Multi-User Undo/Redo

Rajiv Choudhary and Prasun Dewan
Department of Computer Sciences
Purdue University

West Lafayette IN 47907
rxc@cs.purdue.edu and pd@cs.purdue.edu

June 3, 1992

Abstract

We have developed a multi-user undo/redo model by extending an existing single-
user undo/redo model. The model, consisting of a semantic model and an implemen-
tation model, is applicable to general multi-user programs including programs offering
both WYSIWIS and WYSINWIS interaction, floor control and concurrent interaction,
and atomic and non-atomic broadcast. The semantic model constructs the command
history of a particular user by combining all commands, including both local and remote
commands, whose results were made visible to that user. It allows a user to undo/redo
corresponding commands in the command histories of all users of a program. Moreover,
it allows a user to undo/redo arbitrary commands in a command history including com-
mands executed by other users and commands that explicitly transmit information to
other users. The implementation model divides the task of implementing undo/redo be-
tween generic dialogue managers and application programs. It divides application pro-
grams into three increasingly complex classes and requires increasing levels of undo/redo
awareness from these classes.

1 Introduction

Undo/redo is an important interactive feature whose absence seriously degrades the
usability of an interactive program. It provides automatic support for recovery from
user errors and misunderstandings as well as a mechanism for exploring of alternatives
[13]. Tt is offered in some form or another by most popular single-user programs [1,
4,5, 7,8, 10, 13, 14, 15, 16, 17]. But none of the multi-user programs known to use
offer this feature, although it is crucial in a group setting, for several reasons. First,
features available to users in the single-user case must also be available in the multi-
user case. Otherwise users hesitate to use and adopt new environments. Moreover.
in the multi-user case, the potential cost of an individual user’s mistake 1s multiplied
many times because it can adversely affect the work of a large number of collaborative
users. Furthermore, in a collaborative setting, the number of alternatives to be explored
increases due to presense of many users. Finally, users of a multi-user program can

make new kinds of errors, which we call “coupling errors”, by sharing the results of
their commands with the wrong subset of users.

One reason for the absence of undo/redo from previous multi-user user-interfaces is
the lack of semantic and implementation undo/redo models for multi-user programs.
Therefore, we have developed first-cut versions of these models. The semantic model
determines how command histories of the users of a multi-user program are constructed,
which commands are undone/redone by an undo/redo request from a particular user,
and which users can undo/redo a command. It is an extension of the linear single-
user undo/redo model [1]. Tt constructs the command history of a particular user by
combining all commands, including both local and remote commands, whose results
were made visible to that user. Tt allows a user to undo/redo corresponding commands
in the command histories of all users of a program. Moreover, it allows a user to
undo/redo arbitrary commands in a command history including command executed by
other users and commands that explicitly transmit information to other users.

The implementation model offers programmers a framework for implementing our
semantic model for a particular multi-user program. It divides the task of implementing
undo/redo between generic dialogue managers provided by the system and application
programs written by programmers. The model classifies application programs into
three increasingly complex classes according to how they respond to user commands
and requires increasing levels of undo/redo awareness from these classes of programs.

These models are applicable to multi-user programs offering a variety of function-
ality, coupling, concurrency control, and broadcast schemes. In particular, they are
applicable to multi-user text and graphics editors, spreadsheets, mail programs, and
code inspectors; coupling schemes offering WYSIWIS (What You See Is What T See)
and WYSINWIS (What You See Is Not What I See) interaction; concurrency con-
trol schemes offering floor control and concurrent interaction; and broadcast schemes
supporting both atomic and non-atomic broadcast.

We have implemented these models as part of a system called Suite. In this paper,
we motivate, describe, and illustrate our (semantic and implementation) undo/redo
model using the concrete example of Suite. The remainder of the paper is organized
as follows. Section 2 defines and illustrates the single-user undo/model used as a basis
for our model. It also introduces an example, which is used throughout the paper
to illustrate the various properties of our model. Section 3 and Section 4 motivate,
describe, and illustrate the semantic and implementation components, respectively, of
our model. Section 5 presents conclusions and directions for future work.

2 Single-User Interactive Undo/Redo

Our multi-user undo/redo model is based on a minor variation of the linear single-user
undo/redo model [15]. The model maintains a history list of executed commands and
provides undo/redo/skip commands. These commands are metacommands, that is,
they are themselves not added to the list. Each command in the command list has a
status associated with it which can be ezecuted, undone or skipped. In addition, the
model defines a current command pointerto point to a command in the list. When a new
command is executed, it is inserted in the history list after the current command pointer
and the pointer is then set to the new command. The undo metacommand undoes the
command pointed to by the current pointer(if it has been executed) and moves the

current command pointer to the previous command. The redo metacommand executes
the command after the current command pointer(if such a command exists) and sets
the pointer to the command just redone. The skip command marks the command
after the current command pointer as skipped if it is currently undone and moves the
pointer to the skipped command. In addition, each metacommand also sets the status
of the command on which it operates. To illustrate this model and our extensions to

[# rxc_hist: Object window for ~homes/rEE [#] rxc: Object window for ~Hk

Salary: 0
Trawel: 0
Equipment: 0
IndirectCostsy 0
Totals 0

Figure 1: Single-user text editing: Initial display

it, consider an interactive session with a Suite dialogue manager. Figure 1 shows the
initial display in a single-user text editing session in Suite. The history list is initially
empty and the initial text is shown with the fields initialized to 0. ' Figure 2 shows
the dialogue manager display and the history list after the user edits two fields in the
dialogue manager by moving the cursor there and inserting text. ? 3 As each command
i1s executed, it 1s appended to the history list. In the history list display, the last
command is displayed in detail while all other commands are elided. *

istory: xampleBudget :
1t <MoweCursor Command,, ,Executed: Salary: G
2t <InzertChar Command,,,Executed: Travel: 0
3: <MoweCurzor Command,.,Executed: Equipment ; 1000
4: IndirectCosts: O
label: 5 Totaly 0
source: /homes/rxc/objects/rxc
status? Executed
name: CInsertChar
cInsertCharInfo:
View: {{ExampleBudget}.Equif ¥
Offset: 0
Char: 100

Figure 2: Single-user text editing: After editing

Figure 3 shows the dialogue manager and the history list after executing the undo
command. As each undo is executed, the last executed command in the history list is

'In suite, users do not edit simple lines of text. Instead, the dialogue manager display consists of a
number of labeled fields and the user edits the text of these fields. But this is irrelevant to our present
discussion.

2Tt is not conventional to treat MoveCursor as a command in text editors. However in Suite, a number
of other actions can be tied to the moving of the cursor. Thus, Suite must treat MoveCursor as a command.

#Successive InsertChar commands are combined together in to a single InsertChar command.

*We use a Suite dialogne manager to display the history list. The Suite dialogne manager provides
facilities for eliding, and displaying different portions of the display in different fonts.

marked undone and the effects of the command execution are removed from the dialogue
manager display. Executing two more undo commands returns the dialogue manager
to the state represented by Figure 1 with all four commands undone, while issuing two
redo commands returns the dialogue manager to the state depicted in Figure 2.

[rxc_hist: Object window for Zhomes/rHE Object window for AHE

History:
1t <MoweCurzar Command, ,,Executed>
2:

label: 3 Equipment 1 i}
source: /homes/rxc/objects/rxc IndirectCostsy O
status! Executed Totaly 0
name: ClnsertChar
cInsertCharInfol

View: ({ExampleBudget} Salary}

Offset: 0

Char: 50

3: <MoveCursor Command,.,Undone>
41 <InzertChar Command,,.Undone>

Figure 3: Single-user text editing: After undo

3 Designing Multi-User Undo/Redo

In this section, we incremently motivate, describe and illustrate the major components
of our model:

e construction of command histories using local and remote commands whose effects
are visible.

e unique identification of commands in command histories for coordinated undo/redo.
e ability to undo/redo an arbitrary command in the command history.

e undo/redo of communication and computation commands.

3.1 Basic Multi-User Undo/Redo

Here is a definition of a multi-user undo/redo model, which is a simple extension of
the single-user undo/redo model above: To build the command histories of users, all
commands are shared by every user and commands appear in the same sequence in all
command histories. When an undo/redo command is executed, the last command in
every command history is undone/redone.

We illustrate the model by using the example of a multi-user text editing session in
Suite. Figure 4 shows command lists and dialogue manager displays of two collaborating
users. User rxc is the active users and executes all commands. When user rxc issues
an undo, the resulting state is shown in Figure 5. Note that the last command has been
undone in both the command histories.

3.2 Corresponding Commands

The model above assumes that all command histories have commands in the same order.
This requires the availability of an atomic broadcast facility or assumes floor control

[rxc_hist:

Object window for AhomeszrHl

Hiztorys:
1¢ {MoweCursor Command, , ,Executed:
2: {InzertChar Command,,,Executed:
3: {MoweCursor Command, . ,Executed:
4z
label: 5
sourcel /homes/ruoc/objects/rac

View: ({ExampleBudget}.Equipment}
Offset: O
Char: 100

Ohject window

Salarys 500
Travel: 0
Equipment: 1000
IndirectCostsy O
Total: 0

[¢] pd_hist: Object window for AhomespdE

Hiztory:
1t <MoveCursor Command, . ,Executed>
2 {InzertChar Conmand, ., Executed>
3t <MoveCursor Command, ,,Executed:
43
label: 5
sourcel Shomes/rxc/objects/rxc
status? Executed
name: ClnsertChar
cInsertChar Info:
Yiew: ({ExampleBudget} Equipment}
Offset: ©
Char: 100

[®] pd: Object window for ARE]

Examplebudget:
Salary: GO0
Travelt 0
Equipment: 1000
IndirectCostsy O
Tatal: 0

Figure 4: Command Sharing

[rxc_hist:

Object window for ~homes/rER

iztory:
1t {MoveCursor Command, . ,Executed?
2: {InzertChar Command,,.,Executed>
3:
label: 4
source: /homes/rxc/objects/rac
status! Executed
name: CHovelursor
Info:
HewYiew: ({ExampleBudget} . Equipment
Hindowhame:

Newliffset:
+ <InzertChar Command,.,Undone

I

[# rxc: Object window for AH
ExampleBudgets
Salary: 500
Travel 0
Equipment: 0
IndirectCostsy O
Total: 0

[#] pd_hist: Object window For AhomespdEk

Hiztory:
1t <MoweCur=zor Command,,,Executed>
2t {InzertChar Command, . .Executed>
3
label: 4
source: /homes/rxc/objects/rxc
status? Executed
name: CHovelCursor
cHovelursorInfol
HNewtiew: {{ExampleBudget}. Equipment
Hindowhame
Hewlffset: 15
+ <InzertChar Command,..,Undone>

.

[*] pd: Object window for AhHE

ExampleBudget:
Salary: e}
Travelt 0
Equipment 0
IndirectCostsy O
Total: [}

Figure 5: Undo in Multi-User Undo/Redo Model

model of interaction. Certain systems do not have(or use) an atomic broadcast facility.
Some of these systems also allow simultaneous execution of commands by multiple users.
In such a system, when two commands are executed by different users, the system can
not guarantee that they are received in the same order by all users. Thus commands
may be ordered differently in different command lists and therefore the last command
may be different in command histories of different users. Now, when a user issues
an undo/redo command, it may operate on different commands in different command
lists(since the last command in different lists is not the same). But this may not be
the same command for all users. In short, chaos would result with different commands
being undone/redone for different users in response to an undo/redo request.

Our solution to this problem is to provide a way to identify all copies of a command in
different command histories with a unique identifier. Then semantics of undo/redo need
no longer depend upon all command histories having the same last command. When
an undo/redo is executed, the last command in the local command history is undone
and a request is sent to all other users to undo/redo the corresponding command in
all the other command histories. The correspondence between commands in different
command histories is established by using the unique identifier associated with each
command.

3.3 Undo by Reference

Now consider a system that also allows execution of undo/redo commands concurrently
with other command execution. In such a system, when a user issues an undo to request
the undoing of the last command in his command history, between the time the decision
to invoke undo 1s reached and the undo is invoked, a new command may be executed by
another user and becomes the last command in the command history. According to our
model so far, when an undo is invoked, this is the command that is undone when the
undo is invoked. Thus our current model of undo/redo that always undoes/redoes the
last command is not entirely satisfactory in such a system. For illustration, consider the
multi-user text editing session depicted in Figure 6. Suppose user pd decides to undo
the last command in the command list, but before he can execute the undo command,
user rxc executes a number of new commands as shown in Figure 7. Now if user pd
executes the undo, the Elided command gets undone instead of the desired command
InsertChar.

We rectify this problem by slightly modifying our undo/redo model so that a user
can indicate by marking a command in the command list, which command he wants
undone/redone. When an undo/redo command is invoked, it checks if a command in
the command list has been marked. If a command is marked, that command is un-
done/redone. Otherwise, as before, the last command is undone/redone. Thus even
if the referenced command is not the last command, this 1s the command that i1s un-
done/redone. To maintain the correctness of the interface state with respect to its com-
mand history, when a non-last undo/redo is requested, first all intervening commands
in the command list are undone, then the referenced command is undone/redone and
skipped, and finally all other commands are restored to their previous status.

We illustrate our modified undo/redo model with a continuation of the previous ex-
ample. In Figure 6, user pd indicates the command to be undone by selecting it. Then
even if new commands are appended to the command list(Figure 7), the desired com-
mand can be undone by invoking the undo operation while the appropriate command

1: <MoveCurzor Command, . .Executed: Salary: 500

21 <InsertChar Command,,,Executed> Travel: 0
3t <Movelurzor Command, ., Executed> Equipment.; 1000
4: <InsertChar Command,,.Executed: IndirectCosts: 0
5: <MoveCursor Command,,.Executed> Total 2000
label: 7
source? shomes/rxcdobjects/rac
status: Executed
name: CInsertChar
cInsertCharInfo:
View: ({ExampleBudget}.Total}
Offset: 0
Char: 200
[¢] ped_hist: Object window For AhomespdEh [#] pd: Object window For <hHE]
istory: ExampleBudget:
1: <MoveCursor Command..,Executed: Salary: G
2: <InzertChar Command,.,Executed: Travel: 0
31 <MoveCurzor Command, . ,Executed: Equipment.: 1000
41 <InzertChar Command...Executed> IndirectCosts: O
5: <MoveCursor Command..,Executed: Totaly 2000

ced /homes/rxcdobjects/rxg
status? Executed

[*] rxc_hist: Object window for ~homes/rH [# rxc: Object window for AH
istory? ExampleBudget:
+ <MoveCurzor Command,, ,Executed> Salary: 500
+ <InzertChar Command,, Executed> Travel: 0
+ <MoveCursor Command, , Executed: Equipment: 1000

+ <InzertChar Command, . Executed>
+ <MoveCursor Command, . Executed>
+ <InzertChar Command,, . Executed>
+ <ToggleSelect Command, . Executed:

g:
label: 9
source! /homes/rxc/objectsfrxc
status? Executed
name? CElide
cElidelnfo! 0
[¢] pd_hist: Object window For Ahomes~pdEk [¢] pd: Object window For ~hH
History: ExampleBudget;
1: <MoweCursor Command, . ,Executeds Salarys S00

2: <InsertChar Command,,.Executed>
31 <MoweCurzor Command, , ,Executed>
43 <InsertChar Command,,.Executed>
G2 <MowveCursor Command,,,Executed>
K - Command., , e
7: <ToggleSelect Command,,,Executed:

label: 9
source: fhomes/rxc/objects/roc
status! Executed
name: CElide
cElideInfo: 0

Figure 7: Marked Command after Remote Command Execution

Ohject window for ~H

[*] rxc_hist: Object window for ~homes/rH

iztory:

1t {MoveCursor Command, . ,Executed?
2: {InzertChar Command,,.,Executed>
3: {MoveCursor Command, . ,Executed>
41 <InzertChar Command,.,Executed>
5: <MoveCursor Command,.,Executed>
E: <InzertChar Command,,,Skipped>

7: <ToggleSelect Command,,,Executed>
8:

label: 9
source: fhomes/rxc/objects/rxc
status! Executed
name: CElide
cElideInfo? 0

orys
1: <MoweCursor Command,,,Executed>
2t {InzertChar Command,, Executed>
3t <MoveCursor Command, . .Executed>
4: {InsertChar Command,,.Executed>
G: {MoweCursor Command, . .Executed> Total: i

H rd., ., .

3 =l =
elect Command, , ,Executed>

71 <Toggl
label: 9
source: /homes/rxc/objects/rxc
status? Executed
name: CElide

cElidelnfo: 0

Figure 8: Undo-by-reference

is selected(Figure 8).

3.4 Selective Command Sharing

Now consider a system that provides the flexibility to choose with whom to share results
of executed commands. In such a system, results of all commands are not shared with
all users. If the system continues to insert all commands in every user’s command list,
the state of different user’s interfaces would be different , whereas users expect that if
their command histories are identical then so should be the state of their user interfaces.

In such a system, we construct command history of each interface by including only
those commands whose results are shared with that user. Thus commands whose effects
are shared with only a subset of users appear in the commands history of that subset
of users only. One such interaction is shown in Figure 9.

In this figure, user pd executes a command whose results are shared with other users
only upon explicit request. Thus the InsertChar command that edited the Travel
field is not shared with user rxc. Therefore, using our new command sharing policy,
the InsertChar command does not appear in the command list of user rxc. This
semantics of command sharing results in different histories for users who do not share
result of all commands. How can our undo/redo model be applied to this scheme?

Consider what happens when user rxc executes an undo. The last command in
the history list is the UnSelect command which should be undone. But note that
UnSelect is not the last command in the command list of user pd. Fortunately, using
the unique identifiers assigned to commands, our existing undo/redo model can easily

[rxc_hist: Object window for ~homes/rHEE [#] rxc: Object window for ~HE

Gt <MoweCurzor Command, ., ,Executed:

BE: <InzertChar Command,.,Skipped: Salary: i}
7: <ToggleSelect Command, . .Executed: Travel: 0
8: <Elide Command, . Executed> Equipments 1000
9; <Elide Command,, ,Executed: IndirectCostsy O
10: Total: 0

label: 11

source: Shomes/rxc/objects/roc

status: Executed

names ClnSelect
clinSelectInfo: ©

[¢] pdd: Object window for ~hHE]

E‘ pd_hi=st: Ohject window for AhomespdE

0y <MoveCurzor Command, . ,Executedr wampleBudget.:
B: <InzertChar Command,.,Skipped: Salary: i}
7: <ToggleSelect Command, . Executed: Travel: Fo0
8: <Elide Command,..Executed: Equipment: 000
9: <Elide Command,, ,Executed: IndirectCostsy O
103 <UnSelect Command,,,Executed> Totals 0
113 <MoveCursor Command,,,Executed>
12:

label: 4

source: /homes/pd/objects/pd
status! Executed

name: CInsertChar
cInsertCharInfol
View: {{ExampleBudget},Travel}
Offset: O
Char: 70

Figure 9: Selective Command sharing

determine corresponding commands in command histories of all users. By extending our
undo/redo model to require coordinated undo of corresponding commands in different
command histories is sufficient to provide the desired semantics. Specifically, the undo
command undoes the last command(unless it is an undo-by-reference) in the command
history of the issuer of undo and in addition requests undoing of the corresponding
commands at the interfaces of all other collaborating users that share the command.

As illustrated in Figure 9, due to non-WYSIWIS nature of coupling, the command
required to be undone at the interface of user pd is not the last command. To undo
the desired command without affecting the semantics of other commands, the request
is treated as semantically equivalent to a set of user actions where the local user succes-
sively undoes commands until the desired command is undone, then skips the specified
command and redoes the rest of the commands in the interface. This scheme for un-
doing the not-the-last command is similar to the undo-by-reference command seen in
the last section. This semantics of the undo command in the non-WYSIWIS coupling
scheme is shown in Figure 10.

3.5 Undo/Redo of Collaboration and Computation Commands

So far, our model has addressed undo/redo of only the commands that change the user
interface state. In general, multi-user programs also provide (a) collaboration commands
commands that request communication of values to other users, (b) computation
commands : commands that request carrying out of computation. A general multi-user
undo/redo model must define the semantics of undo/redo on these commands.

[rxc_hist: Object window for ~homes/rHEE [#] rxc: Object window for ~HE

Gt <MoweCurzor Command, ., ,Executed: xampleBudget
BE: <InzertChar Command,.,Skipped: Salary: i}
7: <ToggleSelect Command, . .Executed: Travel: 0
8: <Elide Command,..Executed> E:
label: 10 Total: 0
source! shomes/rec/objects/raoc
status: Fxecuted
names CElide

cElideInfo: 0
10: <UnSelect Command, . .Undone>

[¢] pdd: Object window for ~hHE]

E‘ pd_hi=st: Ohject window for AhomespdE

5: <MoweCursor Command,,.Executed>
B: <InzertChar Command,.,Skipped: Salary: i}
7: <ToggleSelect Command, . Executed:
8: <Elide Command,, Executed:
9: <Elide Command,, Executed:
10t <UnSelect Command...Skipped: Total: [}
113 <MoveCursor Command,,,Executed>
12:
label: 4
source: /homes/pd/objects/pd
status! Executed

name: CInsertChar
cInsertCharInfol
View: {{ExampleBudget},Travel}
Offset: O
Char: 70

Figure 10: Undo with Selective Command Sharing

Our model of undo/redo provides support for undo/redo of not only interface com-
mands but also collaboration and computation commands. We illustrate how the model
handles these commands with examples.

The only effect of a transmission command is to share results with other users. What
results are shared and with whom is determined by the coupling scheme. Thus the actual
effect of transmission commands depends upon the coupling scheme. Since undoing of
a command requires us to undo all the effects of a command, undoing a transmission
command requires that the effects of sharing be removed. As an example, Figures 11
and 12 demonstrate the effects of executing and undoing the Transmit command in
Suite. Specifically, Figure 11 shows that the effect of the Transmit command is to
transmit the result of the previous InsertChar command to a collaborating user. Thus
undoing of the Transmit command removes the effect of sharing the command.

A computation command computes values and updates the interface state. What
computations are carried out and what values are changed in the interface as a result
of a computation depends upon the actual computation being invoked. °

Continuing with our example, consider the interaction of Figure 13 in which one
of the users edits the displayed data and executes the Accept command, which is a
computation command in Suite. As a result of this command, the entity being edited
computes and updates the values in the fields IndirectCosts and Total. Since we
associate these changes in the display with the Accept command, undoing of the Accept

°In our system, it is possible to remove all effects of a collaboration command, but it is not always
possible to remove all effects of a computation command. In the next section we discuss how effects of
general computation can be reversed.

10

[rxc_hist:

5¢ <MoweCursor Command, . Executed>
B: <InzertChar Command,,.Skipped:
71 <ToggleSelect Command, . .Executed:
8: <Elide Command,,,Executed:
9: <Elide Command,,,Executed:
103 <lUnSelect Command,, ,Executed:
1:

label: 5

sourcel /homes/pdfobjects/pd

status: Executed

name: CTransmit

cTransaitInfo: O

Object window for A~homesrHE

[#] rxc: Object window for ~H]
ExampleBudget:
Salary: falele]
Trawvel: 700
Equipment: 1066
IndirectCostzy O
Total: v}

Object window for Ahomes ol

5: <MoveCursor Command, . ,Executed>
B; <InzertChar Command,,.Skipped:
7: <ToggleSelect Command,..Executed>
8: <Elide Command,,,Executed>
9: <Elide Command,,,Executed:
103 <lnSelect Command,, ,Executed:
111 <Movelursor Command, . ,Executed:
121 <InsertChar Command,.,Executed>
13:

label: 5

source: Shomes/pd/objects/pd

status! Executed

name: CTransmit

cTransmitInfo: O

window for ~hEk

Salary: b00
Travel: 700
Equipment; 1066
IndirectCosts: 0O
Totalz 0

Figure 11: Effects of a Transmit Command

[# rxc_hist:

Ohject window for AShomesrHELE

5; <MoweCursor Command,,,Executed:
BE: <InzertChar Command.,,Skipped>
7: <ToggleSelect Command, . .Executed:
8: <Elide Command,,,Executed>
9t <Elide Command,,,Executed>
10:

label: 11

source: /homes/rxc/objects/rxc

status? Executed

name: ClinSelect

clinSelectInfo! 0

113 <Transmit Command, . .,Undones

Ohject window for A/H

Salary: fels]
Travel: 0
Equipment : 1000
IndirectCosts: 0
Totals]

[# pd_hist: Object window for Ahomes/pdE]

7: <ToggleSelect Command, . .Executed:
8: <Elide Command,,.Executed>

9: <Elide Command,,.Executed>

10t <UnSelect Command, . ,Executed:
113 <MoveCursor Command, . .Executed>
12:

View: ({ExampleBudget},Travel}
OFfset: O
Char: 70

131 <Transmit Command, ,.Undone>

[pd: Object window for ~hEl

wampleBudget :
Salary: ey}
Travel: 700
Equipment 3 1000
IrdirectCostsy 0
Total: 0

Figure 12: Undo of a Transmit Command

11

command also undoes the updating of the displays that occured(Figure 14).

Note that upon undoing, although the effects of the coupling are undone, the com-
mand sharing effects(namely the presense of the command in the remote command list)
is not undone. This is the desired result since in single-user undo mode, the undo of
the command removes the effects of the command, but does not remove the command
from the command list.

[® rxc_hist: Object window for Ahomes/rEE [® rxc: Object window for ~E

b1 <MoveCurszor Command, . ,Executed: xamp leBudget
BE: <InzertChar Command.,,Skipped: Salary: Lalu]
7t <ToggleSelect Command,,.Executed: Travel: Fe]
8: <Elide Command,..Executed: Equipment.: Ly
91 <Elide Command,,,Executed> IndirectCozts: BE4
103 <UnSelect Command,.,Executed> Total: 2764
11; <Tranzmit Command,,,Executed>
12;

label: 12

source: /homes/rxc/objects/rxc

status? Executed

name: Chccept

chcceptInfo: 0

[® pd_hist: Object window for ~homes pof

[pd: Object window For ~hE

7t <ToggleSelect Command,,,Executed: wampleBudget:
8: <Elide Command,.,Executed> Salary: 50
9: <Elide Command, ,,Executed> Travel: 700
10 <UnSelect Command, . ,Executed: Equipment: 1000
113 <MoveCursor Command, , ,Executed: IndirectCosts: 564
12¢ <InzertChar Command, ,,Executed: Total: 2764
13: {Transmit Command,.,Executed:
14:

label: 12

source: shomes/roc/objects/rac

status:

name: Chccept

cficceptInfor 0

Figure 13: Effects of an Accept command

4 Undo/Redo Implementation Model

One approach to implementing the undo/redo semantics described above is to require
each program to implement all aspects of the model. However, this makes the over-
head of supporting undo/redo for a program very high. Therefore, we have devised a
high-level implementation model which divides the responsibility of undoing/redoing
commands between application programs and the system. This model is based on the
Suite model for multi-user programs, which divides the responsibility of “doing” com-
mands between the application program and the system.

Suite divides a multi-user program into an application program and multiple generic
dialogue managers, each of which interacts with a particular user [2, 3]. To illustrate
the Suite multi-user program model, consider how the multi-user program described in
the previous section is implemented in Suite. The application program presents a set of
active values for editing to the the system supplied dialogue manager. The application
program also associates update handlers to react to changed values of active values.

12

[rxc_hist:

Object window for A~homesrHE

b: <MoweCurzor Command,.,Executed> xampleBudget:
B: <InzertChar Command,..Skipped: Salaryy GO0
7: <ToggleSelect Command, . .Executed: Travel: 700
8: <Elide Command, ., Executed> Equipments 1000
9: <Elide Command,..Executed> IndirectCostsy O
103 {UnSelect Command,..Executed: Total: i
11:

label: 5

source: Jshomes/pd/objects/pd
t Executed
names CTransmit
clransaitInfo: 0
123 <Accept Command, . .UndoneX

[# rxc: Object window fFor ~Hb

[# pd_hist: Object window for ~homes pdE

71 <ToggleSelect Command...Executed>

[pd: Object window For ~hHE]

8: <Elide Command, . Executed> Salary: GO0
9: <Elide Command,..Executed: Travely FO0
10 <UnSelect Command,..Executed: Equipment: 000
111 <Movelursor Command, . ,Executed: IndirectCostsy O
122 <InszertChar Command,,.Executed> Totals 0

label: 5

source: fhomes/pdfobjects/pd

status? Executed

name: CTransmit
clransaitInfo: 0
14: <Accept Command, . .Undone:

Figure 14: Undo of an Accept command

When a user edits an active value and commits it, the dialogue manager invokes the
appropriate update handler to inform the application program of the changed value.
All functional aspects of the multi-user program are carried out by computations in the
update handler. Below we show the update handler of the program described in the
previous section.

typedef struct {
int Salary, Travel, Equipment;
int IndirectCosts, Total;

} Budget;

void UpdateBudget(name, val)
char *name; Budget *val;
{
val->IndirectCosts = (val->Salary + val->Travel) * OVERHEAD;
val->Total = val->Salary + val->Travel + val->Equipment + val->IndirectCosts;
Dm_Update ("ExampleBudget", "Budget'", val);
}

We support our model of undo/redo by undoing/redoing the actions taken by dia-
logue managers as well as the application programs in response to a user command. For
a multi-user program to implement the multi-user undo/redo model, the program need
only provide support for the undo/redo of actions it takes when its update handlers
are called. If these actions cannot be undone/redone, the usefulness of the undo/redo

13

model is restricted only to multi-user text editing.

To ease the burden of application programs from having to keep track of all actions
they invoke, Suite has augmented the dialogue manager-application program interface
with an update undo handler. The application programs must implement update undo
handlers as inverses of the corresponding update handlers. The update undo handler is
invoked by a dialogue manager when a command is undone whose execution resulted in
the invocation of the update handler. Thus the responsibility of an application program
in supporting the undo/redo model reduces to providing update undo handlers. All
other aspects of the undo/redo model are handled by system supplied components.

We can classify the application programs according to the kind of operations they
invoke in their update handlers. This also determines how much effort the programmer
of an application program has to expand.

4.1 Undo Unaware Programs

If an application program carries out computation after receiving changed values from
a dialogue manager but does not maintain any state information itself, the task of
undoing is made very easy. In such an application , state changes are made only in the
state of dialogue managers interacting with the application program. As illustrated in
the previous section, the undo support necessary for such updating of dialogue manager
displays is automatically provided by the dialogue manager. Thus application programs
in this class do not need to participate in any undo/redo handling and are termed undo
unaware application programs. The application whose update handler is presented
above is one such program.

4.2 State Caching Programs

Often a program needs to cache the value of the active values in its own data. For
instance, in our example the program needs to keep a copy of the values being edited to
support a program, GetLatestBudget, that can fetch the latest active values from the
application program. To support such a function, the update handler needs to copy the
changed values into a variable local to the application program. This is shown below
in the modified version of the update handler, where a copy of the updated value is
retained in the program variable ExampleBudget.

Budget ExampleBudget;
void UpdateBudget(name, val)
char *name; Budget *val;
{
val->IndirectCosts = (val->Salary + val->Travel) * OVERHEAD;
val->Total = val->Salary + val->Travel + val->Equipment + val->IndirectCosts;
ExampleBudget = *val;
Dm_Update ("ExampleBudget", "Budget'", val);
b

With such an update handler, it is not sufficient to undo the updating of dialogue
manager displays. Undoing of the Accept command must restore older value of the
active value to the program variable.

14

This undoing is easily achieved by cooperation between the dialogue manager and
the application program. We note that the dialogue manager needs to maintain older
copies of the active values for undoing of its own actions. The application program
takes advantage of this by setting the update undo handler to be the same as the
update handler. Thus when an dialogue manager is processing an undo request for a
command that resulted in an update call, it calls the update undo handler. This results
in a call to the update handler which can restore the old value of the program variable.

In this class of programs, the programmer does not need to write any new code to
participate in the undo/redo model. However unlike the undo unaware programs, these
programs need to be aware of update undo handlers, thus requiring a higher level of
undo awareness.

4.3 Undo Aware Programs

Since collaborative applications can be arbitrary programs, sometimes the update han-
dlers needs to carry out other tasks in addition to caching the latest value and updating
displays. Consider the update handler shown below, which makes a record of the active
value in a text file whenever the value is updated.

Budget ExampleBudget;

void UpdateBudget(name, val)
char *name; Budget *val;
{
FILE *fp;
val->IndirectCosts = (val->Salary + val->Travel) * OVERHEAD;
val->Total = val->Salary + val->Travel + val->Equipment + val->IndirectCosts;
fp = fopen("record”, "a");
fprintf(fp, "Salary %4d Travel %4d Equipment %4d IndirectCosts %4d Total %4d\n",
val->Salary,val->Travel,val->Equipment,val->IndirectCosts, val->Total);
fclose(fp);
ExampleBudget = *val;
Dm_Update ("ExampleBudget", "Budget'", val);
b

In general the tasks carried out by an update handler could be arbitrarily complex.

When an dialogue manager attempts to undo a command that resulted in an invo-
cation of an update handler(an accept command), it checks to see if an update undo
handler is defined for the active value. If one is defined, 1t is invoked with the old and
the new copies of the active value for this update handler. In this class of programs, the
update undo handler must arrange to reverse the steps carried out during the update
handler.

Below we show the update undo handler for the update handler shown above. Since
the display updating requests invoked in the update handler are undone by the dialogue
managers themselves, the update undo handler needs to only restore the record file and
the cached value.

15

UndoBudget (path, old_val, new_val)

char *path; Budget *old_val; Budget *new_val;
{

int fd; long len;

fd = open("record", O_RDWR);

len = lseek(fd,OL,SEEK_END);

ftruncate(fd, len-69);

close(£fd);

ExampleBudget = *old_value;

}

Such a simple interface for undoing the accept command is possible because of the
controlled dialogue manager-program interface provided in Suite where the program
state can only be updated through the update handlers. These facilities work for most
update handlers but there are applications for which the program must implement it’s
own undo. For example, any update handler that relies on state of the program other
than the updated value must itself arrange to keep logs of such state change because
the dialogue manager can provide no help in such reversal.

So far we have only discussed undoing an update handler invocation. Since the
semantics associated with redo are same as that of reexecuting an update, when an
accept command is redone, the dialogue manager simply reinvokes the update handler.
Thus no other support is required for the redoing of update handler invocation.

5 Conclusion

Undo/redo is indispensable in multi-user interfaces. We have developed a model of
multi-user undo/redo which is useful across a range of coupling schemes, floor control
policies and (atomic and non-atomic) broadcast schemes. We have shown that it is pos-
sible and desirable to partition the support required for multi-user undo/redo between
the interface component and the application program. The result is a general model in
which many application programs have to do little or no work to support the undo/redo
facilities.

Our undo/redo model determines how command histories of the users of a multi-user
program are constructed, which commands are undone/redone by an undo/redo request
from a particular user, and which users can undo/redo a command. As the example
interactions in the paper illustrate, our model has several pleasant properties:

Compatibility Multi-user undo/redo behaves like single-user interactive undo/redo
when only one user is interacting with the system.

Undo/Redo Independence Multi-user undo/redo does not require attention or in-
tervention of all users in a collaborative session. In particular, passive users remain
synchronized with the state of a collaborative session without executing any com-
mands themselves. Thus the model keeps the number of metacommands that
must be executed by users to a minimum.

Collaboration in Undo/Redo It is possible to undo commands issued by other users.
This is a direct analogy of the ability of collaborative users to collaborate by exe-
cuting commands on behalf of other users.

16

Automation of Undo Support The model supports automation since it requires lit-
tle or no code to support undo/redo for many programs.

Multi-user undo/redo support described in this paper is only a first step towards
a multi-user undo/redo model. We plan to explore how availability of a multi-user
undo/redo facility may affect design of the access control and concurrency control fa-
cilities of collaborative systems. We also plan to explore how command execution,
coupling schemes and multi-user undo/redo can be combined to provide comprehensive
session management facilities in collaborative applications.

The 1mplementation model described in this paper must rely upon the analysis
by the programmer to determine to which class of application programs a particular
program belongs. We would like to explore whether, with appropriate support from
a compiler, we can automate the task of classifying application programs into one of
the three classes. It would be useful to explore the possibility of further automation of
undo/redo support required from application programs.

References

[1] James E. Archer, Jr., Richard Conway, and Fred B. Schneider. User recovery and
reversal in interactive systems. ACM Transactions on Programming Languages and
Systems, 6(1):1-19, January 1984.

[2] Prasun Dewan and Rajiv Choudhary. Flexible user interface coupling in collabora-
tive systems. In Proceedings of the ACM CHI’91 Conference, pages 41-49. ACM,
New York, 1991.

[3] Prasun Dewan and Rajiv Choudhary. Primitives for programming multi-user in-
terfaces. In Proceedings of the ACM Symposium on User Interface Software and
Technology, pages 69-78, November 1991.

[4] W. D. Elliot, W. A. Potas, and A. van Dam. Computer assisted tracing of text
evolution. In Proceedings of the AFIPS Fall Joint Computer Conference, pages
533-540, 1971.

[5] C. A. Ellis, S. J. Gibbs, and G. Rein. Design and use of a group editor. Technical
Report STP-414-88, MCC Software technology Program, 1988.

[6] J. Robert Ensor, S. R. Ahuja, David N. Horn, and S. E. Lucco. The rapport
multimedia conferencing system — a software overview. In Proceedings of the 2nd
IEEE Conference on Computer Workstations, pages 52-58, March 1988.

[7] R.F. Gordon, G. B. Leeman, and C. H. Lewis. Concepts and implications of undo
for interactive recovery. In Proceedings of the 1985 ACM annual Conference, pages
150-157. ACM New York, 1985.

[8] J. R. Horgan and D. J. Moore. Techniques for improving language-based editors.
ACM Software Engineering Notes, 9(3):7-13, May 1984.

[9] J.C. Lauwers and K.A. Lantz. Collaboration awareness in support of collaboration
transparency:requirements for the next generation of shared window systems. In

Proceedings of ACM CHI’90, pages 303-311, April 1990.

[10] CaiLinxiand A. Nico Habermann. A history mechanism and undo/redo/reuse sup-
port in aloe. Technical Report CMU-CS-86-148, Department of Computer Science,
Carnegie-Mellon University, 1986.

17

[11]

[17]

Judith S. Olson, Gary M. Olson, Lisbeth A. Mack, and Pierre Wellner. Concurrent
editing: The group’s interface. In Human Computer Interaction — INTERACT 90,
pages 835-840, 1990.

Mark Stefik, Gregg Foster, Daniel G. Bobrow, Kenneth Kahn, Stan Lanning, and
Lucy Suchman. Beyond the chlakboard: Computer support for collaboration and
problem solving in meetings. Communications of the ACM, 30(1):32-47, January
1987.

Herold Thimbleby. User Interface Design. ACM, 1990.

Jeffery Scott Vitter. US&R: A new framework for Redoing. [EEE Software,
1(4):39-52, October 1984.

Haiying Wang and Mark Green. An event-object recovery model for object-oriented
user interfaces. In Proceedings of the ACM Symposium on User Interface Software
and Technology, pages 107-115, November 1991.

Xerox PARC, Palo Alto, CA. INTERLISP Reference Manual, December 1975.

Yiya Yang. Experimental rapid prototype of undo support. Information and Soft-
ware Technology, 32(9):625-635, November 1990.

18

