
Multi-User Undo/RedoRajiv Choudhary and Prasun DewanDepartment of Computer SciencesPurdue UniversityWest Lafayette IN 47907rxc@cs.purdue.edu and pd@cs.purdue.eduJune 3, 1992AbstractWe have developed a multi-user undo/redo model by extending an existing single-user undo/redo model. The model, consisting of a semantic model and an implemen-tation model, is applicable to general multi-user programs including programs o�eringboth WYSIWIS and WYSINWIS interaction, oor control and concurrent interaction,and atomic and non-atomic broadcast. The semantic model constructs the commandhistory of a particular user by combining all commands, including both local and remotecommands, whose results were made visible to that user. It allows a user to undo/redocorresponding commands in the command histories of all users of a program. Moreover,it allows a user to undo/redo arbitrary commands in a command history including com-mands executed by other users and commands that explicitly transmit information toother users. The implementationmodel divides the task of implementing undo/redo be-tween generic dialogue managers and application programs. It divides application pro-grams into three increasingly complex classes and requires increasing levels of undo/redoawareness from these classes.1 IntroductionUndo/redo is an important interactive feature whose absence seriously degrades theusability of an interactive program. It provides automatic support for recovery fromuser errors and misunderstandings as well as a mechanism for exploring of alternatives[13]. It is o�ered in some form or another by most popular single-user programs [1,4, 5, 7, 8, 10, 13, 14, 15, 16, 17]. But none of the multi-user programs known to useo�er this feature, although it is crucial in a group setting, for several reasons. First,features available to users in the single-user case must also be available in the multi-user case. Otherwise users hesitate to use and adopt new environments. Moreover.in the multi-user case, the potential cost of an individual user's mistake is multipliedmany times because it can adversely a�ect the work of a large number of collaborativeusers. Furthermore, in a collaborative setting, the number of alternatives to be exploredincreases due to presense of many users. Finally, users of a multi-user program can1



make new kinds of errors, which we call \coupling errors", by sharing the results oftheir commands with the wrong subset of users.One reason for the absence of undo/redo from previous multi-user user-interfaces isthe lack of semantic and implementation undo/redo models for multi-user programs.Therefore, we have developed �rst-cut versions of these models. The semantic modeldetermines how command histories of the users of a multi-user program are constructed,which commands are undone/redone by an undo/redo request from a particular user,and which users can undo/redo a command. It is an extension of the linear single-user undo/redo model [1]. It constructs the command history of a particular user bycombining all commands, including both local and remote commands, whose resultswere made visible to that user. It allows a user to undo/redo corresponding commandsin the command histories of all users of a program. Moreover, it allows a user toundo/redo arbitrary commands in a command history including command executed byother users and commands that explicitly transmit information to other users.The implementation model o�ers programmers a framework for implementing oursemantic model for a particular multi-user program. It divides the task of implementingundo/redo between generic dialogue managers provided by the system and applicationprograms written by programmers. The model classi�es application programs intothree increasingly complex classes according to how they respond to user commandsand requires increasing levels of undo/redo awareness from these classes of programs.These models are applicable to multi-user programs o�ering a variety of function-ality, coupling, concurrency control, and broadcast schemes. In particular, they areapplicable to multi-user text and graphics editors, spreadsheets, mail programs, andcode inspectors; coupling schemes o�ering WYSIWIS (What You See Is What I See)and WYSINWIS (What You See Is Not What I See) interaction; concurrency con-trol schemes o�ering oor control and concurrent interaction; and broadcast schemessupporting both atomic and non-atomic broadcast.We have implemented these models as part of a system called Suite. In this paper,we motivate, describe, and illustrate our (semantic and implementation) undo/redomodel using the concrete example of Suite. The remainder of the paper is organizedas follows. Section 2 de�nes and illustrates the single-user undo/model used as a basisfor our model. It also introduces an example, which is used throughout the paperto illustrate the various properties of our model. Section 3 and Section 4 motivate,describe, and illustrate the semantic and implementation components, respectively, ofour model. Section 5 presents conclusions and directions for future work.2 Single-User Interactive Undo/RedoOur multi-user undo/redo model is based on a minor variation of the linear single-userundo/redo model [15]. The model maintains a history list of executed commands andprovides undo/redo/skip commands. These commands are metacommands, that is,they are themselves not added to the list. Each command in the command list has astatus associated with it which can be executed, undone or skipped. In addition, themodel de�nes a current command pointer to point to a command in the list. When a newcommand is executed, it is inserted in the history list after the current command pointerand the pointer is then set to the new command. The undo metacommand undoes thecommand pointed to by the current pointer(if it has been executed) and moves the2



current command pointer to the previous command. The redo metacommand executesthe command after the current command pointer(if such a command exists) and setsthe pointer to the command just redone. The skip command marks the commandafter the current command pointer as skipped if it is currently undone and moves thepointer to the skipped command. In addition, each metacommand also sets the statusof the command on which it operates. To illustrate this model and our extensions toFigure 1: Single-user text editing: Initial displayit, consider an interactive session with a Suite dialogue manager. Figure 1 shows theinitial display in a single-user text editing session in Suite. The history list is initiallyempty and the initial text is shown with the �elds initialized to 0. 1 Figure 2 showsthe dialogue manager display and the history list after the user edits two �elds in thedialogue manager by moving the cursor there and inserting text. 2 3 As each commandis executed, it is appended to the history list. In the history list display, the lastcommand is displayed in detail while all other commands are elided. 4
Figure 2: Single-user text editing: After editingFigure 3 shows the dialogue manager and the history list after executing the undocommand. As each undo is executed, the last executed command in the history list is1In suite, users do not edit simple lines of text. Instead, the dialogue manager display consists of anumber of labeled �elds and the user edits the text of these �elds. But this is irrelevant to our presentdiscussion.2It is not conventional to treat MoveCursor as a command in text editors. However in Suite, a numberof other actions can be tied to the moving of the cursor. Thus, Suite must treat MoveCursor as a command.3Successive InsertChar commands are combined together in to a single InsertChar command.4We use a Suite dialogue manager to display the history list. The Suite dialogue manager providesfacilities for eliding, and displaying di�erent portions of the display in di�erent fonts.3



marked undone and the e�ects of the command execution are removed from the dialoguemanager display. Executing two more undo commands returns the dialogue managerto the state represented by Figure 1 with all four commands undone, while issuing tworedo commands returns the dialogue manager to the state depicted in Figure 2.
Figure 3: Single-user text editing: After undo3 Designing Multi-User Undo/RedoIn this section, we incremently motivate, describe and illustrate the major componentsof our model:� construction of command histories using local and remote commands whose e�ectsare visible.� unique identi�cation of commands in commandhistories for coordinated undo/redo.� ability to undo/redo an arbitrary command in the command history.� undo/redo of communication and computation commands.3.1 Basic Multi-User Undo/RedoHere is a de�nition of a multi-user undo/redo model, which is a simple extension ofthe single-user undo/redo model above: To build the command histories of users, allcommands are shared by every user and commands appear in the same sequence in allcommand histories. When an undo/redo command is executed, the last command inevery command history is undone/redone.We illustrate the model by using the example of a multi-user text editing session inSuite. Figure 4 shows command lists and dialogue manager displays of two collaboratingusers. User rxc is the active users and executes all commands. When user rxc issuesan undo, the resulting state is shown in Figure 5. Note that the last command has beenundone in both the command histories.3.2 Corresponding CommandsThe model above assumes that all command histories have commands in the same order.This requires the availability of an atomic broadcast facility or assumes oor control4



Figure 4: Command Sharing
Figure 5: Undo in Multi-User Undo/Redo Model5



model of interaction. Certain systems do not have(or use) an atomic broadcast facility.Some of these systems also allow simultaneous execution of commands by multiple users.In such a system, when two commands are executed by di�erent users, the system cannot guarantee that they are received in the same order by all users. Thus commandsmay be ordered di�erently in di�erent command lists and therefore the last commandmay be di�erent in command histories of di�erent users. Now, when a user issuesan undo/redo command, it may operate on di�erent commands in di�erent commandlists(since the last command in di�erent lists is not the same). But this may not bethe same command for all users. In short, chaos would result with di�erent commandsbeing undone/redone for di�erent users in response to an undo/redo request.Our solution to this problem is to provide a way to identify all copies of a command indi�erent command histories with a unique identi�er. Then semantics of undo/redo needno longer depend upon all command histories having the same last command. Whenan undo/redo is executed, the last command in the local command history is undoneand a request is sent to all other users to undo/redo the corresponding command inall the other command histories. The correspondence between commands in di�erentcommand histories is established by using the unique identi�er associated with eachcommand.3.3 Undo by ReferenceNow consider a system that also allows execution of undo/redo commands concurrentlywith other command execution. In such a system, when a user issues an undo to requestthe undoing of the last command in his command history, between the time the decisionto invoke undo is reached and the undo is invoked, a new command may be executed byanother user and becomes the last command in the command history. According to ourmodel so far, when an undo is invoked, this is the command that is undone when theundo is invoked. Thus our current model of undo/redo that always undoes/redoes thelast command is not entirely satisfactory in such a system. For illustration, consider themulti-user text editing session depicted in Figure 6. Suppose user pd decides to undothe last command in the command list, but before he can execute the undo command,user rxc executes a number of new commands as shown in Figure 7. Now if user pdexecutes the undo, the Elided command gets undone instead of the desired commandInsertChar.We rectify this problem by slightly modifying our undo/redo model so that a usercan indicate by marking a command in the command list, which command he wantsundone/redone. When an undo/redo command is invoked, it checks if a command inthe command list has been marked. If a command is marked, that command is un-done/redone. Otherwise, as before, the last command is undone/redone. Thus evenif the referenced command is not the last command, this is the command that is un-done/redone. To maintain the correctness of the interface state with respect to its com-mand history, when a non-last undo/redo is requested, �rst all intervening commandsin the command list are undone, then the referenced command is undone/redone andskipped, and �nally all other commands are restored to their previous status.We illustrate our modi�ed undo/redo model with a continuation of the previous ex-ample. In Figure 6, user pd indicates the command to be undone by selecting it. Theneven if new commands are appended to the command list(Figure 7), the desired com-mand can be undone by invoking the undo operation while the appropriate command6



Figure 6: Marking a Command in the Command History
Figure 7: Marked Command after Remote Command Execution7



Figure 8: Undo-by-referenceis selected(Figure 8).3.4 Selective Command SharingNow consider a system that provides the exibility to choose with whom to share resultsof executed commands. In such a system, results of all commands are not shared withall users. If the system continues to insert all commands in every user's command list,the state of di�erent user's interfaces would be di�erent , whereas users expect that iftheir command histories are identical then so should be the state of their user interfaces.In such a system, we construct command history of each interface by including onlythose commands whose results are shared with that user. Thus commands whose e�ectsare shared with only a subset of users appear in the commands history of that subsetof users only. One such interaction is shown in Figure 9.In this �gure, user pd executes a commandwhose results are shared with other usersonly upon explicit request. Thus the InsertChar command that edited the Travel�eld is not shared with user rxc. Therefore, using our new command sharing policy,the InsertChar command does not appear in the command list of user rxc. Thissemantics of command sharing results in di�erent histories for users who do not shareresult of all commands. How can our undo/redo model be applied to this scheme?Consider what happens when user rxc executes an undo. The last command inthe history list is the UnSelect command which should be undone. But note thatUnSelect is not the last command in the command list of user pd. Fortunately, usingthe unique identi�ers assigned to commands, our existing undo/redo model can easily8



Figure 9: Selective Command sharingdetermine corresponding commands in command histories of all users. By extending ourundo/redo model to require coordinated undo of corresponding commands in di�erentcommand histories is su�cient to provide the desired semantics. Speci�cally, the undocommand undoes the last command(unless it is an undo-by-reference) in the commandhistory of the issuer of undo and in addition requests undoing of the correspondingcommands at the interfaces of all other collaborating users that share the command.As illustrated in Figure 9, due to non-WYSIWIS nature of coupling, the commandrequired to be undone at the interface of user pd is not the last command. To undothe desired command without a�ecting the semantics of other commands, the requestis treated as semantically equivalent to a set of user actions where the local user succes-sively undoes commands until the desired command is undone, then skips the speci�edcommand and redoes the rest of the commands in the interface. This scheme for un-doing the not-the-last command is similar to the undo-by-reference command seen inthe last section. This semantics of the undo command in the non-WYSIWIS couplingscheme is shown in Figure 10.3.5 Undo/Redo of Collaboration and Computation CommandsSo far, our model has addressed undo/redo of only the commands that change the userinterface state. In general, multi-user programs also provide (a) collaboration commands: commands that request communication of values to other users, (b) computationcommands : commands that request carrying out of computation. A general multi-userundo/redo model must de�ne the semantics of undo/redo on these commands.9



Figure 10: Undo with Selective Command SharingOur model of undo/redo provides support for undo/redo of not only interface com-mands but also collaboration and computation commands. We illustrate how the modelhandles these commands with examples.The only e�ect of a transmission command is to share results with other users. Whatresults are shared and with whom is determined by the coupling scheme. Thus the actuale�ect of transmission commands depends upon the coupling scheme. Since undoing ofa command requires us to undo all the e�ects of a command, undoing a transmissioncommand requires that the e�ects of sharing be removed. As an example, Figures 11and 12 demonstrate the e�ects of executing and undoing the Transmit command inSuite. Speci�cally, Figure 11 shows that the e�ect of the Transmit command is totransmit the result of the previous InsertChar command to a collaborating user. Thusundoing of the Transmit command removes the e�ect of sharing the command.A computation command computes values and updates the interface state. Whatcomputations are carried out and what values are changed in the interface as a resultof a computation depends upon the actual computation being invoked. 5Continuing with our example, consider the interaction of Figure 13 in which oneof the users edits the displayed data and executes the Accept command, which is acomputation command in Suite. As a result of this command, the entity being editedcomputes and updates the values in the �elds IndirectCosts and Total. Since weassociate these changes in the display with the Accept command, undoing of the Accept5In our system, it is possible to remove all e�ects of a collaboration command, but it is not alwayspossible to remove all e�ects of a computation command. In the next section we discuss how e�ects ofgeneral computation can be reversed. 10



Figure 11: E�ects of a Transmit Command
Figure 12: Undo of a Transmit Command11



command also undoes the updating of the displays that occured(Figure 14).Note that upon undoing, although the e�ects of the coupling are undone, the com-mand sharing e�ects(namely the presense of the command in the remote command list)is not undone. This is the desired result since in single-user undo mode, the undo ofthe command removes the e�ects of the command, but does not remove the commandfrom the command list.
Figure 13: E�ects of an Accept command4 Undo/Redo Implementation ModelOne approach to implementing the undo/redo semantics described above is to requireeach program to implement all aspects of the model. However, this makes the over-head of supporting undo/redo for a program very high. Therefore, we have devised ahigh-level implementation model which divides the responsibility of undoing/redoingcommands between application programs and the system. This model is based on theSuite model for multi-user programs, which divides the responsibility of \doing" com-mands between the application program and the system.Suite divides a multi-user program into an application program and multiple genericdialogue managers, each of which interacts with a particular user [2, 3]. To illustratethe Suite multi-user program model, consider how the multi-user program described inthe previous section is implemented in Suite. The application program presents a set ofactive values for editing to the the system supplied dialogue manager. The applicationprogram also associates update handlers to react to changed values of active values.12



Figure 14: Undo of an Accept commandWhen a user edits an active value and commits it, the dialogue manager invokes theappropriate update handler to inform the application program of the changed value.All functional aspects of the multi-user program are carried out by computations in theupdate handler. Below we show the update handler of the program described in theprevious section.typedef struct {int Salary, Travel, Equipment;int IndirectCosts, Total;} Budget;void UpdateBudget(name, val)char *name; Budget *val;{ val->IndirectCosts = (val->Salary + val->Travel) * OVERHEAD;val->Total = val->Salary + val->Travel + val->Equipment + val->IndirectCosts;Dm_Update ("ExampleBudget", "Budget", val);}We support our model of undo/redo by undoing/redoing the actions taken by dia-logue managers as well as the application programs in response to a user command. Fora multi-user program to implement the multi-user undo/redo model, the program needonly provide support for the undo/redo of actions it takes when its update handlersare called. If these actions cannot be undone/redone, the usefulness of the undo/redo13



model is restricted only to multi-user text editing.To ease the burden of application programs from having to keep track of all actionsthey invoke, Suite has augmented the dialogue manager-application program interfacewith an update undo handler. The application programs must implement update undohandlers as inverses of the corresponding update handlers. The update undo handler isinvoked by a dialogue manager when a command is undone whose execution resulted inthe invocation of the update handler. Thus the responsibility of an application programin supporting the undo/redo model reduces to providing update undo handlers. Allother aspects of the undo/redo model are handled by system supplied components.We can classify the application programs according to the kind of operations theyinvoke in their update handlers. This also determines how much e�ort the programmerof an application program has to expand.4.1 Undo Unaware ProgramsIf an application program carries out computation after receiving changed values froma dialogue manager but does not maintain any state information itself, the task ofundoing is made very easy. In such an application , state changes are made only in thestate of dialogue managers interacting with the application program. As illustrated inthe previous section, the undo support necessary for such updating of dialogue managerdisplays is automatically provided by the dialogue manager. Thus application programsin this class do not need to participate in any undo/redo handling and are termed undounaware application programs. The application whose update handler is presentedabove is one such program.4.2 State Caching ProgramsOften a program needs to cache the value of the active values in its own data. Forinstance, in our example the program needs to keep a copy of the values being edited tosupport a program, GetLatestBudget, that can fetch the latest active values from theapplication program. To support such a function, the update handler needs to copy thechanged values into a variable local to the application program. This is shown belowin the modi�ed version of the update handler, where a copy of the updated value isretained in the program variable ExampleBudget.Budget ExampleBudget;void UpdateBudget(name, val)char *name; Budget *val;{ val->IndirectCosts = (val->Salary + val->Travel) * OVERHEAD;val->Total = val->Salary + val->Travel + val->Equipment + val->IndirectCosts;ExampleBudget = *val;Dm_Update ("ExampleBudget", "Budget", val);}With such an update handler, it is not su�cient to undo the updating of dialoguemanager displays. Undoing of the Accept command must restore older value of theactive value to the program variable. 14



This undoing is easily achieved by cooperation between the dialogue manager andthe application program. We note that the dialogue manager needs to maintain oldercopies of the active values for undoing of its own actions. The application programtakes advantage of this by setting the update undo handler to be the same as theupdate handler. Thus when an dialogue manager is processing an undo request for acommand that resulted in an update call, it calls the update undo handler. This resultsin a call to the update handler which can restore the old value of the program variable.In this class of programs, the programmer does not need to write any new code toparticipate in the undo/redo model. However unlike the undo unaware programs, theseprograms need to be aware of update undo handlers, thus requiring a higher level ofundo awareness.4.3 Undo Aware ProgramsSince collaborative applications can be arbitrary programs, sometimes the update han-dlers needs to carry out other tasks in addition to caching the latest value and updatingdisplays. Consider the update handler shown below, which makes a record of the activevalue in a text �le whenever the value is updated.Budget ExampleBudget;void UpdateBudget(name, val)char *name; Budget *val;{ FILE *fp;val->IndirectCosts = (val->Salary + val->Travel) * OVERHEAD;val->Total = val->Salary + val->Travel + val->Equipment + val->IndirectCosts;fp = fopen("record", "a");fprintf(fp, "Salary %4d Travel %4d Equipment %4d IndirectCosts %4d Total %4d\n",val->Salary,val->Travel,val->Equipment,val->IndirectCosts, val->Total);fclose(fp);ExampleBudget = *val;Dm_Update ("ExampleBudget", "Budget", val);}In general the tasks carried out by an update handler could be arbitrarily complex.When an dialogue manager attempts to undo a command that resulted in an invo-cation of an update handler(an accept command), it checks to see if an update undohandler is de�ned for the active value. If one is de�ned, it is invoked with the old andthe new copies of the active value for this update handler. In this class of programs, theupdate undo handler must arrange to reverse the steps carried out during the updatehandler.Below we show the update undo handler for the update handler shown above. Sincethe display updating requests invoked in the update handler are undone by the dialoguemanagers themselves, the update undo handler needs to only restore the record �le andthe cached value. 15



UndoBudget(path, old_val, new_val)char *path; Budget *old_val; Budget *new_val;{ int fd; long len;fd = open("record", O_RDWR);len = lseek(fd,0L,SEEK_END);ftruncate(fd, len-69);close(fd);ExampleBudget = *old_value;}Such a simple interface for undoing the accept command is possible because of thecontrolled dialogue manager-program interface provided in Suite where the programstate can only be updated through the update handlers. These facilities work for mostupdate handlers but there are applications for which the program must implement it'sown undo. For example, any update handler that relies on state of the program otherthan the updated value must itself arrange to keep logs of such state change becausethe dialogue manager can provide no help in such reversal.So far we have only discussed undoing an update handler invocation. Since thesemantics associated with redo are same as that of reexecuting an update, when anaccept command is redone, the dialogue manager simply reinvokes the update handler.Thus no other support is required for the redoing of update handler invocation.5 ConclusionUndo/redo is indispensable in multi-user interfaces. We have developed a model ofmulti-user undo/redo which is useful across a range of coupling schemes, oor controlpolicies and (atomic and non-atomic) broadcast schemes. We have shown that it is pos-sible and desirable to partition the support required for multi-user undo/redo betweenthe interface component and the application program. The result is a general model inwhich many application programs have to do little or no work to support the undo/redofacilities.Our undo/redo model determines how commandhistories of the users of a multi-userprogram are constructed, which commands are undone/redone by an undo/redo requestfrom a particular user, and which users can undo/redo a command. As the exampleinteractions in the paper illustrate, our model has several pleasant properties:Compatibility Multi-user undo/redo behaves like single-user interactive undo/redowhen only one user is interacting with the system.Undo/Redo Independence Multi-user undo/redo does not require attention or in-tervention of all users in a collaborative session. In particular, passive users remainsynchronized with the state of a collaborative session without executing any com-mands themselves. Thus the model keeps the number of metacommands thatmust be executed by users to a minimum.Collaboration in Undo/Redo It is possible to undo commands issued by other users.This is a direct analogy of the ability of collaborative users to collaborate by exe-cuting commands on behalf of other users.16



Automation of Undo Support The model supports automation since it requires lit-tle or no code to support undo/redo for many programs.Multi-user undo/redo support described in this paper is only a �rst step towardsa multi-user undo/redo model. We plan to explore how availability of a multi-userundo/redo facility may a�ect design of the access control and concurrency control fa-cilities of collaborative systems. We also plan to explore how command execution,coupling schemes and multi-user undo/redo can be combined to provide comprehensivesession management facilities in collaborative applications.The implementation model described in this paper must rely upon the analysisby the programmer to determine to which class of application programs a particularprogram belongs. We would like to explore whether, with appropriate support froma compiler, we can automate the task of classifying application programs into one ofthe three classes. It would be useful to explore the possibility of further automation ofundo/redo support required from application programs.References[1] James E. Archer, Jr., Richard Conway, and Fred B. Schneider. User recovery andreversal in interactive systems. ACM Transactions on Programming Languages andSystems, 6(1):1{19, January 1984.[2] Prasun Dewan and Rajiv Choudhary. Flexible user interface coupling in collabora-tive systems. In Proceedings of the ACM CHI'91 Conference, pages 41{49. ACM,New York, 1991.[3] Prasun Dewan and Rajiv Choudhary. Primitives for programming multi-user in-terfaces. In Proceedings of the ACM Symposium on User Interface Software andTechnology, pages 69{78, November 1991.[4] W. D. Elliot, W. A. Potas, and A. van Dam. Computer assisted tracing of textevolution. In Proceedings of the AFIPS Fall Joint Computer Conference, pages533{540, 1971.[5] C. A. Ellis, S. J. Gibbs, and G. Rein. Design and use of a group editor. TechnicalReport STP-414-88, MCC Software technology Program, 1988.[6] J. Robert Ensor, S. R. Ahuja, David N. Horn, and S. E. Lucco. The rapportmultimedia conferencing system { a software overview. In Proceedings of the 2ndIEEE Conference on Computer Workstations, pages 52{58, March 1988.[7] R. F. Gordon, G. B. Leeman, and C. H. Lewis. Concepts and implications of undofor interactive recovery. In Proceedings of the 1985 ACM annual Conference, pages150{157. ACM New York, 1985.[8] J. R. Horgan and D. J. Moore. Techniques for improving language-based editors.ACM Software Engineering Notes, 9(3):7{13, May 1984.[9] J.C. Lauwers and K.A. Lantz. Collaboration awareness in support of collaborationtransparency:requirements for the next generation of shared window systems. InProceedings of ACM CHI'90, pages 303{311, April 1990.[10] Cai Linxi and A. Nico Habermann. A history mechanism and undo/redo/reuse sup-port in aloe. Technical Report CMU-CS-86-148, Department of Computer Science,Carnegie-Mellon University, 1986. 17



[11] Judith S. Olson, Gary M. Olson, Lisbeth A. Mack, and Pierre Wellner. Concurrentediting: The group's interface. In Human Computer Interaction { INTERACT '90,pages 835{840, 1990.[12] Mark Ste�k, Gregg Foster, Daniel G. Bobrow, Kenneth Kahn, Stan Lanning, andLucy Suchman. Beyond the chlakboard: Computer support for collaboration andproblem solving in meetings. Communications of the ACM, 30(1):32{47, January1987.[13] Herold Thimbleby. User Interface Design. ACM, 1990.[14] Je�ery Scott Vitter. US&R: A new framework for Redoing. IEEE Software,1(4):39{52, October 1984.[15] HaiyingWang and Mark Green. An event-object recovery model for object-orienteduser interfaces. In Proceedings of the ACM Symposium on User Interface Softwareand Technology, pages 107{115, November 1991.[16] Xerox PARC, Palo Alto, CA. INTERLISP Reference Manual, December 1975.[17] Yiya Yang. Experimental rapid prototype of undo support. Information and Soft-ware Technology, 32(9):625{635, November 1990.

18


