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Abstract

Recent investigations have shown the advantages of keep-
ing multiple hypotheses during visual tracking. In this
paper we explore an alternative method that keeps just
a single hypothesis per tracked object for computational
efficiency, but displays robust performance and recov-
ery from error by employing continuous detection during
tracking. The method is implemented in the domain of
people-tracking, using a novel combination of stereo in-
formation for continuous detection and intensity image
correlation for tracking. Real-time stereo provides ex-
tended information for 3D detection and tracking, even
in the presence of crowded scenes, obscuring objects, and
large scale changes. We are able to reliably detect and
track people in natural environments, on an implemented
system that runs at more than 10 Hz on standard PC
hardware.

1 Introduction

Our goal is to simulataneously track a number of peo-
ple in crowded natural environments. A system of this
sort would be useful in a number of applications, such
as human-computer interaction, surveillance, and mobile
robots that work among people. The challenge is to find
efficient methods for detecting and tracking people under
fairly difficult natural conditions. Such a system should
be robust enough to operate with partial occlusions of
the subjects, and recover from tracking errors where a
subject is temporarily lost. Finally, the techniques must
be implemented on standard available hardware, and run
fast enough to track in real time.

A well-known and efficient technique for tracking ob-
jects appearing in an image is to correlate a template
of the object against the image. Robust tracking under
lighting and object orientation change can be achieved
by adapting the template, but the problem of template
drift occurs: the adapted template moves off the de-
sired object, either by acquiring background noise, or
because the object is temporarily occluded. To some
extent this problem can be ameliorated by keeping mul-
tiple hypotheses about the image location of the object,
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and recovering from errors as an object emerges from oc-
clusion or is viewed at a previously-seen orientation [8].
But there is an obvious expense and complexity involved
in keeping multiple hypotheses. This expense is com-
pounded as the problem size is increased from tracking
a single object to tracking multiple objects.

An obvious question arises as to how the template is
acquired in the first place. In the best case, it is deter-
mined automatically by a detection method based on a
model of the object class to be tracked [11, 14]. Detec-
tion can be an expensive operation, involving search over
the image and matching against the model. The prob-
lem is complicated by the size of the search space, since
the object may appear at different sizes (scale change)
and orientations. Generally, once detected, an object is
tracked more quickly and at a reduced computational
expense.

In this paper we explore an alternative technique
to multihypothesis tracking, continuous detection and
tracking, that keeps just a single hypothesis about the
image location of an object being tracked. In this
method, detection and tracking play complementary
roles. Detection signals the presence of a desired type
of object, but does not distinguish its identity or rela-
tion to objects previously seen. Tracking determines the
spatiotemporal coherence of an object, but is prone to
misjudgements about the actual presence of the object.
Such misjudgements occur, for example, when an adap-
tive tracking template picks up background information,
either because the background itself is distracting, or
because the object is partially obscured. The main con-
ceptual contribution of the work is the idea that con-
tinual detection can provide enough information about
object presence and location to overcome the problems
associated with adaptive template tracking of a single
hypothesis.

Continuous detection depends on the availability of a
fast detection method. For this, we exploit the proper-
ties of video-rate stereo [9, 10, 17], which for the follow-
ing reasons is a powerful modality for detecting moving
objects in a cluttered scene.

e Stereo provides a stable basis for segmentation. Us-
ing background subtraction to detect change is more
reliable with stereo than other methods, because the



presence of distracting shadows, lighting changes,
and camera dynamics has little effect [2]. Because
stereo returns range information, it can discriminate
the three-dimensional shape of objects, a useful fea-
ture in the detection process.

e Occluding surfaces can be found and dealt with, re-
ducing their effect. This is one of the most impor-
tant properties of stereo, since occluding surfaces
are a difficult problem for other techniques.

e Stereo also helps minimize the problem of scale in
detection, since the apparent size of objects can be
adjusted based on their perceived range.

e Stereo can provide useful state information to the
tracking phase, since relevant properties such as
real-world velocity can be estimated.

To demonstrate the power and practicality of continu-
ous detection and tracking, we have implemented a sys-
tem that uses stereo and adaptive correlation to detect
and track many people at the same time in a crowded
environment. Since the detection phase of the system
is continuously active, it can detect new people that en-
ter a scene, or re-detect people that cannot be tracked
because of excessive occlusion or other failure modes.
The system operates at reasonable data rates (> 10 Hz)
on standard PC hardware, depending on the number of
people tracked. We perform experimental validation of
the system to highlight its excellent detection rate in the
presence of distractors, and compare its performance to
adaptive correlation without continuous detection.

2 Related Work

There is an impressive body of literature on model-based
detection and tracking of people. Because video-rate
stereo has only been achieved recently, only a few groups
use it. Darrell et al. [1] present a system that uses dif-
ferent sensing modalities, including stereo range, to ro-
bustly segment and track people, concentrating on faces.
Like us, they continuously segment the image on the ba-
sis of stereo range. However, unlike in our work, they
do not attempt to model and detect human torsos on
the basis of their shape, nor do they use correlation and
Kalman filtering to track people. Instead, they rely on
multiple cues such as color and face recognition to re-
duce errors, and various heuristics to track from frame
to frame. In terms of performance, our work differs pri-
marily in that we are addressing the harder problem of
tracking multiple people with partial occlusions and dis-
tractions, while the experiments in [1] are restricted to
the closest face to the cameras, which is unoccluded and
not usually distracted by adjacent surfaces at a similar
depth. We also track at far distances (up to 20 me-
ters) from the cameras, where depth disambiguation can
be problematic. Finally, they consider the problem of
long-term re-identification of previously seen individu-
als, which we do not.

Other non-stereo, model-based methods for tracking
people in image sequences use color [18, 3], motion
[6, 16], and/or contour tracking [8, 13]. For example, the
"silhouette” method in [6] a background model is used
to segment motion contours, which are then matched
against an explicit model of human shape. Interestingly,
the system tends to fail during occlusions generated by
multiple subjects near each other, and under shadow or
other lighting changes. Both these effects can be miti-
gated using stereo information, and the most recent im-
plementation of the system adds this capability.

All of these systems must deal with the difficulties
of occlusion and distraction. Multihypothesis methods
[8, 13, 12], already mentioned in the introduction, keep
enough information to recover from locally bad situa-
tions, but at the cost of added complexity and the in-
ability to adequately recognize and deal with occluded
situations as they occur. For color-based trackers, oc-
clusion is a real problem; at least one paper attempts to
explicitly model and recover from occlusion events [3].
Finally, methods such as wavelet matching [11] are in-
herently insensitive to occlusion, although their at the
present, time their performance is not as good as other
systems.

3 System Overview

The system architecture, shown in Fig. 1, exhibits a
tight coupling between the tracker and a continuously-
operating detector. Information from a monochrome
stereo head is fed into a stereo processing unit, which
performs efficient area-based correlation to extract dis-
parity information [10] at some cyclical rate, typically
greater than 10 Hz. A further operation of background
subtraction isolates objects that differ from a learned
background. This information is fed to a recursive seg-
mentation process, and the results are scaled at different
resolutions in the stereo pyramid. Pyramid representa-
tions are used to compensate for scale differences, and
to increase the efficiency of processing for certain oper-
ations.

A detector, running at each cycle on all levels of the
pyramid, matches an appropriate shape model template
to detect person-like objects. Detection is used in two
ways: to find new people and insert them into the cur-
rent state; and to register tracking templates that are
following already-detected people.

The tracker utilizes intensity information, again with
a pyramid structure to help with scale changes. As new
people are found and presented to the tracker, it forms
an adaptive tracking template for the person. At each
cycle, it updates their state using a Kalman filter and
information obtained by correlation of the tracking tem-
plate. The tracker relies on the detector to compensate
for drift as it adapts the tracking templates. Addition-
ally, the tracker will eliminate people from the set of
states if they are no longer recognized in the scene.

There are a few limitations of the system. Because
we rely on range background subtraction, the camera
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Figure 1: Flowchart for our detection and tracking system.

cannot translate, although rotations and zooming can be
accomodated [2]. Surprisingly, the system is not severly
limited by the decrease of depth resolution with distance,
even for small stereo baselines. For example, we are able
to use stereo effectively at 20 m, with a baseline of only
11 cm; the excellent stability of background subtraction
accounts for this.

In the next few sections we give detailed descriptions
of the detection and tracking algorithms.

4 People Detection using Disparity
Templates

The goal of the person detection module is to automat-
ically initialize person tracks for the tracker. The main
idea behind the detection module is to segment the fore-
ground image into layers of near constant disparity. Peo-
ple are then located within these layers by correlating
with a bank of person templates. The main steps in our
person detection module are shown in Fig. 2.

4.1 Stereo background differencing and layers

Given a left and right image pair from a stereo head, we
first compute stereo using the area correlation method
described in [10]. The disparity image is a dense image
slightly smaller than the original intensity image, where
the disparity is inversely related to depth according to
the formula

d=bf/ (1)

where d is the disparity, b is the stereo head camera base-
line, f is the camera focal length, z is the normal dis-
tance from the image plane to the object. We work with
disparities rather than range because the error statistics
are constant over the range of disparities.

In order to detect foreground objects in the scene,
background differencing is applied to the stereo dispar-
ities [2]. While stereo involves some computational ex-
pense over using color or intensities, it does offer some
advantages. First, stereo disparities are insensitive to
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Figure 2: Flowchart for the person detection module.

shadows and changes in lighting conditions. Second, for
two people who are adjacent in the image but at differing
depths, their differing disparities will allow the system to
properly segment the two. In our backgrounding compu-
tation, pixels that have a larger disparity than the back-
ground (i.e. closer to the camera) are initially marked as
foreground. The morphological opening operator (erode
followed by dilate) is applied to suppress noise and con-
nected components are computed to retain blobs of a
minimum size.

In our system, the background disparity image is com-
puted by averaging the stereo results from an initial
background learning stage where the scene is assumed
to contain no people. While much work has been done
on adaptive background models [2, 5], the insensitivity
of stereo to changes in lighting mitigates to some extent
the need for adaptation. We plan to add adaptation to
deal with long-range changes such as adding/subtracting
objects from the scene.

Next, the foreground disparity image is further seg-
mented into layers of dominant disparity. This takes
advantage of stereo’s ability to segment objects at dif-
ferent depths. A histogram of the foreground disparities
is computed, smoothed, and then histogram peaks are
extracted as seeds for forming layers. When focusing
attention on a particular layer, we gate the foreground
disparities in a disparity-dependent range around the
histogram peak. Fig. 3 shows (a) the left image from
a stereo pair, (b) the stereo disparities, (c) the back-
ground disparities, (d) the foreground disparities, and
(e) the two foreground layers.

4.2 Handling scale variation

In person finding systems that utilize no range informa-
tion, image scale is an important issue. Detecting people
at a range of scales typically involves search over that
range (e.g. [11]) or estimation of scale from segmented
blobs, which is difficult. Stereo disparity information al-
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lows us to compute the appropriate scale from a layer’s
dominant disparity directly. In fact, person scale is pro-
portional to disparity.

Consider a person with width w standing a distance z
from the camera as shown in Fig. 4. The person projects
to a width w' in the image plane, so by similar triangles

z _ f

w o w
Cross multiplying, we get zw' = fw. The right hand
side of this equation is constant for a given width w, so
we get zw' = const. Combining with Equation (1) to
eliminate z, we get

w' =dK (2)

where K is a constant that can be measured in a simple
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Figure 4: Person width w' in the image plane is proportional
to disparity. See text for details.
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Figure 5: Templates used for person detection. The larger
templates have zeros in the center since stereo may fail in
the center region if the person is wearing clothing with little
texture. Grey pixels are don’t cares.

calibration step.

Since we want to operate on a large range of scales
(scale change of 10:1) in real time, the detection and
tracking modules operate on a 4 level pyramid. Stereo
and background subtraction are performed at the highest
level, but as soon as we focus on processing a layer at dis-
parity dy, we switch processing to pyramid-level(dy),
where the pyramid level is chosen to make the expected
person width 8 pixels (using Equation (2)). This keeps
our person templates for detection and tracking to about
12x28 pixels, which is important for speed.

4.3 Person templates

Given disparity layers capturing foreground objects at
different disparities, the next step is to detect the peo-
ple present in the foreground layers. This is done us-
ing correlation with binary person templates. Notice
that we are doing binary correlation so the templates
simply capture the 2D shape of people. As compared
to, say, intensity-based appearance modeling (e.g. eigen-
faces [15]), there is much less variation in the coarse 2D
shape of people, especially when one operates at lower
pyramid resolutions. Thus, we use a simple person model
based on a small set of binary templates.

Shown in Fig. 5, the set of binary person templates
used for detection differ from one another primarily in
scale. These templates are designed to cover the ex-
pected scale variation in one octave of our pyramid rep-
resentation. More precisely, given a foreground layer at
disparity dy, we downsample the later to pyramid level
pyramid-level(dy). Using Equation (2), we predict the
expected width of the person and hence which template
from Fig. 5 to correlate with.

The selected person template is then correlated
against the downsampled layer image, using a Hamming
distance metric. If the maximum correlation value is
above a threshold, then we place a new person detection
at the location of the correlation peak. The threshold we
use for detection is approximately 75% of the number of
template pixels. Since there might be multiple people
present, in the foreground layer, the detected person is
subtracted from the layer and the correlation process re-
peated. In the flowchart of Fig. 2, this loop shows up in
the three boxes in the lower right. Naturally, when no
additional people are detected at the current disparity
layer, the next disparity layer from the disparity his-
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Figure 6: Results of person detector on image of Fig. 3.

Two templates are extracted for each person, an intensity
template and a stereo-based mask.

togram is processed.

Person detections for the image in Fig. 3 are shown in
Fig. 6. When a person is detected — and hence initialized
for the tracker — two templates are extracted:

1. Intensity template. This is used for intensity corre-
lation in the tracker.

2. Foreground mask. This is a “probability” mask for
pixels belonging to the person.

Exactly how thes templates are used is explained in the
next section on the tracker.

5 People tracking

Over the last few years, multimodal trackers have
emerged as a technique for dealing with clutter and oc-
clusion [8]. In an ambiguous clutter or occlusion related
event, the probability distribution spreads out and be-
comes multimodal, essentially allowing the tracker to
maintain multiple tracking solutions. As the sequence
evolves and the tracking becomes less ambiguous, the
probability distribution ideally becomes unimodal again
around the true answer.

Our tracker is multimodal in a different way, using
multiple input modalities, namely intensities and stereo
disparities (see also [1, 7]). While it is unimodal in terms
of tracker state for an individual, it takes advantage of
the segmentation aspects of stereo to achieve some of
the same results as probabilistic trackers. Background
clutter can be ignored by using predicted disparities to
narrow search to a particular foreground disparity layer.
Another advantage of using stereo is that template drift,
a problem for adaptive templates, can be avoided by
using the segmentation information.

5.1 Kalman filtering

Our tracker works in a Kalman filter [4] framework where
the measurement process is intensity correlation and
stereo. To measure person location, we use a world coor-
dinate system (X, Z) as shown in Fig. 7, where the X-Z
plane is parallel to the floor and Z measures the distance
from the stereo head. This world coordinate system is
preferable to an image-based (z,y, disparity(z, y)) since
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Figure 7: The world coordinate system (X, Z) is used in the
state of the Kalman filter.

our constant velocity model for system dynamics is more
appropriate for the world coordinate system (i.e. people
actually move about in the world coordinate system). It
is easy to map back and forth between world and image
coordinates. Assuming that the stereo head is parallel to
the floor, Z is related to disparity(z,y) using Equation
(1) and z is related to X using the familiar perspective
projection equation x = fX/Z.

Our Kalman filter state is a vector (X, Z, X, Z)", and
our model for system dynamics is a constant velocity
model; acceleration is modeled as noise. In the descrip-
tion of the tracking algorithm below, d is the depth Z
mapped into image space as a disparity value. The im-
age measurement y is also maintained for each person
outside of the Kalman state; the variance on this mea-
surement is so high we felt that it might detract from
the filter performance if included.

5.2 Tracking Algorithm

In this section we give the details of the tracking algo-
rithm. This procedure is iterated, of course, over all the
people being tracked by the system. The primary novel
feature here is how stereo is being used to modulate the
intensity correlation and re-center the templates to avoid
drift. We assume that stereo and disparity background
subtraction have already been applied to the image. For
the person P being tracked, let Py, be the intensity
template and Py, be the stereo mask (as in Fig. 6).

tracking procedure

input: image intensities Ij.
stereo foreground I gpq
person P to track

algorithm:

1. Kalman prediction. This estimates (X, Z) for the
current frame. The image measurement y is pre-
dicted separately using a linear predictor.

2. Threshold the foreground disparity map Ifgnq in a
range around the predicted disparity d. This gen-
erates a disparity layer Ij,ye, containing the person
P and possibly other people at disparity d (similar
to Fig. 3(e)).

3. Correlate Piepmp against the input image reduced
to pyramid — level(d). Each pixel in Py is
weighted by Py,4sk, which eliminates the influence
of background clutter from the template.



4. Refine the location from step (3) by correlating a
person template against the layer image I;qye,. This
re-centers the template on the person and avoids
template drift. The predicted width of the person
determines which person template we select from
Fig. 5.

5. Update step. Recursively update Pjepp using Ijepe
and probability mask Py,.s; using Ij4y... Update
disparity d by taking a weighted average of I¢g,q
using Ppask- Also perform standard Kalman filter
update steps.

6. Remove person P from the foreground mask I¢4,q
to keep the person from being detected by the de-
tection module.

Steps (1), (3), and (5) constitute a fairly standard
correlation-based Kalman filter. Our stereo enhance-
ments are in steps (2) and (4). Step (3) does most of
the work in updating the person position, but is sus-
ceptible to template drift. Step (4) emphasizes depth
discontinuity information to try to keep the templates
centered. Notice also in step (3) how the stereo mask is
used to focus attention on the foreground object pixels
in the template.

In the recursive update step (5), the template Piemp
is updated using the formula

Ptempl ('T7 y) = aPtempl (r,y) + (lfa)-[left(m'i'mp: y+yp):

where (z,,y,) is the location of the upper left corner of
the template as computed by step (4) and « is 0.75. The
mask P,k is updated in the same way. Also, disparity
d is updated as follows:

Z(z’y) Pmask(may)lfgnd(l' + Zp,y + yp)

d=
Z(r,y) Pmask (37: y)

In our detection and tracking system, new people are
always being added by the detection module. Likewise,
the tracker needs a criterion for eliminating people who
have been occluded. When a person A is occluded, A
will no longer claim portions of the foreground disparity
map, so A’s probability mask P,,,s will trend down to
zero. Thus, the tracker eliminates a person when

Z(z’y) Prask(z,y) < threshold.

In terms of tracking multiple people, we have found
that sorting and processing people from front to back
helps with occlusion events. If person B hides behind
person A, the algorithm will update A before B, which
helps maintain the continuity of A. Since person A
“claims” the disparities from the foreground image I¢g,,q
as B disappears, B will lose support and will be properly
eliminated by the tracker.

Figure 8: Two tracking results for a single person. In the
upper track, the person is running up and down a hallway.
In the lower track, a figure eight pattern is tracked.

5.3 Tracker plots

In this section we show plots of some tracking results;
a quantitative evaluation of the detection and tracking
modules is given in the next section. First, Fig. 8 shows
two separate tracks for a single person. The upper se-
quence, a sequence where the person runs up and down
a hallway, demonstrates two nice features of our tracker:
(1) we can track out to 20 meters from the stereo head
with a camera baseline of only 11 cm, and (2) the tracker
can keep up with a running person. In the lower track,
the person is walking in a figure eight pattern.

Fig. 9 demonstrates the system’s ability to track multi-
ple people. The figure shows six frames covering approx-
imately 2 seconds from sequence of four people, three of
whom are visible at any one moment. Person ID’s are
indicated in the upper right corner of a tracking box.
Person 1 is correctly tracked, but person 2 is temporar-
ily occluded by person 1 and then redetected as person
4 in frame 104.

6 Experimental Results

In this section, we describe our experimental setup and
quantitatively evaluate the our tracker on several se-
quences.

6.1 Experimental setup

Our tracker runs on standard PC hardware, a dual Pen-
tium IT processor at 400 MHz. For stereo, we use SRI’s
Small Vision System [10] with a camera baseline of 11 cm
and FOV of 50 degrees. The disparity search is over 24
pixels in a 320x240 image, with 1/4 pixel interpolation
of the results.

The stereo head is aimed down a corridor in our office
building; Fig. 3 shows a typical view. The hallway ex-
tends 60 feet before reaching a wall, and we have tracked
out the full 60 feet as shown in Fig. 8. At the end of
its range, we are seeing disparity differences from the
background of less than 1/2 pixel, showing the excellent
background discrimination and the ability of stereo to
work at far distances. When capturing sequences, we
asked people to walk up and down the hall and in and
out of offices.
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Figure 9: Tracking results on approximately 2 seconds of
video containing 4 people (one person is barely visible).

In terms of distributing the computational load across
both Pentium processors, we have placed the stereo com-
putation on one and the stereo backgrounding, detection
and tracking modules on the other. When tracking no
people (stereo and detection processes only), the system
runs at 20 Hz. When tracking one person, performance
goes down to 15 Hz, and with four or five people perfor-
mance drops to around 8 Hz.

6.2 Evaluation

To evaluate the tracker, we compiled statistics related
to person detection, tracking, and false positives. To
this end, we first collected a number of test sequences
and manually defined ground truth for each sequence by
specifying the center of the torso section of each person
in every other frame. Then, to evaluate a sequence, we
run the tracker and match up the resulting tracks with
ground truth. This matching process follows a simple
greedy algorithm: compute all distances between tracker
centroids and ground truth, pair up the track and ground
truth with smallest distance, and repeat until the small-
est distance is above a threshold of about 75% of body
width. Distances, of course, are normalized using dis-
parity information from the tracker and Equation 2.
Given these matches, the tracking rate is defined as the
percentage of all ground truths that have correspond-
ing matches from the tracker. Likewise, the false posi-

Seq #People #Occl TR FP MTD
1 1 0 96% 0% 6.0
2 1 0 98% 0% 4.0
3 1 0 96% 0% 10.0
4 2 0 89% 10% 2.5
5 2 0 92% 6% 11.0
6 2 1 86% 0% 9.0
7 3 2 79% 3% 7.7
8 4 2 85% 2% 5.0
9 3 6 84% 4% 5.8
10 5 10 8% 1.3% 6.6
11 4 9 69% 5.6% 7.0
12 5 20 68% 3.2% 5.4
13 5 28 0% 6.7% 6.2
Table 1: Evaluation statistics for our tracker, including

tracking rate TR, false positive rate F'P and mean time to
detect MTD.

tive rate is defined as the portion of tracks that have no
corresponding ground truth. To evaluate the detection
module, we measure the mean time to detect. This is the
mean number of frames from the first appearance of a
ground truth to the time it is detected by the tracker.
Since occlusion occurs frequently in our sequences, the
mean time to detect also includes the time taken to reac-
quire ground truths after they have re-emerged from be-
ing occluded.

Table 1 shows the tracking rate T'R, false positive rate
FP, and mean time to detect MTD for a set of se-
quences. FEach sequence contains between 200 to 300
frames and covers roughly 10 to 20 seconds. Quicktime
movies showing the results of 6 of these sequences are
available in Movie 1 through Movie 6. The sequences
are ordered roughly from easiest to most difficult, where
difficulty is measured by the number of people in the
sequence # People and the number of occlusion events
in the sequence #Occl. From the table, one can notice
a steady degradation in performance as one goes from
the easy sequences of tracking a single person with no
occlusion to tracking 5 people with 28 occlusion events.
We counted occlusions when the object eventually reap-
peared later in the sequence. We have also run the sys-
tem continuously for hours at a time, including a demo
at November, 1998 Image Understanding workshop.

To evaluate the usefulness of adding the modality of
stereo to the tracker, we ran the tracker with the recen-
tering step (4) disabled and with using normal correla-
tion in step (3) instead of weighted correlation. We no-
ticed much more template drift, and the mean tracking
rate decreased 4% (people tended to be redetected right
after the template drifted off). The mean false positive
rate increased significantly from 3% to 10% since the
tracking often double-tracks a person during drift.

7 Conclusion

In recent years the tracking community has started to
emphasize tracking in the face of background clutter and
partial occlusion. We have explored how to use stereo



in a multimodal approach to the person tracking prob-
lem, demonstrating a detection and tracking system that
runs in real time on standard PC hardware. Our sys-
tem employs continuous detection to find new people in
the scene and help keep templates centered on existing
tracks. The detection module uses stereo to segment
a foreground image into layers containing people. Peo-
ple are then localized in these layers by correlating with
a bank of person templates. The detected people are
tracked using correlation on intensity tempates with ad-
justments from stereo detection to avoid template drift.
We have demonstrated the system tracking multiple peo-
ple in real time while handling a large number of occlu-
sion events.

For our future directions, the most important remain-
ing tracking issue is that of redetection when a person
is temporarily occluded. In the current system, the per-
son is detected as a new track when this happens. Our
system needs to store distinguishing features of the per-
son, perhaps color, that would enable recognizing a per-
son after occlusion. Also, we hope to have a add color
and motion to the input modalities used for tracking a
color version of the Small Vision System will be available
shortly. Finally, more detailed person models should be
explored, but they will have to fit into our real time con-
straints.
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