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Abstract
We present the quasiparticle band structure of ZnO in its zincblende (ZB) and rocksalt (RS)
phases at the � point, calculated within the GW approximation. The effect of the p–d
hybridization on the quasiparticle corrections to the band gap is discussed. We compare three
systems, ZB-ZnO which shows strong p–d hybridization and has a direct band gap, RS-ZnO
which is also hybridized but includes inversion symmetry and therefore has an indirect band
gap, and ZB-ZnS which shows a weaker hybridization due to a change of the chemical species
from oxygen to sulfur. The quasiparticle corrections are calculated with different numbers of
valence electrons in the Zn pseudopotential. We find that the Zn20+ pseudopotential is essential
for the adequate treatment of the exchange interaction in the self-energy. The calculated GW
band gaps are 2.47 eV and 4.27 eV respectively, for the ZB and RS phases. The ZB-ZnO band
gap is underestimated compared to the experimental value of 3.27 by ∼0.8 eV. The RS-ZnO
band gap compares well with the experimental value of 4.5 eV. The underestimation for
ZB-ZnO is correlated with the strong p–d hybridization. The GW band gap for ZnS is 3.57 eV,
compared to the experimental value of 3.8 eV.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The wide band gap semiconductor zinc oxide (ZnO) is an
important material in optoelectronic device technology and
is used in a number of applications such as visual displays,
solar cells and so on. Ab initio first-principles calculations
of ZnO are highly desired for designing new devices cost
effectively. Although the ground state of ZnO has the
wurtzite (WZ) structure, the metastable zincblende (ZB) and
high pressure rocksalt (RS) phases have growing experimental
interest [1, 2]. The zincblende phase of ZnO can be grown
using molecular beam epitaxy. The zincblende phase may
solve the challenge of controlling p-type conductivity in the
optoelectronic devices [1].

The electronic structures of rocksalt and zincblende
ZnO have been discussed [3] within the framework of
density functional theory (DFT) [4, 5] using the local-density
approximation (LDA). However, these calculations correctly
describe the structural parameters rather than the optical
properties. The reported electronic band structure shows

a severe underestimation of the band gap. Since DFT, in
principle, cannot describe electronic excitations, it is important
to use the GW approximation [6], which gives a more realistic
description of the band gap. The GW technique involves the
ejection or injection of electrons that link the N-particle system
with the (N ±1)-particle system. Thus, the GW approximation
offers a strong physical basis for correlating the band energies
obtained using Green’s function with the experimental band
gap. In this paper we present the GW band gaps, at the �

point, calculated on top of the DFT band structure using the
pseudopotential and the plane wave basis set.

In the case of IIB–VI semiconductor materials, it is
important to include the localized ‘d’ orbitals in the cation
pseudopotential (PP). The localized ‘d’ orbitals play an
important role in bonding; hence their inclusion as valence
orbital is essential for a correct structure [7]. However
the DFT band structure, calculated using the pseudopotential
with semicore ‘d’ states and the plane wave basis, shows
serious underestimation of the band gap [3]. We further
observe that the calculated quasiparticle band gap using the
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GW approximation is also underestimated for ZnO. This
observation is in agreement with the literature and is discussed
below. Thus although use of the PP with semicore ‘d’ states
yields the correct structure, it results in a poor quasiparticle
correction questioning the validity of such a PP. We analyze
this problem with a systematic study of the PP used and
corresponding GW corrections to the band gap for the ZnO.

From the results published in the literature, we know that
ZnO has proved to be a most challenging material for the GW
approximation. The GW band gap is typically underestimated
by LDA + non-self-consistent GW calculations. Indeed,
the LDA PP with semicore ‘d’ states results in a non-self-
consistent GW band gap of 1.36 eV [8] for ZB-ZnO compared
to the experimental value of 3.27 eV. The all-electron non-self-
consistent GW band gap for WZ-ZnO is 2.44 eV [9], which is
smaller than the experimental value of 3.48 eV. Recently, the
self-consistent GW scheme [10] and quasiparticle correction
based on the generalized Kohn–Sham schemes [11, 8] have
been used to improve the GW band gap for semiconductors
and insulators. Also with the use of hybrid functionals in
DFT [12, 13], a non-self-consistent GW band gap of 3.2 eV for
WZ-ZnO is obtained. Although these schemes yield a closer
estimate of the band gap within the GW approximation for
ZnO, there is still a need for a parameter free theory. This
is still a topic of current research. Our systematic study with
PPs and hybridization can provide useful insight for future
developments in this direction.

2. Theory

The GW approximation is based on the set of Hedin’s
equations that, when solved self-consistently, yield the exact
interacting single-particle Green function [6]. In the GW
approximation, the vertex corrections are neglected, resulting
in a simplified self-energy operator, i.e.

�GW (r, r′; ε) = i

2π

∫
dε ′ e(iε′δ) ×G(r, r′; ε +ε ′)W (r, r′; ε ′)

(1)
where δ is a positive infinitesimal number, and G and W are the
electron Green function and dynamically screened Coulomb
interaction, respectively. The quasiparticle equation

[T + Vext(r) + VH(r)]�i(r) +
∫

dr ′ �(r, r′; εi
qp)�i(r′)

= εi
qp�i (r′) (2)

has then to be solved to obtain the quasiparticle energies
εi

qp and the wavefunctions �i . In the above expression,
T is the kinetic energy operator, and Vext and VH are the
external potential and the Hartree potential, respectively. In
practice, both the G and W operators are constructed within
the quasiparticle approximation by using the Kohn–Sham
wavefunctions �i and energies εi obtained from the DFT based
calculations. In our work, the self-energy is calculated with the
now well known non-self-consistent GW or single-step G0W0

approximation [6], where G0 is the electron Green function
corresponding to the DFT eigenvalues and eigenfunctions

G0(r, r′; ε) = lim
δ→0+

�i
�i(r)�∗

i (r′)
ε − [εi + iδsgn(EF − εi )] (3)

and W0 is the dynamically screened Coulomb interaction:

W0(r, r′; ε) =
∫

dr ′′ ε−1(r, r′′; ε)ν(r′′, r′). (4)

Here EF is the Fermi energy, ν is the bare Coulomb
interaction and ε−1 is the inverse dielectric matrix. Hereafter
we will refer to the G0W0 approximation used as the GW
approximation for simplicity.

The DFT dielectric function (ε) is calculated in the
random-phase approximation. Interpreting the DFT exchange–
correlation potential Vxc as a frequency-independent, local
approximation to the self-energy operator, the quasiparticle
corrections to the DFT eigenvalues can be obtained from first-
order perturbation theory with respect to �−Vxc. This scheme
has indeed been very successful in the study of a number of
systems and properties [6, 8, 10].

3. Computational details

The electronic structure and the quasiparticle correction to
the band gap at the � point have been calculated using the
plane wave pseudopotential code ABINIT [18–20]. For the
electronic structure the plane wave cutoff is chosen using the
total energy convergence criterion of 2 × 10−2 eV. The atomic
positions and structural parameters have been optimized by
calculating the Hellmann–Feynman forces. The stresses are
optimized with the criterion of 2 × 10−5 eV Å

−3
. We choose a

4 × 4 × 4 Monkhorst–Pack [21] k-point mesh which yields 10
k points in the irreducible Brillouin zone.

All PPs used are generated with the OPIUM [22] code
according to the Troullier–Martins [23] method with Perdew–
Zunger LDA [24]. The electronic configuration of the zinc
atom is [Ne]3s23p63d104s2. The standard DFT PP treats the
3d and 4s electrons as valence ones and results in the Zn12+
PP. In this work we construct the Zn PP with 2, 12, 18 and
20 valence electrons. To generate the 20-electron PP (Zn20+
PP), a radius cutoff of 0.42 Å for 3s, 3p and 3d is chosen.
It should be noted that we do not construct our 20-electron
pseudopotential for the neutral zinc atom, but rather for the
Zn ion with the 4s state unoccupied. This radius cutoff shows
the smallest transferability error for ionic configurations of Zn
(neutral, +1 and +2), at the cost of an increased plane wave
cutoff. We have used 135 Ha (hartrees) as the energy cutoff for
plane waves, when the Zn20+ PP is used. The radial cutoffs
used in the construction of 2-, 12- and 18-electron PPs are
1.05 Å, 0.42 Å and 0.42 Å for 4s, 3p and 3d states respectively.
We use the plane wave cutoff 30, 60 and 95 Ha for 2-, 12- and
18-electron PP respectively. The PP becomes harder with the
inclusion of localized core orbitals in the valence.

The parameters used within ABINIT to calculate the
self-energy are optimized with the convergence criterion of
0.01 eV for the band gap at �. We have found that, for both
the screening and the self-energy calculation, 300 bands are
sufficient to converge the GW band gap. The dielectric matrix
is calculated with the plasmon-pole model [6] and is used to
calculate the screening. We also calculate the dielectric matrix
explicitly with 20 points along the real part and 4 points along
the imaginary part of the frequency axis, avoiding the use of the
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Figure 1. Band structure and projected density of states of the ZB and RS-ZnO (with the 12-electron Zn PP).

Table 1. Optimized lattice constants of ZnO and ZnS.

Structure
Lattice constant
(theoretical) Å

Lattice constant
(experiment) Å

ZB-ZnO 4.53 4.47a

RS-ZnO 4.25 4.28
ZB-ZnS 5.33 5.42

a The experimental lattice constant is smaller than
the theoretical value due to the strain kinetics and
lattice mismatch involved in growing ZB-ZnO
films [1].

plasmon-pole model. We observe that the difference between
the GW band gaps obtained with and without the plasmon-pole
model is less than 0.05 eV. Hence we report the GW band gaps
calculated using the plasmon-pole model.

4. Result and discussion

The optimized lattice constant, as listed in table 1, shows
that the 12-electron PP accurately describes the structural
parameters of ZnO and ZnS.

The calculated DFT band structure and projected density
of states (PDOS) for the zincblende and the rocksalt structure
are shown in figure 1. The PP used involves the 3d and 4s states
in the valence of zinc. The DFT band structure shows that the
upper part of the valence band of ZnO consists of extended
Zn 3d and O 2p orbitals. The projected density of states
clearly shows significant p–d (O 2p and Zn 3d) hybridization
in the range of 0 to −6 eV. To get more insight into the

p–d hybridization we have listed the projected weights of the
Kohn–Sham wavefunctions at the �, K and L points and this
list can be found as an appendix. The Zn 3d derived bands are
split into two groups which are triply and doubly degenerate
at �. The upper (doubly degenerate) band around −4.9 eV
shows strong ‘d’ character while the lower (triply degenerate)
band around −6.2 eV is hybridized with O p. The semicore ‘d’
states of Zn have a relatively high energy in the band structure
compared to the experimental value of −8.81 eV, measured
for WZ-ZnO [14]. Up to now there has been no experimental
measurement of the ‘d’ energy levels for ZB-ZnO and RS-
ZnO. However, we believe that the result for WZ-ZnO is also
relevant for ZB-ZnO, as the two electronic band structures are
very similar [3]. ZB-ZnO has a calculated direct band gap of
0.79 eV while RS-ZnO shows an indirect gap of 1.16 eV and
the direct gap at � of 2.54 eV.

The nature of the band gap changes from direct to indirect
going from the zincblende to the rocksalt phase. This change
can be understood on the basis of the symmetry dependence
of the interaction between anion ‘p’ states and cation ‘d’
states. In the ZB structure, the point group (Td) does not
contain an inversion center; thus the anion ‘p’ states and
cation ‘d’ states can mix at any point in the Brillouin zone,
because there are always ‘p’ or ‘d’ states belonging to the
same representation [25]. This p–d interaction results in a
fairly uniform upward shift of the upper valence bands. On the
other hand the point group (Oh) of the RS structure contains
an inversion center at the � point. The ‘p’ and ‘d’ states
belong to a different representation at the � point in the RS
structure and do not mix. At other points with lower symmetry,

3



J. Phys.: Condens. Matter 22 (2010) 125505 H Dixit et al

Figure 2. All-electron wavefunction plot for the Zn atom.

the ‘p’ and ‘d’ states can mix in the Brillouin zone. The
p–d interaction depends on the electron wavevector and the
resulting p–d repulsion leads to an upward dispersion of the top
valence bands in the �–K and �–L directions of the Brillouin
zone. At the � point, five valence bands show a strong ‘d’
character and the top three valence bands have a strong ‘p’
character (see the appendix). However at the K and L points
they mix with each other. The valence band maximum thus
occurs away from the � point and the RS-ZnO has an indirect
band gap.

We calculate the quasiparticle correction at the � point for
ZB-and RS-ZnO with the Zn12+ PP for zinc. The quasiparticle
band gaps and the Zn d energies, obtained with the Zn12+
PP, are shown in table 2. Such straightforward application
of the GW approximation yields poor results for ZnO. The
quasiparticle correction to the band gap for the RS-ZnO is
approximately 1.2 eV whereas it results in a 0.2 eV shift for
the ZB-ZnO. We also observe that the Zn 3d energy level in
the quasiparticle band structure is shifted upwards compared to
the DFT result and is away from the experimental value. This
problem has been identified in the case of CdS by Rohlfing
et al [16]; the unreasonable shift of the d energy levels is
due to an inadequate treatment of the nonlinear exchange–
correlation interaction in the self-energy. They have shown
that when cation core states are successively included in the
valence electron shell, the GW correction improves. The GW
band gap is in excellent agreement with experiments for CdS,
when Cd 4s, 4p, 4d and 5s states are used as valence in the
PP. In case of ZnS a similar analysis holds and the GW band
gap obtained is 3.5 eV, in close agreement to the experimental
value of 3.8 eV [17]. We apply a similar study to ZB-and RS-
ZnO along with ZnS which has a ZB structure. The change in
the chemical environment, achieved by replacing oxygen with
sulfur, leads to a weaker p–d hybridization between the anion
and cation, which is discussed later.

The all-electron wavefunction plot for atomic Zn shows
(figure 2) large spatial overlap of the 3s, 3p and 3d
wavefunctions. Thus separating 3d orbitals from the core
and therefore making an artificial division of 3d, 4s as
valence is considered to be the cause of the poor quasiparticle

Table 2. The DFT-LDA and GW band gap (Eg) at � and the Zn d
energy (Ed) level with the Zn12+ PP (all in eV) calculated at the
optimized lattice constant.

Structure ELDA
g ELDA+GW

g ELDA
d ELDA+GW

d EExp
d EExp

gap

ZB-ZnO 0.79 1.00 −5.68 −4.57 −8.81 3.27
RS-ZnO 2.54 3.72 4.5

Table 3. The DFT-LDA and GW band gap and the Zn d energy (all
in eV) at �, with four different pseudopotentials for ZB-ZnO (at
experimental lattice constant(4.47 Å)).

Zn PP ELDA
g ELDA+GW

g ELDA
d ELDA+GW

d

Optimized
lattice con. (Å)

Zn2+ 3.10 5.26 — — 3.27
Zn12+ 0.83 1.09 −5.96 −4.90 4.53
Zn18+ 0.66 1.57 −6.36 −6.83 4.71
Zn20+ 0.88 2.53 −5.67 −6.53 4.50

correction [16, 8]. The nonlinear exchange–correlation
interaction, which depends on the spatial overlap of atomic
orbitals, is not properly described in the self-energy when the
Zn12+ PP is used. To analyze this fact we consider three
different ionic Zn pseudopotentials with 2, 18 and 20 valence
electrons respectively. The quasiparticle correction for the
band gap and the Zn d energy are listed in table 3. The
inclusion of 3p and 3s states in the valence description of
the Zn atom results in the lowering of the Zn d energy and
an improved quasiparticle correction for the band gap. The
GW band gaps presented in this table are calculated at the
experimental lattice constant of the ZB-ZnO to focus on the
effect of the PP change, but the DFT lattice constants are listed
in the last column. It should be noted that the experimental
lattice constant used is less than the optimized lattice constant
(due to film growth conditions); thus the corresponding DFT
and GW band gaps are higher. The two-electron PP of Zn (4s2)
shows that the GW band gap overestimates the experimental
value. Also the optimized lattice constant 3.27 Å, with this
PP, is too small compared to the experimental value of 4.47 Å.
Since the Zn d atomic energy lies in between the O s and O
p atomic energy levels, the Zn d electrons play an important
role in the bonding. Thus treating the ‘d’ electrons as core,
thereby removing the p–d hybridization, leads to a GW gap
that is too wide compared to experiment. The system is not
screened enough in the absence of the ‘d’ electrons. For the
12-electron PP of Zn (3d10, 4s2), the GW correction yields
practically no shift. This is due to the fact that with the Zn12+
PP, the exchange energy contribution due to spatial overlap of
‘3d’ with the ‘3p’ and ‘3s’ orbitals is neglected in the self-
energy. This is supported by Zn18+ PP, where the GW gap
is opened further and the Zn 3d energy level is now realigned
with the DFT-LDA energy. It should be noted that the DFT
lattice constant obtained with the Zn18+ PP is larger than the
experimental value. There is no physical reason to separate
the ‘3p’ orbital from ‘3s’ and in the construction of PP and we
have added the Zn18+ PP result for completeness. Finally we
construct a 20-electron PP to describe the exchange interaction
properly in the self-energy calculation. With the 20-electron
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Figure 3. Band structure and projected density of states of ZnS (with the 12-electron Zn PP).

Table 4. Atomic orbital eigenvalues (in eV) for zinc, oxygen, and
sulfur along with the energy difference between the anion p (εa

p) and
cation d (εc

d) levels.

Zn 4s −6.06 O 2s −23.69 S 3s −15.26
Zn 3d −10.84 O 2p −9.20 S 3p −7.12
εa

p − εc
d 1.64 3.72

PP, the Zn 3d energy level is positioned around −6.53 eV, about
1 eV lower than the DFT-LDA result, and is now closer to the
experimental value. The calculated GW band gap is 2.53 eV,
which is still lower by ∼0.8 eV than the experimental value
(3.27 eV). However, this compares well with the all-electron
result, 2.44 eV, for the WZ-ZnO [9]. Also the DFT optimized
lattice constant with the 20-electron PP is in agreement with
the experiment.

The underestimation of the GW band gap in ZB-ZnO,
when the Zn20+ PP is used, can be attributed to the strong p–
d hybridization between the anion and cation. To show this,
we make a similar study for the RS-ZnO and ZnS. These two
prototype systems are of interest because for RS-ZnO, the O p
and the Zn d states do not mix at the � point. The five valence
bands have strong Zn d character and the top three conduction
bands have strong O p character and illustrate the absence
of p–d mixing at the �. The change of chemical species
from oxygen to sulfur shows a weaker p–d hybridization in
the electronic structure of ZnS as can be seen from the band
structure and PDOS in figure 3. The PDOS shows that the
strongly dispersed valence bands in the energy range of 0 to
−5 eV have a dominant S p character and the Zn d energy
is located around −6.5 eV. The atomic orbital energies for
zinc, oxygen and sulfur, calculated within the LDA using the
OPIUM code, are listed in table 4. The p–d energy difference
for ZnO is 1.64 eV compared to 3.72 eV for ZnS. Hence
the electronic structure of ZnS shows a weaker hybridization
compared to that of ZB-ZnO.

We now calculate the quasiparticle correction with the
same set of PPs for RS-ZnO and ZnS. Table 5 lists the
quasiparticle corrections and position of Zn 3d states. All
the calculations are again done at the fixed value of the
experimental lattice constant for a meaningful comparison of
the band gap and Zn 3d level. We observe a similar trend
for RS-ZnO and ZnS. The Zn2+ PP overestimates the GW

Table 5. The DFT-LDA and GW band gap and Zn d energy (all in
eV) at �, for RS-ZnO and ZnS with four pseudopotentials (at the
experimental lattice constant).

Zn PP ELDA
g ELDA+GW

g ELDA
d ELDA+GW

d

Optimized
lattice con.

RS-ZnO
Exp. lattice
con. = 4.28 Å

Zn2+ 2.66 4.26 — — 2.85
Zn12+ 2.38 3.52 −4.07 −1.74 4.25
Zn18+ 2.05 2.94 −4.71 −5.40 4.39
Zn20+ 2.39 3.77 −3.78 −5.21 4.21

ZnS
Exp. lattice
con. = 5.42 Å

Zn2+ 2.60 4.01 — — 4.68
Zn12+ 1.87 2.64 −6.63 −4.30 5.33
Zn18+ 1.70 2.71 −7.27 −7.47 5.60
Zn20+ 1.77 3.38 −6.56 −7.16 5.32

band gap. The Zn12+ PP gives an insufficient quasiparticle
correction due to inadequate treatment of the exchange
interaction in the self-energy. With the inclusion of 3p and
3s orbitals, the exchange interaction is now properly treated,
which leads to lowering of the ‘d’ energy level compared to
DFT-LDA result and opening of the GW band gap. This
confirms the dependence of the self-energy on the spatial
overlap of the atomic orbitals. Thus Zn20+ pseudopotential
yields the best GW result.

Finally we calculate the GW band gap at the optimized
lattice constant with the Zn20+ PP. The optimized lattice
constants are 4.50, 4.21 and 5.32 Å for ZB-ZnO, RS-ZnO and
ZnS respectively. These lattice constants are within an error
of ∼1.5% compared to the experimental value. A schematic
overview of the quasiparticle band structure is shown in
figure 4. The Zn d energy level in the GW band structure is
lower than the DFT-LDA counterpart for all of the systems.
The GW band gap, at the � point, for ZB-ZnO is 2.47 eV
compared to 3.27 eV from experiment. This band gap can
be compared and is in agreement with the non-self-consistent
GW band gap of 2.46 eV [26] and the all-electron result of
2.44 eV [9] for WZ-ZnO, as the two structures are similar.
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Figure 4. Schematic band structure showing the DFT-LDA and GW
band gap along with position of the Zn d energies at the � point,
calculated at the optimized lattice constant using 20-electron Zn PP.

For completeness, we have also obtained the GW gap of
2.49 eV for WZ-ZnO with this Zn20+ PP. The optimized lattice
parameters for WZ-ZnO are a = b = 3.192 Å, c = 5.162 Å
and u = 0.380, which compares well with the experimental
values a = b = 3.258 Å, c = 5.220 Å and u = 0.382 [27].
For RS-ZnO we obtain a GW band gap of 4.27 eV, at the �

point, compared to the experimental value of 4.5 eV. The GW
band gap, at �, of ZnS is 3.57 eV which is in agreement with
3.54 eV published in the literature [15], and also compares
with the experimental value of 3.8 eV. These results clearly
show that the non-self-consistent GW correction depends on
the extent of hybridization.

5. Conclusions

The systematic study of the PP and corresponding GW
correction show that Zn20+ PP is essential for describing the
localized d levels correctly in ZnO. The GW band gap obtained
with Zn20+ PP is in agreement with the all-electron single-
shot GW result [9, 26]. The ZB and RS phases of ZnO
provide an interesting comparison between crystal symmetry
and hybridization. The underestimation of the GW band gap
in ZB-ZnO is correlated with the p–d overhybridization within
the LDA. The RS phase includes the inversion symmetry at the
� point in the Brillouin zone. The ‘p’ and ‘d’ states do not mix
at the � point and therefore the GW correction at the � point
is better for RS-ZnO compared to the ZB counterpart. Also
the weakly hybridized system, ZnS, is well described with the
Zn20+ PP and the GW approximation.
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Appendix

We have listed the projected weights of the Kohn–Sham
wavefunctions, for the three systems discussed, at the �, K and
L points in tables A.1–A.3. The eleven bands presented include
nine occupied (valence) and two unoccupied (conduction)
bands. The ZB-ZnO is a strongly hybridized system—as the
‘p’ and ‘d’ states show significant mixing (table A.1). For
the RS-ZnO, the p–d hybridization is absent at the � point
(table A.2). The five valence bands (band index 2–6) show
a strong ‘d’ character and the top three valence bands (band
index 7–9) have a strong ‘p’ character. However at the K and
L point they mix with each other. In the case of ZnS, the
electronic structure shows a weaker hybridization compared to
that of ZB-ZnO as is evident from the projected weights of the
Kohn–Sham wavefunction at the �, K and L points, listed in
table A.3.

Table A.1. The projected weights of the Kohn–Sham wavefunction
at the LDA level for ZB-ZnO with the 12-electron Zn PP at the
optimized lattice constant.

Band index Zn 3d Zn 4s O s O p Energy (eV)

At the � point

1 0.00 0.00 0.88 0.00 −17.91
2 0.76 0.00 0.00 0.28 −6.19
3 0.76 0.00 0.00 0.28 −6.19
4 0.76 0.00 0.00 0.28 −6.19
5 0.98 0.00 0.00 0.02 −4.94
6 0.98 0.00 0.00 0.02 −4.94
7 0.28 0.00 0.00 0.69 0.00
8 0.28 0.00 0.00 0.69 0.00
9 0.28 0.00 0.00 0.69 0.00

10 0.00 0.30 0.30 0.00 0.79
11 0.00 0.00 0.00 0.00 13.40

At the K point

1 0.00 0.00 0.94 0.00 −16.88
2 0.55 0.05 0.00 0.36 −6.28
3 0.77 0.00 0.00 0.24 −5.51
4 0.87 0.01 0.00 0.10 −5.19
5 0.98 0.00 0.00 0.00 −4.87
6 0.15 0.15 0.00 0.58 −4.49
7 0.91 0.17 0.01 0.03 −4.35
8 0.40 0.03 0.00 0.42 −2.91
9 0.23 0.00 0.00 0.64 −1.84

10 0.12 0.00 0.04 0.10 6.68
11 0.01 0.43 0.03 0.28 8.86

At the L point

1 0.00 0.00 0.93 0.00 −17.10
2 0.07 0.15 0.00 0.59 −5.99
3 0.77 0.00 0.00 0.25 −5.94
4 0.77 0.00 0.00 0.25 −5.94
5 0.98 0.00 0.00 0.00 −4.86
6 0.98 0.00 0.00 0.00 −4.85
7 0.87 0.03 0.01 0.08 −4.54
8 0.24 0.00 0.00 0.68 −0.86
9 0.24 0.00 0.00 0.68 −0.86

10 0.03 0.34 0.19 0.01 5.62
11 0.05 0.03 0.00 0.44 7.96
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Table A.2. The projected weights of the Kohn–Sham wavefunction
at the LDA level for RS-ZnO with the 12-electron Zn PP at the
optimized lattice constant.

Band index Zn 3d Zn 4s O s O p Energy (eV)

At the � point

1 0.00 0.00 0.86 0.00 −18.25
2 0.96 0.00 0.00 0.00 −5.38
3 0.96 0.00 0.00 0.00 −5.38
4 0.96 0.00 0.00 0.00 −5.38
5 0.98 0.00 0.00 0.00 −5.18
6 0.98 0.00 0.00 0.00 −5.18
7 0.00 0.00 0.00 0.96 −1.17
8 0.00 0.00 0.00 0.96 −1.17
9 0.00 0.00 0.00 0.96 −1.17

10 0.00 0.43 0.41 0.00 1.37
11 0.40 0.00 0.00 0.00 18.36

At the K point

1 0.00 0.00 0.94 0.00 −16.52
2 0.60 0.04 0.00 0.28 −6.16
3 0.39 0.00 0.00 0.44 −5.86
4 0.78 0.00 0.00 0.22 −5.66
5 0.99 0.00 0.00 0.00 −4.92
6 0.87 0.01 0.02 0.08 −4.86
7 0.60 0.00 0.00 0.31 −3.92
8 0.45 0.10 0.01 0.38 −3.22
9 0.23 0.00 0.00 0.67 −1.41

10 0.00 0.57 0.05 0.10 6.43
11 0.11 0.02 0.04 0.25 10.09

At the L point

1 0.00 0.00 0.94 0.00 −16.69
2 0.29 0.19 0.00 0.48 −7.51
3 0.77 0.00 0.00 0.25 −6.21
4 0.77 0.00 0.00 0.25 −6.21
5 0.98 0.00 0.00 0.00 −4.96
6 0.98 0.00 0.00 0.00 −4.96
7 0.71 0.09 0.00 0.20 −3.92
8 0.28 0.00 0.00 0.71 0.11
9 0.28 0.00 0.00 0.71 0.11

10 0.00 0.00 0.21 0.01 5.55
11 0.00 0.36 0.00 0.55 9.44
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