some-
what independent, there is a potential benefit from combining
multiple segmentations.
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Other methods have been proposed to learn classifier perfor-
mance parameters and apply them for weighted classifier com-
bination, see for example [18]—[20], and [34]. None of the pub-
lished techniques as far as we are aware, however, works without
a supervised training stage. They are, therefore, exclusively ap-
plied to classification problems where supervised training is fea-
sible. We note that our methods, too, can be applied to such
problems. An interesting question for future work in this field
will, therefore, be how our algorithms compare with other per-
formance models in more generic applications such as hand-
writing recognition.

Between the two methods covered in this paper, the algo-
rithm based on the binary performance model outperformed the
multiclass algorithm in one of the numerical simulations. It is,
however, outperformed by the multiclass model in terms of the
recognition rates achieved for simulated mixtures of classifiers
with different performance levels and, more importantly, for ac-
tual atlas-based segmentations. Ultimately, it is of course the
latter that we care about. While we note that the “gold stan-
dard” manual segmentation may be imperfect, thus, potentially
reducing the validity of the accuracy evaluation, the additional
results of the numerical simulations provide sufficient evidence
that the effects observed when combining actual segmentations
are real.

We conclude that the two methods described in this paper
are compact and efficient algorithms for estimating classifier
performance, and as a result, for improving the overall com-
bined accuracy of a multiclassifier system. In particular, we
demonstrated that these methods can improve the accuracy of
atlas-based segmentation by combining multiple individual reg-
istration-based segmentations, which are weighted according to
their EM-based performance estimate.

APPENDIX

We show in this appendix that the update rules of the mul-
ticlass parameter estimation, (22) for the E-step and (23) for
the M-step, satisfy the conditions of an actual EM algorithm.
We note that the expected log-likelihood function @ of a gen-
eral EM algorithm with observed variables x, hidden variables
y and parameters ® is

Q (@ | @(t—l)) — Ey |:1n P(x,y | @) |X, @(t—l)i|
= Z P (y | x, G(t_l)) In P(x,y|©®).
' (€29)

Here, ®*~1) s the current parameter estimate, either from the
previous iteration of the algorithm or, in the first iteration, the
initial guess.

In our multiclass algorithm, the parameters are the en-
tries my;; of the confusion matrix for each classifier,
which is denoted by N. For compactness of notation, we
write N for the sequence of all K confusion matrices, i.e.,
N = (Ny,...,Ng). The observed variables are the classifier
decisions e (z) through ek () for all voxels x, and like before
we write e(z) = (e1(z), ..., ex(x)). The hidden variables are
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the correct classifications € C; for all voxels. The conditional
probabilities of the hidden data y are, therefore
P(y|x,0) = P(x € C; |e(z),N). (32)
For ® = ©(~1 these are the coefficients of the @ function,
which have to be computed in the E-step. This is precisely what
(22) does using Bayes’ rule.
Given Q(® |®(*~1) as a function of @ for fixed @*~1),
the M-step of the EM algorithm determines the new parameters
©®) 5o that Q is maximized

®) — (t=1)

e arg mng (@ |® ) . (33)

With the joint distribution of hidden and observed data
P(x,y|®) = P(e(z),z € C; |N) 34)

the maximization problem in our algorithm, therefore, is

= argnﬁxzz [P (:1: € C;le(x), N(t- 1))
x In P(e(z),z € ]| N)] (35)

where z runs over all voxels and ¢ runs over all classes. The class
probabilities given the previous parameter estimates N(*~1) are
the weights W computed in the previous E-step, i.e.,

P (x € C;|e(), N(t_l)) = Wi(z). (36)
Assuming conditional independence of the individual classi-

fiers, we can write the joint probability of their decisions and
the ground truth as

P(e(z),z € C;|N) = HPek e C;|N). (37
Substituting the former two equations into (35) yields
Nt)—argmaxzz lnHP er(x),x € C; |N)

g5

x)In P(eg(z),z € C; |N)].
(38)

The optimum can be determined by exploiting the necessary
condition that all partial derivatives must vanish. We, therefore,
set the partial derivatives of the target function with respect to
each entry ny; ; in N to zero and solve for ny ; ;.

First, we observe that all joint probability terms for classifiers
other than k are eliminated from the expression by derivation

aanZZ[W

x i

ank S22

xr

lnP 6kl( )!EECLI|N)]

lnP ek( ) z € Cy |N)] 39)
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Next, we separate the sum over all classes 4’ into the index cor-
responding to the derivation variable plus the sum over all re-
maining classes

- anf,i,j Z [[Wi(x) In P(ex(w), » € Ci [N)]
+ > [Wa(z)In P(ex(z), = € Cr N)]
i #£i

_ZH anmmp(ek( )$€Ci|N>:|

+y [
oy

Likewise, we separate all samples x into those for which clas-

sifier k£ outputs label j, and those for which it outputs any other

label

- ¥

lnP(ek(a:)7x e Cy |N):H .(40)

’flk 1,7

HWi(x)%i’j In P(en(z),x € C; | N)}

e (x)=j
)
7]
+ Z W (x) — In P(ex(z),z € C;|N)
z:ep (z)nej 52,0

+y [

oy
The actual partial derivatives of the conditional probabilities can
be derived from the defining property of the entries in the con-
fusion matrix

In P(ek(w),x e Cy |N):” 41

nk 57

. Nki,j Nk.ij

Plep(z)=jNz € C;|N) = i = b

v Z ., ., nk 1-,/ ! Nk

where Nj, = Z - n,,; 18 the sum over all entries of the matrix
Ny. When computlng the partial derivative

(42)

lnP(ek(a:) = j',:v e Cy |N) (43)

Nk,i,j
of any such conditional probability w.r.t. a given matrix entry,
we need to consider the following two cases.
1) i =i and j = j': By analogy to (8/0z)In((z)/(a +
z)) = (a)/(z(a + z)) withz = ny;jand a + = =
Zi' Zj’ N4, ONe finds

In P(ex(x) = j,2 € C; |N)

Nkij
_ 0 I Nki _ N — g i
Mg Doy 2jr M M,i,i Nk
1 1
_ - (44)
Nk Nk

2) i # i’ orj # j: By analogy to (0/9z) In((b)/(a+z)) =
—(1)/(a + x) one finds

ank’m lnP(ek(x) = j/7£17 eCy |N)
0 N 4,5 1

— . 45

Zz” Z i Tk g1 50 Nk ( )

8”’6,11,1

Substituting (44) and (45) into (41) as appropriate yields
> (W) "
i Nj N,
wiep(2)=j Nk,ij k ey k

| 7 _ E —k
z:ep (x)#]

Ni, — (36)
i £

For any sample z, the weights W;(z) over all classes ¢ sum to
unity, s0 . ; Wi (z) = 1 — Wi(z). Inserting this into the
above, we find

>

wier (2)=j

o (s w) -

oy

-
- ¥ [Wi(l’) Wi(z) 1—Wi(l’)]
- i Nk N
wien (2)=j Nki,j k k
[ 1w
N, N
wien(2)#] k k
= > |51 e CE)
z:ep (z)=j Mk, N ziep (x)#] N

and by regrouping and combination of two partial sums over
samples x

(43)

= 2

z:er (x)=j

ZNk

Recall that this is the final expression of the derivative of the
@ function with respect to entry ¢, j in the confusion matrix of
classifiers k, that is ny; ;. We can now set this expression to
zero to satisfy the necessary criterion for a local maximum, i.e.,

kz,g

!
Bnk Q= > o ZN =0. (49
s ziep(z)=j s
Solving this equation for ny, ; ; finally leads to
N,
Niij = Z—kl Z WZ(.’E) (50)

ziep (z)=j
Strictly, this is not a complete definition of ny, ; ;, since it is also
an addend in the definition of IV} and, thus, appears on both
sides of the equality. However, from this relation we can com-
pute the conditional probabilities for the subsequent expectation
step without ambiguity as

I

Zj’ Nk,i,j B ZE 1 Ej’ Zz:ek(z)Zj’ m(ﬂ?)

. Zx:ek(x):j Wl(x) o Zx:ek(x):j WL(J:)
T e W) T S W)

() _ _ Mk
kg —

(S

This is obviously identical to (23), which concludes the proof
that our multiclass estimation method is in fact a true EM
algorithm. [ |
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