
Real-Time Tracking of Multiple People Using Continuous Detection �David Beymer and Kurt KonoligeArti�cial Intelligence CenterSRI InternationalMenlo Park, CA 94025E-mail: fbeymer, konoligeg@ai.sri.comAbstractRecent investigations have shown the advantages of keep-ing multiple hypotheses during visual tracking. In thispaper we explore an alternative method that keeps justa single hypothesis per tracked object for computationale�ciency, but displays robust performance and recov-ery from error by employing continuous detection duringtracking. The method is implemented in the domain ofpeople-tracking, using a novel combination of stereo in-formation for continuous detection and intensity imagecorrelation for tracking. Real-time stereo provides ex-tended information for 3D detection and tracking, evenin the presence of crowded scenes, obscuring objects, andlarge scale changes. We are able to reliably detect andtrack people in natural environments, on an implementedsystem that runs at more than 10 Hz on standard PChardware.1 IntroductionOur goal is to simulataneously track a number of peo-ple in crowded natural environments. A system of thissort would be useful in a number of applications, suchas human-computer interaction, surveillance, and mobilerobots that work among people. The challenge is to �nde�cient methods for detecting and tracking people underfairly di�cult natural conditions. Such a system shouldbe robust enough to operate with partial occlusions ofthe subjects, and recover from tracking errors where asubject is temporarily lost. Finally, the techniques mustbe implemented on standard available hardware, and runfast enough to track in real time.A well-known and e�cient technique for tracking ob-jects appearing in an image is to correlate a templateof the object against the image. Robust tracking underlighting and object orientation change can be achievedby adapting the template, but the problem of templatedrift occurs: the adapted template moves o� the de-sired object, either by acquiring background noise, orbecause the object is temporarily occluded. To someextent this problem can be ameliorated by keeping mul-tiple hypotheses about the image location of the object,�This research was supported by DARPA contract N00014-97-C-0146 through the O�ce of Naval Research.

and recovering from errors as an object emerges from oc-clusion or is viewed at a previously-seen orientation [8].But there is an obvious expense and complexity involvedin keeping multiple hypotheses. This expense is com-pounded as the problem size is increased from trackinga single object to tracking multiple objects.An obvious question arises as to how the template isacquired in the �rst place. In the best case, it is deter-mined automatically by a detection method based on amodel of the object class to be tracked [11, 14]. Detec-tion can be an expensive operation, involving search overthe image and matching against the model. The prob-lem is complicated by the size of the search space, sincethe object may appear at di�erent sizes (scale change)and orientations. Generally, once detected, an object istracked more quickly and at a reduced computationalexpense.In this paper we explore an alternative techniqueto multihypothesis tracking, continuous detection andtracking, that keeps just a single hypothesis about theimage location of an object being tracked. In thismethod, detection and tracking play complementaryroles. Detection signals the presence of a desired typeof object, but does not distinguish its identity or rela-tion to objects previously seen. Tracking determines thespatiotemporal coherence of an object, but is prone tomisjudgements about the actual presence of the object.Such misjudgements occur, for example, when an adap-tive tracking template picks up background information,either because the background itself is distracting, orbecause the object is partially obscured. The main con-ceptual contribution of the work is the idea that con-tinual detection can provide enough information aboutobject presence and location to overcome the problemsassociated with adaptive template tracking of a singlehypothesis.Continuous detection depends on the availability of afast detection method. For this, we exploit the proper-ties of video-rate stereo [9, 10, 17], which for the follow-ing reasons is a powerful modality for detecting movingobjects in a cluttered scene.� Stereo provides a stable basis for segmentation. Us-ing background subtraction to detect change is morereliable with stereo than other methods, because the



presence of distracting shadows, lighting changes,and camera dynamics has little e�ect [2]. Becausestereo returns range information, it can discriminatethe three-dimensional shape of objects, a useful fea-ture in the detection process.� Occluding surfaces can be found and dealt with, re-ducing their e�ect. This is one of the most impor-tant properties of stereo, since occluding surfacesare a di�cult problem for other techniques.� Stereo also helps minimize the problem of scale indetection, since the apparent size of objects can beadjusted based on their perceived range.� Stereo can provide useful state information to thetracking phase, since relevant properties such asreal-world velocity can be estimated.To demonstrate the power and practicality of continu-ous detection and tracking, we have implemented a sys-tem that uses stereo and adaptive correlation to detectand track many people at the same time in a crowdedenvironment. Since the detection phase of the systemis continuously active, it can detect new people that en-ter a scene, or re-detect people that cannot be trackedbecause of excessive occlusion or other failure modes.The system operates at reasonable data rates (> 10 Hz)on standard PC hardware, depending on the number ofpeople tracked. We perform experimental validation ofthe system to highlight its excellent detection rate in thepresence of distractors, and compare its performance toadaptive correlation without continuous detection.2 Related WorkThere is an impressive body of literature on model-baseddetection and tracking of people. Because video-ratestereo has only been achieved recently, only a few groupsuse it. Darrell et al. [1] present a system that uses dif-ferent sensing modalities, including stereo range, to ro-bustly segment and track people, concentrating on faces.Like us, they continuously segment the image on the ba-sis of stereo range. However, unlike in our work, theydo not attempt to model and detect human torsos onthe basis of their shape, nor do they use correlation andKalman �ltering to track people. Instead, they rely onmultiple cues such as color and face recognition to re-duce errors, and various heuristics to track from frameto frame. In terms of performance, our work di�ers pri-marily in that we are addressing the harder problem oftracking multiple people with partial occlusions and dis-tractions, while the experiments in [1] are restricted tothe closest face to the cameras, which is unoccluded andnot usually distracted by adjacent surfaces at a similardepth. We also track at far distances (up to 20 me-ters) from the cameras, where depth disambiguation canbe problematic. Finally, they consider the problem oflong-term re-identi�cation of previously seen individu-als, which we do not.

Other non-stereo, model-based methods for trackingpeople in image sequences use color [18, 3], motion[6, 16], and/or contour tracking [8, 13]. For example, the"silhouette" method in [6] a background model is usedto segment motion contours, which are then matchedagainst an explicit model of human shape. Interestingly,the system tends to fail during occlusions generated bymultiple subjects near each other, and under shadow orother lighting changes. Both these e�ects can be miti-gated using stereo information, and the most recent im-plementation of the system adds this capability.All of these systems must deal with the di�cultiesof occlusion and distraction. Multihypothesis methods[8, 13, 12], already mentioned in the introduction, keepenough information to recover from locally bad situa-tions, but at the cost of added complexity and the in-ability to adequately recognize and deal with occludedsituations as they occur. For color-based trackers, oc-clusion is a real problem; at least one paper attempts toexplicitly model and recover from occlusion events [3].Finally, methods such as wavelet matching [11] are in-herently insensitive to occlusion, although their at thepresent time their performance is not as good as othersystems.3 System OverviewThe system architecture, shown in Fig. 1, exhibits atight coupling between the tracker and a continuously-operating detector. Information from a monochromestereo head is fed into a stereo processing unit, whichperforms e�cient area-based correlation to extract dis-parity information [10] at some cyclical rate, typicallygreater than 10 Hz. A further operation of backgroundsubtraction isolates objects that di�er from a learnedbackground. This information is fed to a recursive seg-mentation process, and the results are scaled at di�erentresolutions in the stereo pyramid. Pyramid representa-tions are used to compensate for scale di�erences, andto increase the e�ciency of processing for certain oper-ations.A detector, running at each cycle on all levels of thepyramid, matches an appropriate shape model templateto detect person-like objects. Detection is used in twoways: to �nd new people and insert them into the cur-rent state; and to register tracking templates that arefollowing already-detected people.The tracker utilizes intensity information, again witha pyramid structure to help with scale changes. As newpeople are found and presented to the tracker, it formsan adaptive tracking template for the person. At eachcycle, it updates their state using a Kalman �lter andinformation obtained by correlation of the tracking tem-plate. The tracker relies on the detector to compensatefor drift as it adapts the tracking templates. Addition-ally, the tracker will eliminate people from the set ofstates if they are no longer recognized in the scene.There are a few limitations of the system. Becausewe rely on range background subtraction, the camera
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    masksFigure 1: Flowchart for our detection and tracking system.cannot translate, although rotations and zooming can beaccomodated [2]. Surprisingly, the system is not severlylimited by the decrease of depth resolution with distance,even for small stereo baselines. For example, we are ableto use stereo e�ectively at 20 m, with a baseline of only11 cm; the excellent stability of background subtractionaccounts for this.In the next few sections we give detailed descriptionsof the detection and tracking algorithms.4 People Detection using DisparityTemplatesThe goal of the person detection module is to automat-ically initialize person tracks for the tracker. The mainidea behind the detection module is to segment the fore-ground image into layers of near constant disparity. Peo-ple are then located within these layers by correlatingwith a bank of person templates. The main steps in ourperson detection module are shown in Fig. 2.4.1 Stereo background di�erencing and layersGiven a left and right image pair from a stereo head, we�rst compute stereo using the area correlation methoddescribed in [10]. The disparity image is a dense imageslightly smaller than the original intensity image, wherethe disparity is inversely related to depth according tothe formula d = bf=z (1)where d is the disparity, b is the stereo head camera base-line, f is the camera focal length, z is the normal dis-tance from the image plane to the object. We work withdisparities rather than range because the error statisticsare constant over the range of disparities.In order to detect foreground objects in the scene,background di�erencing is applied to the stereo dispar-ities [2]. While stereo involves some computational ex-pense over using color or intensities, it does o�er someadvantages. First, stereo disparities are insensitive to
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Figure 2: Flowchart for the person detection module.shadows and changes in lighting conditions. Second, fortwo people who are adjacent in the image but at di�eringdepths, their di�ering disparities will allow the system toproperly segment the two. In our backgrounding compu-tation, pixels that have a larger disparity than the back-ground (i.e. closer to the camera) are initially marked asforeground. The morphological opening operator (erodefollowed by dilate) is applied to suppress noise and con-nected components are computed to retain blobs of aminimum size.In our system, the background disparity image is com-puted by averaging the stereo results from an initialbackground learning stage where the scene is assumedto contain no people. While much work has been doneon adaptive background models [2, 5], the insensitivityof stereo to changes in lighting mitigates to some extentthe need for adaptation. We plan to add adaptation todeal with long-range changes such as adding/subtractingobjects from the scene.Next, the foreground disparity image is further seg-mented into layers of dominant disparity. This takesadvantage of stereo's ability to segment objects at dif-ferent depths. A histogram of the foreground disparitiesis computed, smoothed, and then histogram peaks areextracted as seeds for forming layers. When focusingattention on a particular layer, we gate the foregrounddisparities in a disparity-dependent range around thehistogram peak. Fig. 3 shows (a) the left image froma stereo pair, (b) the stereo disparities, (c) the back-ground disparities, (d) the foreground disparities, and(e) the two foreground layers.4.2 Handling scale variationIn person �nding systems that utilize no range informa-tion, image scale is an important issue. Detecting peopleat a range of scales typically involves search over thatrange (e.g. [11]) or estimation of scale from segmentedblobs, which is di�cult. Stereo disparity information al-
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layer 0, pyramid level 1 layer 1, pyramid level 2(e)Figure 3: Computation of stereo and foreground layers.lows us to compute the appropriate scale from a layer'sdominant disparity directly. In fact, person scale is pro-portional to disparity.Consider a person with width w standing a distance zfrom the camera as shown in Fig. 4. The person projectsto a width w0 in the image plane, so by similar triangleszw = fw0Cross multiplying, we get zw0 = fw. The right handside of this equation is constant for a given width w, sowe get zw0 = const. Combining with Equation (1) toeliminate z, we get w0 = dK (2)where K is a constant that can be measured in a simple
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Figure 4: Person width w0 in the image plane is proportionalto disparity. See text for details.
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widthFigure 5: Templates used for person detection. The largertemplates have zeros in the center since stereo may fail inthe center region if the person is wearing clothing with littletexture. Grey pixels are don't cares.calibration step.Since we want to operate on a large range of scales(scale change of 10:1) in real time, the detection andtracking modules operate on a 4 level pyramid. Stereoand background subtraction are performed at the highestlevel, but as soon as we focus on processing a layer at dis-parity d0, we switch processing to pyramid-level(d0),where the pyramid level is chosen to make the expectedperson width 8 pixels (using Equation (2)). This keepsour person templates for detection and tracking to about12x28 pixels, which is important for speed.4.3 Person templatesGiven disparity layers capturing foreground objects atdi�erent disparities, the next step is to detect the peo-ple present in the foreground layers. This is done us-ing correlation with binary person templates. Noticethat we are doing binary correlation so the templatessimply capture the 2D shape of people. As comparedto, say, intensity-based appearance modeling (e.g. eigen-faces [15]), there is much less variation in the coarse 2Dshape of people, especially when one operates at lowerpyramid resolutions. Thus, we use a simple person modelbased on a small set of binary templates.Shown in Fig. 5, the set of binary person templatesused for detection di�er from one another primarily inscale. These templates are designed to cover the ex-pected scale variation in one octave of our pyramid rep-resentation. More precisely, given a foreground layer atdisparity d0, we downsample the later to pyramid levelpyramid-level(d0). Using Equation (2), we predict theexpected width of the person and hence which templatefrom Fig. 5 to correlate with.The selected person template is then correlatedagainst the downsampled layer image, using a Hammingdistance metric. If the maximum correlation value isabove a threshold, then we place a new person detectionat the location of the correlation peak. The threshold weuse for detection is approximately 75% of the number oftemplate pixels. Since there might be multiple peoplepresent in the foreground layer, the detected person issubtracted from the layer and the correlation process re-peated. In the owchart of Fig. 2, this loop shows up inthe three boxes in the lower right. Naturally, when noadditional people are detected at the current disparitylayer, the next disparity layer from the disparity his-
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Figure 6: Results of person detector on image of Fig. 3.Two templates are extracted for each person, an intensitytemplate and a stereo-based mask.togram is processed.Person detections for the image in Fig. 3 are shown inFig. 6. When a person is detected { and hence initializedfor the tracker { two templates are extracted:1. Intensity template. This is used for intensity corre-lation in the tracker.2. Foreground mask. This is a \probability" mask forpixels belonging to the person.Exactly how thes templates are used is explained in thenext section on the tracker.5 People trackingOver the last few years, multimodal trackers haveemerged as a technique for dealing with clutter and oc-clusion [8]. In an ambiguous clutter or occlusion relatedevent, the probability distribution spreads out and be-comes multimodal, essentially allowing the tracker tomaintain multiple tracking solutions. As the sequenceevolves and the tracking becomes less ambiguous, theprobability distribution ideally becomes unimodal againaround the true answer.Our tracker is multimodal in a di�erent way, usingmultiple input modalities, namely intensities and stereodisparities (see also [1, 7]). While it is unimodal in termsof tracker state for an individual, it takes advantage ofthe segmentation aspects of stereo to achieve some ofthe same results as probabilistic trackers. Backgroundclutter can be ignored by using predicted disparities tonarrow search to a particular foreground disparity layer.Another advantage of using stereo is that template drift,a problem for adaptive templates, can be avoided byusing the segmentation information.5.1 Kalman �lteringOur tracker works in a Kalman �lter [4] framework wherethe measurement process is intensity correlation andstereo. To measure person location, we use a world coor-dinate system (X;Z) as shown in Fig. 7, where the X-Zplane is parallel to the oor and Z measures the distancefrom the stereo head. This world coordinate system ispreferable to an image-based (x; y; disparity(x; y)) since
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Figure 7: The world coordinate system (X;Z) is used in thestate of the Kalman �lter.our constant velocity model for system dynamics is moreappropriate for the world coordinate system (i.e. peopleactually move about in the world coordinate system). Itis easy to map back and forth between world and imagecoordinates. Assuming that the stereo head is parallel tothe oor, Z is related to disparity(x; y) using Equation(1) and x is related to X using the familiar perspectiveprojection equation x = fX=Z.Our Kalman �lter state is a vector (X;Z; _X; _Z)T , andour model for system dynamics is a constant velocitymodel; acceleration is modeled as noise. In the descrip-tion of the tracking algorithm below, d is the depth Zmapped into image space as a disparity value. The im-age measurement y is also maintained for each personoutside of the Kalman state; the variance on this mea-surement is so high we felt that it might detract fromthe �lter performance if included.5.2 Tracking AlgorithmIn this section we give the details of the tracking algo-rithm. This procedure is iterated, of course, over all thepeople being tracked by the system. The primary novelfeature here is how stereo is being used to modulate theintensity correlation and re-center the templates to avoiddrift. We assume that stereo and disparity backgroundsubtraction have already been applied to the image. Forthe person P being tracked, let Ptempl be the intensitytemplate and Pmask be the stereo mask (as in Fig. 6).tracking procedureinput: image intensities Ileftstereo foreground Ifgndperson P to trackalgorithm:1. Kalman prediction. This estimates (X;Z) for thecurrent frame. The image measurement y is pre-dicted separately using a linear predictor.2. Threshold the foreground disparity map Ifgnd in arange around the predicted disparity d. This gen-erates a disparity layer Ilayer containing the personP and possibly other people at disparity d (similarto Fig. 3(e)).3. Correlate Ptempl against the input image reducedto pyramid� level(d). Each pixel in Ptempl isweighted by Pmask, which eliminates the inuenceof background clutter from the template.



4. Re�ne the location from step (3) by correlating aperson template against the layer image Ilayer. Thisre-centers the template on the person and avoidstemplate drift. The predicted width of the persondetermines which person template we select fromFig. 5.5. Update step. Recursively update Ptempl using Ileftand probability mask Pmask using Ilayer . Updatedisparity d by taking a weighted average of Ifgndusing Pmask. Also perform standard Kalman �lterupdate steps.6. Remove person P from the foreground mask Ifgndto keep the person from being detected by the de-tection module.Steps (1), (3), and (5) constitute a fairly standardcorrelation-based Kalman �lter. Our stereo enhance-ments are in steps (2) and (4). Step (3) does most ofthe work in updating the person position, but is sus-ceptible to template drift. Step (4) emphasizes depthdiscontinuity information to try to keep the templatescentered. Notice also in step (3) how the stereo mask isused to focus attention on the foreground object pixelsin the template.In the recursive update step (5), the template Ptemplis updated using the formulaPtempl(x; y) = �Ptempl(x; y)+(1��)Ileft(x+xp; y+yp);where (xp; yp) is the location of the upper left corner ofthe template as computed by step (4) and � is 0.75. Themask Pmask is updated in the same way. Also, disparityd is updated as follows:d = P(x;y) Pmask(x; y)Ifgnd(x + xp; y + yp)P(x;y) Pmask(x; y) :In our detection and tracking system, new people arealways being added by the detection module. Likewise,the tracker needs a criterion for eliminating people whohave been occluded. When a person A is occluded, Awill no longer claim portions of the foreground disparitymap, so A's probability mask Pmask will trend down tozero. Thus, the tracker eliminates a person whenP(x;y) Pmask(x; y) < threshold:In terms of tracking multiple people, we have foundthat sorting and processing people from front to backhelps with occlusion events. If person B hides behindperson A, the algorithm will update A before B, whichhelps maintain the continuity of A. Since person A\claims" the disparities from the foreground image Ifgndas B disappears, B will lose support and will be properlyeliminated by the tracker.
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Figure 8: Two tracking results for a single person. In theupper track, the person is running up and down a hallway.In the lower track, a �gure eight pattern is tracked.5.3 Tracker plotsIn this section we show plots of some tracking results;a quantitative evaluation of the detection and trackingmodules is given in the next section. First, Fig. 8 showstwo separate tracks for a single person. The upper se-quence, a sequence where the person runs up and downa hallway, demonstrates two nice features of our tracker:(1) we can track out to 20 meters from the stereo headwith a camera baseline of only 11 cm, and (2) the trackercan keep up with a running person. In the lower track,the person is walking in a �gure eight pattern.Fig. 9 demonstrates the system's ability to track multi-ple people. The �gure shows six frames covering approx-imately 2 seconds from sequence of four people, three ofwhom are visible at any one moment. Person ID's areindicated in the upper right corner of a tracking box.Person 1 is correctly tracked, but person 2 is temporar-ily occluded by person 1 and then redetected as person4 in frame 104.6 Experimental ResultsIn this section, we describe our experimental setup andquantitatively evaluate the our tracker on several se-quences.6.1 Experimental setupOur tracker runs on standard PC hardware, a dual Pen-tium II processor at 400 MHz. For stereo, we use SRI'sSmall Vision System [10] with a camera baseline of 11 cmand FOV of 50 degrees. The disparity search is over 24pixels in a 320x240 image, with 1/4 pixel interpolationof the results.The stereo head is aimed down a corridor in our o�cebuilding; Fig. 3 shows a typical view. The hallway ex-tends 60 feet before reaching a wall, and we have trackedout the full 60 feet as shown in Fig. 8. At the end ofits range, we are seeing disparity di�erences from thebackground of less than 1/2 pixel, showing the excellentbackground discrimination and the ability of stereo towork at far distances. When capturing sequences, weasked people to walk up and down the hall and in andout of o�ces.
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Figure 9: Tracking results on approximately 2 seconds ofvideo containing 4 people (one person is barely visible).In terms of distributing the computational load acrossboth Pentium processors, we have placed the stereo com-putation on one and the stereo backgrounding, detectionand tracking modules on the other. When tracking nopeople (stereo and detection processes only), the systemruns at 20 Hz. When tracking one person, performancegoes down to 15 Hz, and with four or �ve people perfor-mance drops to around 8 Hz.6.2 EvaluationTo evaluate the tracker, we compiled statistics relatedto person detection, tracking, and false positives. Tothis end, we �rst collected a number of test sequencesand manually de�ned ground truth for each sequence byspecifying the center of the torso section of each personin every other frame. Then, to evaluate a sequence, werun the tracker and match up the resulting tracks withground truth. This matching process follows a simplegreedy algorithm: compute all distances between trackercentroids and ground truth, pair up the track and groundtruth with smallest distance, and repeat until the small-est distance is above a threshold of about 75% of bodywidth. Distances, of course, are normalized using dis-parity information from the tracker and Equation 2.Given these matches, the tracking rate is de�ned as thepercentage of all ground truths that have correspond-ing matches from the tracker. Likewise, the false posi-

Seq #People #Occl TR FP MTD1 1 0 96% 0% 6.02 1 0 98% 0% 4.03 1 0 96% 0% 10.04 2 0 89% 10% 2.55 2 0 92% 6% 11.06 2 1 86% 0% 9.07 3 2 79% 3% 7.78 4 2 85% 2% 5.09 3 6 84% 4% 5.810 5 10 78% 1.3% 6.611 4 9 69% 5.6% 7.012 5 20 68% 3.2% 5.413 5 28 70% 6.7% 6.2Table 1: Evaluation statistics for our tracker, includingtracking rate TR, false positive rate FP and mean time todetect MTD.tive rate is de�ned as the portion of tracks that have nocorresponding ground truth. To evaluate the detectionmodule, we measure the mean time to detect. This is themean number of frames from the �rst appearance of aground truth to the time it is detected by the tracker.Since occlusion occurs frequently in our sequences, themean time to detect also includes the time taken to reac-quire ground truths after they have re-emerged from be-ing occluded.Table 1 shows the tracking rate TR, false positive rateFP , and mean time to detect MTD for a set of se-quences. Each sequence contains between 200 to 300frames and covers roughly 10 to 20 seconds. Quicktimemovies showing the results of 6 of these sequences areavailable in Movie 1 through Movie 6. The sequencesare ordered roughly from easiest to most di�cult, wheredi�culty is measured by the number of people in thesequence #People and the number of occlusion eventsin the sequence #Occl. From the table, one can noticea steady degradation in performance as one goes fromthe easy sequences of tracking a single person with noocclusion to tracking 5 people with 28 occlusion events.We counted occlusions when the object eventually reap-peared later in the sequence. We have also run the sys-tem continuously for hours at a time, including a demoat November, 1998 Image Understanding workshop.To evaluate the usefulness of adding the modality ofstereo to the tracker, we ran the tracker with the recen-tering step (4) disabled and with using normal correla-tion in step (3) instead of weighted correlation. We no-ticed much more template drift, and the mean trackingrate decreased 4% (people tended to be redetected rightafter the template drifted o�). The mean false positiverate increased signi�cantly { from 3% to 10% { since thetracking often double-tracks a person during drift.7 ConclusionIn recent years the tracking community has started toemphasize tracking in the face of background clutter andpartial occlusion. We have explored how to use stereo
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