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Rotman lenses are attractive candidates for use in beam forming networks (BFNs) for satellite-
based direct radiating arrays. This paper will review the basic design equations for a Rotman lens
and will describe Rotman lens synthesis and analysis software developed by the author. The synthe-
sis tool, named RLDESIGN, is written in MATLAB to automatically and rapidly solve the Rotman
lens equations and interactively display the resulting lens geometry and performance parameters. It
features a full graphical user interface customized to easily design, tune, and optimize a Rotman
lens for a given application. The more rigorous analysis tool, named NARL (Numerical Analysis
of Rotman Lens), is written in MATLAB and Fortran 95 and is based on a boundary integral/surface
integral hybrid formulation. NARL uses a unique wide-band expansion of the parallel plate Green’s
function to enable rapid analysis of the lens for a large number of frequencies. To demonstrate the
accuracy of the codes, comparisons are presented of the predictions of both RLDESIGN and NARL
to measurements on a prototype Rotman lens.

Introduction

ARotman lens1 is a parallel-plate structure used as

the beam forming network (BFN) for a linear ar-

ray of radiating antenna elements. By stacking multi-

ple lenses, one can form a BFN suitable for use with

a planar array.2 The advantages of Rotman lenses in-

clude monolithic construction, ease of manufacture, low

cost, light weight, and simultaneous availability of many

beams. Because it is a true time-delay device, the Rot-

man lens produces frequency-independent beam steering

and is therefore capable of extremely wide-band opera-

tion. These features make the Rotman lens an attractive

candidate for use in multibeam satellite-based applica-

tions.

Hansen3, 4 has presented compact formulas suitable

for conveniently designing Rotman lenses, based on the

simple ray theory of Rotman and Turner.1 This theory

is summarized and extended below, and a user-oriented

design tool RLDESIGN that implements it is described.

Once an initial design has been generated, it is neces-

sary to verify its performance with a more accurate anal-

ysis tool, one that can account for non-ideal factors such

as multiple reflections within the parallel-plate region of

the lens. Because of the large electrical area (typically

hundreds of square wavelengths) occupied by a Rotman

lens, a completely rigorous analysis is not feasible. The

planar circuit approximation5 applies to structures, like

parallel-plate lenses, that are electrically thin in one di-

mension. It reduces the effort required for their analysis

to that of solving a (line) integral equation for the rela-

tionship between the RF voltage and current at the pe-

∗Principal Engineer, RF Antenna Design Section, Antenna and Ma-

terials Technology Directorate.

riphery of the structure. This technique was first applied

to the study of stripline and microstrip Rotman lenses by

Chan,6, 7 and was subsequently also used by others for

analysis of microstrip8 and waveguide9 Rotman lenses .

In this work we describe the computer program NARL

(Numerical Analysis of Rotman Lens) that also employs

the planar circuit method to accommodate the presence

of the large parallel-plate region. However, unlike pre-

viously reported efforts, we combine the planar circuit

analysis with a full-wave, moment method (MoM) anal-

ysis of the individual tapered feed ports, using a novel,

rigorous, polynomial representation of the stripline ge-

ometry potential Green’s functions. By exploiting the

frequency-independent nature of the polynomial coeffi-

cients, a large gain in numerical efficiency is obtained,

sufficient to allow rigorous analysis of the tapered ports

over the entire set of analysis frequencies.

The final section of this paper contains a compari-

son of the predictions of both RLDESIGN and NARL

to measurements on a prototype Rotman lens.

Rotman Lens Synthesis Using RLDESIGN
Lens Design Equations

As shown in Fig. 1, a stripline Rotman lens consists of

a parallel-plate region surrounded by Na array ports, Nb

beam ports, and some number of loaded dummy ports

that are intended to provide a reflectionless termination

of the parallel-plate region. Each array port is connected

via a TEM cable of specified length to one radiating ele-

ment of a linear antenna array. The lens designer begins

by specifying the number of radiating elements N a and

their locations along the array axis, along with the num-

ber of beams Nb and the desired beam steering angles.

The TEM cable lengths and the phase center locations
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Fig. 1 Rotman Lens

for the array ports and beam ports (and thus the general

shape of the parallel-plate region) are determined once

the four basic Rotman lens parameters (˛, ˇ, f1, and 
 )

are selected. These are defined with reference to Fig. 2,

where it is seen that F0, F1, and F2 are the three points

(“foci”) of the circular beam port arc for which there are

no phase errors, f1 is the (on-axis) focal length, f2 is the

off-axis focal length,  is the beam steering angle corre-

sponding to the off-center focal point, y3 is the location

along the array axis of a typical radiating element, andw

is the length of TEM cable connecting the element and

its array port. The remaining lens parameters are the fo-

cal angle ˛, focal ratio ˇ D f2=f1, and expansion factor


 D sin = sin˛. As derived by Hansen,3 the normal-

ized length W D w=f1 of the cable attached to the array

element at y D y3 satisfies the quadratic equation

aW 2 C bW C c D 0; (1)

with coefficients a, b, and c defined by

a D 1 � .1 � ˇ/2
.1 � ˇ cos˛/2

� �2

ˇ2
; (2a)

b D �2 C 2�2

ˇ
C 2.1 � ˇ/

1 � ˇ cos˛
� �2 sin2 ˛.1 � ˇ/

.1 � ˇ cos˛/2
;

(2b)

c D ��2 C �2 sin2 ˛

1 � ˇ cos˛
� �4 sin4 ˛

4.1 � ˇ cos˛/2
(2c)

and with � D y3
=f1. A formula for the corresponding

array port phase center location P .x2;y2/ was not pro-

vided by the previously cited references. However, it can

be shown10 that

X2 � x2

f1

D 1 �
1
2
�2 sin2 ˛ C .1 � ˇ/W

1 � ˇ cos˛
(3a)

Y2 � y2

f1

D �

�

1 � W

ˇ

�

: (3b)
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Fig. 2 Rotman lens parameters (after Hansen3).

It is also possible10 to derive expressions for the beam

port phase center coordinates .x1;y1/ needed to steer the

array to an angle � :

X1 � x1

f1

D �0Œ1 � cos.˛0 C �/�; (4a)

Y1 � y1

f1

D �0 sin.˛0 C �/; (4b)

where

�0 D 1 � 1 � ˇ2

2.1 � ˇ cos˛/
; (4c)

˛0 D Sin�1

�

sin �




�

; (4d)

� D Sin�1

�

1 � �0

�0

sin˛0

�

: (4e)

Approximate Lens Illumination Function

After the physical layout of the lens has been deter-

mined via the above equations, a prediction of the cou-

pling between a typical beam port of widthwB and array

port of width wA is obtained using the approximate for-

mula11

SAB D j0

�

kwA

2
sin�A

�

j0

�

kwB

2
sin�B

�

�
r

wAwB

�d
e�j.kdC�=4/; (5)

where k D 2�=� is the wavenumber in the dielectric

substrate, d is the separation between port phase cen-

ters, j0.x/ � .sin x/=x, and �A and �B are the angles

subtended about the phase centers, measured from the

ports’ boresight directions to the segment joining their

phase centers, as shown in Fig. 3. Implicit in Eq. (5)

is the assumption that the port apertures are uniformly

illuminated. RLDESIGN uses this formula to provide

predictions of illumination amplitude, phase error, and

the resulting far-field array factor.

2 OF 11

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS



Fig. 4 The RLDESIGN main window.
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Fig. 3 Simple ray-based port coupling model.

RLDESIGN

The Rotman lens design equations have been incor-

porated into an intuitive design package named RLDE-

SIGN. Implemented in MATLAB, RLDESIGN features

a full graphic user interface (GUI), and facilitates rapid,

interactive optimization of a Rotman lens for a particular

application on PC platforms or Unix workstations. The

main window for RLDESIGN is shown in Fig. 4, where

it is seen that the GUI controls are grouped according to

function. The various groups are discussed in the follow-

ing paragraphs.

Basic Rotman Lens Parameters

Here the designer specifies the operating frequency

and lens substrate permittivity, along with the four ba-

sic lens parameters ˛, ˇ, 
 , and f1. Each of these four

can be precisely set by typing a value into a field (the

center edit box), or they can be continuously varied by

adjusting a slider control between user-specified limits.

RLDESIGN supports a so-called “tuning mode” wherein

any adjustments made to these sliders result in immedi-

ate feedback in the form of updated lens contour plots

and/or performance plots (discussed below). The slider

limits (in the top and bottom edit boxes for each parame-

ter) are also used as optimization variable bounds for the

built-in optimizer.

Beam Port and Array Port Parameters

In the edit box labeled sin(theta) the user types

an arbitrary MATLAB expression that evaluates to the

sine of the desired steering angles. This method was

chosen because frequently it is desired to specify a set
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Fig. 5 Lens geometry generated by Ports checkbox.

of steering angles that are uniformly distributed in sine

space. For example, in Fig. 4 the MATLAB intrinsic func-

tion linspace has been used to request 40 beam ports

steered to angles equally spaced in sine space, with end

beams located at ˙8ı. Beam port phase center locations

on the beam port arc are calculated from the steering

angles using Eq. (4). The radiating array element lo-

cations are specified by a MATLAB vector expression

typed by the user into the box labeled y3 (inch) as

in Fig. 4 where 41 uniformly spaced elements are sym-

metrically disposed along the y axis with interelement

spacing 1:692 in. The array port phase center locations

are then obtained using Eq. (3).

The linearly tapered beam ports and array ports are by

default oriented with their boresight normal to the arc

on which they lie, but activating the port pointing

checkbox causes them instead to be pointed to the center

of the opposite arc. This can sometimes improve illumi-

nation symmetry and hence reduce spillover loss.

To achieve better lens illumination and port impedance

match, it is often desirable to split each of the beam

and/or array ports into two or more ports fed by an iso-

lated Wilkinson power divider. RLDESIGN provides

popup menus where the user can select a “split factor”

of 1–4 to indicate how many such divisions should be

applied to each port. The path compensation check-

box, when activated, instructs the program to adjust the

simulated lengths of the lines feeding each arm of the

Wilkinson divider to achieve equal path lengths to the

center of the opposite arc.

Analysis Plot Options

These checkboxes are to select plots to be generated

when the Analyze button is clicked. The Arcs option

plots port phase center locations, while Ports draws the

entire lens boundary, including array, beam, and dummy

ports, as in Fig. 5. Various performance parameters can
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Fig. 6 Plot generated by Phase Error checkbox.
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Fig. 7 Beam rosette generated by Array Factor checkbox.

also be plotted, such as phase error (Fig. 6), amplitude

illumination, and computed array factor (Fig. 7).

Optimization Options

In addition to its manual tuning mode, RLDESIGN

incorporates an automatic optimizer (based on the MAT-

LAB Optimization Toolbox function fminimax) that at-

tempts to adjust the four basic lens parameters so as to

minimize an objective function consisting of a weighted

sum of phase error, amplitude error, spillover loss, and

“Ymatch.” (The last quantity is a measure of the y-

coordinate mismatch of the beam port and array port

arc endpoints. Minimizing “Ymatch” allows for easier

“clamming” of the lens boundary.) The user can spec-

ify the weighting to be applied to each component of the

objective function, and a constant readout of the com-

ponent values is provided during the optimization run,

which typically takes only seconds. The user also has the

option of viewing updated geometry and/or performance

plots at each iteration.
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Fig. 8 NARL divides the analysis into two subproblems.

Rotman Lens Analysis Using NARL
Overview

Although RLDESIGN is extremely useful for syn-

thesizing Rotman lens designs, it’s simple physical

optics/ray-tracing method is not capable of predicting

several important performance parameters, including

port return loss, neighboring port mutual coupling, and

the ripple observed in the lens amplitude illumination

due to reflections from imperfectly matched ports termi-

nating the parallel plate region. A more accurate analysis

method is needed to model these effects. Because of

the large electrical area of the lens (typically hundreds

of square wavelengths), analysis using completely rig-

orous methods such as the method of moments (MoM),

finite elements (FE), or the finite difference time domain

(FDTD) method is not feasible. Therefore, we adopt

the same approach as previous workers, using the pla-

nar circuit method for the interior parallel-plate region,

and combining its results with a separate analysis of the

tapered feed ports. This decomposition is conceptually

illustrated in Fig. 8.

Previous workers6–8 have used an approximate equiva-

lent waveguide model of the stripline or microstrip ports,

involving the use of effective dimensions to account for

fringing, along with an approximate tapered transmission

line theory to account for higher mode reflections in the

taper. Here, we avoid the use of effective dimensions

by using a full-wave MoM solution for the ports that

correctly accounts for fringing fields. The basis func-

tions used here are the triangle subdomain functions of

Rao, Wilton, and Glisson12 (RWG) that can accommo-

date any polygonal port shape. We also employ a novel,

wide-band formulation of the stripline potential Green’s

functions that makes the rigorous port analysis numeri-

cally efficient.

Parallel Plate Region

After temporarily removing the tapered feed ports

from the stripline center conductor pattern of the lens, the

remaining parallel plate region is just a convex polygon

as shown in Fig. 8. Each polygon edge is referred to as a

“port segment.” To analyze this portion of the structure,

Chan and others assumed a series of waveguide modes

with sinusoidal transverse variation in each port segment.

The original planar circuit formulation of Okoshi 5 as-

sumed constant RF voltage and current density within

each linear segment. Here we revert to Okoshi’s origi-

nal formulation, subdividing each port segment as nec-

essary for sufficient accuracy, and noting that Okoshi’s

assumptions are completely consistent and compatible

with the constant normal current density assumption for

each edge in the RWG basis function formulation.

Following the reference5 the open-circuit impedance

matrix Zpp for the parallel-plate region is found as

Zpp D U
�1

H, where

Umn D
(

�kWn cos �mn H
.2/
1
.krmn/ .m ¤ n/

2j .m D n/;
(6)

Hmn D

8

<

:

j!�h
2

H
.2/
0
.krmn/ .m ¤ n/

j!�h
2

h

1 � 2j
�

�

log kWm

4
� 1 C 


�i

.m D n/;

(7)

H
.2/
n is the Hankel function of the second kind of order

n, Wm is the width of the mth segment, 
 is Euler’s con-

stant, and rmn and �mn are geometrical parameters.5

Feed Port Analysis

Wide-Band Green’s Function

Each port is analyzed rigorously using a mixed-

potential integral equation (MoM) and the RWG basis

functions. The key feature that provides enough numer-

ical efficiency to make this procedure feasible is the use

of a wide-band Green’s function for the potentials.

The structure for which the potential Green’s functions

are desired consists of a dielectric-loaded, parallel plate

waveguide, bounded at z D 0 by a magnetic wall, at

z D h by an electric wall�, and unbounded as � ! 1.

We assume that the structure is electrically thin, so that

kmaxh � �

4
; (8)

where kmax D !maxjp��j is the magnitude of the

wavenumber in the dielectric at the highest frequency of

interest,� and � being the complex permeability and per-

mittivity, respectively, of the dielectric substrate.

The magnetic vector potential Green’s function G A
x

and electric scalar potential Green’s function G ˚ are so-

lutions to

.r2 C k2/GA
x .r/ D ��ı.r/; (9a)

.r2 C k2/G˚ .r/ D �1

�
ı.r/; (9b)

where k D !
p
�� is the dielectric wavenumber, � D

x Ox C y Oy , and r D � C z Oz, and we have exploited

�The sources are limited to the plane z D 0 so that the symmetry

of the resulting fields allows us to restrict consideration to only half

(0 < z < h) of the full structure.
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the translational invariance of the structure to place the

sources at the origin. The Green’s functions are subject

to the boundary conditions

GA
x .x;y;h/ D G˚ .x;y;h/ D 0; (10a)

@GA
x

@z
.x;y; 0/ D @G˚

@z
.x;y; 0/ D 0; (10b)

and the radiation condition as � ! 1. Since these two

functions satisfy identical boundary conditions and the

same partial differential equation (up to a constant), they

are equal within a constant multiplier. Therefore, we will

seek only the Green’s function G that satisfies

.r2 C k2/G.r/ D �ı.r/; (11)

subject to the same boundary conditions. For use in the

MoM procedure we only require this function to be eval-

uated in the plane z D 0. In this case G.r/jzD0 D
G.�/ D G.�/, since there is no angular dependence.

We will make use of previously derived formulas for a

rectangular, stripline cavity13 to find this desired Green’s

function. Adjusting notation for the different orientation

of the coordinate system, and allowing the cavity walls

to recede to infinity, we find that G can be expressed with

negligible error as a polynomial in k:

G.�/ D 1

�h

2
X

qD0

aq

q!

�

k

kmax

�2q �

kmax�

2

�q

�

�
1

X

nD0

�

kmax

kyn

�q

Kq.kyn�/ (12)

where kyn D .n C 1=2/�=h, Kq is the modified Bessel

function (MacDonald’s function) of order q, a 0 D 1, and

a1 and a2 are constants chosen to minimize the maxi-

mum error in the approximation 1
1�x

� 1 C a1x C a2x2

for 0 � x � kmax

ky0
: We note that (8) is equivalent to the

condition that kmax=ky0 � 1=2. Equation (12) is very

useful for moderate to large values of � due to the rapid,

exponential decay of the modified Bessel function, and

because of the fact that (12) is in the form of a poly-

nomial in k2. However, for � < h=2 the sum over

n in (12) is slowly convergent and actually diverges as

� ! 0. This behavior is not unexpected, since the po-

tentials must exhibit a singularity proportional to 1=� at

� D 0.

An alternative, quasi-static series for G that is use-

ful for small arguments was derived using the Poisson

summation formula13 and is presented below, specialized

to the case where source and observation points are re-

stricted to the z D 0 plane:

G.�/ D 1

�h

2
X

qD0

aq

q!2q

�

k

kmax

�2q

Sq.�/ (13)

where

S0.�/ D 1

2 Q� C
1

X

nD1

.�1/n

rn

(14a)

S1.�/ D 1

2
.kmaxh/2

"

1 � Q� � 2

1
X

nD1

.�1/nXn

#

; (14b)

S2.�/ D 1

2
.kmaxh/4

"

2

3
� 1

2
Q�2 C 1

3
Q�3 C

1
X

nD1

.�1/n
�

2

3
X 3

n C 4nX 2
n C 8n2Wn

�

#

(14c)

and we have defined Q� D �=h, rn D
p

Q�2 C 4n2, Xn D
rn � 2n, Wn D Xn � Q�2

4n
.

The series in (14) require acceleration before they can

be efficiently evaluated. To accomplish this, each sum-

mand is expanded in a Maclaurin series in the variable

1=n to determine its asymptotic behavior. The asymp-

totic terms are then subtracted termwise from the sum-

mand and added back in after being summed in closed

form (a so-called “Kummer’s transformation”). The re-

sult is

S0.�/ D 1

2 Q� � C1

2
C C3 Q�2

16
C

1
X

nD1

.�1/n
�

1

rn

� 1

2n
C Q�2

16n3

�

(15a)

S1.�/ D .kmaxh/2

(

1 � Q�
2

C C1 Q�2

4
� C3 Q�4

64
�

1
X

nD1

.�1/n
�

Xn � Q�2

4n
C Q�4

64n3

�

)

(15b)

S2.�/ D .kmaxh/4

2
�

�

2

3
� Q�2

2
C Q�3

3
C 1

3
S21 C 2S22 C 4S23

�

(15c)

where the auxiliary series are

S21 D �C3 Q�6

32
C

1
X

nD1

.�1/n
�

2X 3
n � Q�6

32n3

�

; (16a)

S22 D � Q�4C1

8
C Q�6C3

64
C

1
X

nD1

.�1/n
�

2nX 2
n � Q�4

8n
C Q�6

64n3

�

(16b)
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Fig. 9 A typical tapered feed port.

.

S23 D Q�4C1

32
� Q�6C3

256
C

1
X

nD1

.�1/n
�

2n2Xn � Q�2n

2
C Q�4

32n
� Q�6

256n3

�

(16c)

and

C1 D
1

X

nD1

.�1/nC1

n
D ln.2/ (17a)

C3 D
1

X

nD1

.�1/nC1

n3
D 0:9015426773696957 : : : (17b)

Following the acceleration procedure all of the sum-

mands in (15) and (16) now decay as n�5, so that the

series converge quite rapidly. The series in (17) are re-

lated to the Riemann zeta function and are tabulated. 14

Moment Method Formulation

The MoM formulation generally follows that of the

original reference12 except for a few modifications. First,

the definition of the basis function used here does not in-

clude the length of the defining edge as a factor. This

change means that the basis function coefficients fIng
now have units of current, and their interpretation is that

In is the total current crossing the nth edge of the triangu-

lated surface. It follows that the generalized impedance

matrix Z arising from the MoM formulation has units of

impedance, a physically appealing and useful outcome.

Second, unlike in the original RWG formulation, ba-

sis functions are defined for some of the edges located on

the boundary of the port. The support of such basis func-

tions is limited to the single adjacent triangle, rather than

a pair of adjacent triangles as for an interior edge. The

geometry of a typical feed port is shown in Fig. 9. It con-

sists of a polygonal region in the x-y plane. The tapered

feed port is attached at its narrow end to a uniform-width

strip transmission line, and at the wide end it is connected

to the Rotman lens parallel-plate region. The surface of

the port is tessellated using triangles, resulting in N1 and

N2 triangle edges along the port terminal planes at the

narrow and wide ends, respectively. These correspond to

N1 and N2 ports of the structure’s equivalent circuit. The

goal of the MoM analysis is to determine the open-circuit

L
0

F

1

:::

N1

1

:::

N1

N1 C 1

:::

N1 C N2

::: L

p C 1

:::

p C N2

1

:::

p

:::

N1 C 1

:::

N1 C p

Fig. 10 Interconnection of feed port and lens networks.
.

impedance matrix Z
oc that characterizes the .N1 C N2/-

port equivalent circuit of the tapered feed port. As a first

step, the MoM analysis is used to find the generalized

impedance matrix Z 2 CN �N of the structure, where

N is the total number of electric current basis functions.

Once Z has been determined, Z
oc is obtained using the

formula

Z
oc D Z11 � Z12Z

�1
22 Z21 (18)

where

Z D
�

Z11 Z12

Z21 Z22

�

(19)

has been partitioned assuming that the first block of N1C
N2 unknowns corresponds to edges at the two terminal

planes. Thus, Z11 is a square matrix of dimension N1 C
N2, Z12 has dimensions .N1CN2/�.N �N1�N2/, etc.

To maintain consistency with standard conventions for

electrical networks it is necessary that the basis functions

associated with the port terminal planes be oriented to

define positive current flow into the port.

Finally, because of the special form used for the po-

tential Green’s functions, the integrals needed to com-

pute Z are also expressed as polynomials in frequency.

Their coefficients are computed only a single time, then

stored in matrices for reuse at each desired analysis fre-

quency. This reduces the effort needed to compute the

contributions to Z (for the second and subsequent anal-

ysis frequencies) to mere polynomial evaluation. For

multi-frequency analysis we realize a drastic reduction in

matrix fill time, which dominates total execution time for

the MoM procedure. For maximum efficiency the MoM

portion has been coded in Fortran 95. CPU time require-

ments for some numerical examples are given later in this

paper.

Network Interconnection

Having determined the impedance matrices for the

parallel-plate region and feed ports, it is necessary to

combine them appropriately to find the matrix of the

complete lens network. Each feed port in turn is attached

to the composite lens network in an iterative procedure,

one typical stage of which is illustrated in Fig. 10. As

shown there, the partially combined lens network L con-

tains p C N2 ports, of which the last N2 are to be con-

nected to the last N2 ports of the feed network F . The

resulting .p C N1/-port network D L
0 is then ready to
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Fig. 11 Model used for comparing NARL and IE3D.

be combined with the next feed network. The formula

for L
0 in terms of F and L is derived using techniques

similar to those used for scattering matrices with the mul-

tiport connection method.15 After partitioning the F and

L matrices, the interconnection condition of equal volt-

ages and opposite currents is enforced for each pair of

terminals to be connected. The final result can be ex-

pressed most concisely in MATLAB notation as follows:

L = ...

blkdiag(F(1:N1, 1:N1), L(1:p, 1:p)) + ...

[F(1:N1, N1+1:N1+N2);-L(1:p, p+1:p+N2)] * ...

((F(N1+1:N1+N2, N1+1:N1+N2) + ...

L(p+1:p+N2, p+1:p+N2)) \ ...

[-F(N1+1:N1+N2, 1:N1), L(p+1:p+N2, 1:p)]);

After all feed ports have been connected, the impedance

matrix is converted to a scattering matrix, which may

then be further combined with the scattering matrices of

the Wilkinson power dividers used to feed pairs of ports.

The final, reduced scattering matrix provides all quanti-

ties of interest to the lens designer.

Code Validation
NARL Versus IE3D Test Case

As a preliminary test the small Rotman lens-like struc-

ture shown in Fig. 11 was analyzed using both NARL and

IE3D, a commercial MoM tool. The substrate was taken

to be Duroid 6002 (�r D 2:94, tan ı D 0:0015) with

ground plane spacing 43 mil. The structure was analyzed

at 111 equally spaced frequencies from 1 to 12 GHz. For

IE3D, a �=20 mesh (at the highest frequency) was used,

with edge cells enabled for higher accuracy, and with the

fast sweep algorithm enabled. This resulted in a full anal-

ysis performed at 13 frequencies and interpolation at the

remaining 98 frequencies. The IE3D run required 3 hr

on a 2.4 GHz Pentium 4 machine. The NARL runs were

performed on a 500 MHz Pentium 3 for maximum edge

lengths of �=10, �=20, �=30, and �=40. These same 111

frequencies required 16 sec, 32 sec, 118 sec, and 257 sec,

respectively; all a small fraction of the time needed for

IE3D.
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Fig. 12 NARL vs. IE3D port 1 reflection magnitude.
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Fig. 13 NARL vs. IE3D ports 1–2 coupling magnitude.

Comparisons of return loss and port coupling magni-

tude are shown in Figs. 12–14, where the agreement is

seen to be generally very good over the 12:1 frequency

band, although it is slightly worse for the mutual cou-

pling between ports 1 and 2. This can be understood by

realizing that the direct electromagnetic coupling that ex-

ists between neighboring edges of adjacent feed ports is

correctly accounted for by the full-wave analysis of IE3D

but is ignored by NARL.

Comparison to Prototype Lens Measurements

Scattering parameter measurements using an auto-

mated network analyzer were taken on a prototype

stripline Rotman lens developed under an internal re-

search and development program. The lens, as shown in

Figs. 15 and 16, has Na D 41 array ports and Nb D 46

beam ports, and is constructed from Duroid 6002 with

43 mil ground plane spacing. It is intended to scan to

˙8ı, suitable for use on a satellite in geosynchronous

orbit. The measured data was compared to predictions of

the RLDESIGN and NARL codes.
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Fig. 14 NARL vs. IE3D ports 1–3 coupling magnitude.

Fig. 15 Center conductor pattern of prototype lens.

Fig. 16 Network analyzer measurement of prototype lens.
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Fig. 17 Illumination amplitude for end beam port.
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Fig. 18 Illumination amplitude for a central beam port.

Illumination amplitude for beam port 1 at 18:6 GHz

is shown in Fig. 17. Ripple due to multiple reflections

within the parallel plate region is clearly evident in the

measured data and NARL prediction. The quality of

agreement between these two is remarkable, especially

considering the fact that both measured and predicted

data include the effects of the Wilkinson power dividers

feeding the split ports on both sides of the lens. A similar

comparison for a central beam port is shown in Fig. 18,

where the agreement is not as good. Both NARL and

RLDESIGN appear to be overestimating the loss by ap-

proximately 1=2 dB for this near-center beam port.

Fig. 19 provides a comparison of measured and pre-

dicted array pattern rosettes at 20 GHz for beams 1–24,

normalized to a peak value of 0 dB. The agreement with

measured data appears to be good for both RLDESIGN

and NARL. A magnified view of the end beams is shown

in Fig. 20 where a rolloff is observed in the beam peak

gains. It is seen that NARL is able to predict the rolloff

more accurately than RLDESIGN.
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Fig. 20 Array factor rosette, end beams.

A return loss comparison for beam port 19 is pre-

sented in Fig. 21. These results are typical, in that NARL

predicts a dip in the return loss that is not seen in the mea-

sured data. It is thought that this discrepancy may be due

to some error in modeling (or manufacturing) the Wilkin-

son power dividers, especially considering the excellent

correlation that was achieved with the IE3D model.

Figs. 22 and 23 show the comparisons of predicted and

measured mutual coupling between neighboring beam

ports and beam ports separated by three intervening

ports. Good agreement between predictions and mea-

surements is observed.

The NARL calculations for the prototype lens were

performed on a Digital Alpha DS20E workstation using

both a �=10 and �=20 mesh size. The lens was analyzed

at 81 equally spaced frequencies between 18 GHz and

22 GHz. A breakdown of the CPU time needed for the

analysis is shown in Table 1.
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Fig. 21 Beam port 19 return loss.
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Fig. 22 Measured and calculated mutual coupling between

beam ports 23 and 22.
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Fig. 23 Measured and calculated mutual coupling between

beam ports 23 and 19.
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Max. segment length �=10 �=20

# Ports to Analyze 281 281

# Par. Plate Boundary Segments 1352 2573

Port Analysis CPU min. 17 183

PP Region CPU min. 47 386

Linear algebra CPU min. 83 690

Total CPU min. 147 1259

Avg. CPU min/freq. 2 16

Table 1 CPU time for NARL analysis of prototype lens.

Conclusions

The design equations for Rotman lenses were re-

viewed and new equations for locating the beam ports

and array ports were presented. A powerful interactive

tool, RLDESIGN, was developed that solves the lens

equations and allows rapid optimization of a lens design

for a given application. RLDESIGN is based on a simple

ray-optical analysis, yet provides much useful informa-

tion on lens performance including amplitude illumina-

tion, phase error, spillover loss, array factor patterns,

and lens geometry. The latter can easily be exported to

a CAD program for detailed layout. RLDESIGN will

automatically add tapered beam ports, array ports, and

dummy ports to the lens periphery, and it allows for split

ports fed with Wilkinson power dividers.

A more rigorous analysis tool, NARL, was also devel-

oped to provide more accurate and detailed information

about the lens performance. It combines the planar cir-

cuit method with a novel, wide-band, full-wave analysis

of the tapered feed ports, resulting in a numerically ef-

ficient and accurate analysis that provides the full scat-

tering matrix of the .Na C Nb/-port lens, including the

effects of multiple reflections. From the scattering matrix

one can obtain all the outputs available from RLDESIGN

in addition to other important performance parameters

such as as port match, mutual coupling, and lens illumi-

nation ripple. NARL was validated by comparing its pre-

dictions on a small lens-like stripline structure to those of

a commercial electromagnetic simulator program.

Both NARL and RLDESIGN were validated by com-

paring their predictions to measurements made on a pro-

totype Rotman lens having 41 array ports and 46 beam

ports.
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