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Abstract

In the absence of forward-looking models for recovery rates, market participants
tend to use exogenously assumed constant recovery rates in pricing models. We de-
velop a flexible jump-to-default model that uses observables: the stock price and stock
volatility in conjunction with credit spreads to identify implied, endogenous, dynamic
functions of the recovery rate and default probability. The model in this paper is par-
simonious and requires the calibration of only three parameters, enabling the identifi-
cation of the risk-neutral term structures of forward default probabilities and recovery
rates. Empirical application of the model shows that it is consistent with stylized fea-
tures of recovery rates in the literature. The model is flexible, i.e., it may be used with
different state variables, alternate recovery functional forms, and calibrated to multi-
ple debt tranches of the same issuer. The model is robust, i.e., evidences parameter
stability over time, is stable to changes in inputs, and provides similar recovery term
structures for different functional specifications. Given that the model is easy to un-
derstand and calibrate, it may be used to further the development of credit derivatives
indexed to recovery rates, such as recovery swaps and digital default swaps, as well as
provide recovery rate inputs for the implementation of Basel II.
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Implied Recovery

Abstract

In the absence of forward-looking models for recovery rates, market participants tend
to use exogenously assumed constant recovery rates in pricing models. We develop a flex-
ible jump-to-default model that uses observables: the stock price and stock volatility in
conjunction with credit spreads to identify implied, endogenous, dynamic functions of the
recovery rate and default probability. The model in this paper is parsimonious and requires
the calibration of only three parameters, enabling the identification of the risk-neutral term
structures of forward default probabilities and recovery rates. Empirical application of the
model shows that it is consistent with stylized features of recovery rates in the literature.
The model is flexible, i.e., it may be used with different state variables, alternate recovery
functional forms, and calibrated to multiple debt tranches of the same issuer. The model
is robust, i.e., evidences parameter stability over time, is stable to changes in inputs, and
provides similar recovery term structures for different functional specifications. Given that
the model is easy to understand and calibrate, it may be used to further the development
of credit derivatives indexed to recovery rates, such as recovery swaps and digital default
swaps, as well as provide recovery rate inputs for the implementation of Basel II.
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1 Introduction

As the market for credit derivatives expands, the opportunity to extract forward-looking
credit information from traded securities increases. Just as the growth of equity option
markets resulted in the extraction of forward-looking implied volatilities, this paper develops
a method to extract and identify the implied forward curves of default probabilities and
recovery rates for a given firm on any date, using the extant credit default swap spread
curve.

The paucity of data on recoveries (about a thousand defaults in the past 25 years or
so) has made the historical modeling of recovery rates somewhat tenuous, though excellent
studies exist on explaining realized recovery (see Altman, Brady, Resti and Sironi (2005);
Acharya, Bharath and Srinivasan (2007)). As yet, no model exists that provides forecasted
forward-looking recovery rate functions for the pricing of credit derivatives. By developing
a model in which “implied” forward recovery rate term structures may be extracted using
data from the credit default swap market and the equity market, our model makes possible
the pricing of recovery related products such as recovery swaps and digital default swaps.
Further, the recent regulatory requirements imposed by Basel II require that banks use
recovery rate assumptions in their risk models. Thus, our model satisfies important trading
and risk management needs.

While models for default likelihood have been explored in detail by many researchers1, the
literature on recovery rate calibration is less developed. Academics and practitioners have
often assumed that the recovery rate in their models is constant, and set it to lie mostly
in the 40-50% range for U.S. corporates, and about 25% for sovereigns. Imposing constant
recovery may be practically exigent, but is unrealistic given that recovery rate distributions
evidence large variation around mean levels (see Hu (2004) for many examples of fitted
recovery rate distributions; Moody’s reports that recovery rates may vary from as little as
7.8% for junior subordinated debt to as high as 83.6% for senior secured over the 1982-2004
period2). The rapid development of the credit default swap (CDS) market has opened up
promising possibilities for extracting implied default rates and recovery rates so that the
class of models developed here will enable incorporating realistic recovery rates into pricing
models.

If the recovery rate is supplied exogenously, as in current practice, then the term structure
of CDS spreads may be used to extract the term structure of risk-neutral default probabil-
ities, either using a structural model approach as in the model of CreditGrades (Finger,
Finkelstein, Lardy, Pan, Ta and Tierney (2002)), or in a reduced-form framework, as in
Jarrow, Lando and Turnbull (1997), Duffie and Singleton (1999), Jarrow (2001), Madan,
Guntay and Unal (2003), or Das and Sundaram (2007). However, assuming recovery rates
to be static is an impractical imposition on models, especially in the face of mounting evi-
dence that recovery rates are quite variable over time. For instance, Altman, Brady, Resti

1See, amongst others, Merton (1974), Leland (1994), Jarrow and Turnbull (1995), Longstaff and Schwartz
(1995), Madan and Unal (1995), Leland and Toft (1996), Jarrow, Lando and Turnbull (1997), Duffie and
Singleton (1999), Sobehart, Stein, Mikityanskaya and Li (2000), Jarrow (2001) and Duffie, Saita and Wang
(2005))

2Based on “Default and Recovery Rates of Corporate Bond Issuers, 1920-2004”, from Moody’s, New
York, 2005, Table 27.
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and Sironi (2005) examined the time series of default rates and recovery levels in the U.S.
corporate bond market and found both to be quite variable and correlated. The model we
develop in this paper makes recovery dynamic, not static, and allows for a range of relation-
ships between the term structures of risk-neutral forward default probabilities and recovery
rates. We find overall, that recovery rates and default rates are inversely related, though this
is not necessary on an individual firm basis. Though theoretically unconnected to the result
of Altman et al, which is under the physical measure, this conforms to economic intuition
that high default rates occur concurrently with low resale values of firm’s assets.3

Extracting recovery rates has proven to be difficult owing to the existence of an identi-
fication problem arising from the mathematical structure of equations used to price many
credit derivative products. Credit spreads (C) are approximately the result of the product
of the probability of default (λ) and the loss rate on default (L = 1 − φ), where φ is the
recovery rate, i.e. C = λ(1 − φ). Hence, many combinations of λ and φ result in the same
spread. Our model resolves this identification problem using stock market data in addition
to spread data. We do this in a dynamic model of default probabilities and recovery rates.

The identification problem has been addressed in past work. Zhang (2003) shows how
joint identification of default intensities and recovery rates may be carried out in a reduced
form model. He applies the model to Argentine sovereign debt and finds that recovery rates
are approximately 25%, the number widely used by the market. See Christensen (2005)
for similar methods. Pan and Singleton (2005), using a panel of sovereign spreads on three
countries (Mexico, Russia and Turkey), also identify recovery rates and default intensities
jointly assuming recovery of face value rather than market value. Exploiting information in
both the time series and cross-section they find that recovery rates may be quite different
from the widely adopted 25% across various process specifications. Song (2007) uses a no-
arbitrage restriction to imply recovery rates in an empirical analysis of sovereign spreads
and finds similar recovery levels. Bakshi, Madan and Zhang (2001) (see also Karoui (2005))
develop a reduced-form model in which it is possible to extract a term structure of recovery
using market prices; they show that it fits the data on BBB U.S. corporate bonds very well.
They find that the recovery of face value assumption provides better fitting models than one
based on recovery of Treasury. Madan, Guntay and Unal (2003) finesse the identification
problem by using a sample of firms with both junior and senior issues.

Other strands of the estimation literature on recovery rates are aimed at explaining
recovery rates in the cross-section and times series. Acharya, Bharath and Srinivasan (2007)
find that industry effects are extremely important in distinguishing levels of recovery in
the cross-section of firms over a long period of time. Chava, Stefanescu and Turnbull (2006)
jointly estimate recovery rates and default intensities using a large panel data set of defaults.

In contrast to these times-series dependent econometric approaches to recovery rate ex-
traction, this paper adopts a calibration approach, applicable to a single spread curve at
a single point in time. The model eschews the use of historical data given its goal is to
extract forward looking implied recovery rates. It uses the term structure of CDS spreads,

3An interesting point detailed by an anonymous referee suggests also that a negative relation between
default probability and recovery under the risk-neutral measure may simply be an artifact of risk premia.
Since risk premia on default probabilities drive these values higher under the risk neutral measure, and drive
recovery rates lower, when risk premia are high (as in economic downturns), it induces a negative correlation
between the two term structures.
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and equity prices and volatility, at a single point in time, to extract both, the term struc-
ture of hazard rates and of recoveries, using a simple least-squares fit. The model extracts
recovery functions, not just point estimates of recovery. Hence, it also provides insights into
the dynamics of recovery.

The main differences between this approach and the econometric ones of Zhang (2003)
and Pan and Singleton (2005) are two-fold. First, only information on a given trading day is
used, in much the same way traders would calibrate any derivatives model in practice; in the
empirical approaches, time series information is also required. Second, rather than extract
a single recovery rate, our model delivers an entire forward term structure of recovery and a
functional relation between recovery and state variables, thereby offering a dynamic model
of recovery.

Other approaches closer to ours, though static, have also been attempted. A previous
paper that adopts a calibration approach is by Chan-Lau (2008). He used a curve-fitting
approach to determine the maximal recovery rate; this is the highest constant recovery rate
that may be assumed, such that the term structure of default intensities extracted from
CDS spreads admits economically acceptable values. (Setting recovery rates too high will
at some point, imply unacceptably high default intensities, holding spreads fixed). This
paper offers three enhancements to Chan-Lau’s idea. First, it fits an entire term structure
of recovery rates, not just a single rate (i.e. flat term structure). Second, it results in exact
term-dependent recovery rates, not just upper bounds. Third, our approach also extracts
the dynamics of the recovery rate because we obtain implied default functions and not just
point estimates of the term structure.

It is also possible to find implied recovery rates if there are two contracts that permit
separating recovery risk from the probability of default. Berd (2005) shows how this is
feasible using standard CDS contracts in conjunction with digital default swaps (DDS), whose
payoffs are function of only default events, not recovery (they are based on predetermined
recovery rates); such pairs enable disentanglement of recovery rates from default probabilities
in a static manner. Using these no-arbitrage restrictions is also exploited by Song (2007)
in a study of sovereign spreads. This forms the essential approach in valuing a class of
contracts called recovery swaps, which are options on realized versus contracted recovery
rates. In Berd’s model, calibrated default rates and recovery rates are positively correlated
(a mathematical necessity, given fixed CDS spreads and no remaining degrees of freedom).4

In the model in this paper, the functional relation between default probability and recovery
does not impose any specific relationship. However, the empirical literature mostly evidences
a negative correlation between the term structures of default probabilities and recovery rates.

Further, since default swap spreads are for a specified reference instrument, the recovery
rate may be extracted separately for each reference instrument in a given capital structure.

The summary of the paper is as follows:

1. We explain the recovery rate identification problem (Section 2). In Section 3 We
develop a flexible “jump-to-default” model that uses additional data, the stock price

4Empirically, there is some work on the historical correlation of realized default rates and recoveries.
There is no technical relation between realized rates and implied ones; however, the empirical record shows
that realized default rates and recovery are in fact negatively correlated (Altman, Brady, Resti and Sironi
(2005); Gupton and Stein (2005) find a positive correlation between credit quality and recovery, and this
relation persists even after conditioning on macroeconomic effects).



Implied Recovery 6

S and stock volatility σ in conjunction with credit spreads and the forward risk free
rate curve to identify not just the implied values of default probability λ and recovery
rate φ, but instead, the parameterized functional forms of these two inputs.

2. The model in this paper is parsimonious and requires the calibration of only three
parameters. Calibration is fast and convergent, and takes only a few seconds (Section
4.2).

3. We apply the model to data on firm-level CDS spread curves sorted into 5 quintiles over
31 months in the period from January 2000 to July 2002 (see Section 4.1). In Section
4.2 we calibrate the model for each quintile and month, and then use the calibrated
parameters to identify the risk-neutral term structures of forward default probabilities
and recovery rates (Section 4.3).

4. The model is also illustrated on individual names and calibrates easily. Calibration
may be undertaken to as few as three points on the credit spread curve (given a three-
parameter model), but may also fit many more points on the term structure (Section
4.4).

5. Several experiments on individual names show that the parameters tend to be relatively
stable and change in a smooth manner over time (Section 4.4.1).

6. The model is shown to work well for different recovery rate specifications and the
extracted term structures are robust to changes in model specification (Section 4.4.2).

7. The calibration of the model is not sensitive to small changes in the inputs. Hence,
the mathematical framework of the model is stable (Section 4.4.3).

8. The model may be extended to fitting multiple debt tranches of the same issuer, such
that the term structure of default probabilities remains the same across tranches, yet
allowing for multiple term structures of recovery rates, one for each debt tranche (Sec-
tion 4.4.4). The same approach also works to extend the model to fitting multiple
issuers (within the same rating class for example) simultaneously to better make use
of the information across issuers.

Since the model framework admits many possible functional forms, it is flexible, yet parsi-
monious, allowing for the pricing of credit derivatives linked to recovery such as recovery
swaps and digital default swaps. Concluding comments are offered in Section 5.

2 Identification

It is well understood in the literature that separate identification of recovery rates and default
intensities is infeasible using only the term structure of credit default swap (CDS) spreads
(for example, see the commentary in Duffie and Singleton (1999) and Pan and Singleton
(2005)). Here, we introduce the notation for our model and clarify the exact nature of the
identification problem. The dynamic model of implied recovery will be introduced in the
next section.
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Assume there are N periods in the model, indexed by j = 1, . . . , N . Without loss of
generality, each period is of length h, designated in units of years. Thus, time intervals
in the model are {(0, h), (h, 2h), . . . , ((N − 1)h,Nh)}. The corresponding end of period
maturities are Tj = jh.

Risk free forward interest rates in the model are denoted f((j − 1)h, jh) ≡ f(Tj−1, Tj),
i.e. the rate over the jth period in the model. We write these one period forward rates in
short form as fj, the forward rate applicable to the jth time interval. The discount functions
(implicitly containing zero-coupon rates) may be written as functions of the forward rates,
i.e.

D(Tj) = exp

−
j∑

k=1

fkh

 , (1)

which is the value of $1 received at time Tj.
For a given firm, default is likely with an intensity denoted as ξj ≡ ξ(Tj−1, Tj), constant

over forward period j. Given these intensities, the survival function of the firm is defined as

Q(Tj) = exp

−
j∑

k=1

ξkh

 (2)

We assume that at time zero, a firm is solvent, i.e. Q(T0) = Q(0) = 1.

Default Swaps

For the purposes of our model, the canonical default swap is a contract contingent on the
default of a bond or loan, known as the “reference” instrument. The buyer of the default
swap purchases credit protection against the default of the reference security, and in return
pays a periodic payment to the seller. These periodic payments continue until maturity or
until the reference instrument defaults, in which event, the seller of the swap makes good
to the buyer the loss on default of the reference security. Extensive details on valuing these
contracts may be found in Duffie (1999).

We denote the periodic premium payments made by the buyer to the seller of the N
period default swap as a “spread” CN , stated as an annualized percentage of the nominal
value of the contract. Without loss of generality, we stipulate the nominal value to be $1.
We will assume that defaults occur at the end of the period, and given this, the premiums
will be paid until the end of the period. Since premium payments are made as long as the
reference instrument survives, the expected present value of the premiums paid on a default
swap of maturity N periods is as follows:

AN = CN h
N∑
j=1

Q(Tj−1)D(Tj) (3)

This accounts for the expected present value of payments made from the buyer to the seller.
The other possible payment on the default swap arises in the event of default, and goes

from the seller to the buyer. The expected present value of this payment depends on the
recovery rate in the event of default, which we will denote as φj ≡ φ(Tj−1, Tj), which is the
recovery rate in the event that default occurs in period j. The loss payment on default is then
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equal to (1 − φj), for every $1 of notional principal. This implicitly assumes the “recovery
of par” (RP) convention is being used. This is without loss of generality. Other conventions
such as “recovery of Treasury” (RT) or “recovery of market value” (RMV) might be used
just as well.

The expected loss payment in period j is based on the probability of default in period j,
conditional on no default in a prior period. This probability is given by the probability of
surviving till period (j − 1) and then defaulting in period j, given as follows:

Q(Tj−1)
(
1− e−ξjh

)
(4)

Therefore, the expected present value of loss payments on a default swap of N periods equals
the following:

BN =
N∑
j=1

Q(Tj−1)
(
1− e−ξjh

)
D(Tj) (1− φj) (5)

The fair pricing of a default swap, i.e. a fair quote of premium CN must be such that the
expected present value of payments made by buyer and seller are equal, i.e. AN = BN .

Identification

In equations (3) and (5), the premium CN and the discount functions D(Tj) are observable
in the default risk and government bond markets respectively. Default intensities ξj (and the
consequent survival functions Q(Tj)), as well as recovery rates φj are not directly observed
and need to be inferred from the observables.

Since there are N periods, we may use N default swaps of increasing maturity each with
premium Cj. This mean there are N equations AN = BN available, but 2N parameters:
{ξj, φj}, j = 1, 2, . . . , N to be inferred. Hence the system of equations is not sufficient to
result in an identification of all the required parameters.

How is identification achieved? There are two possible approaches.

1. We assume a functional form for recovery rates, thereby leaving only the default inten-
sities to be identified. For example, we may assume, as has much of the literature, that
recovery rates are a constant, exogenously supplied value, the same for all maturities.
The calculations to extract default intensities under this assumption are simple and
for completeness are provided in Appendix A. We may also assume the recovery rate
term structure is exogenously supplied. Again, the simple calculations are provided in
Appendix B. Both these methods are bootstrapping approaches which assume that
recovery rates are time-deterministic (static) and not dynamic.

2. The more general approach is to assume a dynamic model of recovery rates. This
approach specifies recovery rates as functions of state variables, and therefore, recovery
becomes dynamic, based on the stochastic model for the underlying state variable. In
this class of model we extract dynamic implied functions for both, forward default
intensities and forward recovery rates. It is this approach that we adopt in the paper.

The specific dynamic model that we use is denoted the “jump-to-default” model. It resides
within the class of reduced form models of default, and uses additional information from
the equity markets, namely stock prices and volatilities to identify default intensities and
recovery rates. We describe this model next.
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3 The Jump-to-Default Model

Our model falls within the hybrid model class of Das and Sundaram (2007) (DS), extended
here to extracting endogenous implied recovery term structures from CDS spreads. The DS
model permits stochastic term structures of risk free rates, modeled using a forward rate
model. As a result, the default hazard function in that model is very general, where in
addition to equity state variables, interest rates are also permitted to be state variables. The
process of default in DS has dynamics driven by both equity and interest rates. In this paper,
we do not make interest rates stochastic. Instead we generalize the recovery rate model. In
DS, recovery rates are static, constant and exogenous. Here, we make a significant extension
where recovery rates are dynamic, stochastic and endogenous. The techniques introduced
here result in identification of the recovery rate term structures and the dynamics of recovery
rates as functions of the stochastic process of equity.

The inputs to the model are the term structure of forward CDS spreads, Cj, j = 1, . . . , N ;
forward risk free interest rates fj, j = 1, . . . , N , the stock price S and its volatility σ (these
last two inputs are the same as required in the implementation of the Merton (1974) model).
The outputs from the model are (a) implied functions for default intensities and recovery
rates, and (b) the term structures of forward default probabilities (λj) and forward recovery
rates (φj).

The single driving state variable in the model is the stock price S. We model its stochastic
behavior on a Cox, Ross and Rubinstein (1979) binomial tree with an additional feature:
the stock can jump to default with probability λ, where λ is state-dependent. Hence, from
each node, the stock will proceed to one of three values in the ensuing period:

S →


S u = Seσ

√
h w/prob q(1− λ)

S d = Se−σ
√
h w/prob (1− q)(1− λ)

0 w/prob λ

The stock rises by factor u = eσ
√
h, or falls by factor d = e−σ

√
h, conditional on no default.

We have assumed that recovery on equity in the event of default is zero (the third branch).
This third branch creates the “jump-to-default” (JTD) feature of the model. {q, 1 − q}
are the branching probabilities when default does not occur. If f is the risk free rate of
interest for the period under consideration, then under risk-neutrality, the discounted stock
price must be a martingale, which allows us to imply the following jump-compensated risk-
neutral probability

q =
R/(1− λ)− d

u− d
, R = efh.

We note that this jump-to-default tree provides a very general model of default. For instance,
if we wish to value a contract that pays one dollar if default occurs over the next 5 years,
then we simply attach a value of a dollar to each branch where default occurs, and then,
by backward recursion, we accumulate the expected present value of these default cashflows
to get the fair value of this claim. Conversely, if we know the value of this claim, then we
may infer the “implied” value of default probability λ that results in the model value that
matches the price of the claim. And, if we know the value of the entire term structure of
these claims, we can “imply” the term structure of default probabilities. By generalizing
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this model to claims that are recovery rate dependent, we may imply the term structure of
recovery rates.

We denote each node on the tree with the index [i, j], where j indexes time and i indexes
the level of the node at time j. The initial node is therefore the [0, 0] node. At the end of
the first period, we have 2 nodes [0, 1] and [1, 1]; there are three nodes at the end of the
second period: [0, 2], [1, 2] and [2, 2]. And so on. We allow for a different default probability
λ[i, j] at each node. Hence, the default intensity is assumed to be time- and state-dependent,
i.e. dynamic. Further, for any reference instrument, we apply a recovery rate at each node,
denoted φ[i, j], which again, is dynamic over [i, j]. We define functions for the probability
of default and the recovery rate as follows:

λ[i, j] = 1− e−ξ[i,j] h, ξ[i, j] =
1

S[i, j]b
, (6)

φ[i, j] = N(a0 + a1λ[i, j]) (7)

S[i, j] = S[0, 0] uj−1 di

where N(·) is the cumulative normal distribution. Thus, the default probabilities and re-
covery rates at each node are specified as functions of the state variable S[i, j], and are
parsimoniously parameterized by three variables: {a0, a1, b}. Note that our functional spec-
ifications for λ and φ result in values that remain within the range (0, 1). The intermediate
variable ξ is the default “intensity” or hazard rate of default. When the stock price goes to
zero, the hazard rate of default ξ becomes infinite, i.e. immediate default occurs. And as
the stock price gets very high, ξ tends towards zero. One may envisage more complicated
functional forms for λ and φ with more parameters as needed to fit the market better.

Our model implies some implicit connections between the parameters in order for the
equivalent martingale measure to exist in this jump-to-default model. These are as follows.
We begin with the probability function:

q =
R/(1− λ)− d

u− d
(8)

If 0 ≤ q ≤ 1, it implies the following two restrictions:

u ≥ R/(1− λ), d ≤ R/(1− λ) (9)

Substituting in the expressions for u = eσ
√
h, R = efh, and 1− λ = e−ξh, we get

σ ≥ (f + ξ)
√
h ≥ −σ (10)

The latter inequality is trivially satisfied since f, ξ, σ ≥ 0. The first inequality is also satisfied,
especially when h → 0.5 We also note that if we begin with the expression σ ≥ (f + ξ)

√
h

5As an aside, we also note that this restriction is also implicit in the seminal paper by Cox, Ross and
Rubinstein (1979) on binomial trees. In that paper, the risk-neutral probabilities are given by

q =
efh − e−σ

√
h

eσ
√
h − e−σ

√
h

=⇒ σ ≥ f
√
h ≥ −σ (11)

which is exactly the same restriction as we have in equation (10) above when ξ = 0.
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or σ ≥ (f + 1
Sb )
√
h, then rearranging gives the slightly modified expression:

b ≥
− ln

(
σ√
h
− f

)
lnS

(12)

We note that b is decreasing when S is increasing, when h is decreasing, when σ is increasing,
or when f is decreasing. An additional restriction is that b ≥ 0 so that default risk in the
model increases when the stock price decreases. If we use values from the data in the paper,
we find that these conditions on b are easily met. Hence, the existence of martingale measures
for pricing default risky securities is assured.

Given the values of {a0, a1, b}, the tree may be used to price CDS contracts. This is
done as follows. The fair spread on a CDS contract is that which makes the present value of
expected premiums on the CDS, denoted A[i, j], equal to the present value of expected loss
on the reference security underlying the CDS, denoted B[i, j]. These calculations have been
exposited earlier. In this case however, we use the values of λ[i, j] and φ[i, j] on the tree to
compute the fair CDS spreads by backward recursion. The operative recursive equations are
(for the CDS with maturity of N periods):

A[i, j] = CN/R +
1

R
[q[i, j](1− λ[i, j])A[i, j + 1] + (1− q[i, j])(1− λ[i, j])A[i+ 1, j + 1]]

B[i, j] = λ[i, j](1− φ[i, j]) +
1

R
[q[i, j](1− λ[i, j])B[i, j + 1] + (1− q[i, j])(1− λ[i, j])B[i+ 1, j + 1]]

for all N, i

The fair spread CN is the one that makes the initial present value of expected premiums
A[0, 0] equal to the present value of expected losses B[0, 0]. The fair spread may be written
as Cj(a0, a1, b) ≡ Cj(S, σ, f ; a0, a1, b), j = 1 . . . N .

We proceed to fit the model by solving the following least-squares program:

min
b,a0,a1

1

N

N∑
j=1

[
Cj(a0, a1, b)− C0

j

]2
(13)

where {C0
j }, j = 1 . . . N are the observable market CDS spreads, and Cj(a0, a1, b) are the

model fitted spreads. This provides the root mean-squared (RMSE) fit of the model to
market spreads by optimally selecting the three model parameters {a0, a1, b}. Note that
each computation of Cj(a0, a1, b) requires an evaluation on a jump-to-default tree, and the
minimization above results in calling N such trees repeatedly until convergence is attained.6

The model converges rapidly, in a few seconds.
Once we have the calibrated parameters, we are able to compute the values of λ[i, j] and

φ[i, j] at each node of the tree. The forward curve of default probabilities {λj} and recovery

6The reader will recognize that this is analogous to equity options where we numerically solve for the
implied volatility surface using binomial trees if American options are used. See for example Dumas, Fleming
and Whaley (1998) where a least-squares fit is undertaken for implied tree models of equity options.
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rates {φj} are defined as the set of expected forward values (term structure)

φj =
j∑
i=0

p[i, j]φ[i, j], ∀j (14)

λj =
j∑
i=0

p[i, j]λ[i, j], ∀j (15)

where we have denoted the total probability of reaching node [i, j] (via all possible paths)
on the tree as p[i, j]. The probabilities p[i, j] are functions of the node probabilities q[i, j] =
(R/(1− λ[i, j])− d)/(u− d) and the probabilities of survival (1− λ[i, j]) on the paths where
default has not occurred prior to the period j.7

We note that no restrictions have been placed on parameters {a0, a1, b} that govern the
relationship between default probabilities, recovery rates and stock prices. If these reflect
the stylized empirical fact that default rates and recovery rates are negatively correlated
then a1 < 0. Also if default rates are increasing when stock prices are falling, then b > 0.
We do not impose any restrictions on the optimization in equation (13) when we implement
the model. As we will see in subsequent sections the parameters that we obtain are all
economically meaningful.

3.1 Mapping the model to structural models

Our reduced-form model uses the stock price as the driving state variable. In this subsection
we show that, with this state variable, the model may be mapped into a structural model.
Specifically, we will see that the model results in a jump-diffusion version of Merton (1974).8

Assume that the defaultable stock price S is driven by the following jump compensated
stochastic process:

dS = (r + ξ)S dt+ σS dZ − S dN(ξ) (16)

where dN(ξ) is a jump (to default) Poisson process with intensity ξ. When the default jump
occurs, the stock drops to zero. The same stochastic process is used in Samuelson (1972) as
well. Define debt D(S, t) (and correspondingly credit spreads) as a function of S and time

7We note that the forward recovery curve is the expected value of all the recovery rates φ[, j] across
all states i at time j without any discounting. The expectation is taken using the probabilities of paths
on the jump-to-default tree. This is the expected recovery rate in a dynamic model where recovery rates
are stochastic, because they are functions of the stock price. It is not the same as the recovery rate term
structure in a static model where recovery rates are not stochastic, i.e. there is a single recovery rate for
each time j. It is possible to recover the static recovery term structure from the dynamic one, as the static
term structure is a nonlinear function of the dynamic one. We prefer to use the dynamic term structure,
consistent with our model. In practice the two term structures are likely to be quite similar. One way to
recover the static term structures is to use the fitted dynamic function for recovery rates as a function of
default probabilities, as in equation (7), in the expressions for λ in Appendix B, and numerically bootstrap
both term structures.

8In a previous version of this paper, we had developed a static implied recovery procedure using the
original Merton model, considering only diffusions. Hence, based on the mapping in this subsection, this
version of the paper may also be interpreted as a generalization of the prior static model to a dynamic model
based on jump-diffusions.
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t. Using Ito’s lemma we have

dD =
[
DS(r + ξ)S +

1

2
DSSσ

2S2 +Dt

]
dt+DSσS dZ + [φD −D]dN(ξ) (17)

where φ is the recovery rate on debt. No restrictions are placed on φ, which may be stochastic
as well. Therefore, in a structural model setting we may deduce the stochastic process for
firm value V = S +D, i.e.

dV = dS + dD

=
[
(1 +DS)(r + ξ)S +

1

2
DSSσ

2S2 +Dt

]
dt

+(1 +DS)σS dZ + [D(φ− 1)− S] dN(ξ) (18)

If we define leverage as L = D/V , then equation (18) becomes

dV

V
=

[
(1 +DS)(r + ξ)(1− L) +

1

2
DSSσ

2S(1− L) +
Dt

V

]
dt

+σ(1 +DS)(1− L) dZ + (φL− 1) dN(ξ) (19)

Therefore, there is a system of equations (16), (17), (19), that are connected, and imply the
default intensity ξ and recovery rate φ. We may choose to model firm value V (the structural
model approach of equation 19), or model S (the reduced-form approach of equation 16).
Both approaches in this setting result in dynamic models of implied recovery. In the previous
section, we chose to proceed with the reduced-form approach in discrete time. Our exposition
here also shows the equivalence in continuous time. (See also Jarrow and Protter (2004)
for connections between structural and reduced-form models in the context of information
content of the models). Next, we undertake empirical and experimental illustrations of the
methodology.

4 Analysis

4.1 Data

We obtained data from CreditMetrics on CDS spreads for 3,130 distinct firms for the period
from January 2000 to July 2002. The data comprises a spread curve with maturities from 1
to 10 years derived from market data using their model. We used only the curve from 1 to 5
years, and incorporated half-year time steps into our analysis by interpolating the half-year
spread levels from 1 to 5 years. There are a total of 31 months in the data. We sorted
firms into five quintiles each month based on the expected default frequencies provided by
CreditMetrics and then averaged values (equally-weighted) at each spread maturity for all
firms and observations within quintile for the month. Hence, we obtain an average CDS
spread curve per month for each quintile.

Summary data by quintile is provided in Table 1. The database also contained stock
prices, and debt per share9, and historical equity volatilities. Forward interest rate term

9Debt per share is based on the CreditGrades methodology (see Finger, Finkelstein, Lardy, Pan, Ta and
Tierney (2002)). Debt comprises short-term and long-term debt plus half of other debt and zero accounts
payables. Number of shares comprises both common and preferred shares.
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Table 1: Summary data on stock values and CDS spreads. The data is from CreditMetrics on
CDS spreads for 3,130 distinct firms for the period from January 2000 to July 2002. There are a
total of 31 months in the data. We sorted firms into five quintiles each month based on the expected
default frequencies provided by CreditMetrics and then averaged values (equally-weighted) at each
spread maturity for all firms and observations within quintile for the month.

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5
Stock price 23.20 20.76 18.57 16.36 14.26
Stock volatility 0.6176 0.6350 0.6579 0.6866 0.7375
Debt per share 9.39 10.08 10.38 10.81 11.61

Market CDS Spreads (basis points)
Maturity Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5
1 yr 3.48 10.86 32.90 98.86 376.48
2 yr 4.41 14.67 42.62 110.41 332.72
3 yr 6.46 22.48 60.08 137.70 337.33
4 yr 9.67 32.15 77.77 161.45 348.91
5 yr 13.16 41.47 92.88 179.47 358.12

structures are computed for each day by bootstrapping Treasury yields. This yield data is
obtained from the Federal Reserve Historical data repository that is available on their web
site.

4.2 Fitting the model

We apply the jump-to-default model to the data. Fitting the implied default intensity and
recovery functions is carried out using the R statistical package. The model converges rapidly
in less than 1 second in almost all cases. The parsimony of the model implementation is
readily seen in the Excel VBA code we provide in Appendix C.

For each of the 31 months in the sample, we calibrated the CDS spreads to the three
parameters {a0, a1, b} using a least squares fit of the model spread curve to the quintile
averaged market spreads in the data. The average percentage error in fitting the CDS
spread curve across all quintiles and months is 4.55%. The standard deviation around this
error is 1.5%.

Actual market spreads and fitted spreads by quintile and maturity across all periods are
shown in Table 2 where the average values of the parameters {a0, a1, b} are reported for each
quintile. Parameter a0 has no economically determined sign, but the other two parameters
do, and we find that they conform to theory. We see that a1 is less than zero, implying an
inverse relation between default probabilities and recovery rates for all quintiles. Parameter
b is greater than zero as required, implying that as stock prices fall, the probability of default
becomes larger. Since λ = 1/Sb, the smaller the value of b, the greater the probability of
default. As can be seen in Table 2, the value of this parameter is much smaller for the higher
(low credit quality) quintile.
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Table 2: Actual and fitted spread term structures. The spread values represent the averages across
31 months of data for each quintile broken down by the maturity of the CDS contract into 1 to 5
years. The parameters {a0.a1, b} are the three parameters for the default probability and recovery
rate functions. We report the average of these values for the entire period by quintile.

Parameter Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5
a0 2.0937 1.4679 0.9778 0.6622 7.1245
a1 -4.1005 -5.0468 -3.2557 -1.1549 -11.9068
b 1.3421 1.3503 1.2594 1.0399 0.3519

Market CDS Spreads in basis points
Maturity Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

1 yr 3.48 10.86 32.90 98.86 376.48
2 yr 4.41 14.67 42.62 110.41 332.72
3 yr 6.46 22.48 60.08 137.70 337.33
4 yr 9.67 32.15 77.77 161.45 348.91
5 yr 13.16 41.47 92.88 179.47 358.12

Fitted CDS Spreads in basis points
Maturity Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

1 yr 3.20 10.12 30.12 90.35 352.71
2 yr 4.44 14.73 43.36 117.60 342.67
3 yr 6.55 22.75 61.89 143.25 347.60
4 yr 9.81 32.62 78.77 161.64 354.06
5 yr 13.05 41.13 91.39 173.80 359.22

RMSE/Avg Spread 0.0405 0.0351 0.0451 0.0625 0.0444
Stdev 0.0126 0.0082 0.0104 0.0065 0.0191
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4.3 Calibrated term structures

Using the data in Table 1 on the “average” firm within each quintile, we calibrated the
model. For each month and quintile, we used the calibrated values of {a0, a1, b} to compute
the term structures of forward probabilities of default and forward recovery rates by applying
equations (14) and (15). These are displayed in Figures 1 and 2 respectively.

The term structures of forward default probabilities in Figure 1 show increasing term
structures for the better quality credit qualities (quintiles 1 to 3). Quintile 4 has a humped
term structure, and quintile 5 (the poorest credit quality) has a declining term structure of
default probability. This conforms to known intuitions. For low quality firms, the short-
run likelihood of default is high, and then declines, conditional on survival. Conversely, for
high quality firms the short-run probability of default is low compared to longer maturities.
The overall average risk-neutral probability of default is 5.86% (across all maturities in the
term structure). We note that expected default frequencies under the statistical probability
measure in prior work (see Das, Duffie, Kapadia and Saita (2007) for example) is around
1.5%, implying a ratio of risk-neutral to physical default probabilities of around 3 to 4,
consistent with what is known in the literature, e.g. Berndt, Douglas, Duffie, Ferguson and
Schranz (2005). We also note that the conditional forward default probabilities for Quintile
5 decline rapidly. This is expected, because conditional on survival, these currently weak
firms may be viewed by the market as being more resilient in the long run.

The term structures of forward recovery rates are shown in Figure 2. Recovery term
structures show declining levels as the quality of the firms declines from quintile 1 to quintile
5. Quintile 1 recovery rates are in the 90% range, whereas the worst quality quintile has
recovery rates that drop to the 30% range. The average across all maturities and quintiles
of the risk-neutral forward recovery rate in our data is 73.55%. The term structures are
declining, i.e. the forward recovery is lower when the firm defaults later rather than sooner.
There may be several reasons for this. First, firms that migrate slowly into default suffer
greater dissipation of assets over time, whereas a firm that has a short-term surprise default
may be able to obtain greater resale values for its assets. Second, sudden defaults of high-
grade names that are associated with fraud result in loss of franchise value, though the assets
of the firm are still valuable and have high resale values. Third, recovery rates of the poorest
quintile firms are in the range seen in the empirical record. This is the quintile from which
almost all defaults have historically occurred. In contrast, surprise defaults of high quality
firms are likely to result in higher recovery rates. Finally, we note that in the Merton (1974)
structural class of models, conditional recovery rates usually decline with maturity, since
recovery in that model depends on the firm value at maturity; conditional on default, a firm
is likely to have lost more of its asset value over a longer time frame.

In a separate exercise, we fitted the model to the average firm for each quintile within
each month. We then averaged default probabilities and recovery rates across maturities
and quintiles for each month to construct time series indices. The plot is shown in Figure 3.
Over the period from 2000 to 2002, the credit markets worsened. This is evidenced in the
increasing levels of implied probabilities of default and declining levels of recovery rates. The
time series correlation of the two series is −0.56. While this relationship is obtained for the
risk-neutral measure, similar, though technically unconnected results are obtained for the
statistical measure – Altman, Brady, Resti and Sironi (2005) also found a strong negative
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Figure 1: Term structure of Forward Probabilities of Default for each quintile using data averaged
over 31 months (Jan 2000 to July 2002). All firms in the sample were divided into quintiles based
on their expected default frequencies (EDFs). The average CDS spread curve in each quintile is
used to fit the jump-to-default (JTD) model using the stock price and stock volatility as additional
identification data. Fitting is undertaken using a two parameter function for the forward recovery
rate (φ) and a one parameter function for the forward probability of default (λ). The overall average
probability of default from all quintiles and across all months and maturities in the data is 5.86%.
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Figure 2: Term structure of Forward Probabilities of Default for each quintile using data averaged
over 31 months (Jan 2000 to July 2002). All firms in the sample were divided into quintiles based
on their expected default frequencies (EDFs). The average CDS spread curve in each quintile is
used to fit the jump-to-default (JTD) model using the stock price and stock volatility as additional
identification data. Fitting is undertaken using a two parameter function for the forward recovery
rate (φ) and a one parameter function for the forward probability of default (λ). The overall average
recovery rate from all quintiles and across all months in the data is 73.55%.
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Figure 3: Average probability of default and recovery rates over the sample period. The Figure
depicts the equally weighted average across all quintiles of the data. As credit risk increased in the
economy from 2000 to 2002, we see that the probability of default increased whereas the implied
recovery rate declined. The average is taken across all maturities of the term structure at a given
point in time. The correlation between the time series of default probability and recovery rates is
−0.56.

correlation using data on realized default and recovery rates. Similar levels of negative
correlation are also provided in the results of Chava, Stefanescu and Turnbull (2006).

4.4 Individual Firm Calibration

The analysis of the model using quintile-aggregated data provides only a first cut assessment
that the model is a reasonable one. In practice, the model is intended for application to
individual names. Therefore in this sub-section, we explore three liquidly traded issuers over
the period January 2000 to July 2002. The issues we examine are (a) parameter stability
in the calibration of the model, (b) evolution of the term structures of forward default
probabilities and recovery rates over this time period, and (c) the stability of the model
calibration to different forms of the recovery function.

We chose three issuers for this exercise, of low, medium and high credit risk. The three
firms are Sunoco (SUN), General Motors (GM) and Amazon (AMZN) respectively. For each
firm month, we fitted the model to only 5 points on the average CDS spread curve for the
month, i.e. to the 1,2,3,4,5 year maturities. The calibration exercise also uses the stock
price, stock volatility, and the forward interest rate curve (averages for the month). The
statistical package R was used for this exercise. We also replicated the results in Excel to
make sure that both implementations provided the same results. The Excel VBA program
is presented in the Appendix.
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Figure 4: Calibration Time Series for Sunoco. This graph shows the time series of CDS spreads
and calibrated parameters (a0, a1, b) for the period Jan 2000 to July 2002.

4.4.1 Time series

We begin by examining the results for the low risk firm Sunoco. Figure 4 shows the history
of the 5 yr CDS spread. We see that spreads for Sunoco declined over time, even though
the overall change for the 5 year maturity is just 25 basis points, which is very small. The
figure also shows that the three parameters (a0, a1, b) of the λ and φ functions are relatively
stable over time. The term structures of forward default probabilities and recovery rates are
shown in Figure 5. The term structures have the same shapes as those seen in the case of
the quintile analysis of the previous section.

The medium risk firm that we analyzed is GM, results for which are shown in Figures 6
and 7. Whereas with Sunoco, the 5 year CDS spread ranged from 45 to 75 basis points, in
the case of GM, the range is from 150 to 450 basis points. We note that the term structure
of CDS spreads is inverted, so that the short term spreads are higher than long term spreads.
The shape of the spread curve is indicative of the market’s concern with short-run default.
Correspondingly, we see that the parameter b is much lower than that experienced with
Sunoco. This is also evidence in a downward sloping term structure of default probability.
In the case of GM, spreads increased over the time period, whereas with Sunoco, the opposite
occurred. Also, the 5 year recovery rate is much lower for GM (in the range of 20-30%) versus
Sunoco (in the range of 70-80%).

As an example of a firm with very high risk, we look at Amazon. Result for AMZN are
shown in Figures 8 and 9. In this case, spreads ranged from 450 to 1100 basis points, and



Implied Recovery 21

m
aturity

1

2

3

4

5

m
onth

s 
(J

an 2
000 - 

Ju
ly
 2

002)

5

10

15

20

25

30

F
w

d
 P

D
s

0.020

0.022

0.024

0.026

0.028

0.030

sun.dat

m
aturity

1

2

3

4

5

m
onth

s 
(J

an 2
000 - 

Ju
ly
 2

002)

5

10

15

20

25

30

F
w

d
 R

e
c
o
v
 ra

te
s

0.70

0.75

0.80

0.85

0.90

0.95

sun.dat

Figure 5: Calibration Time Series for Sunoco. This graph shows the time series of implied term
structures of forward default probabilities and recovery rates for the period Jan 2000 to July 2002.
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Figure 6: Calibration Time Series for General Motors. This graph shows the time series of CDS
spreads and calibrated parameters (a0, a1, b) for the period Jan 2000 to July 2002.
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Figure 7: Calibration Time Series for General Motors. This graph shows the time series of implied
term structures of forward default probabilities and recovery rates for the period Jan 2000 to July
2002.

increased rapidly over the time period as market conditions worsened. The probabilities of
default increased and then declined somewhat. However, in a clear indication of worsening
conditions, the recovery rates declined rapidly over the time period, suggestive of a low
implied resale value of Amazon’s assets. We see that the parameters vary over time but in
a smooth manner. In the case of all three firms, parameter evolution appears to be quite
smooth (with a range). Hence, there is some “stickiness” to the parameters, suggesting that
credit model structure, even for individual firms, does not change in a drastic manner. The
indication we obtain from these single-issuer analyses is that our dynamic modeling of the
term structures of default probabilities and recovery rates appears to work well with forward
interest rates, stock prices and stock volatilities as driving state variables.

4.4.2 Alternative Recovery Function Specifications

The recovery model in the paper is essentially a probit function specification. To recall, the
recovery rate is modeled as φ = N(a0 +a1λ), where N(·) is the normal distribution function.
We note that this specification ensures that the recovery rate remains bounded in the (0, 1)
range.

We now examine two other specifications. These are:

1. Logit. The functional form is

φ =
1

1 + exp(a0 + a1λ)

2. Arctan. The functional form here is as follows:

φ =
1

2

[
arctan(a0 + a1λ)

2

π
+ 1

]
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Figure 8: Calibration Time Series for Amazon. This graph shows the time series of CDS spreads
and calibrated parameters (a0, a1, b) for the period Jan 2000 to July 2002.
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Figure 9: Calibration Time Series for Amazon. This graph shows the time series of implied term
structures of forward default probabilities and recovery rates for the period Jan 2000 to July 2002.



Implied Recovery 24

We note that under both these specifications as well, the recovery function produces values
that remain in the (0, 1) interval.

We re-calibrated the model under these specifications and compared the extracted term
structures of default and recovery for all three of our sample firms. The results are presented
in Table 3. We used the calibration of the model for the month of September 2001 as an
illustration. We note the following features of these results. First, the fitting error (RMSE) is
very small, ranging from less than 1% of average CDS spreads (in the case of AMZN) to 8.2%
(in the arctan model for SUN). The model appears to fit better for poor credit quality firms
than for good ones (because spreads are larger for poor firms, the percentage error tends to
be lower). Second, the calibrated term structures of default probabilities and recovery rates
are similar across the three recovery function specifications. They are the closest for AMZN
and least similar for SUN, although not that different. Therefore, model specification does
not appear to be much of an issue. Of course, the fitted parameters are different, but the
fact that the models deliver similar results suggests that the framework is general and may
be implemented in different ways. The overall conclusion is that the model is insensitive to
the parametric form of the recovery function, and tends to fit the data better for high risk
firms than low risk ones.
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Table 3: Calibration of the model for alternative recovery function specifications. For each of the three illustrative firms - SUN, GM,
AMZN - we calibrated the model for September 2001 using three specifications for the recovery function: (a) Probit: φ = N(a0 + a1λ),
(b) Logit: φ = 1

1+exp(a0+a1λ) , and (c) Arctan: φ = 1
2

[
arctan(a0 + a1λ) 2

π + 1
]
. The results are presented in the three panels below, one

for each firm. The market spreads are shown, along with the fitted spreads, so as to give an idea of the quality of fit. For each recovery
function, we report the fitted spread and the calibrated term structure of forward default probabilities and recovery rates. The percentage
RMSE is also reported (it is the root mean-squared error divided by the average CDS spread across maturities for the month).

SUN Probit Model: %RMSE=4.8 Logit Model: %RMSE=0.2 Arctan Model: %RMSE=8.17
Maturity (yrs) Mkt CDS spr Fitted Spr Fwd PD Fwd Recov Fitted Spr Fwd PD Fwd Recov Fitted Spr Fwd PD Fwd Recov

1 6.74 6.23 0.0278 0.9776 6.76 0.1209 0.9944 9.97 0.0314 0.9683
2 15.40 14.99 0.0285 0.9100 15.40 0.1016 0.8569 12.14 0.0319 0.9305
3 28.98 31.08 0.0287 0.8209 28.93 0.0853 0.7194 31.31 0.0318 0.8808
4 43.08 43.89 0.0285 0.7844 43.17 0.0718 0.5958 43.17 0.0312 0.7934
5 55.99 53.78 0.0278 0.7438 55.95 0.0606 0.4983 54.03 0.0302 0.7305

Parameters (a0, a1, b): 4.178 -78.189 0.994 6.521 -96.774 0.570 21.344 -360.64 0.959
GM Probit Model: %RMSE=3.4 Logit Model: %RMSE=3.8 Arctan Model: %RMSE=5.1

Maturity (yrs) Mkt CDS spr Fitted Spr Fwd PD Fwd Recov Fitted Spr Fwd PD Fwd Recov Fitted Spr Fwd PD Fwd Recov
1 1038.12 1045.11 0.2816 0.6288 1045.67 0.2753 0.6202 1049.91 0.2465 0.5741
2 735.34 697.81 0.1869 0.6590 691.93 0.1845 0.6673 674.56 0.1723 0.7040
3 532.72 536.99 0.1287 0.5332 538.19 0.1280 0.5353 545.66 0.1239 0.5481
4 447.25 463.44 0.0911 0.4015 465.54 0.0913 0.4080 468.90 0.0912 0.4486
5 398.49 421.44 0.0661 0.3102 422.58 0.0666 0.3192 424.08 0.0685 0.3600

Parameters (a0, a1, b): 12.724 -44.026 0.248 -23.330 82.950 0.254 95.694 -387.23 0.282
AMZN Probit Model: %RMSE=0.1 Logit Model: %RMSE=0.1 Arctan Model: %RMSE=0.1

Maturity (yrs) Mkt CDS spr Fitted Spr Fwd PD Fwd Recov Fitted Spr Fwd PD Fwd Recov Fitted Spr Fwd PD Fwd Recov
1 749.92 749.86 0.1381 0.4571 749.87 0.1382 0.4576 749.86 0.1381 0.4572
2 942.44 942.52 0.1876 0.3957 942.50 0.1876 0.3959 942.51 0.1876 0.3957
3 1048.50 1048.66 0.1713 0.3102 1048.69 0.1713 0.3103 1048.67 0.1713 0.3102
4 1054.55 1054.48 0.1014 0.2307 1054.49 0.1014 0.2308 1054.48 0.1014 0.2307
5 1071.10 1070.98 0.0910 0.1845 1070.99 0.0909 0.1845 1070.98 0.0910 0.1845

Parameters (a0, a1, b): -0.116 0.063 0.931 0.183 -0.094 0.930 -0.146 0.079 0.931
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4.4.3 Calibration sensitivity to changes in inputs

We now examine whether the implied framework is overly sensitive to the inputs. Are the
extracted term structures of default and recovery so sensitive to the inputs that small changes
in the inputs result in dramatic changes in the resultant term structures?

To assess this question, we used the calibration setting for our three sample firms in the
month of September 2001, as before. We changed each input to the model by increasing them
individually by 10% and then examined the resultant changes in the calibrated parameters
and the term structures. The results are portrayed in Table 4. Across all the experiments
conducted, the sensitivity of the calibrated parameters and the implied term structures does
not display any sudden changes. In fact, the change in implied values does not exceed 10%.
The evidence clearly suggests that the model framework is very stable in the calibration
process.

4.4.4 Calibrating multiple spread curves

For a single firm, there may be multiple debt issues with different features. For example,
the debt tranches may differ in their seniority. CDS contracts written on different reference
instruments of the same firm will have the same default probability term structure, but
different recovery rate term structures.

It is possible to calibrate our model to multiple debt tranches of the same firm. Without
loss of generality, assume that there are two debt tranches in the firm. Calibration is under-
taken by fitting both term structures of CDS spreads to five parameters: {a01, a11, a02, a12, b},
where alj is the parameter al, l = {0, 1} for the j-th term structure of credit spreads. Of
course, since the term structure of default probabilities is the same across the debt tranches,
only a common parameter b is necessary.

To illustrate, we take the example of Amazon for September 2001. Using the same data
as in the previous subsection, we created two term structures of CDS spreads by setting one
term structure to be higher than that of the original data and setting the second one to be
lower. One may imagine the latter term structure to relate to debt with higher seniority
than the former term structure. Each term structure is annual and hence we calibrate ten
observations to five parameters by minimizing the root mean-squared error (RMSE) across
both term structures. Convergence is rapid and results in a single term structure of default
probabilities and two term structures of recovery rates. The inputs and outputs of this
calibration exercise are shown in Figure 10. As expected, the higher quality tranche results
in recovery rates that are higher than that of the lower quality tranche.

Analogously, it may be of interest to calibrate the spread curves of multiple issuers jointly
such that they all have the same default probability term structure, but different recovery
term structures. The approach would be the same – the parameter b is will be the same
across issuers, but separate parameters will be used for fitting the individual recovery term
structures.
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Table 4: Sensitivity of implied term structures of forward default probabilities (FwdPD) and recovery rates (FwdRecov) to changes in input variables.
Keeping forward rates and CDS spreads fixed (initial data), the base case inputs and calibrated term structures of default probabilities and recovery
rates are presented first. In the lower half of the panel for each firm, we show the input stock price and volatility, as well as the three parameters
(a0, a1, b) as calibrated for best fit. The fitting error (RMSE as a percentage of average CDS spread) is also reported. Calibration is then undertaken
after shifting the stock price up by 10%. Results are reported under the heading “Stock Shift”. Next, the “Volatility Shift” case shows the calibration
results when volatility is shifted up by 10%. Finally, the “CDS Spr Shift” columns show the results when the entire spread curve experiences a parallel
upward shift of 10%.

SUN Initial Data Base Case Stock Shift Volatility Shift CDS Spr Shift
T FwdRt Mkt Spr FwdPD FwdRecov FwdPD FwdRecov FwdPD FwdRecov FwdPD FwdRecov
1 0.0282 6.74 0.0278 0.9776 0.0288 0.9787 0.0209 0.9662 0.0297 0.9782
2 0.0341 15.40 0.0285 0.9100 0.0293 0.9101 0.0225 0.9049 0.0303 0.9041
3 0.0412 28.98 0.0287 0.8209 0.0295 0.8204 0.0238 0.8177 0.0304 0.8095
4 0.0478 43.08 0.0285 0.7844 0.0291 0.7837 0.0246 0.7739 0.0300 0.7776
5 0.0545 55.99 0.0278 0.7438 0.0283 0.7424 0.0250 0.7372 0.0291 0.7322

Inputs Params Inputs Params Inputs Params Inputs Params
Stk Price a0 36.293 4.179 39.922 4.339 36.293 3.328 36.293 4.394
Stk Vol a1 0.338 -78.190 0.338 -80.220 0.372 -71.636 0.338 -79.919

b 0.994 0.958 1.073 0.974
RMSE% 4.808 5.062 2.304 6.071

GM Initial Data Base Case Stock Shift Volatility Shift CDS Spr Shift
T FwdRt Mkt Spr FwdPD FwdRecov FwdPD FwdRecov FwdPD FwdRecov FwdPD FwdRecov
1 0.0282 1038.12 0.2816 0.6288 0.2819 0.6292 0.3023 0.6542 0.2847 0.5961
2 0.0341 735.34 0.1869 0.6590 0.1873 0.6588 0.1952 0.6527 0.1881 0.6501
3 0.0412 532.72 0.1287 0.5332 0.1290 0.5329 0.1310 0.5041 0.1290 0.5317
4 0.0478 447.25 0.0911 0.4015 0.0914 0.4006 0.0907 0.3697 0.0911 0.3974
5 0.0545 398.49 0.0661 0.3102 0.0663 0.3089 0.0644 0.2798 0.0659 0.3052

Inputs Params Inputs Params Inputs Params Inputs Params
Stk price a0 87.256 12.726 95.982 12.965 87.256 13.602 87.256 13.026
Stk Vol a1 0.324 -44.034 0.324 -44.828 0.356 -43.678 0.324 -44.905

b 0.248 0.242 0.229 0.245
RMSE% 3.362 3.345 4.094 3.251

AMZN Initial Data Base Case Stock Shift Volatility Shift CDS Spr Shift
T FwdRt Mkt Spr FwdPD FwdRecov FwdPD FwdRecov FwdPD FwdRecov FwdPD FwdRecov
1 0.0282 749.92 0.1381 0.4571 0.1196 0.3722 0.1750 0.5729 0.1382 0.4030
2 0.0341 942.44 0.1876 0.3957 0.1737 0.3460 0.2180 0.4608 0.1876 0.3491
3 0.0412 1048.50 0.1713 0.3102 0.1734 0.2872 0.1766 0.3363 0.1713 0.2738
4 0.0478 1054.55 0.1014 0.2307 0.1048 0.2096 0.1013 0.2423 0.1014 0.2035
5 0.0545 1071.10 0.0910 0.1845 0.0938 0.1711 0.0856 0.1840 0.0910 0.1628

Inputs Params Inputs Params Inputs Params Inputs Params
Stk price a0 7.756 -0.116 8.531 -0.409 7.756 0.255 7.756 -0.255
Stk Vol a1 0.972 0.063 0.972 0.690 1.069 -0.406 0.972 0.069

b 0.931 0.961 0.805 0.930
RMSE% 0.011 0.286 0.308 0.011
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5 Discussion

There is no extant model for determining forward looking recovery rates, even though re-
covery rates are required in the pricing of almost all credit derivative products. This market
deficiency stems from an identification problem emanating from the mathematical structure
of credit products. Market participants have usually imposed recovery rates of 40% or 50%
(for U.S. corporates) in an ad-hoc manner in their pricing models.

The paper remedies this shortcoming of existing models. We develop a flexible jump-to-
default model that uses additional data, the stock price S and stock volatility σ in conjunction
with credit spreads to identify not just the implied values of default probability λ and recovery
rate φ, but instead, the parameterized functional forms of these two inputs. The model in
this paper is parsimonious and requires the calibration of only three parameters {a0, a1, b}.

We illustrate the application of the model using average firm data on CDS spread curves
for 5 quintiles over 31 months in the period from January 2000 to July 2002. We calibrate
the model for each quintile and month, and then use the calibrated parameters to identify
the risk-neutral term structures of forward default probabilities and recovery rates.

We also examined the behavior of the model on low, medium and high risk firms, with
upward and downward sloping credit spread term structures. Many useful results are ob-
tained. First, the model calibrate very well to individual firms, with very low mean-squared
errors. Second, fitting the model month by month, we find that there is stability in the esti-
mated parameters. Hence, the parameters do change in a smooth manner over time, and the
dynamics of the extracted term structures of default probability and recovery are driven by
changes in the state variables (equity prices and volatilities). Third, we assessed the model
for different recovery rate specifications and found that the extracted term structures are
robust to changes in model specification. Fourth, we demonstrate that the calibration of the
model is not sensitive to small changes in the inputs. Hence, the mathematical framework
of the model is stable. Fifth, we extended the model to fitting multiple debt tranches of the
same issuer, such that the term structure of default probabilities remains the same across
tranches, yet we obtain multiple term structures of recovery rates, one for each debt tranche.
The same approach also works to extend the model to fitting multiple issuers (within the
same rating class for example) simultaneously to better make use of the information across
issuers.

A natural question that arises in this class of models is whether the model depends
critically on integration of the equity and credit markets (see Kapadia and Pu (2008) for
evidence of weak integration). We note that integration of markets is a very strong condition
that is sufficient but not necessary in our framework. The model uses the stock price and
volatility as state variables that drive the dynamics of default and recovery. As long as there
is an established empirical link between the dynamics of equity and credit risk, the model is
on a good footing. Indeed, the same is assumed in all structural models of default risk, and
we have shown this linkage theoretically in the paper. There is a growing body of empirical
evidence that CDS spreads are well-related to equity dynamics, as in the work of Berndt,
Douglas, Duffie, Ferguson and Schranz (2005), Duffie, Saita and Wang (2005), and Das and
Hanouna (2007). Another body of evidence shows that that default and recovery prediction
models are also well grounded on distance-to-default, a measure of credit risk extracted from
equity prices and volatilities (see Finger, Finkelstein, Lardy, Pan, Ta and Tierney (2002);
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Figure 10: Simultaneous calibration of multiple CDS spread curves. CDS contracts written on dif-
ferent reference instruments of the same firm will have the same default probability term structure,
but different recovery rate term structures. We take the example of Amazon for September 2001.
We created two term structures of CDS spreads by setting one term structure to be higher than
that of the original data and we set the second one to be lower. Each term structure is annual and
we calibrate ten observations to five parameters. Calibration is undertaken by fitting both term
structures of CDS spreads to five parameters: {a01, a11, a02, a12, b}, where alj is the parameter al for
the j-th term structure. Since the term structure of default probabilities is the same across the debt
tranches, only a common parameter b is necessary. The screen shot shows the fit of the model in
Excel. The input spread curves are denoted “MktSpr1” and “MktSpr2”. The fitted spread curves
are “CDSspr”. The forward default probability and recovery rate curves are denoted “FwdPD”
and “FwdRec” respectively.
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Gupton and Stein (2005); Jarrow (2001); Sobehart, Stein, Mikityanskaya and Li (2000); and
Das, Hanouna and Sarin (2006)). Nevertheless, the model is agnostic as to the state variable
that may be used to drive credit spread dynamics. Instead of equity, any other variable that
relates to credit risk may be used such as macroeconomic variables and ratings, as long as
there are sufficient inputs that allow the variable’s dynamics to be represented on the model
tree.

The model is flexible in the manner in which it may be calibrated. Instead of equity,
options may be used to calibrate the model. We note that the volatility input to the model
currently captures the information from options. However, one deficiency of the model is
that it does not use the information in the option smile, which is partially related to credit
risk (it is easy to show that in a jump-to-default model of equity, a negative skew on tree
from the default jump results in an implied volatility skew). To accommodate the volatility
skew in our model we would need to change the pricing tree from the current one, i.e. the
Cox, Ross and Rubinstein (1979) tree, to the local volatility tree model of Derman and
Kani (1994). This would enhance the complexity of the model appreciably and we leave it
for future research. However, this is an important extension, because it allows the entire
volatility surface to be used in the calibration exercise, raising the information content of
the model.

Given that the model is easy to understand and calibrate, it may be used to further
the development of credit derivatives indexed to recovery rates, such as recovery swaps and
digital default swaps. It will also provide useful guidance to regulators in their recovery
specifications for the implementation of Basel II.

A Appendix: Constant Recovery Rates

In practice, a common assumption is to fix the recovery rate to a known constant. If we
impose the condition that φj ≡ φ, ∀j, it eliminates N parameters, leaving only the N
default intensities, λj. Now, we have N equations with as many parameters, which may be
identified in a recursive manner using bootstrapping. To establish ideas, we detail some of
the bootstrapping procedure.

Starting with the one-period (N = 1) default swap, with a premium C1 per annum, we
equate payments on the swap as follows:

A1 = B1

C1 h Q(T0)D(T1) =
(
1− e−λ1h

)
D(T1)(1− φ)

C1 h =
(
1− e−λ1h

)
(1− φ)

This results in an identification of λ1, which is:

λ1 = −1

h
ln

[
1− φ− C1 h

1− φ

]
, (20)

which also provides the survival function for the first period, i.e. Q(T1) = exp(−λ1 h).
We now use the 2-period default swap to extract the intensity for the second period. The

premium for this swap is denoted as C2. We set A2 = B2 and obtain the following equation
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which may be solved for λ2.

C2 h
2∑
j=1

Q(Tj−1)D(Tj) =
2∑
j=1

Q(Tj−1)
(
1− e−λjh

)
D(Tj)(1− φ) (21)

Expanding this equation, we have

C2 h {Q(T0)D(T1) +Q(T1)D(T2)}
= Q(T0)

(
1− e−λ1h

)
D(T1)(1− φ)

+Q(T1)
(
1− e−λ2h

)
D(T2)(1− φ)

Re-arranging this equation delivers the value of λ2, i.e.

λ2 = −1

h
ln[L1/L2] (22)

L1 ≡ Q(T0)
(
1− e−λ1h

)
D(T1)(1− φ)

+Q(T1)D(T2)(1− φ)− C2 h [D(T1) +Q(T1)D(T2)] (23)

L2 ≡ Q(T1)D(T2)[1− φ] (24)

and we also note that Q(T0) = 1.
In general, we may now write down the expression for the kth default intensity:

λk =
ln

[
Q(Tk−1)D(Tk)(1−φ)+

∑k−1

j=1
Gj−Ck h

∑k

j=1
Hj

Q(Tk−1)D(Tk)(1−φ)

]
−h

(25)

Gj ≡ Q(Tj−1)
(
1− e−λjh

)
D(Tj)(1− φ) (26)

Hj ≡ Q(Tj−1)D(Tj) (27)

Thus, we begin with λ1 and through a process of bootstrapping, we arrive at all λj, j =
1, 2, . . . , N .

B Time-Dependent Recovery Rates

The analysis in the previous appendix is easily extended to the case where recovery rates
are different in each period, i.e. we are given a vector of φjs. The bootstrapping procedure
remains the same, and the general form of the intensity extraction equation becomes (for all
k)

λk =
−1
h

ln

[
Q(Tk−1)D(Tk)(1− φj) +

∑k−1
j=1 Gj − Ck h

∑k
j=1Hj

Q(Tk−1)D(Tk)(1− φj)

]
(28)

Gj ≡ Q(Tj−1)
(
1− e−λjh

)
D(Tj)(1− φj) (29)

Hj ≡ Q(Tj−1)D(Tj) (30)

This is the same as equation (25) where the constant φ is replaced by maturity-specific φjs.
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C Excel VBA Code

In this appendix, we provide a sample program that we developed for spreadsheet illustration
of the model. This code is written Visual Basic for Applications, a standard add-in for
Excel spreadsheets. The code is for illustration only, and actual implementations may be
undertaken using code that is much more optimized and works for much smaller time steps.
However, this code runs very well in Excel, and may be used to calibrate the model. The
solver function in Excel is able to calibrate the three model parameters {a0.a1, b} to observed
spreads in a few seconds, when supplied with the following inputs (as may be noticed in the
function call below): stock price (S), volatility (σ), maturity of the longest CDS spread T ,
forward curve of risk free rates (f), and time step (h). The output of the model comprises
three term structures, that of the spreads, default probabilities and recovery rates.

’FUNCTION TO COMPUTE CDS SPREADS

’The model only returns (spr,lam,phi) for a specific maturity t

Function jtd(s0, v, t, f, h, a0, a1, b)

’Set up basic values

n = t / h

dt = h

u = Exp(v * Sqr(dt))

d = Exp(-v * Sqr(dt))

’Set up the stock price, pd, phi, prob trees

ReDim s(n + 1, n + 1)

ReDim xi(n, n)

ReDim lam(n, n)

ReDim r(n)

ReDim q(n, n)

ReDim phi(n, n)

’Root node values

s(1, 1) = s0

xi(1, 1) = 1 / s0 ^ b

lam(1, 1) = 1 - Exp(-xi(1, 1) * h)

phi(1, 1) = phi_fn(a0, a1, s(1, 1), lam(1, 1))

r(1) = Exp(f(1) * h)

q(1, 1) = (r(1) / (1 - lam(1, 1)) - d) / (u - d)

’Generate trees

If (n > 1) Then

For i = 2 To n

r(i) = Exp(f(i) * h)

s(i, 1) = s(i - 1, 1) * u
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xi(i, 1) = 1 / s(i, 1) ^ b

lam(i, 1) = 1 - Exp(-xi(i, 1) * h)

’Check here that lambda is within range,

’because it is not guaranteed for large h

’In production systems, h is always small

If (lam(i, 1) > 0.99) Then

lam(i, 1) = 0.99 ’The correct fix here is to make time step h small

End If

phi(i, 1) = phi_fn(a0, a1, s(i, 1), lam(i, 1))

q(i, 1) = (r(i) / (1 - lam(i, 1)) - d) / (u - d)

For j = 2 To i

s(i, j) = s(i - 1, j - 1) * d

xi(i, j) = 1 / s(i, j) ^ b

lam(i, j) = 1 - Exp(-xi(i, j) * h)

If (lam(i, j) > 0.99) Then

lam(i, j) = 0.99

End If

phi(i, j) = phi_fn(a0, a1, s(i, j), lam(i, j))

q(i, j) = (r(i) / (1 - lam(i, j)) - d) / (u - d)

Next j

Next i

End If

’Backward recursion for cds spread

ReDim AA(n + 1, n + 1) ’PV of default payments at end of period

ReDim BB(n + 1, n + 1) ’PV of $1 premium payments at end of period

For j = 1 To n

AA(n + 1, j) = 0

BB(n + 1, j) = 0

Next j

For i = n To 1 Step -1

For j = 1 To i

AA(i, j) = (1 - lam(i, j)) * (q(i, j) * AA(i + 1, j)

+ (1 - q(i, j)) * AA(i + 1, j + 1)) / r(i)

+ lam(i, j) * (1 - phi(i, j)) / r(i)

BB(i, j) = (1 - lam(i, j)) * (q(i, j) * BB(i + 1, j)

+ (1 - q(i, j)) * BB(i + 1, j + 1)) / r(i) + 1 / r(i)

Next j

Next i

’Backward recursion for forward Lambda and Phi

ReDim LL(n + 1) ’Forward Lambda

ReDim PP(n + 1) ’Forward Lam*(1-Phi)

For j = 1 To n
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LL(j) = lam(n, j)

PP(j) = phi(n, j)

Next j

For i = n - 1 To 1 Step -1

For j = 1 To i

LL(j) = (1 - lam(i, j)) * (q(i, j) * LL(j) + (1 - q(i, j)) * LL(j + 1))

PP(j) = (1 - lam(i, j)) * (q(i, j) * PP(j) + (1 - q(i, j)) * PP(j + 1))

Next j

Next i

’Return the spread value

spr = AA(1, 1) / BB(1, 1) * 10000 / h

jtd = Array(spr, LL(1), PP(1))

End Function

’RECOVERY FUNCTION (3 Different Functional forms)

Function phi_fn(a0, a1, s, lam)

’PROBIT

phi_fn = WorksheetFunction.NormSDist(a0 + a1 * lam)

’LOGIT

’phi_fn = 1 / (1 + Exp(a0 + a1 * lam))

’ARCTAN

’phi_fn = 0.5 * (WorksheetFunction.Atan2(1, a0 + a1 * lam) * 2

/ WorksheetFunction.Pi + 1)

End Function
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