
Unit Testing Concurrent Software

William Pugh
Dept. of Computer Science

Univ. of Maryland
College Park, MD

pugh@cs.umd.edu

Nathaniel Ayewah
Dept. of Computer Science

Univ. of Maryland
College Park, MD

ayewah@cs.umd.edu

ABSTRACT
There are many difficulties associated with developing cor-
rect multithreaded software, and many of the activities that
are simple for single threaded software are exceptionally
hard for multithreaded software. One such example is con-
structing unit tests involving multiple threads. Given, for
example, a blocking queue implementation, writing a test
case to show that it blocks and unblocks appropriately us-
ing existing testing frameworks is exceptionally hard. In this
paper, we describe the MultithreadedTC framework which
allows the construction of deterministic and repeatable unit
tests for concurrent abstractions. This framework is not de-
signed to test for synchronization errors that lead to rare
probabilistic faults under concurrent stress. Rather, this
framework allows us to demonstrate that code does provide
specific concurrent functionality (e.g., a thread attempting
to acquire a lock is blocked if another thread has the lock).

We describe the framework and provide empirical compar-
isons against hand-coded tests designed for Sun’s Java con-
currency utilities library and against previous frameworks
that addressed this same issue. The source code for this
framework is available under an open source license.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
testing tools

General Terms
Experimentation, Reliability, Verification

Keywords
Java, testing framework, concurrent abstraction, JUnit test
cases, MultithreadedTC

1. INTRODUCTION
Concurrent applications are often hard to write and even

harder to verify. The application developer has to adhere to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’07, November 5–9, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 978-1-59593-882-4/07/0011 ...$5.00.

various locking protocols, avoid race conditions, and coordi-
nate multiple threads. Many developers manage this com-
plexity by separating the concurrent logic from the business
logic, limiting concurrency to small abstractions like latches,
semaphores and bounded buffers. These abstractions can
then be tested independently, adequately validating the cor-
rectness of most of the concurrent aspects of the application.

One strategy for testing concurrent components is to write
large test cases that contain many possible interleavings and
run these test cases many times hopefully inducing some rare
but faulty interleavings. Many concurrent test frameworks
are based on this paradigm and provide facilities to increase
the diversity of interleavings [5, 9]. But this strategy may
miss some interleavings that lead to failures, and do not
yield consistent results.

A different strategy is to test specific interleavings sepa-
rately. But some critical interleavings are hard to exercise
because of the presence of blocking and/or timing. This
paper describes MultithreadedTC, a framework that allows
a test designer to exercise a specific interleaving of threads
in an application. It features a metronome (or clock) that
allows test designers to coordinate threads even in the pres-
ence of blocking and timing issues. The clock advances when
all threads are blocked; test designers can delay operations
within a thread until the clock has reached a desired tick.
MultithreadedTC also features a concise syntax for speci-
fying threads and eliminates much of the scaffolding code
required to make multithreaded tests work well with JUnit.
It can also detect deadlocks and livelocks.

2. A SIMPLE EXAMPLE
Figure 1 shows four operations on a bounded buffer, dis-

tributed over two threads. A bounded buffer allows users to
take elements that have been put into the container, in the
order in which they were put. It has a fixed capacity and
both put and take cause the calling thread to block if the
container is full or empty respectively.

In this example, the call to put 17 should block thread 1
until the assertion take = 42 in thread 2 frees up space in
the bounded buffer. But how does the test designer guar-
antee that thread 1 blocks before thread 2’s assertion, and
does not unblock until after the assertion?

One option is to put thread 2 to sleep for a fixed time pe-
riod long enough to “guarantee” that thread 1 has blocked.
But this introduces unnecessary timing dependence — the
resulting code does not play well in a debugger, for in-
stance — and the presence of multiple timing dependent
units would make a large example harder to understand.

513

Figure 1: (a) Operations in multiple threads on a
bounded buffer of capacity 1 must occur in a par-
ticular order, (b) MultithreadedTC guarantees the
correct order.

Another approach is to make thread 2 wait on a latch that
is released at the appropriate time. But this will not work
here because the only other thread available to release the
latch (thread 1) is blocked.

MultithreadedTC’s solution is to superimpose an exter-
nal clock on both threads. The clock runs in a separate
(daemon) thread which periodically checks the status of all
test threads. If all the threads are blocked, and at least one
thread is waiting for a tick, the clock advances to the next
desired tick. In Figure 1, thread 2 blocks immediately, and
thread 1 blocks on the call to put 17. At this point, all
threads are blocked with thread 2 waiting for tick 1. So the
clock thread advances the clock to tick 1 and thread 2 is
free to go. Thread 2 then takes from the buffer with the as-
sertion take = 42, and this releases Thread 1. Hence with
the test, we are confident that (1) thread 1 blocked (because
the clock advanced) and (2) thread 1 was not released until
after thread 2’s first assertion (because of the final assertion
in thread 1).

MultithreadedTC is partly inspired by ConAn [11, 12,
13], a script-based concurrency testing framework which also
uses a clock to coordinate the activities of multiple threads.
We provide a comparison of ConAn and MultithreadedTC
in Section 4.2.

3. IMPLEMENTATION DETAILS
Figure 2 shows a Java implementation of the test in Figure

1 and illustrates some of the basic components of a Multi-
threadTC test case. Each test is a subclass of Multithread-
edTestCase. Threads are specified using thread methods
which return void, have no arguments and have names pre-
fixed with the word “thread”. Each test may also override
the initialize() or finish() methods provided by the
base class. When a test is run, initialize() is invoked
first, then all thread methods are invoked simultaneously
in separate threads, and finally when all the thread meth-
ods have completed, finish() is invoked. This is analogous
to the organization of setup, test and teardown methods in
JUnit [2].

Each MultithreadedTestCase maintains a clock that starts
at time 0. The clock advances when all threads are blocked
and at least one thread is waiting for a tick. The method
waitForTick(i) blocks the calling thread until the clock
reaches tick i. A test designer can also temporarily prevent
the clock from advancing when all threads are blocked by
using freezeClock().

class BoundedBufferTest extends MultithreadedTestCase {
ArrayBlockingQueue<Integer> buf;
@Override public void initialize() {

buf = new ArrayBlockingQueue<Integer>(1);
}
public void thread1() throws InterruptedException {

buf.put(42);
buf.put(17);
assertTick(1);

}
public void thread2() throws InterruptedException {

waitForTick(1);
assertTrue(buf.take() == 42);
assertTrue(buf.take() == 17);

}
@Override public void finish() {

assertTrue(buf.isEmpty());
}

}

// JUnit test
public void testBoundedBuffer() throws Throwable {

TestFramework.runOnce(new BoundedBufferTest());
}

Figure 2: Java version of bounded buffer test.

The test sequence is run by invoking one of the run meth-
ods in TestFramework. (This can be done in a JUnit test,
as in Figure 2.) TestFramework is also responsible for regu-
lating the clock. It creates a thread that periodically checks
the status of the clock and test threads and decides when to
release threads that are waiting for a tick. It can also detect
deadlock: when all threads are blocked and none of them is
waiting for a tick or a timeout. More details on creating and
running tests are available on the project website at [3].

4. TEST FRAMEWORK EVALUATION
To evaluate MultithreadedTC, we performed some quali-

tative and quantitative comparisons with other test frame-
works, focusing on how easy it is to write and understand
test cases, and how expressive each test framework is. Sec-
tion 4.1 compares MultithreadedTC with TCK tests created
to validate Java’s concurrency utilities library [1]. We take
this test suite to represent a typical JUnit-based implemen-
tation of multithreaded tests. Section 4.2 compares Multi-
threadedTC with ConAn.

4.1 JSR 166 TCK comparison
JSR (Java Specification Request) 166 is a set of proposals

for adding a concurrency utilities library to Java [1]. This
includes components like locks, latches, thread locals and
bounded buffers. Its TCK (Technology Compatibility Kit)
includes a suite of JUnit tests that validate the correctness
of the library’s implementation against the specification pro-
vided in the JSR. We examined 258 of these tests which at-
tempt to exercise specific interleavings in 33 classes, and im-
plemented them using MultithreadedTC. These tests do not
measure performance, nor do they look for rare errors that
may occur when a concurrent abstraction is under stress.

In general MultithreadedTC allows the test designer to
use simpler constructs that require fewer lines of code. Our
evaluation also demonstrates that MultithreadedTC can ex-
press all the strategies used in the TCK tests and is often
more precise and expressive, especially for tests that do not
require a timing dependency. Table 1 gives an overview of
the comparison, including the observation that Multithread-
edTC requires fewer local variables and anonymous inner

514

Table 1: Overall comparison of TCK tests and MTC
(MultithreadedTC) implementation

Measure TCK MTC
Lines of Code 8003 7070
Bytecode Size 1017K 980K
*Local variables per method 1.12 0.12
*Av. anon. inner classes/method 0.38 0.01
* Metrics measured by the software quality tool Swat4j [4]

threadFailed = false;
...
Thread t = new Thread(new Runnable() {

public void run() {
try {

// statement(s) that may cause exception
} catch(InterruptedException ie) {

threadFailed = true;
fail("Unexpected exception");

}
}

});
t.start();
...
t.join();
assertFalse(threadFailed);

Figure 3: Handling threads in JUnit tests

classes, in part because it does not make the test designer
construct threads manually. The TCK tests generally use
anonymous inner classes as illustrated in Figure 3. This
syntax is quite verbose, especially since all the useful func-
tionality is in the method run().

Another source of verbosity in Figure 3 is the scaffolding
required to handle exceptions. While exceptions in Multi-
threadedTC cause the test to fail immediately, exceptions
in a JUnit test thread will kill the thread but will not fail
the test. To force failure, the TCK tests use additional try-
catch blocks to catch thread exceptions and set a flag (such
as the threadFailed flag in Figure 3). MultithreadedTC
also eliminates the last join statement in Figure 3 because it
checks to make sure all threads complete and uses finish()
to execute code that must run after all threads complete.

Some of the differences we have just described are quanti-
fied in Table 2. This table includes simple counts of the num-
ber of TCK tests that use the constructs described above
(anonymous inner classes, try-catch blocks and joins) in a
way that is eliminated by the corresponding Multithread-
edTC test. It also counts the total number of times these
constructs are removed.

4.2 Comparison to ConAn

Table 2: The number of TCK tests with constructs
that were removed in the MultithreadedTC version
and the total number of constructs removed.

Construct Removed Tests Removed
Anonymous inner classes 216 257
Thread’s join() method 193 239
try-catch blocks 104 106
Thread’s sleep() method 198 313

#ticktime 200
#monitor m WriterPreferenceReadWriteLock
...
\ldots
#begin

#test C1 C13
#tick

#thread <t1>
#excMonitor m.readLock().attempt(1000); #end
#valueCheck time() # 1 #end

#end
#end
#tick

#thread <t1>
#excMonitor m.readLock().release(); #end
#valueCheck time() # 2 #end

#end
#end

#end

Figure 4: The script for a ConAn test to validate a
Writer Preference Read Write Lock

ConAn (Concurrency Analyzer) is a script-based test frame-
work that, like MultithreadedTC, uses a clock to synchro-
nize the actions in multiple threads [12]. ConAn also aims to
make it possible to write succinct test cases by introducing a
script-based syntax illustrated in Figure 4. To run the test,
the script is parsed and translated into a Java test driver
containing methods which interact with some predefined Co-
nAn library classes and implement the tests specified in the
script.

Each test is broken into tick blocks that contain one or
more thread blocks (which may have optional labels). A
thread block may span multiple tick blocks by using the
same label. Thread blocks contain valid Java code or use
custom script tags to perform common operations like han-
dling exceptions (excMonitor) and asserting values and equal-
ities (valueCheck). Any blocking statements in a given tick
may unblock at a later tick, which is confirmed by checking
the time.

The major difference between the two frameworks is that
ConAn relies on a timer-based clock which ticks at regular
intervals, while MultithreadedTC advances the clock when
all threads are blocked. ConAn’s strategy introduces a tim-
ing dependence even in tests that do not involve any timing
like the bounded buffer example in Figure 1.

The two frameworks also use different paradigms to or-
ganize tests. ConAn organizes tests by ticks, while Multi-
threadedTC organizes tests by threads. The two paradigms
are difficult to compare quantitatively as each involves trade-
offs for the test designer. MultithreadedTC allows designers
to inadvertently introduce indeterminism into tests by plac-
ing a waitForTick at the wrong place, while ConAn forces
designers to deterministically put code segments into the
tick in which they are to run. On the other hand ConAn’s
paradigm can be confusing when writing tests because the
code in one thread is spread out spatially into many ticks,
while MultithreadedTC places all the code for a thread into
one method, consistent with Java’s paradigm. Also, Co-
nAn’s organization hardcodes the content of ticks and does
not allow for“relative”time which is useful if blocking occurs
in a loop.

Another significant difference between the two frameworks
is that ConAn relies on a custom script-based syntax, while
MultithreadedTC is pure Java and borrows metaphors from
JUnit. This means that test designers using ConAn do not
have access to many of the powerful features provided in

515

Table 3: Line count comparisons between Multi-
threadedTC and ConAn for tests on the Writer Pref-
erence Read Write Lock

Test Suite MTC ConAn ConAn Driver
Basic Tests 274 829 2192
Tests with Interrupts 456 1386 3535
Tests with Timeouts 389 585 1629
Total Line Count 1119 2800 7356

modern integrated development environments (IDEs) such
as refactoring, syntax highlighting, and code completion.

ConAn was partially evaluated using tests written to vali-
date an implementation of the WriterPreferenceReadWrite-
Lock. We implemented MultithreadedTC versions of these
tests and compared the number lines of code of the two im-
plementations. This comparison, shown in Table 3 indicates
that the MultithreadedTC tests are more succinct than the
ConAn scripts and significantly more succinct than ConAn’s
generated Java drivers.

5. RELATED WORK
Many java test frameworks provide basic facilities that al-

low test designers to run unit tests with multiple threads but
do not remove the resulting nondeterminism. JUnit [2] pro-
vides an ActiveTestSuite extension which runs all the tests
in the suite simultaneously in different threads and waits
for the threads to complete. In TestNG [6], tests are run
in parallel if the parallel parameter is set. An additional
parameter, thread-count, is used to specify the size of the
thread pool. Another framework, GroboUtils [5] extends the
JUnit framework to provide support for writing thread safe
multithreaded tests without having to write much thread
handling code. A thread is specified by extending a pro-
vided TestRunnable class and implementing the runTest()

method. Other classes are provided to run multiple in-
stances of this thread simultaneously, enforce a time limit
(after which all threads are killed) and regularly monitor
the execution of the threads to look for inconsistent states.

MultithreadedTC’s effort to control the synchronization
of multiple threads is partly inspired by ConAn [11, 12,
13]. ConAn extends a technique for testing concurrent mon-
itors introduced by Brinch Hansen [10]. Both ConAn and
Hansen’s method use a clock that is incremented at reg-
ular time intervals and used to synchronize thread oper-
ations. But ConAn organizes tests into tick blocks while
Hansen’s method organizes tests into threads and uses await
statements (which is the paradigm followed by Multithread-
edTC).

Other frameworks and approaches have focused on allow-
ing tests to run nondeterministically, recording the inter-
leavings that fail, and deterministically replaying them by
transforming the original program. Carver and Tai [7] use a
language-based approach (in Ada) that transforms the origi-
nal program under test into an equivalent program that uses
semaphores and monitors to control synchronization. Con-
Test [9] is a Java testing framework that uses a source level
version of the deterministic replay algorithm introduced in
DejaVu [8] to record and replay specific interleavings that

lead to faults. Its algorithm also modifies the original pro-
gram to add synchronization.

ConTest and some other frameworks like GroboUtils also
provide facilities to run the tests many times in hopes of find-
ing rare failing interleavings. ConTest relies on source level
seeding using standard Java Thread methods like sleep()

and yield() to increase the chance that a different inter-
leaving is used each time the test is run. Another approach
would be to take control of the thread scheduler, but this
would require modifying the Java virtual machine, and make
the final solution less portable and platform independent.

6. CONCLUSIONS
Concurrency in applications is receiving new emphasis as

chip manufacturers develop multi-core processors. Software
engineers need more effective approaches of creating fault
free programs that exploit the level of concurrency these pro-
cessors can offer. MultithreadedTC provides a Java based
framework for writing tests that exercise specific interleav-
ings of concurrent programs. It was designed for testing
small concurrent abstractions in which all possible interleav-
ings can be enumerated and tested separately. The frame-
work is robust in the face of blocking and timing issues. The
resulting tests are succinct, JUnit compatible, and involve
very little overhead.

The source code and documentation for MultithreadedTC
are available under an open source license at [3].

7. REFERENCES
[1] Jsr 166: Concurrency utilities.

http://www.jcp.org/en/jsr/detail?id=166, 2004.

[2] Junit testing framework. http://www.junit.org, 2007.

[3] Multithreadedtc.
http://code.google.com/p/multithreadedtc/, 2007.

[4] Swat4j. http://www.codeswat.com, 2007.

[5] M. Albrecht. Using multi-threaded tests.
http://groboutils.sourceforge.net/testing-
junit/using mtt.html, September
2004.

[6] C. Beust and A. Popescu. Testng: Testing, the next
generation. http://www.testng.org, 2007.

[7] R. H. Carver and K.-C. Tai. Replay and testing for
concurrent programs. IEEE Softw., 8(2):66–74, 1991.

[8] J.-D. Choi and H. Srinivasan. Deterministic replay of
java multithreaded applications. In SPDT ’98:
Proceedings of the SIGMETRICS symposium on
Parallel and distributed tools, pages 48–59, New York,
NY, USA, 1998. ACM Press.

[9] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur.
Multithreaded java program test generation. IBM
Systems Journal, 41(1):111–125, 2002.

[10] P. B. Hansen. Reproducible testing of monitor. Softw.,
Pract. Exper., 8(6):721–729, 1978.

[11] B. Long. Testing Concurrent Java Components. PhD
thesis, The University of Queensland, July 2005.

[12] B. Long, D. Hoffman, and P. Strooper. Tool support
for testing concurrent java components. IEEE
Transactions on Software Engineering, 29(6), 2003.

[13] L. Wildman, B. Long, and P. A. Strooper. Testing
java interrupts and timed waits. In APSEC, pages
438–447, 2004.

516

