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ABSTRACT
Effective visual features are essential for computational aes-
thetic quality rating systems. Existing methods used ma-
chine learning and statistical modeling techniques on hand-
crafted features or generic image descriptors. A recently-
published large-scale dataset, the AVA dataset, has further
empowered machine learning based approaches. We present
the RAPID (RAting PIctorial aesthetics using Deep learn-
ing) system, which adopts a novel deep neural network ap-
proach to enable automatic feature learning. The central
idea is to incorporate heterogeneous inputs generated from
the image, which include a global view and a local view, and
to unify the feature learning and classifier training using a
double-column deep convolutional neural network. In addi-
tion, we utilize the style attributes of images to help improve
the aesthetic quality categorization accuracy. Experimental
results show that our approach significantly outperforms the
state of the art on the AVA dataset.

Categories and Subject Descriptors
I.4.7 [Image Processing and Computer Vision]: Fea-
ture measurement; I.4.10 [Image Processing and Com-
puter Vision]: Image Representation; I.5 [Pattern Recog-
nition]: Classifier design and evaluation

General Terms
Algorithms, Experimentation
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Deep Learning; Image Aesthetics; Multi-Column Deep Neu-
ral Networks
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1. INTRODUCTION
Automated assessment or rating of pictorial aesthetics has

many applications. In an image retrieval system, the rank-
ing algorithm can incorporate aesthetic quality as one of the
factors. In picture editing software, aesthetics can be used in
producing appealing polished photographs. Datta et al. [6]
and Ke et al. [13] formulated the problem as a classifica-
tion or regression problem where a given image is mapped
to an aesthetic rating, which is normally quantized with dis-
crete values. Under this framework, the effectiveness of the
image representation, or the extracted features, can often
be the accuracy bottleneck. Various handcrafted aesthetics-
relevant features have been proposed [6, 13, 21, 3, 20, 7, 26,
27], including low-level image statistics such as distributions
of edges and color histograms, and high-level photographic
rules such as the rule of thirds.

While these handcrafted aesthetics features are often in-
spired from the photography or psychology literature, they
share some known limitations. First, the aesthetics-sensitive
attributes are manually designed, hence have limited scope.
It is possible that some effective attributes have not yet
been discovered through this process. Second, because of
the vagueness of certain photographic or psychologic rules
and the difficulty in implementing them computationally,
these handcrafted features are often merely approximations
of such rules. There is often a lack of principled approach
to improve the effectiveness of such features.

Generic image features [23, 24, 22] are proposed to address
the limitations of the handcrafted aesthetics features. They
used well-designed common image features such as SIFT and
Fisher Vector [18, 23], which have been successfully used for
object classification tasks. The generic image features have
been shown to outperform the handcrafted aesthetics fea-
tures [23]. However, because these features are meant to be
generic, they may be unable to attain the upper performance
limits in aesthetics-related problems.

In this work, we intend to explore beyond generic image
features by learning effective aesthetics features from im-
ages directly. We are motivated by the recent work in large
scale image classification using deep convolutional neural
networks [15] where the features are automatically learned
from RGB images. The deep convolutional neural network
takes pixels as inputs and learns a suitable representation
through multiple convolutional and fully connected layers.
However, the originally proposed architecture cannot be di-
rectly applied to our task. Image aesthetics relies on a com-
bination of local and global visual cues. For example, the
rule of thirds is a global image cue while sharpness and noise
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Figure 1: Global views and local views of an image. Global views are represented by normalized inputs:
center-crop, warp, and padding (shown in the top row). Local views are represented by randomly-cropped
inputs from the original high-resolution image (examples shown).

levels are local visual characteristics. Given an image, we
generate two heterogeneous inputs to represent its global
cues and local cues respectively. Figure 1 illustrates global
vs. local views. To support network training on heteroge-
neous inputs, we extend the method in [15] by developing a
double-column neural network structure which takes paral-
lel inputs from the two columns. One column takes a global
view of the image and the other column takes a local view of
the image. We integrate the two columns after some layers
of transformations to form the final classifier. We further im-
prove the aesthetic quality categorization by exploring style
attributes associated with images. We named our system
RAPID, which stands for RAting PIctorial aesthetics using
Deep learning. We used a recently-released large dataset to
show the advantages of our approach.

1.1 Related Work
Earlier visual aesthetics assessment research focused on

examining handcrafted visual features based on common
cues such as color [6, 26, 27], texture [6, 13], composition [21,
20, 7], and content [20, 7], as well as generic image descrip-
tors [23, 31, 24]. Commonly investigated color features in-
clude lightness, colorfulness, color harmony, and color dis-
tribution [6, 26, 27]. Texture descriptors vary from wavelet-
based texture features [6], distribution of edges, to blur de-
scriptors and shallow depth-of-field descriptors [13]. Com-
position features typically include the rule of thirds, size and
aspect ratio [20], and foreground and background composi-
tion [21, 20, 7]. There have been attempts to represent the
content of images using people and portrait descriptors [20,
7], scene descriptors [7], and generic image features such as
SIFT [18], GIST [28], and Fisher Vector [23, 24, 22].

Despite the success of handcrafted and generic visual fea-
tures, the usefulness of automatically learned features have
been demonstrated in many vision applications [15, 4, 32,
30]. Recently, trained deep neural networks are used to build
and associate mid-level features with class labels. Convolu-
tional neural network (CNN) [16] is one of the most powerful

learning architectures among the various types of neural net-
works (e.g., Deep Belief Net [10] and Restricted Boltzmann
Machine [9]). Krizhevsky et al. [15] significantly advanced
the 1000-class classification task in ImageNet challenge with
a deep architecture of CNN in conjunction with dropout
and normalization techniques, Sermanet et al. [30] achieved
the-state-of-the-art performance on all major pedestrian de-
tection datasets, and Ciresan et al. [4] reached a near-human
performance on the MNIST1 dataset.

The effectiveness of CNN features has also been demon-
strated in image style classification [12]. Without training
deep neural network, Karayev et al. extracted existing Decaf
features [8] and used those features as input for style clas-
sification. There are key differences between that work [12]
and ours. First, they mainly targeted style classification
whereas we focus on aesthetic categorization, which is a dif-
ferent problem. Second, they used existing features as input
to classification and did not train specific neural networks
for style or aesthetics categorization. In contrast, we train
deep neural networks directly from RGB inputs, which are
optimized for the given task. Third, they relied on features
from global views, while we leverage heterogeneous input
sources, i.e., global and local views, and propose double-
column neural networks to learn features jointly from both
sources. Finally, we propose a regularized neural network
based on related attributes to further boost aesthetics cate-
gorization.

As designing handcrafted features has been widely con-
sidered an appropriate approach in assessing image aesthet-
ics, insufficient effort has been devoted to automatic feature
learning on a large collection of labeled ground-truth data.
The recently-developed AVA dataset [24] contains 250, 000
images with aesthetic ratings and a 14, 000 subset with style
labels (e.g., rule of thirds, motion blur, and complementary
colors), making automatic feature learning using deep learn-
ing approaches possible.

1http://yann.lecun.com/exdb/mnist/
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Figure 2: Single-column convolutional neural net-
work for aesthetic quality rating and categorization.
We have four convolutional layers and two fully-
connected layers. The first and second convolu-
tional layers are followed by max-pooling layers and
normalization layers. The input patch of the size
224 × 224 × 3 is randomly cropped from the normal-
ized input of the size 256× 256× 3 as done in [15].

In this work, we train deep neural networks on the AVA
dataset to categorize image aesthetic quality. Specifically,
we propose a double-column CNN architecture to automati-
cally discover effective features that capture image aesthetics
from two heterogeneous input sources. The proposed ar-
chitecture is different from the recent work in multi-column
neural networks [4, 1]. Agostinelli et al. [1] extended stacked
sparse autoencoder to a multi-column version by comput-
ing the optimal column weights and applied the model to
image denoising. Ciresan et al. [4] averaged the output of
several columns trained on inputs with different standard
preprocessing methods. Our architecture is different from
that work because the two columns in our architecture are
jointly trained using two different inputs: The first column of
the network takes global image representation as the input,
while the second column takes local image representations
as the input. This allows us to leverage both compositional
and local visual information.

The problem of assessing image aesthetics is also relevant
to recent work of image popularity estimation [14]. Aes-
thetic value is connected with the notion of popularity, while
there is a fundamental difference between the two concepts.
Aesthetics concerns primarily with the nature and appre-
ciation of beauty, while in the measurement of popularity
both aesthetics and how interesting the visual stimulus is
to the viewer population are important. For instance, a
photograph of some thought-provoking subject may not be
considered of high aesthetic value, but can be appreciated by
many people based on the subject alone. On the other hand,
a beautiful picture of flowers may not be able to reach the
state of popularity if the viewers don’t consider the subject
of sufficient interestingness.

1.2 Contributions
Our main contributions are as follows.

• We conducted systematic evaluation of the single-column
deep convolutional neural network approach with dif-
ferent types of input modalities for aesthetic quality
categorization;

• We developed a double-column deep convolutional neu-
ral network architecture to jointly learn features from
heterogeneous inputs;

• We developed a regularized double-column deep con-
volutional neural network to further improve aesthetic
categorization using style attributes.

2. THE ALGORITHM
Patterns in aesthetically-pleasing photographs often indi-

cate photographers’ visual preferences. Among those pat-
terns, composition [17] and visual balance [25] are impor-
tant factors [2]. They are reflected in the global view (e.g.,
top row in Figure 1) and the local view (e.g., bottom row in
the Figure). Popular composition principles include the rule
of thirds, diagonal lines, and golden ratio [11], while visual
balance is affected by position, form, size, tone, color, bright-
ness, contrast, and proximity to the fulcrum [25]. Some of
these patterns are not well-defined or even abstract, mak-
ing it difficult to calculate those features for assessing image
aesthetic quality. Motivated by this, we aim to leverage the
power of CNN to automatically identify useful patterns and
employ learned visual features to rate or to categorize the
aesthetic quality of images.

However, applying CNN to the aesthetic quality catego-
rization task is not straightforward. The different aspect
ratios and resolutions in photographs and the importance of
image details in aesthetics make it difficult to directly train
CNN where inputs are typically normalized to the same size
and aspect ratio. A challenging question, therefore, is to
perform automatic feature learning with regard to both the
global and the local views of the input images. To address
this challenge, we take several different representations of an
image, i.e., the global and the local views of the image, which
can be encoded by jointly considering those heterogeneous
representations. We first use each of the representations to
train a single-column CNN (SCNN) to assess image aesthet-
ics. We further developed a double-column CNN (DCNN)
to allow our model to use the heterogeneous inputs from one
image, aiming at identifying visual features in terms of both
global and local views. Finally, we investigate how the style
of images can be leveraged to boost aesthetic classification
accuracy [29]. We present an aesthetic quality categoriza-
tion approach with style attributes by learning a regularized
double-column network (RDCNN), a three-column network.

2.1 Single-column Convolutional Neural
Network

Deep convolutional neural network [15] takes inputs of
fixed aspect ratio and size. However, an input image can be
of arbitrary size and aspect ratio. To normalize image sizes,
we propose three different transformations: center-crop (gc),
warp (gw), and padding (gp), which reflect the global view
(Ig) of an image I. gc isotropically resizes original images by
normalizing their shorter sides to a fixed length s. Center-
crop normalizes the input to generate a s× s× 3 input. gc
was adopted in a recent image classification work [15]. gw
anisotropically resizes (or warps) the original image into a
normalized input with a fixed size s × s × 3. gp resizes the
original image by normalizing the longer side of the image
to a fixed length s and padding border pixels with zeros to
generate a normalized input of a fixed size s × s × 3. For
each image I and each type of transformation, we generate
an s × s × 3 input Ijg with the transformation gj , where
j ∈ {c, w, p}. As resizing inputs can cause harmful infor-
mation loss (i.e., the high-resolution local views) for aes-
thetic assessment, we also use randomly sampled fixed size
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Figure 3: Double-column convolutional neural network. Each training image is represented by its global and
local views, and is associated with its aesthetic quality label: 0 refers to a low quality image and 1 refers to a
high quality image. Networks in different columns are independent in convolutional layers and the first two
fully-connected layers. The final fully-connected layer are jointly trained.

(at s × s × 3) crops with the transformation lr. Here we
use g to denote global transformations and l to denote local
transformations. This results in normalized inputs {Irl } (r
is an index of normalized inputs for each random cropping),
which preserve the local views of an image with details from
the original high-resolution image. We used these normal-
ized inputs It ∈ {Icg , Iwg , Ipg , Irl } for CNN training. In this
work, we set s to 256, thus the size of It is 256×256×3. To
alleviate overfitting in network training, for each normalized
input It, we extracted a random 224×224×3 patch Ip or its
horizontal reflection to be the input patch to our network.

We present an example for the four transformations, gw,
gc, gp, and lr, in Figure 1. As shown, the global view of
an image is maintained via the transformations of gc, gw,
and gp. Among the three global views, Iwg and Ipg maintain
the relative spatial layout among elements in the original
image. Iwg and Ipg follow rule of thirds whereas the Icg does
not. In the bottom row of the figure, the local views of an
original image are represented by randomly-cropped patches
{Irl }. These patches depict the local details in the original
resolution of the image.

The architecture of the SCNN used for aesthetic quality
assessment is shown in Figure 2. It has a total of four convo-
lutional layers. The first and the second convolutional layers
are followed by max-pooling layers and normalization layers.
The first convolutional layer filters the 224× 224× 3 patch
with 64 kernels of the size 11×11×3 with a stride of 2 pixels.
The second convolutional layer filters the output of the first
convolutional layer with 64 kernels of the size 5 × 5 × 64.
Each of the third and forth convolutional layers has 64 ker-
nels of the size 3×3×64, and the two fully-connected layers
have 1000 and 256 neurons respectively.

Suppose for the input patch Ip of the i-th image, we have
the feature representation xi extracted from layer fc256 (the
outcome of the convolutional layers and the fc1000 layers),
and the label yi ∈ C. The training of the last layer is done
by maximizing the following log likelihood function:

l(W) =

N∑
i=1

∑
c∈C

I(yi = c) log p(yi = c | xi,wc) , (1)

where N is the number of images, W = {wc}c∈C is the set of
model parameters, and I(x) = 1 iff x is true and vice versa.

The probability p(yi = c | xi,wc) is expressed as

p(yi = c | xi,wc) =
exp (wT

c xi)∑
c′∈C exp (wT

c′xi)
. (2)

The aesthetic quality categorization task can be defined
as a binary classification problem where each input patch is
associated with an aesthetic label c ∈ C = {0, 1}. In Section
2.3, we explain a SCNN for image style categorization, which
can be considered a multi-class classification task.

As indicated by the previous study [15], the architecture
of the deep neural network may critically affect the perfor-
mance. Our experiments suggest that the general guideline
for training a good-performing network is to first allow suffi-
cient learning power of the network by using sufficient num-
ber of neurons. Meanwhile, we adjust the number of con-
volutional layers and the fully-connected layers to support
the feature learning and classifier training. In particular, we
extensively evaluate the network trained with different num-
bers of convolutional layers and fully-connected layers, and
with or without normalization layers. Candidate architec-
tures are shown in Table 1. To determine the optimal archi-
tecture for our task, we conduct experiments on candidate
architectures and pick the one with the highest performance,
as shown in Figure 2.

With the selected architecture, we train SCNN with four
different types of inputs (Icg , Iwg , Ipg , Irl ) using the AVA
dataset [24]. During training, we handle the overfitting
problem by adopting dropout and shuffling the training data
in each epoch. Specifically, we found that lr serves as an
effective data augmentation approach which alleviates over-
fitting. Because Irl is generated by random cropping, an
image contributes to the network training with different in-
puts when a different patch is used.

We experimentally evaluate the performance of these in-
puts with SCNN. Results will be presented in Section 3. Iwg
performs the best among the three global input variations
(Icg , Iwg , Ipg ). Irl yields an even better results compared with
Iwg . Hence, we use Irl and Iwg as the two inputs to train
the proposed double-column network. In our experiments,
we fix the dropout rate as 0.5 and initiate the learning rate
with 0.001. Given a test image, we compute its normal-
ized input and followed by generating the input patch, with



which we calculate the probability of the input patch being
assigned to each aesthetic category. We repeat this process
for 50 times, average those results, and pick the class with
the highest probability.

2.2 Double-column Convolutional Neural
Network

For each image, its global or local information may be
lost when transformed to a normalized input using gc, gw,
gp, or lr. Representing an image through multiple inputs
can somewhat alleviate the problem. As a first attempt, we
generate one input to depict the global view of an image and
another to represent its local view.

We propose a novel double-column convolutional neural
network (DCNN) to support automatic feature learning with
heterogeneous inputs, i.e., a global-view input and a local-
view input. We present the architecture of the DCNN in Fig-
ure 3. As shown in the figure, networks in different columns
are independent in convolutional layers and the first two
fully-connected layers. The inputs of the two columns are
Iwg and Irl . We take the two 256 × 1 vectors from each
of the fc256 layer and jointly train the weights of the final
fully-connected layer. We avoid the interaction between two
columns in convolutional layers because they are in different
spatial scales. During training, the error is back propagated
to the networks in each column respectively with stochastic
gradient descent. With the proposed architecture, we can
also automatically discover both the global and the local
features of an image from the fc1000 layers and fc256 layers.

The proposed network architecture could easily be ex-
panded to multi-column convolutional networks by incor-
porating more types of normalized inputs. DCNN allows
different architectures in individual networks, which may
facilitate the parameter learning for networks in different
columns.

In our work, network architectures are the same for both
columns. Given a test image, we perform a similar procedure
as we do with SCNN to evaluate the aesthetic quality of an
image.

2.3 Learning and Categorization with Style
Attributes

The discrete aesthetic labels, i.e., high quality and low
quality, provided weak supervision to make the network con-
verge properly due to the large intra-class variation. This
motivates us to exploit extra labels from the training images
to help identify their aesthetic characteristics. We propose
to leverage style attributes, such as complementary colors,
macro, motion blur, rule of thirds, shallow depth-of-field
(DOF), to help determine the aesthetic quality of images
because they are regarded as highly relevant attributes [24].

There are two natural ways to formulate the problem. The
first is to leverage the idea of multi-task learning [5], which
jointly construct feature representation and minimize the
classification error for both labels. Assuming we have aes-
thetic quality labels {yai} and style labels {ysi} for all train-
ing images, the problem becomes an optimization prblem:

max
X,Wa,Ws

N∑
i=1

(
∑
c∈CA

I(yai = c) log p(yai | xi,wac)+

∑
c∈CS

I(ysi = c) log p(ysi | xi,wsc)) ,

(3)

Style&Column&

Aesthe/c&Column&
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xs&

xa&
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Figure 4: Regularized double-column convolutional
neural network (RDCNN). The style attributes xs

are generated through pre-trained Style-SCNN and
we leveraged the style attributes to regularize the
training process of RDCNN. The dashed line in-
dicates that the parameters of the style column is
fixed during RDCNN training. While training the
RDCNN, we only fine-tuned the parameters in the
aesthetic column and the learning process is super-
vised by the aesthetic label.

where X is the features of all training images, CA is the
label set for aesthetic quality, CS is the label set for style,
and Wa = {wac}c∈CA and Ws = {wsc}c∈CS are the model
parameters. It is more difficult to obtain images with style
attributes. In the AVA benchmark, among 230, 000 image
with aesthetic labels only 14, 000 of them have style labels.
As a result, we cannot jointly perform aesthetics categoriza-
tion and style classification with a single neural network due
to many missing labels.

Alternatively, we can use ideas from inductive transfer
learning [29], where we target minimizing the classification
error with one label, whereas we construct feature represen-
tations with both labels. As we only have a subset of images
with style labels, we first train a style classifier with them.
We then extract style attributes for all training images, and
applied those attributes to regularize the feature learning
and classifier training for aesthetic quality categorization.

To learn style attributes for 230, 000 training images, we
first train a style classifier by performing the training pro-
cedure discussed in Section 2.1 on 11, 000 labeled training
images (Style-SCNN). We adopted the same architecture as
shown in Figure 2. The only difference is that we reduced
the number of filters in the the first and fourth convolu-
tional layers to a half due to the reduced number of training
images. With Style-SCNN, we are maximizing the log likeli-
hood function in Equation 1 where C is the set of style labels
in the AVA dataset. We experimentally select the best ar-
chitectures (to be shown in Table 4) and inputs (Icg , Iwg , Ipg ,
Irl ). The details are described in Section 3. Given an image,
we apply the learned weights and extract the features from
the fc256 layer as its style attribute.

To facilitate the network training with style attributes of
images, we propose a regularized double-column convolu-
tional neural network (RDCNN) with the architecture shown
in Figure 4. Two normalized inputs of the aesthetic column
are Iwg and Irl , same as in DCNN (Section 2.2). The input
of the style column is Irl . The training of RDCNN is done
by solving the following optimization problem:

max
Xa,Wa

N∑
i=1

∑
c=1∈Ca

I(yai = c) log p(yai | xai,xsi,wac) , (4)

where xsi are the style attributes of the i-th training image,
xai are the features to be learned. Note that the maximiza-



Table 1: Accuracy for Different SCNN Architectures

conv1 pool1 rnorm1 conv2 pool2 rnorm2 conv3 conv4 conv5 conv6 fc1K fc256 fc2 Accuracy
(64) (64) (64) (64) (64) (64)

Arch 1
√ √ √ √ √ √ √ √ √ √ √

71.20%
Arch 2

√ √ √ √ √ √ √ √ √
60.25%

Arch 3
√ √ √ √ √ √ √ √ √ √

62.68%
Arch 4

√ √ √ √ √ √ √ √ √ √ √
65.14%

Arch 5
√ √ √ √ √ √ √ √ √ √

70.52%
Arch 6

√ √ √ √ √ √ √ √ √ √ √ √
62.49%

Arch 7
√ √ √ √ √ √ √ √ √ √ √ √ √

70.93%

Figure 5: 128 convolutional kernels of the size
11 × 11 × 3 learned by the first convolutional layer
of DCNN for aesthetic quality categorization. The
first 64 are from the local view column (with the
input Irl ) and the last 64 are from the global view
column (with the input Iwg ).

Figure 6: 64 convolutional kernels of the size 5×5×3
learned by the first convolutional layer of CNN for
object classification on the CIFAR dataset.

tion does not involve style attributes xs. In each learning
iteration, we only fine-tuned the parameters in the aesthetic
column and the learning process is supervised by the aes-
thetic label. The parameters of the style column are fixed
and the style attributes xis essentially serve as a regularizer
for training the aesthetic column.

3. EXPERIMENTAL RESULTS
We evaluated the proposed method for aesthetics qual-

ity categorization on the AVA dataset [24]. We first in-
troduce the dataset. Then we report the performance of
SCNN with different network architectures and normalized
inputs. Next, we present aesthetic quality categorization
results with DCNN and qualitatively analyze the benefits
of the double-column architecture over a single-column one.
We also demonstrate the performance of RDCNN with the
accuracy of trained style classifier and aesthetic categoriza-
tion results with style attributes incorporated. Finally, we
summarize the computational efficiency of SCNN, DCNN,
and RDCNN in training and testing.

Table 2: Accuracy of Aesthetic Quality Categoriza-
tion with Different Inputs

δ Irl Iwg Icg Ipg
0 71.20% 67.79% 65.48% 60.43%
1 68.63% 68.11% 69.67% 70.50%

Table 3: Accuracy of Aesthetic Quality Categoriza-
tion for Different Methods

δ [24] SCNN AVG SCNN DCNN RDCNN
0 66.7% 71.20% 69.91% 73.25% 74.46%
1 67% 68.63% 71.26% 73.05% 73.70%

3.1 The Dataset
The AVA dataset contains a total of 250, 000 images, each

of which has about 200 aesthetic ratings ranging from one
to ten. We followed the experimental settings in [24], and
used the same collection of training data and testing data:
230, 000 images for training and 20, 000 images for testing.
Training images are divided into two categories, i.e., low-
quality images and high-quality images, based on the same
criteria as [24]. Images with mean ratings smaller than 5−δ
are referred to as low-quality images, those with mean rat-
ings larger than or equal to 5+δ are high-quality images. We
set δ to 0 and 1 respectively to generate the binary ground
truth labels for the training images. Images with ratings
between 5 − δ and 5 + δ are discarded. With δ = 0, there
are 68, 000 low-quality images and 167, 000 high-quality im-
ages. With δ = 1, there are 7, 500 low-quality images and
45, 000 high-quality images. For the testing images, we fix
δ to 0, regardless what δ is used for training. This results
in 5, 700 low-quality images and 14, 000 high-quality images
for testing.

To learn style attributes, we use the subset of images with
style labels from the AVA dataset as the training set. The 14
style classes include complementary colors, duotones, HDR,
image grain, light on white, long exposure, macro, motion
blur, negative images, rule of thirds, shallow DOF, silhou-
ettes, soft focus, and vanishing point. The subset contains
11, 000 images for training and 2, 500 images for testing.

3.2 SCNN Results
We compare the performance of SCNN with different layer

combinations and normalized inputs on aesthetic quality
categorization task. Table 1 presents seven different archi-
tectures and their overall accuracy. As shown, the selected
layer for each architecture is labeled with a check mark. In
all seven architectures, we use Irl as the input with δ = 0.
The results show that the architecture Arch 1 performs the
best, which partially indicates the importance of choosing a
proper number of convolutional layers and fully connected
layers, and having normalization layers.



(a) Images ranked the highest in aesthetics by DCNN

(b) Images ranked the lowest in aesthetics by DCNN

Figure 7: Images ranked the highest and the lowest in aesthetics generated by DCNN. Differences between
low-aesthetic images and high-aesthetic images heavily lie in the amount of textures and complexity of the
whole image.

With the network architecture fixed to Arch 1, we com-
pare the performance of SCNN with different inputs, i.e., Icg ,
Iwg , Ipg , Irl . We train classifiers with both δ = 0 and δ = 1
for each input type. The overall accuracy is presented in Ta-
ble 2. The results show that Irl yields the highest accuracy
among four types of inputs, which indicates that lr serves

as an effective data augmentation approach to capture the
local aesthetic details of images. Iwg performs much better
than Icg and Ipg , which is the best among the three inputs
for capturing the global view of images.

Based on the above observation, we choose Arch 1 as the
architecture of our model, with Irl as input. As shown in
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Figure 8: Test images correctly classified by DCNN but misclassified by SCNN. The first row shows the images
that are misclassified by SCNN with the input Irl . The second row shows the images that are misclassified
by SCNN with the input Iwg . The label on each image indicates the ground-truth aesthetic quality.

Table 4: Accuracy for Different Network Architectures for Style Classification

conv1 pool1 rnorm1 conv2 pool2 rnorm2 conv3 conv4 conv5 conv6 fc1K fc256 fc14 MAP Accuracy
(32) (64) (64) (32) (32) (32)

Arch 1
√ √ √ √ √ √ √ √ √ √ √

56.81% 59.89%
Arch 2

√ √ √ √ √ √ √ √ √
52.39% 54.33%

Arch 3
√ √ √ √ √ √ √ √ √ √

53.19% 55.19%
Arch 4

√ √ √ √ √ √ √ √ √ √ √
54.13% 55.77%

Arch 5
√ √ √ √ √ √ √ √ √ √

53.94% 56.00%
Arch 6

√ √ √ √ √ √ √ √ √ √ √ √
53.22% 57.25%

Arch 7
√ √ √ √ √ √ √ √ √ √ √ √ √

47.44% 52.16%

Table 3, the performance of this setting is better than the
state of the art on the AVA dataset for both δ = 0 and δ = 1.

3.3 DCNN Results
We adopt the SCNN architecture Arch 1 for both columns

in DCNN. Figure 5 illustrates the filters of the first con-
volutional layer for trained DCNN. The first 64 are from
the local column (with the input Irl ), while the last 64 are
from the global column (with the input Iwg ). Compared with
the filters trained in the object recognition task on CIFAR
dataset2 (shown in Figure 6), the filters learned with image
aesthetic labels are smoother and cleaner without radical
intensity changes. This indicates that differences between
low-aesthetic and high-aesthetic image cues mainly lie in
the amount of texture and the complexity of the whole im-
age. The difference can be observed from typical test images
presented in Figure 7. The images ranked the highest in aes-
thetics are generally smoother than those ranked the lowest.
This finding substantiates the importance of simplicity and
complexity features recently proposed for analyzing visual
emotions [19].

To quantitatively demonstrate the effectiveness of trained
DCNN, we compare its performance with that of the SCNN
as well as [24]. As shown in Table 3, DCNN outperforms
SCNN for both δ = 0 and δ = 1, and significantly outper-
forms the earlier work. To further demonstrate the effec-
tiveness of joint training of DCNN, we compare DCNN with
AVG SCNN, which averaged the two SCNN results with Iwg
and Irl as inputs. As shown in Table 3, DCNN outperforms
the AVG SCNN for both δ values.

2http://www.cs.toronto.edu/~kriz/cifar.html

Figure 9: 32 convolutional kernels of the size 11 ×
11×3 learned by the first convolutional layer of Style-
SCNN for style classification.

To qualitatively analyze the benefits of the double-column
architecture, we visualize ten test images correctly classified
by DCNN but incorrectly by SCNN. We present the exam-
ples in Figure 8. Images in the first row are misclassified by
SCNN with the input Irl . Images in the second row are mis-
classified with the input Iwg . The label on each image indi-
cates the ground-truth aesthetic quality. As shown, images
misclassified by SCNN with the input Irl usually contain
a dominant object, which is because Irl does not consider
the global information in an image. Images misclassified by
SCNN with the input Iwg often have detailed information in
their local views that can improve the classifier if can be
properly leveraged.

3.4 Categorization with Style Attributes
To demonstrate the effectiveness of the style attributes for

aesthetic quality categorization, we first evaluate the style
classification accuracy with SCNN. We then compare the
performance of RDCNN with DCNN.

3.4.1 Style Classification
We train the style classifier with SCNN, and visualize

the filters learned by the first convolutional layer of SCNN
in Figure 9. We test the trained model on 2, 573 images.
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Figure 10: Test images correctly classified by RDCNN and misclassified by DCNN. The label on each image
indicates the ground truth aesthetic quality of images.

Table 5: Accuracy of Style Classification with Dif-
ferent Inputs

Irl Iwg Icg Ipg
AP 56.93% 44.52% 45.74% 41.78%

MAP 56.81% 47.01% 48.14% 44.07%
Accuracy 59.89% 48.08% 48.85% 46.79%

For each image, we randomly sample 50 patches of the size
224 × 224 × 3, and average the prediction results. To com-
pare our results with the results reported in [24], we use the
same experimental setting. We perform similar experiments
as discussed in Section 3.2 by comparing different architec-
tures and normalized inputs. The comparison results for
different architectures are shown in Table 4. The selected
layer for each architecture is labeled with a check mark. We
achieve the best accuracy for style classification with Arch
1 and Irl as input (Table 5). It indicates the importance of
local view in determining the style of an image. It shows the
effectiveness of lr as a data augmentation strategy in case of
limited training data. We did not compare our style classi-
fication results with Karayev et al. [12] as their evaluations
were done on a randomly selected subset of test images.

The Average Precision(AP) and Mean Average Precision
(MAP) are also calculated. The best MAP we achieved is
56.81% which outperforms the accuracy of 53.85% reported
in [24].

3.4.2 Aesthetic Quality Categorization with Style
Attributes

We demonstrate the effectiveness of style attributes by
comparing the best aesthetic quality categorization accu-
racy we have achieved with and without style attributes. As
shown in Table 3, RDCNN outperforms DCNN for both δ
values.

To qualitatively analyze the benefits brought with the reg-
ularized double-column architecture, we show typical test

images that have been correctly classified by RDCNN but
misclassified by DCNN in Figure 10. Those examples cor-
rectly classified by RDCNN are mostly with the following
styles: rule-of-thirds, HDR, black and white, long exposure,
complementary colors, vanishing point, and soft focus. This
indicates that styles attributes help aesthetic quality cate-
gorization.

3.5 Computational Efficiency
Training SCNN for a specific input type takes about two

days. Training DCNN takes about three days. For RDCNN,
style attribute training takes roughly a day, and RDCNN
training three to four days. Classifying 2,000 images (each
with 50 views) takes about 50 minutes, 80 minutes, and 100
minutes for SCNN, DCNN, and RDCNN, respectively, with
Nvidia Tesla M2070/M2090 GPU.

4. CONCLUSIONS
We present a double-column deep convolutional neural

network approach for aesthetic quality rating and catego-
rization. Rather than designing handcrafted features or
adopting generic image descriptors, aesthetic-related fea-
tures are learned automatically. Feature learning and classi-
fier training are unified with the proposed deep neural net-
work approach. The double-column architecture takes into
account both the global view and local view of an image for
judging its aesthetic quality. Besides, image style attributes
are leveraged to improve the accuracy. Evaluating with the
AVA dataset, which is the largest benchmark with rich aes-
thetic ratings, our approach shows significant better results
than earlier-reported results on the same dataset.
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